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Abstract

3D molecule generation is crucial for drug discovery and material science, requir-
ing models to process complex multi-modalities, including atom types, chemical
bonds, and 3D coordinates. A key challenge is integrating these modalities of
different shapes while maintaining SE(3) equivariance for 3D coordinates. To
achieve this, existing approaches typically maintain separate latent spaces for in-
variant and equivariant modalities, reducing efficiency in both training and sam-
pling. In this work, we propose Unified Variational Auto-Encoder for 3D Molec-
ular Latent Diffusion Modeling (UAE-3D), a multi-modal VAE that compresses
3D molecules into latent sequences from a unified latent space, while maintaining
near-zero reconstruction error. This unified latent space eliminates the complex-
ities of handling multi-modality and equivariance when performing latent diffu-
sion modeling. We demonstrate this by employing the Diffusion Transformer–a
general-purpose diffusion model without any molecular inductive bias–for latent
generation. Extensive experiments on GEOM-Drugs and QM9 datasets demon-
strate that our method significantly establishes new benchmarks in both de novo
and conditional 3D molecule generation, achieving leading efficiency and quality.
On GEOM-Drugs, it reduces FCD by 72.6% over the previous best result, while
achieving over 70% relative average improvements in geometric fidelity. Our code
is released at https://github.com/lyc0930/UAE-3D/.

1 Introduction

The discovery of novel molecules is fundamental to various scientific fields, particularly in drug
and material development. Given significant progress has been made in designing 2D molecular
graphs [1–4], recent research has increasingly focused on the generation of 3D molecules [5, 6].
Unlike 2D molecular generation, which focuses on forming valid molecular structures based on
chemical bonds, 3D generation must also predict 3D atomic coordinates that align with the 2D
structure. Accurate 3D molecule generation is essential to power many important applications, such
as structure-based drug design [7] and inverse molecule design targeting quantum properties [8].

3D molecule generation is challenging due to its multi-modal nature. As shown in Figure 1(a), a 3D
molecule consists of features of three distinct modalities: atom types, atomic coordinates, and chem-
ical bonds. This requires the generation model to handle both discrete (e.g., atom types) and con-
tinuous features (e.g., coordinates), while also addressing differences in feature shapes (atom-wise
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Figure 1: (a) A 3D molecule has multi-modal features. (b)
Prior methods use separate latent spaces for equivariant
(3D) and invariant (2D) modalities, inducing unnecessary
complexity for model architecture. (c) UAE-3D reduces
this complexity by establishing a unified and near-lossless
latent space that integrates all molecular modalities.
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Figure 2: Comparing UAE-3D and
UDM-3D with other methods on the
QM9 dataset. (a;b) Reconstruction er-
rors on the test set. (c;d) Comparing
training and inference time.

v.s. edge-wise features). Worse still, the modality of 3D coordinate requires special care to respect
rotational and translational equivariance, whereas other modalities do not, further complicating the
task. Mitigating this multi-modal challenge, prior works mostly process each modality in separate
latent spaces: some maintain separate diffusion processes for each modality [6, 9–11], while oth-
ers interleave the prediction of different modalities across autoregressive generation steps [12, 13].
However, we argue that handling each modality separately complicates the model design, reducing
both the training and sampling efficiency. Moreover, processing each modality separately risks com-
promising the consistency between them. These issues raise a critical question: Can we design a
unified generative model that seamlessly integrates all three modalities of 3D molecule generation?

To answer this research question, we propose to build a multi-modal latent diffusion model
(LDM) [14] for the unified generative modeling of 3D molecules. LDM extends the diffusion
paradigm [15] by operating in a compressed latent space learned through variational autoencoders
(VAEs) [16], offering improved computational efficiency and generation quality. For 3D molecules,
we can build a multi-modal VAE that compresses all three modalities in a single unified latent space.
Scrutinizing the previous works, we identify the following challenges to achieve this purpose:

• The Challenge of Compressing Multi-modality in One Latent Space. While previous studies
have explored LDMs for 3D molecule and protein generation [17, 18], they fail to build a unified
latent space that integrates all modalities. Their difficulty arises from the reliance on neural net-
works with baked-in 3D equivariance [19, 6], which mostly maintain separate latent spaces for 3D
equivariant and invariant modalities (cf. Figure 1(b)).

• The Challenge of Ensuring Near-Lossless Compression. Ensuring a low reconstruction error
for the molecular VAE is critical, as even small errors can result in invalid or unstable 3D struc-
tures. Furthermore, imprecise latents that cannot reproduce the original molecule can propagate
their errors to the LDM, easily disrupting the generative modeling. Despite its critical importance,
reconstruction error has been largely overlooked in previous works [17, 18] (cf. Figure 2(a;b)).

In this work, we introduce UAE-3D, Unified Variational Auto-Encoder for 3D Molecular Latent Dif-
fusion Modeling, a VAE that can compress the multi-modal features of 3D molecules into a unified
latent space while maintaining near zero (100% atom/bond accuracy and 2E-4 coordinate RMSD)
reconstruction error. To obtain a latent space integrating both 3D equivariant and invariant modal-
ities, we draw inspiration from the “bitter lesson” [20] of 3D molecules: rather than using models
with intricate, baked-in 3D equivariance, UAE-3D trains a neural network to “learn” 3D equivari-
ance through our tailor-made SE(3) augmentations, encouraging the transformation on the input
coordinates to be reflected equivariantly on the output coordinates. Moreover, UAE-3D employs the
Relational Transformer [21] as its encoder, leveraging its scalability and flexibility to incorporate
both atom-wise and edge-wise features. A Transformer-based [22] decoder is jointly trained with
the encoder to reconstruct both 3D invariant and equivariant molecular features.

Despite its simplicity, UAE-3D can compress 3D molecules into token sequences in a unified latent
space, eliminating the complexities of handling multi-modalities and 3D equivariance in latent
diffusion modeling. Figure 2(a;b) show that UAE-3D reaches near-lossless reconstruction of atom
and bond types, with a near-zero coordinate RMSD. To further demonstrate its effectiveness, we
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employ the Diffusion Transformer (DiT) [23], a general-purpose diffusion backbone without any
molecular inductive bias, to model UAE-3D’s latents. We show that DiT can successfully generate
stable and valid 3D molecules, with significantly improved training (by 2.7 times) and sampling (by
7.3 times) efficiency (cf. Figure 2(c;d)). We refer to this LDM pipeline as UDM-3D: Unified Latent
Diffusion Modeling for 3D Molecule Generation.

Extensive experiments demonstrate that UDM-3D, powered by UAE-3D, achieves state-of-the-art
results in both de novo and conditional 3D molecule generation on the QM9 [24] and GEOM-
Drugs [25] datasets. On GEOM-Drugs, our model achieves a 72.6% reduction in Fréchet ChemNet
Distance [3], while significantly reducing the MMD of bond length, bond angle, and dihedral angle
by 88.4%, 55.6%, and 74.0%, respectively. In conditional generation on QM9, it achieves the lowest
MAE in five out of six properties. These results confirm the effectiveness of our unified modeling
approach. Ablation studies show the effectiveness of our key components. Further analysis reveals
that UAE-3D’s latents present structured variations across geometric movement.

2 Background: 3D Molecular Latent Diffusion Models

A 3D molecular LDM involves a 3D molecular VAE to compress 3D molecules into the latent space,
where a diffusion model performs generative modeling. Below, we introduce both components.

Notations. A 3D molecule is represented by G = ⟨F,E,X⟩, where F ∈ R|V|×d1 is the atom feature
matrix (e.g., atomic numbers), E ∈ R|V|×|V|×d2 is the bond feature matrix (e.g., bond connectivity
and type), and X ∈ R|V|×3 is the 3D atom coordinate matrix. d1 and d2 are dimensions of atom and
bond features. V is G′s set of atoms and |V| denotes the number of atoms.

3D Molecular Variational Auto-Encoding. A molecular VAE consists of an encoder E and a
decoder D. Given a 3D molecule G, the encoder E maps it into a sequence of latent tokens E(G) =
Z = {zi ∈ Rd|i ∈ V}. Each latent zi is sampled from a Gaussian distribution N (zi;µi,σi) using
the reparameterization trick [16], where µi and σi are learned parameters for atom i. The decoder
D then reconstructs G from these latents: Ĝ = D(Z). The VAE is trained with a reconstruction
loss and a regularization term:

LVAE = EG∼pdata

[
∥Ĝ−G∥+DKL(q(Z|G)∥p(z))

]
, (1)

where DKL denotes the Kullback-Leibler divergence; q(Z|G) =
∏

i∈V N (zi;µi,σi) is the approx-
imated posterior distribution; and ∥Ĝ −G∥ measures the difference between the original and the
predicted graph, whose definition varies across different works. In [17], ∥G − Ĝ∥ combines an
MSE loss for 3D coordinates and a cross-entropy loss for atom types.

Diffusion Model. Building on the molecular VAE’s latent Z, a diffusion model [14, 26] performs
generative modeling. In forward diffusion process, we gradually add noise to the original latent
Z(0) = Z following Z(t) ∼ N (Z(t);

√
ᾱ(t)Z(0), (1 − ᾱ(t))I), where t ∈ (0, 1] is the diffusion

timestep, and ᾱ(t) is a hyperparameter controlling the signal/noise ratio. In practice, Z(t) is sampled
as Z(t) =

√
ᾱ(t)Z(0) +

√
1− ᾱ(t)ϵ, where ϵ ∼ N (0, I). Given the noised latents Z(t), a diffusion

model ϵθ(Z(t), t) is trained to predict the added noise ϵ by minimizing the MSE loss ∥ϵθ(Z(t), t)−
ϵ∥2. Once trained, new latents Ẑ(0) are sampled with the model ϵθ via iterative denoising [15], and
the decoder D reconstructs the corresponding 3D molecule via Ĝ = D(Ẑ(0)).

Separated Latent Spaces. The VAE latents in previous works [18, 17] include two parts: Z =

[Z̄; Z⃗], where Z⃗ is for equivariant features and Z̄ is for 3D invariant features. They also rely on
diffusion models with baked-in 3D equivariance. In contrast, as Section 3 shows, our method uses a
unified latent space, allowing a general-purpose diffusion model–without any geometric or molecu-
lar inductive bias–to achieve strong performance.

3 Methodology

In this section, we propose the UAE-3D, a multi-modal variational auto-encoder designed to ef-
fectively compress the diverse modalities of 3D molecules into a unified latent space. Based on
UAE-3D, we introduce UDM-3D, an LDM for 3D molecule generation.
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Figure 3: Overview of the UDM-3D and UAE-3D models. The UAE-3D encodes 3D molecules
from molecular space into a unified latent space, integrating multi-modal features such as atom
types, chemical bonds, and 3D coordinates. Utilizing this latent space, UDM-3D employs a DiT to
perform generative modeling. Then, the denoised latents are decoded back into 3D molecules.

3.1 Unified Variational Auto-Encoder for 3D Molecular Latent Diffusion Modeling

UAE-3D is designed to address the complexities of multi-modal and equivariance of molecular data
by compressing the atomic features, bond features, and atomic coordinates into a unified latent space.
This is achieved through three key components: (1) a Relatinoal-Transformer [21] that effectively
integrates the multi-modal features into token sequences, (2) a Transformer-based [22] decoder and
the reconstruction loss for 3D molecule reconstruction; and (3) our tailor-made SE(3)-equivariant
data augmentations to train the model to learn 3D equivariance.

Compressing 3D Molecules with Relational Transformer (R-Trans) Encoder. Given a 3D molec-
ular G = ⟨F,E,X⟩, we compute its initial atom-wise and edge-wise embeddings as:

Hn = MLP([X;F]) ∈ R|V|×d, (2) He = MLP([E;D]) ∈ R|V|×|V|×d, (3)

where Dij = GBF(∥Xi−Xj∥2) ∈ Rd; GBF(·) implements the Gaussian basis functions to expand
inter-atomic distances as feature vectors [27]; and d is the embedding dimension. The initial node
embeddings Hn combines both atomic features and its 3D coordinates, while the edge embeddings
He incorporate bond features and inter-atomic distances. Hn and He together effectively represent
all 3D molecular information for the subsequent encoding. Given these embeddings, we process
them with the molecular encoder E(·) of L layers of R-Trans [21]:

H̃n = R-Trans(Hn,He) ∈ R|V|×d, (4)

where H̃n denotes the updated atom embedding for the next layer, computed as follows:

Qij = [Hn
i ;H

e
ij ]W

q ∈ Rd, (5) [Kij ;Vij ] = [Hn
j ;H

e
ij ]W

kv ∈ R2d, (6)

αij = softmaxj

(
QijK

⊤
ij√

d

)
∈ R, (7) Ĥn

i = MLP(
∑
j

αijVij) ∈ Rd, (8)

where Wq and Wkv are linear projectors. Unlike the original R-Trans, our implementation does
not update the edge He every layer, which improves efficiency without compromising performance.

Compared to Transformer [22], R-Trans is well-suited for 3D molecule encoding, that it can effec-
tively integrate edge embeddings He ∈ R|V|×|V|×d and atom embeddings Hn ∈ R|V|×d, despite
their different shapes. This integration occurs during the computation of queries, keys and values
(Equation (5) and (6)), ensuring the output atom embeddings fully incorporate edge information.

Decoder. Given encoder’s latents Z, we employ a Transformer [22] decoder D(·) to obtain the
atom-wise output P = Transformer(Z) ∈ R|V|×d. Unlike the encoder, our decoder includes no
molecule-specialized design, because it processes sequences of latents. Further, we employ three
MLP predictors for atom, bond types, and atom coordinates to reconstruct complete 3D molecules:

X̂i = MLP1(Pi) ∈ R3; F̂i = MLP2(Pi) ∈ RNa ; Êij = MLP3(Pi +Pj) ∈ RNb , (9)

where Na and Nb are the number of atom and bond types.
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Reconstruction Loss. We define the distance between our reconstructed graph and the original
graph ∥Ĝ−G∥. It includes multiple components to ensure the fidelity of generated 3D molecules:

Latom =
1

|V|
∑
i∈V

CE(F̂i,Fi), Lcoordinate =
1

|V|
∑
i∈V

MSE(X̂i,Xi),

Lbond =
1

|V|2
∑
i,j∈V

CE(Êij ,Eij), Ldistance =
1

|V|2
∑
i,j∈V

wij MSE(∥X̂i − X̂j∥,Dij).
(10)

where CE denotes cross-entropy loss, and Latom and Lbond are losses for atom and bond types;
Lcoordinate measures the MSE between the predicted and the ground truth coordinates; and Ldistance
serves as an extra constraint on coordinate predictions, to ensure correct inter-atomic distances. No-
tably, we incorporate a bonded distance loss inside Ldistance by adjusting the pairwise weight wij :

wij =

{
1 + λ, if atom i and j are bonded,
1, otherwise.

(11)

This design prioritizes accurate inter-atomic distances between bonded atoms, enforcing stricter
geometry in chemically important regions. λ is a hyperparameter that controls this constraint’s
strength. Given the components above, we define the distance between our reconstructed graph and
the original graph (i.e., the reconstruction loss) as follows:

Lrecon = EG∼pdata∥Ĝ−G∥ = EG∼pdataγ · [Latom,Lbond,Lcoordinate,Ldistance]
⊤, (12)

where γ ∈ R4 is a hyperparameter vector balancing the reconstruction terms. The final loss for
UAE-3D combines Lrecon with a KL regularization term:

LUAE-3D = Lrecon + β · EG∼pdata [DKL(q(Z|G)∥p(Z))] , (13)

where the hyperparameter β ∈ R controls the KL regularization strength.

SE(3)-Equivariant Augmentations. To enforce SE(3)-equivariance in UAE-3D, we apply random
transformations R ∈ SE(3) to input coordinates X during training [28, 20]. Each R combines
a rotation from SO(3) and a random translation from N (0, 0.01I3). Crucially, the reconstruction
loss Lrecon (cf. Equation (12)) remains unchanged but operates on transformed inputs R ◦ G =
⟨F,E,R(X)⟩. This process can be informally conceptualized as a reconstruction loss of ∥D(E(R ◦
G))−R◦G∥, where the autoencoderD(E(·)) learns to preserve geometric consistency under SE(3)
transformations.

3.2 Unified Latent Diffusion Modeling for 3D Molecule Generation

Diffusion Transformer (DiT). Given the unified latent space provided by our UAE-3D model, we
adopt the DiT [23] as the backbone diffusion model ϵθ for 3D molecular latent generation. Originally
developed for image LDM, DiT has demonstrated strong performance in modeling latent sequences.
Compared to a standard Transformer [22], DiT replaces the layernorm [29] by adaptive layernorm
(adaLN) [30], where the scale y ∈ Rd and shift b ∈ Rd parameters are conditioned on the diffusion
timestep t ∈ (0, 1]. Specifically, [y;b] = MLPadaLN(Embedt(t)), where Embedt(·) is a shared
linear layer and MLPadaLN is a module specific to each adaLN instance. These generated shift
and scale parameters act as “soft gates”, enabling timestep-dependent activation of DiT’s hidden
representations and facilitating more effective, scale-adaptive denoising.

Conditional Generation with Classifier-Free Guidance. To enable generation with a condition
vector c, we extend the adaLN modules by combining the condition embedding Embedc(c) with the
timestep embedding Embedt(t) when computing the scale y and shift b parameters. This allows the
diffusion model ϵθ(Z(t), t, c) to incorporate conditioning information during denoising:

[y;b] = MLPadaLN(Embedt(t) + Embedc(c)). (14)

To further enforce conditioning during inference, we employ the classifier-free guidance (CFG) [31]
to find Z that has a high log p(c|Z). By Bayes’ rule, the gradient of this objective is∇Z log p(c|Z) ∝
∇Z log p(Z|c)−∇Z log p(Z). Following [32], we can interprete the diffusion model ϵθ’s output as
score functions, and therefore maximize p(c|Z) using the modified denoising function:

ϵ̃θ(Z
(t), t, c) = (1 + w)ϵθ(Z

(t), t, c)− wϵθ(Z
(t), t), (15)
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Table 1: Performance of de novo 3D molecule generation on GEOM-Drugs. * indicates results
reproduced using official source codes, while other baseline results are taken from [6].

2D-Metric FCD↓ AtomStable MolStable V&C V&U V&U&N SNN Frag Scaf

Train 0.251 1.000 1.000 1.000 1.000 0.000 0.585 0.999 0.584
CDGS 22.051 0.991 0.706 0.285 0.285 0.285 0.262 0.789 0.022
JODO 2.523 1.000 0.981 0.874 0.905 0.902 0.417 0.993 0.483
MiDi* 7.054 0.968 0.822 0.633 0.654 0.652 0.392 0.951 0.196
EQGAT-diff* 5.898 1.000 0.989 0.845 0.863 0.859 0.377 0.983 0.161
UDM-3D, ours 0.692−72.6% 1.000 0.925 0.879 0.913 0.907 0.525 0.990 0.540

3D-Metric FCD3D↓ AtomStable MolStable Bond length↓ Bond angle↓ Dihedral angle↓
Train 13.73 0.861 0.028 1.56E-04 1.81E-04 1.56E-04
EDM 31.29 0.831 0.002 4.29E-01 4.96E-01 1.46E-02
JODO 19.99 0.845 0.010 8.49E-02 1.15E-02 6.68E-04
MiDi* 23.14 0.750 0.003 1.17E-01 9.57E-02 4.46E-03
GeoLDM 30.68 0.843 0.008 3.91E-01 4.22E-01 1.69E-02
EQGAT-diff* 26.33 0.825 0.007 1.55E-01 5.21E-02 2.10E-03
UDM-3D, ours 17.36−13.2% 0.852 0.014 9.89E-03−88.4% 5.11E-03−55.6% 1.74E-04−74.0%

where w ∈ [0,+∞) is a hyperparameter controlling the guidance strength; ϵθ(Z
(t), t, c) is the

conditional variant of ϵθ, incorporating the property c; ϵθ(Z(t), t) is the unconditioned variant that
ignores c. To train ϵθ, we randomly drop condition c with a certain probability pdrop, allowing ϵθ to
learn both conditional and unconditional distributions.

4 Experiments

In this section, we present the experimental results of our proposed unified molecular latent space
approach (UAE-3D & UDM-3D) on 3D molecule generation tasks. We comprehensively evaluate
UDM-3D’s performance on de novo 3D molecule generation and conditional 3D molecule genera-
tion with targeted quantum properties. Our experiments demonstrate significant improvements over
state-of-the-art methods while maintaining computational efficiency.

4.1 Experimental Setup

Datasets. Following prior works [5, 6, 9], we conduct experiments on QM9 [24] and GEOM-
Drugs [25] datasets. QM9 [24] contains 130k small organic molecules (up to 9 heavy atoms) with
quantum chemical properties. We use 100K/18K/13K train/val/test splits, following [5, 6]. GEOM-
Drugs [25] is a pharmaceutical-scale dataset with 450k drug-like molecules (average 44.4 atoms,
max 181 atoms). We use 80%/10%/10% splits and retain the lowest-energy conformer per molecule.

Baselines. For de novo 3D molecule generation, we compare UDM-3D with CDGS [33], JODO
[6], MiDi [9], G-SchNet [12], G-SphereNet [34], EDM [5], MDM [35], GeoLDM [17], EQGAT-
diff [36], SemlaFlow[37] and ADiT [38]. For conditional generation, we additionally use baselines
of EEGSDE [8] and GeoBFN [39]. We do not report MDM’s performance on GEOM-DRUGS
because we are unable to reproduce reasonable results using their official code. Similarly, ADiT’s
performance on GEOM-DRUGS is omitted, because it is not available in their paper, code, and
released checkpoint.

4.2 De Novo 3D Molecule Generation

Experimental Setting. Generating a 3D molecule involves generating the structural validity
(atom/bond features) and accurate spatial arrangements (3D coordinates). Therefore, we adapt the
comprehensive metrics from [6, 5]. We also report all the metrics for molecules from training set,
serving as an approximate upper bound for performance. Our evaluation metrics can be divided into
two groups: (1) 2D Metrics: Atom stability, validity & completeness (V&C), validity & uniqueness
(V&U), validity & uniqueness & novelty (V&U&N), similarity to nearest neighbor (SNN), fragment
similarity (Frag), scaffold similarity (Scaf), and Fréchet ChemNet Distance (FCD) [3]; (2) 3D Met-
rics: Atom stability, FCD, maximum mean discrepancy (MMD) [40] for the distributions of bond
lengths, bond angles, and dihedral angles. More experimental details are in Appendix C.1.

Table 1 and Table 2 present the performance of UDM-3D on the de novo generation task on QM9
and GEOM-Drugs datasets, respectively. Our model demonstrates leading performances in generat-
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Table 2: Performance of de novo 3D molecule generation on QM9. * indicates results reproduced us-
ing official source codes, while other baseline results are taken from [6]. Some of ADiTs evaluation
metrics are omitted due to differences in evaluation protocols. We discuss these protocol differences
and their implications in Appendix C.

2D-Metric FCD↓ AtomStable MolStable V&C V&U V&U&N SNN Frag Scaf

Train 0.063 0.999 0.988 0.989 0.989 0.000 0.490 0.992 0.946
CDGS 0.798 0.997 0.951 0.951 0.936 0.860* 0.493 0.973 0.784
JODO 0.138 0.999 0.988 0.990 0.960 0.780* 0.522 0.986 0.934
MiDi* 0.187 0.998 0.976 0.980 0.954 0.769 0.501 0.979 0.882
EQGAT-diff* 2.088 0.999 0.971 0.965 0.950 0.891 0.482 0.950 0.703
SemlaFlow 0.863 0.995 0.949 0.857 0.821 0.821 0.124 - -
UDM-3D, ours 0.130−5.80% 0.999 0.988 0.983 0.973 0.950 0.508 0.987 0.898

3D-Metric FCD3D↓ AtomStable MolStable Bond length↓ Bond angle↓ Dihedral angle↓
Train 0.877 0.994 0.953 5.44E-04 4.65E-04 1.78E-04
EDM 1.285 0.986 0.817 1.30E-01 1.82E-02 6.64E-04
MDM 4.861 0.992 0.896 2.74E-01 6.60E-02 2.39E-02
JODO 0.885 0.992 0.934 1.48E-01 1.21E-02 6.29E-04
GeoLDM 1.030 0.989 0.897 2.40E-01 1.00E-02 6.59E-04
MiDi* 1.100 0.983 0.842 8.96E-01 2.08E-02 8.14E-04
EQGAT-diff* 1.520 0.988 0.888 4.21E-01 1.89E-02 1.24E-03
SemlaFlow 1.127 0.971 0.787 - - -
ADiT* 2.884 0.211 - 9.98E-01 3.38E-02 1.46E-03
UDM-3D, ours 0.881−0.45% 0.993 0.935 7.04E-02−45.8% 9.84E-03−1.6% 3.47E-04−44.8%

ing chemically valid and novel molecules and achieves state-of-the-art performance in most of the
metrics across both datasets. Two detailed key observations emerge from the results:

Leading Geometric Accuracy. Our unified latent space enables highly accurate 3D geometric
modeling, a key factor in realistic molecule generation. UDM-3D significantly outperforms base-
lines in distributional distances of bond lengths and angles, reducing errors by an order of magnitude.
These improvements hold even for complex, drug-like molecules in GEOM-Drugswhere UDM-3D
achieves a 25x lower bond length error than GeoLDM (9.89E-03 v.s. 3.91E-01). This leap in ac-
curacy comes from UDM-3D’s ability to jointly optimize chemical and geometric constraints in a
unified latent space, maintaining consistency across molecular modalities.

Novel and High Quality Generation. UDM-3D achieves outstanding V&U&N scores of 0.907 on
GEOM-Drugs and 0.950 on QM9, while achieving state-of-the-art 3D stability and comparable 2D
stability to strong baselines such as JODO. This highlights its ability to generate novel molecules
without compromising structural quality. The key lies in the unified latent space, which jointly
encodes atom types, bond types, and coordinates, enabling the model to capture complex interde-
pendencies among molecular features.

4.3 Conditional 3D Molecule Generation

Experimental Settings. We evaluate conditional generation of molecules with target quantum prop-
erties using the protocol from [5, 17]. Specifically, our target properties include Cv , µ, α, ϵHOMO,
ϵLUMO, ∆ϵ, and we evaluate the Mean Absolute Error (MAE) between target and predicted proper-
ties. More details on the properties and settings are provided in Appendix C.2.

Table 3 reports MAE results for conditional generation on QM9. UDM-3D achieves the lowest MAE
in five out of six properties, showing strong capability in generating molecules that match target
properties. On average, it reduces MAE by 42.2% compared to GeoLDM, with a notable 52.7%
improvement in predicting the HOMO-LUMO gap (∆ϵ). These results highlight the importance of
our unified latent space that effectively integrates all molecular modalities during generation. While
GeoLDM struggles to correlate all the modalities due to its fragmented latent spaces, our unified
latent representation inherently preserves the interplay between 3D geometry, bonds, and electronic
characteristics, enabling precise modeling over molecule-property relationships.

4.4 Training & Sampling Efficiency

We further analyze the training and sampling efficiency of UDM-3D compared to baselines on the
QM9 dataset. These experiments are performed with an NVIDIA A100 GPU.
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Table 3: Mean Absolute Error (MAE) for conditional 3D molecule generation on QM9.

Method µ (D) α (Bohr3) Cv

( cal
mol K

)
εHOMO (meV) εLUMO (meV) ∆ε (meV)

U-Bound 1.613 8.98 6.879 645 1457 1464
L-Bound 0.043 0.09 0.040 39 36 65
EDM 1.123 2.78 1.065 371 601 671
EEGSDE 0.777 2.50 0.941 302 447 487
GeoLDM 1.108 2.37 1.025 340 522 587
GeoBFN 0.998 2.34 0.949 328 516 577
JODO 0.628 1.42 0.581 226 256 335
UDM-3D, ours 0.603−3.98% 1.54+8.4% 0.553−4.82% 216−4.42% 247−3.5% 313−6.57%

(a) Translation. (b) Rotation. (c) Rot. → Trans.
Figure 4: t-SNE visualizations of UAE-3D’s latents under SE(3)
augmentations. (a) Translations along a fixed direction. (b) Rota-
tions along a fixed axis. (c) Sequential rotations followed by trans-
lations. Color gradients show increasing distances or angles.

Table 4: Comparing DiT with
Transformer and PerceiverIO
for latent diffusion modeling.
Models have the same depth
and hidden size. A.S.→ atom
stability.

Metric DiT Transformer PerceiverIO

A.S.3D 0.993 0.983 0.972
A.S.2D 0.999 0.997 0.990
V&C 0.983 0.938 0.933
V&U 0.973 0.922 0.931
V&U&N 0.950 0.922 0.931

Training Efficiency. As Figure 2(c) shows, UDM-3D’s training costs 52 hours (14h UAE-3D + 38h
UDM-3D), which is 5.3 times faster than GeoLDM and 2.7 times faster than JODO. This efficiency
stems from: (1) Our decoupled training paradigm: UAE-3D first learns 3D molecule compression,
allowing DiT to focus solely on generative modeling of the compressed latents. (2) Efficient diffu-
sion with DiT: Unlike previous molecular diffusion models that require complex architectures for
multi-modality and equivariance, DiT’s simple and highly parallelizable design allows for faster
training and sampling in the unified latent space. Crucially, our speedup does not compromise per-
formance, as guaranteed by UAE-3D’s near-lossless molecular reconstruction (cf. Figure 2(a;b)).

Sampling Speed. Figure 2(d) shows that UDM-3D generates each molecule in just 0.081s, which is
7.3x faster than EDM/GeoLDM and 9.8x faster than JODO. This speed advantage comes from our
unified latent space, which simplifies DiT’s modeling and avoids complex neural architectures.

4.5 Analysis and Ablation Studies

UAE-3D’s Latents Present Structured Variations across Geometric Movements. Figure 4 shows
the t-SNE visualizations of UAE-3D’s latent representation under different SE(3) augmentations.
Each dot represents a molecular embedding in the latent space, and the color gradient from light
to dark corresponds to an increase in the translation distance (middle) or the rotation angle (right)
for the same molecule. We observe that the same molecule’s representations remain close in the
latent space and as the augmentation scale increases, the representation changes along a consistent
direction. Figure 4c shows that the representations change moving directions when the augmentation
is switched from rotation to translation. These observations demonstrate that UAE-3D captures
meaningful and structured variations in molecular representations across SE(3) augmentations.

3D Molecule Samples by UDM-3D. We present 3D molecules generated by our method as case
studies in Figure 5. The generated molecules are chemically valid and exhibit diverse and complex
structures, showcasing UDM-3D’s ability to generate realistic 3D molecular conformations.

Ablating the DiT Backbone. We compare DiT with alternative transformer-based architectures
for de novo 3D molecule generation on the QM9 dataset (cf. Table 4). Specifically, we evaluate
against a vanilla Transformer and PerceiverIO[41], a modern architecture designed for structured
inputs and outputs. The results show that DiT consistently outperforms both baselines across all
metrics, which we attribute to its adaptive LayerNorm layers. These layers enable DiT to effectively
handle data with varying noise scales, thereby improving diffusion performance. Moreover, when
paired with alternative diffusion neural architectures such as Transformer or PerceiverIO, our UAE-
3D framework still achieves meaningful and comparable performances, demonstrating its robustness
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Table 5: The performance influence of SE(3)-equivariant augmentations on the QM9 dataset.

2D-Metric FCD↓ AtomStable MolStable V&C V&U V&U&N SNN Frag Scaf

No aug. 0.581 0.995 0.947 0.950 0.935 0.921 0.492 0.971 0.799
+ Rot. 0.315 0.995 0.948 0.951 0.943 0.927 0.493 0.979 0.875
+ Trans. 0.202 0.999 0.986 0.980 0.967 0.944 0.507 0.981 0.884
+ Trans. + Rot. 0.130 0.999 0.988 0.983 0.973 0.950 0.508 0.987 0.898

3D-Metric FCD3D↓ AtomStable MolStable Bond length↓ Bond angle↓ Dihedral angle↓
No aug. 1.065 0.993 0.879 1.01E-01 1.18E-02 1.08E-03
+ Rot. 1.007 0.993 0.876 8.12E-02 9.99E-03 3.90E-04
+ Trans. 0.902 0.989 0.896 7.08E-02 1.04E-02 6.81E-04
+ Trans. + Rot. 0.881 0.993 0.935 7.04E-02 9.84E-03 3.47E-04

Table 6: RMSD results when trained with
different SE(3) augmentations on QM9.

Train with RMSD (×10−3Å)

No aug. 1.4
+ Rot. 1.1
+ Trans. 0.9
+ Trans. + Rot. 0.2

Figure 5: Visualization of random samples
generated by UDM-3D on QM9.

to different backbone choices. While further hyperparameter tuning could potentially improve the
performance of these alternatives, the results already highlight the advantage of DiT in our setting.

SE(3)-Equivariant Augmentations. Table 5 shows the performance influence of various SE(3)-
equivariant augmentations on the QM9 dataset. The results reveal that data augmentation improves
overall performance by providing diverse geometric views during UDM-3D training.

In addition to the standard performance metrics, we further investigate UAE-3D’s reconstruction
error on the test set when trained under different 3D transformations. Table 6 presents the RMSD of
the reconstructed molecules. By including both rotation and translation augmentations, we observe
a significant reduction in reconstruction error (from 1.4×10−3 to 0.2×10−3), achieving the lowest
RMSD. This shows that our SE(3)-equivariant augmentations effectively enhance the model’s ability
to learn geometric consistency by exploring a more comprehensive 3D molecular space.

5 Related Works

3D Molecule Generation. Early efforts for 3D molecule generation focus on autoregressive ap-
proaches [12, 13, 34], constructing 3D molecules sequentially by adding atoms or molecular frag-
ments. With the success of diffusion models across various domains [42, 15, 43], they also become
the de facto method for 3D molecule generation [5, 8]. However, the early diffusion works can easily
generate invalid molecules because of overlooking the bond information. To bridge this gap, subse-
quent works [6, 9, 11] additionally consider bond generation by building a separate diffusion process.
However, generating different modalities in separate diffusion processes unnecessarily complicates
the model design, reducing efficiency. It also risks compromising the consistency between these
modalities. To address this, our UDM-3D performs generative modeling in UAE-3D’s unified latent
space that integrates all molecular modalities, improving efficiency and generation quality.

LDMs for 3D Molecule Generation. For efficiency, LDMs employ a VAE [16] to compress
raw data into a low-dimensional latent space, where a diffusion model performs generative mod-
eling [14]. This method has been very popular for image generation [23]. However, existing 3D
molecular LDMs still face challenges in separated latent spaces. For example, GeoLDM [17] com-
presses atom features and 3D coordinates separately, failing to build a unified latent space. Other
works [39, 44] process different molecular components (atoms/subgraphs or atom types/coordinates)
in separate channels, increasing modeling complexity. In 3D protein generation, PepGLAD [18]
compresses 1D sequences and 3D structures into two separate latent spaces. Our UDM-3D addresses
these issues by employing a unified latent space, significantly improved generation efficiency.
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6 Conclusion and Future Works

In this paper, we propose UAE-3D to compress the multi-modal features of 3D molecules into a
unified latent space, and demonstrate the effectiveness of latent diffusion modeling on this space
by introducing UDM-3D. By integrating atom types, chemical bonds, and 3D coordinates into a
single latent space, our model effectively addresses the inherent challenges of multi-modality and
SE(3) equivariance for 3D molecule generation. Extensive experiments on GEOM-Drugs and QM9
confirm leading performances in both de novo and conditional 3D molecule generation, setting new
benchmarks for both quality and efficiency. UAE-3D’s success highlights the benefits of building a
unified latent space for molecular design. Moving forward, we will transfer this unified latent space
to new modalities, including proteins and RNAs, and extend it to broader molecular design tasks,
including structure-based drug design. While UAE-3D’s latents are near-lossless compressions of
the original molecule, it inspires the exploration of jointly modeling UAE-3D’s latents with text
sequences for text-guided 3D molecule generation, following [45–51], as well as joint modeling of
molecular and biological text representations across broader domains, including proteins [52] and
single-cell transcriptomics [53].

Limitations

Scope. In this work, we explore 3D molecule generation under the settings of unconditional gener-
ation and conditional generation targetting at quantum chemical properties. Other molecule genera-
tion tasks, such as structure-based drug design [54], is out of the scope of this work. We leave this
exploration to future works.

Molecule Size. Our method relies on a separate module to decide each generated molecule’s num-
ber of atom, following prior works [6, 5, 8]. Specifically, we use the molecule size distribution
measured on the training dataset to sample new molecule size. While this method shows decent
performance on the tested tasks, we conjecture this will be one of the bottlenecks when the tested
task become more complex. Resolving this issue might demand the incorporation of auto-regressive
based method for molecule generation, in which the generated molecule size is automatically con-
trolled by the auto-regressive process.
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• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: We do not include theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theo-

rems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The detailed needed for reproducibility are included in Section 4, Appendix C,
and our released code at https://github.com/lyc0930/UAE-3D/.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear

how to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: Our code and used dataset is released at https://github.com/lyc0930/
UAE-3D/.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/

public/guides/CodeSubmissionPolicy) for more details.
• While we encourage the release of code and data, we understand that this might not

be possible, so No is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The settings are detailed in Section 4 and Appendix C.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of

detail that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?
Answer: [No]
Justification: The experiments are mostly computationally expensive and we did not report
error bars, following the baseline methods.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should prefer-

ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: These information are included in Section 4 and Appendix C.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We adhere to the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This work focuses on generating small molecules. It is pure computational
research for applications in chemistry, material, and biology without possible harm to the
human society

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.
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to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our method does not involve such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The datasets are cited in Section 4 and Appendix C.
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• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?

Answer: [Yes]

Justification: Our codes released at https://github.com/lyc0930/UAE-3D/ include a
readme file as documentation.

Guidelines:
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submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?

Answer: [NA]

Justification: We have no crowdsourcing and no involvement of human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.
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• The answer NA means that the paper does not involve crowdsourcing nor research
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.
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• For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
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• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A More Experimental Results

A.1 More Ablation Studies and Analysis

Table 7: The influence of latent space dimensionality for 3D molecule generation on the QM9
dataset.

Latent Dim Atom Acc Bond Acc RMSD AtomStable MolStable V&C V&U V&U&N Bond Length↓ Bond Angle↓ Dihedral Angle↓
4 0.9201 0.8932 0.0080 0.914 0.325 0.580 0.566 0.566 3.27E-01 2.20E-01 4.19E-03
8 0.9998 0.9746 0.0006 0.987 0.882 0.942 0.923 0.923 1.29E-01 1.77E-02 8.14E-04

16 1.0000 1.0000 0.0002 0.999 0.988 0.983 0.973 0.950 7.04E-02 9.84E-03 3.47E-04
32 1.0000 1.0000 0.0003 0.986 0.867 0.943 0.918 0.918 9.98E-02 1.42E-02 7.77E-04

Table 8: The influence of R-Trans layer depth for reconstruction on the QM9 dataset.
R-Trans layers Atom Acc Bond Acc RMSD

3 1.0000 0.9999 0.000326
6 1.0000 1.0000 0.000203
9 1.0000 1.0000 0.000229

12 1.0000 1.0000 0.000209

Table 9: The influence of different bonded distance loss weight λ on the QM9 dataset.

λ / VAE Recon. Atom Accuracy (%) Bond Accuracy (%) Coordinate RMSD (Å)

0 (w/o λ) 1.000 1.000 0.0034
1 1.000 1.000 0.0010
5 1.000 1.000 0.0007

10 1.000 1.000 0.0002
20 1.000 1.000 0.0002

λ / 2D-Metric FCD↓ AtomStable MolStable V&C V&U V&U&N SNN Frag Scaf

1 0.283 0.996 0.959 0.962 0.940 0.940 0.494 0.978 0.874
5 0.255 0.997 0.965 0.970 0.947 0.947 0.500 0.983 0.888

10 0.130 0.999 0.988 0.983 0.973 0.950 0.508 0.987 0.898
20 0.172 0.999 0.988 0.980 0.969 0.947 0.507 0.987 0.898

λ / 3D-Metric FCD3D↓ AtomStable MolStable Bond length↓ Bond angle↓ Dihedral angle↓
1 0.901 0.985 0.857 1.25E-01 1.80E-02 1.06E-03
5 0.892 0.989 0.909 1.12E-01 1.19E-02 7.18E-04

10 0.881 0.993 0.935 7.04E-02 9.84E-03 3.47E-04
20 0.889 0.993 0.929 7.05E-02 9.84E-03 3.45E-04

Reconstruction Errors. To assess the reconstruction fidelity of UAE-3D, we evaluate its perfor-
mance on the held-out test sets of QM9 and GEOM-Drugs. We report atom-type and bond-type
accuracies as well as the coordinates RMSD, which jointly reflect the VAE’s ability to compress and
reconstruct both invariant and equivariant molecular features. Table 11 presents the reconstruction
results. On the QM9 dataset, UDM-3D achieves perfect reconstruction accuracy (100% for both
atoms and bonds) with a near-zero coordinate RMSD of 0.0002 Å, substantially overperforming Ge-
oLDM and ADiT. Notably, ADiT does not retain and reconstruct chemical bond information, which
is a limitation when reconstructing 3D molecules. On the more complex GEOM-Drugs dataset,
UDM-3D again achieves perfect reconstruction (100.0% atom and bond accuracy, 0.0008 Å RMSD),
whereas GeoLDM exhibits noticeable degradation. This demonstrates that UDM-3D’s unified latent
space not only faithfully compresses all molecular modalities but also generalizes robustly to large
and diverse molecular datasets. These results show that UAE-3D effectively learns a unified latent
representation that preserves both the chemical identity and geometric precision of molecules. These
findings align with the visual comparison in Figure 2(a;b), and reinforce our claim that UAE-3D
achieves near-lossless reconstructionan essential prerequisite for accurate latent diffusion modeling.

Unified vs. Separated Latent Space. To validate the effectiveness of our unified latent space design,
we conduct an ablation study comparing UDM-3D with a variant that employs separate latent spaces
for invariant (2D) and equivariant (3D) molecular features. Specifically, we split the unified VAE
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Table 10: Comparison between unified and separated latent space on the QM9 dataset.

2D-Metric FCD↓ AtomStable MolStable V&C V&U V&U&N SNN Frag Scaf

Unified 0.130 0.999 0.988 0.983 0.973 0.950 0.508 0.987 0.898
Separated 0.351 0.995 0.952 0.943 0.920 0.913 0.341 0.940 0.682

3D-Metric FCD↓ AtomStable MolStable Bond length↓ Bond angle↓ Dihedral angle↓
Unified 0.881 0.993 0.935 7.04E-02 9.84E-03 3.47E-04

Separated 2.356 0.982 0.872 18.4E-02 123E-03 7.03E-04

Table 11: Reconstruction accuracy (%) for atom and bond types, and coordinate RMSD on the test
sets.

Dataset Method Atom
Accuracy (%)

Bond
Accuracy (%)

Coordinate
RMSD (Å)

GEOM-Drugs GeoLDM 96.9 93.7 0.2526
UDM-3D, ours 100.0 100.0 0.0008

QM9
GeoLDM 98.6 96.2 0.1830
ADiT 85.7 - 0.3598
UDM-3D, ours 100.0 100.0 0.0002

into two independent neural networks: one maintaining the R-Trans architecture and taking 2D
information (atom types, bond types) as input, while the other uses a vanilla transformer structure
and takes 3D information (atom types and coordinates) as input. Each network generates a separate
latent space, with dimensions set to half of the original hyperparameter. The LDM is then trained on
the concatenated latent space of these two networks. Table 10 summarizes the results on the QM9
dataset. We observe that UDM-3D with a unified latent space significantly outperforms the separated
variant across all 2D and 3D generation metrics. For instance, the FCD score improves from 0.351
to 0.130, and the MolStable metric increases from 0.952 to 0.988. This demonstrates that jointly
encoding invariant and equivariant features into a single latent representation enables more effective
diffusion modeling, as the LDM can learn a coherent distribution over a unified modality rather than
needing to capture complex interactions between two separate modalities. These findings validate
our design choice of a unified latent space as crucial for achieving state-of-the-art performance in
3D molecule generation.

Influenece of Latent Dimensions. To investigate the impact of latent dimensionality on 3D
molecule generation, we conduct an ablation study on the QM9 dataset. Table 7 summarizes the
reconstruction errors and the performance metrics across different latent space dimensions (4, 8, 16,
and 32). The results indicate that a too-low latent dimension (e.g., 4) fails to capture the necessary
information, leading to inferior performance. Increasing the dimension to 16 results in substan-
tial performance improvements, while further increasing to 32 does not yield significant additional
gains. This demonstrates that a latent dimension of 16 provides an optimal trade-off between model
capacity and reconstruction fidelity.

Influence of R-Trans Layer Depth. To assess the effect of depth in the Relational Transformer
encoder in UAE-3D, we conduct an ablation study by varying the number of R-Trans layers (3,
6, 9, and 12) on the QM9 dataset regarding reconstruction error. Table 8 summarizes the results.
We observe that reducing the number of transformer layers to 3 leads to a noticeable increase in
reconstruction error, while increasing it to 9 or 12 does not yield further improvements, as the recon-
struction error is already near-zero. This indicates that a moderate depth of 6 layers is sufficient for
capturing the necessary relational information among atoms and bonds for effective reconstruction.

Bonded Distance Loss. Table 9 presents an ablation study on the weight λ for the bonded distance
loss on the QM9 dataset. We vary λ to analyze its effect on reconstruction accuracy and the preser-
vation of bond geometries. The results indicate that setting λ = 10 achieves an optimal balance
between compressing coordinate information and maintaining geometric fidelity. This experiment
validates the necessity of tuning the bonded distance loss weight to enhance model performance.

Ring Distribution. Following the evaluation protocol of [54], we computed the Percentage (%)
of molecular modes in terms of ring distribution for our generated molecules and compared them
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Table 12: Comparison of ring distributions between molecules in the QM9 training set and those
generated by our model.

3-Ring 4-Ring 5-Ring 6-Ring (7+)-Rings

QM9 train set 43.14% 39.20% 39.31% 12.72% 2.92%
Ours 41.69% 38.20% 36.37% 12.90% 3.13%

against the QM9 training set. The results in Table 12 provide a quantitative assessment of how well
our model preserves the structural diversity of the training dataset.

Figure 6: Additional t-SNE visualizations of UAE-3D’s latents under SE(3) augmentations. (a) 360-
degree rotation along the z-axis. (b) same molecule under different SE(3) augmentations.

More Visualizations of Latent Space. In addition to Figure 4, we conducted more t-SNE visual-
izations of UAE-3D’s molecular latent representations to further examine its geometric sensitivity
and consistency. In Figure 6(a), we apply 20-step rotations along the same axis (z-axis) to different
molecules, completing a full 360-degree rotation. Remarkably, the latent trajectories of all molecule
form loops and return to their original positions, reflecting the geometric sensitivity rotational consis-
tency in the learned representations. In Figure 6(b), each color now corresponds to a different SE(3)
augmentation applied to the same molecule, rather than to different molecules as in previous plots.
We observe clear separation among representations generated by translations and rotations along
different axes (x/y/z), indicating that UAE-3D effectively distinguishes between types of geometric
transformations in its latent space. These results further validate the structured and disentangled
nature of UAE-3D’s latent geometry.

A.2 More Visualizations of Generated Molecules

To further demonstrate the chemical validity and structural diversity of molecules generated by
UDM-3D, we provide extended visual comparisons across the GEOM-Drugs and QM9 datasets
in Figure 7 and Figure 8.

B More Related Works

Molecular Variational Autoencoders. Variational Autoencoders (VAEs) have been widely ex-
plored for generative modeling [16, 55–57], providing a framework to encode data into a structured
latent space while enabling both generation and reconstruction [16]. In molecular generation, VAEs
have been applied to 2D molecular graphs, as seen in JT-VAE [1], MGCVAE [58], SSVAE [59], and
CGVAE [60]. However, these methods have several limitations. First, they primarily focus on 2D
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molecular representations and often rely on non-transformer architectures, limiting their scalabil-
ity for more complex molecular generation tasks [61]. Additionally, VAE-based methods typically
assume a simple Gaussian prior, which may fail to accurately model the complex posterior distribu-
tions required for effective molecular generation [62, 63]. Notably, masked graph modeling [64] also
builds molecular a graph auto-encoder, but aiming for representation learning, instead of molecule
generation. With recent advancements in Latent Diffusion Models (LDMs) demonstrating success
across multiple domains [65, 66], LDMs have been introduced for 3D molecule and protein genera-
tion, as seen in GeoLDM[17] and PepGLAD[18]. These approaches leverage diffusion modeling in
latent space, offering improved generative capacity and efficiency.

Comparison to Other Unified Generative Molecule Models. Concurrent with our work,
ADiT [38] from FAIR also explores latent diffusion for 3D molecules using a variational autoen-
coder to compress structures into a unified latent space. However, our approach differs in three key
ways: (1) ADiT does not achieve near-lossless compression. In contrast, we explicitly evaluate
reconstruction quality and show significantly lower errors than ADiT (cf. Table 11), which trans-
lates to better 3D generation performance (cf. Table 2). (2) ADiT omits chemical bonds as part
of the inputs and reconstruction targets, leading to information loss. Although bond types can
be inferred from 3D coordinates, such predictions are not 100% accurate. For example, the QM9
dataset [24] reports 3% inconsistency across inference methods. To address this, we explicitly model
bonds using a relational transformer [21] and include bond reconstruction as an objective, offering a
more robust and chemically faithful modeling approach. (3) ADiT provides insufficient evaluation
for small molecule generation. ADiT reports only two metrics (validity and uniqueness) for the
QM9 dataset, while our evaluation includes 15 metrics, covering 2D structure, 3D geometry, stabil-
ity, validity, uniqueness, and other critical aspects (cf. Table 1). We conjecture that this is because
ADiT is more focused on crystal material generation, instead of small molecule generation.

MolCRAFT [54] also aims to unify multiple molecular modalities for generation. However, it pro-
cesses atom types and coordinates separatelyconcatenating them while use special design to pre-
serve SE(3) equivariance for coordinates. In contrast, our model encodes atom types, coordinates,
and bond types into a single unified latent representation, enabling effortless multi-modal model-
ing using a uni-modal latent diffusion model – Diffusion Transformer [23]. Moreover, MolCRAFT
focuses on the task of structure-based drug design, which is different than our major benchmarks.

Comparison to Other Equivariant 3D Molecule Generation Methods. We adopt SE(3) data
augmentations to train a variational autoencoder without explicitly incorporating equivariant archi-
tectures, allowing the model to learn geometric symmetries directly from data. This strategy is
motivated by AlphaFold3 [28], which demonstrated that SE(3) augmentations are sufficient for
general-purpose networks to learn equivariance and invariance. As shown in Table 6, our model
achieves near-zero reconstruction errors on 3D molecules subjected to random rotations and transla-
tions, showing successful learning of SE(3) equivariance. Compared to models with built-in SE(3)
equivariance, such as EDM [19] and JODO [6], our method avoids the architectural complexities
of handling multi-modality and enforcing SE(3) equivariant constraints. This design choice allows
us to use the highly optimized and parallelizable diffusion model, Diffusion Transformer [23], for
latent diffusion modeling. Consequently, we achieve significant efficiency gains, with up to 8.6x
faster training and 9.8x faster inference (cf. Figure 2(c;d)).

C More Experimental Settings

C.1 Experimental Settings for De Novo 3D Molecule Generation

Setup. For the GEOM-Drugs dataset, we use only the ground-state conformer with the lowest
energy for each molecule, following the setup in JODO [6]. We adopt the same train/validation/test
split ratio of 8:1:1, ensuring a fair comparison. For the QM9 dataset, we use the 100K/10K/10K
train/validation/test split. For both datasets, all atoms are shifted to zero center-of-mass before input.
All baseline results are either directly borrowed from JODO [6] or reproduced using their released
codebase under identical settings.

Hyperparameters. 13 shows the key hyperparameters used for training the UAE-3D and UDM-3D
models.
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Table 13: Hyperparameters of the UAE-3D and UDM-3D models.
Parameter UAE UDM

epochs 2000 10000
atom loss weight (γatom) 1.0 -
bond loss weight (γbond) 1.0 -
coordinate loss weight (γcoordinate) 1.0 -
distance loss weight (γdistance) 1.0 -
bonded distance loss weight (λ) 10.0 -
KLD loss weight 1e-8 -
batch size 512
optimizer AdamW
learning rate 1e-4
weight decay 1e-5
translation augmentation scale 0.1
encoder hidden size 64
encoder #heads 8
encoder #blocks 6
latent dimension 16
decoder hidden size 64
decoder #heads 8
decoder #blocks 4
diffusion hidden size - 512
diffusion #heads - 8
diffusion #layers - 8
diffusion mlp ratio - 4.0
condition drop (pdrop) - 0.1

Evaluation Metrics. Our evaluation framework for de novo 3D molecule generation encompasses
complementary metrics to assess molecular validity, diversity, and geometric fidelity. These metrics
operate at two levels:

2D Structural Analysis:

• Validity & Stability: Measures adherence to chemical rules:
– Atom Stability: Percentage of atoms with chemically valid valency, determined by cross-

referencing the bond counts with allowed configurations for each atom type (e.g., carbon
with 4 bonds). This is evaluated using RDKit’s atom valency parser. Formal charges are
taken into account in the valency specification.

– Molecule Stability: Percentage of molecules with valid valency for all atoms pass the above
valency check.

– Validity & Completeness (V&C): Fraction of fully connected, syntactically correct (SMILES-
parsable) molecules, excluding fragmented or hypervalent structures.

• Diversity: Quantifies exploration of chemical space:
– Validity & Uniqueness (V&U): Percentage of unique molecules among valid ones, calculated

as the ratio of unique SMILES strings to the total number of valid molecules.
– Validity & Uniqueness & Novelty (V&U&N): Percentage of unique molecules among valid

ones that are also novel, calculated as the ratio of unique SMILES strings to the total number
of valid molecules, excluding those present in the training set.

• Distribution Alignment: Convert all the valid molecules into SMILES strings and compare gener-
ated/test distributions on the MOSES benchmark [3]:

– Fréchet ChemNet Distance (FCD): Similarity between generated and reference distributions
using activations from the penultimate layer of ChemNet [67], a pretrained molecular prop-
erty predictor. Lower scores indicate better alignment.

– Similarity to the nearest neighbor (SNN): Tanimoto similarity between the generated
molecules and their nearest neighbors in the test set, calculated using Morgan fingerprints.

– Fragment Similarity (Frag): Tanimoto similarity between the generated molecules and their
nearest neighbors in the test set, calculated using BRICS [68] fragments.
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– Scaffold Similarity (Scaf): Frequencies of Bemis-Murcko scaffolds [69] in the generated
molecules compared to the test set.

3D Geometric Analysis:

• Conformer Quality: The 3D coordinates of generated molecules are converted into bond graphs
using a predefined lookup of atomic distance thresholds (per atom pair). Based on these bonds,
2D molecular graphs are reconstructed and then evaluated for atom and molecule stability using
the same criteria as in 2D Structural Analysis.

– Atom Stability: Consistency of valency in 3D-derived 2D graphs. Reconstructs 2D bond
orders from 3D atomic distances (via tabulated bond-length thresholds) and checks valency
compliance.

– Molecule Stability: Percentage of molecules with valid valency for all atoms pass the above
valency check.

– FCD3D: Same computation as standard FCD, but applied to the reconstructed molecules from
3D coordinates. Captures distributional similarity under geometric constraints.

• Geometric Fidelity: Measures spatial arrangement accuracy via Maximum Mean Discrepancy
(MMD) for:

– Bond lengths: MMD between distributions of bond lengths for eight frequent bond types
(e.g., C-C, C-N, C-O). Computed using Gaussian kernel with bandwidth tuned via the median
heuristic.

– Bond angles: MMD between the bond angle distributions of generated vs. reference
molecules. Triplets of bonded atoms (e.g., C-C-C) define each angle.

– Dihedral angles: MMD between distributions of dihedral (torsional) angles over four-atom
sequences (e.g., C-C-C-C). Captures conformational realism.

Comparison to Other Evaluation Protocols. Discrepancies in evaluation methodologies can sig-
nificantly impact reported performance metrics. For instance, ADiT’s validity scores are obtained by
reconstructing molecules from atomic coordinates using pymatgen.core.Molecule, followed by
bond inference via RDKit (likely using the xyz2mol heuristic [70]). This pipeline ensures topologi-
cal consistency (i.e., SMILES validity) but does not explicitly enforce chemical stability constraints
such as correct valency or bond geometry. In contrast, our evaluation employs RDKit’s Chem.Mol
for molecule reconstruction, which enforces stricter valency checks and chemical correctness. And
our broad evaluation criteria comprehensively measure the validity, diversity, and geometric fidelity
of 3D molecule generation.

C.2 Experimental Setting for Conditional 3D Molecule Generation

Setup. We conduct conditional molecule generation on the QM9 dataset following the protocol
in EDM [5] and EEGSDE [8]. The properties are evaluated by the QM9 property predictor [24]
pre-trained on half of the QM9 dataset. We use the property classifier pre-trained by EDM [5].

Specially, we optimize molecules toward six key electronic properties from quantum chemistry for
conditional generation:

• Electronic Response:
– Dipole Moment (µ): Molecular polarity measure
– Polarizability (α): Induced dipole response to electric fields

• Thermodynamic Properties:
– Heat Capacity (Cv): Energy absorption at constant volume

• Electronic Structure:
– HOMO (εHOMO)/LUMO (εLUMO): Frontier orbital energies
– HOMO-LUMO Gap (∆ε): Critical for reactivity and conductivity

The evaluation protocol follows a rigorous split-and-validate strategy [5]:

• QM9 training data divided into disjoint subsets Da (50k) and Db (50k)
• Property predictor ϕc trained exclusively on Da
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• Generated molecules compared against ϕc’s predictions on Db (lower-bound baseline) and ran-
dom predictions without any relation between molecule and property (upper-bound baseline)

• Performance quantified via Mean Absolute Error (MAE) across all properties

This approach ensures fair assessment of conditional generation without data leakage, with ϕc’s Db

performance establishing the theoretical minimum achievable error.

Algorithm 1 Training Algorithm for UAE-3D and UDM-3D

Require: Molecular dataset D, encoder E , decoder D, diffusion model ϵθ
1: Initialize encoder E , decoder D, and diffusion model ϵθ
2: Stage 1: Train UAE-3D
3: while not converged do
4: Sample a batch of 3D molecules G ∼ D
5: Z = E(G) {Encode}
6: Ĝ = D(Z) {Decode}
7: Lrecon (Eq. 12) {Reconstruction loss}
8: LUAE-3D (Eq. 13) {VAE loss}
9: Update E and D using LUAE-3D

10: end while
11: Stage 2: Train UDM-3D
12: while not converged do
13: Sample a batch of latent sequences Z(0) ∼ E(D)
14: Sample diffusion timestep t ∼ Uniform(0, 1)

15: Z(t) =
√
ᾱ(t)Z(0) +

√
1− ᾱ(t)ϵ, where ϵ ∼ N (0, I) {Diffusion}

16: ϵ̂ = ϵθ(Z
(t), t)

17: Ldiffusion = ∥ϵ̂− ϵ∥2 {Noise prediction loss}
18: Update ϵθ using Ldiffusion
19: end while

Algorithm 2 UDM-3D Sampling with CFG

Require: Trained UAE-3D encoder E , DiT ϵθ
Require: Guidance strength w, timesteps {tk}Kk=1
Require: Target property c (optional)

1: Z(1) ∼ N (0, I) {Initial noise}
2: for k = K downto 1 do
3: t← tk
4: Compute Guidance:
5: ϵcond ← ϵθ(Z

(t), t, c)
6: ϵuncond ← ϵθ(Z

(t), t, ∅)
7: ϵ̃← (1 + w)ϵcond − wϵuncond {CFG blending}
8: Denoise:
9: Z(t−1) ← DDPM_Step(Z(t), ϵ̃, t) [15]

10: end for
11: Decode:
12: Ĝ = ⟨F̂, Ê, X̂⟩ ← D(Z(0)) {UAE-3D decoder}

C.3 Pseudo Code

We provide the training and sampling algorithms for UDM-3D in Algorithms 1 and 2, respectively.
The training algorithm for UDM-3D involves two stages: training the VAE (UAE-3D) and training
the DiT (UDM-3D). The sampling algorithm for UDM-3D with CFG involves iteratively denoising
the latent sequence Z using the DiT and the CFG guidance.
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Figure 7: Visualization of random samples generated by UDM-3D on GEOM-Drugs.
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Figure 8: More visualization of random samples generated by UDM-3D on QM9.
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