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ABSTRACT

Denoising Diffusion Probabilistic Models (DDPMs) have significantly advanced
generative AI, achieving impressive results in high-quality image and data genera-
tion. However, enhancing consistency and fidelity remains a key challenge in the
field. The conventional DDPM framework solely depends on the L2 norm between
additive and predicted noise to generate new data distributions. However, it does
not explicitly impose structural information in the data distributions, limiting its
ability to capture complex geometries (e.g., multimodality, asymmetry, anisotropy),
which are commonly found in generation tasks. To address this limitation, we
introduce I-Diff, an improved version of DDPM incorporating a carefully designed
regularizer that effectively enables the model to encode structural information and
capture the anisotropic nature, preserving the inherent structure of the data distribu-
tion. Notably, our method is model-agnostic and can be easily integrated into any
DDPM variant. The proposed approach is validated through extensive experiments
on DDPM and Latent Diffusion Models across multiple datasets. Empirical results
demonstrate a 47% reduction in FID on CIFAR-100 dataset compared to the de-
fault DDPM, as well as significant improvements in fidelity (Density and Precision
increase 27% and 16% in CIFAR-100 dataset respectively) across other tested
datasets. These results highlight the effectiveness of our method in enhancing
generative quality by capturing complex geometries in data distributions.

1 INTRODUCTION

Diffusion models have been accomplishing great feats in the realm of generative AI, specifically
in terms of unconditional and conditional image generation ((Nichol & Dhariwal, 2021; Ho et al.,
2022b; Saharia et al., 2022; Nichol et al., 2021; Ramesh et al., 2022; Rombach et al., 2022; Ho
& Salimans, 2022; Jeong et al., 2024; Dhariwal & Nichol, 2021)). Starting with the revolutionary
paper by Ho et al. (2020) and the improvements by Nichol & Dhariwal (2021) as well as the Latent
Diffusion Model by Rombach et al. (2022), these models have had the biggest impact in this context.
The fidelity and diversity of the images generated by these models are surprisingly amazing. Yet, as
with all models, these models can still be improved upon closer inspection. As with the improvements
done by Nichol & Dhariwal (2021) to the original Denoising Diffusion Probabilistic Model (DDPM)
by introducing techniques such as the cosine-based variance schedule and allowing the model to learn
the variance rather than keeping it fixed, helpes to improve the performance of DDPMs.

Even though DDPMs perform well, we noticed that these existing models do not necessarily in-
corporate any distributional (structural) information about the particular data distribution it tries
to sample from. In general, the DDPM’s forward process gradually pushes the dataset towards an
isotropic Gaussian, which can be thought of as the structural vanishing point of the data distribution
(Nichol & Dhariwal, 2021). This implies a well-placed point of origin for the generative process
(reverse path) from a point of complete lack of structure toward the final destination, which is the
data distribution. In the DDPM implementation, the learning process considers the expected squared
norm (L2) difference between the additive Gaussian noise and the predicted noise as its objective
function. Therefore, for the generative process, to enhance the aforementioned creation of structure,
the objective function can be modified to include any structural measure, such as isotropy. Our goal in
this paper is to make a contribution with regard to the improvement of the important fidelity metrics,
Density (Naeem et al., 2020) and Precision (Kynkäänniemi et al., 2019) which are explained in
Section 5, by imposing possible regularizations that promote the modified DDPM algorithm to learn
the underlying structures, diversity, modality and density spread of the true distribution. Thus, we
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Figure 1: Comparison of the generated images via the DDPM (left) and I-Diff (right). The DDPM
generated images contain much more artifacts and do not seem realistic. However, the generated
images via I-Diff are much more realistic and thus, they are of high fidelity.

were motivated to include the isotropic nature of the additive Gaussian noise when optimizing for the
objective to further enhance the statistical properties of the predicted noise through backpropagation.
The current objective function of the DDPM does not include any mechanism that explicitly encour-
ages the isotropic nature of the predicted noise. Therefore, a mechanism that guarantees the model
progresses from a more anisotropic distribution (distributions with multiple modes, non-uniformly
distributed spatial structures) to an isotropic Gaussian distribution toward the vanishing point in a
structured and learned manner is needed. Our intuition is that by capturing the statistical properties
of the noise in more detail, the model will be able to produce higher-fidelity samples as it would have
much more information regarding the distributional structure of the samples.

As the rationale for introducing isotropy to the objective function has been established, now, let us
see how isotropy establishes convergence and quantifies structural information about the distribution.
For example, the isotropy of an isotropic random vector in Rn is the expected squared norm of that
vector, which is equal to its dimension, n (Vershynin, 2018). This demonstrates the convergence
towards a normalized distribution with a complete lack of structure (i.e, isotropic). Conversely, the
desired distribution, which has more structure and is more antropic, would consequently have a lower
isotropy value. This implies that the generative process, in its drive towards a structural distribution,
minimizes isotropy.

The inclusion of this constraint does not incur a large computational cost and can be readily applied
to any diffusion model variant. In this work, we scrutinize the behavioral aspects of the DDPM model
to interpret its functionality using well-defined 2D synthetic datasets, such as Swiss Roll, Scattered
Moon, Moon with Two Circles, and Central Banana, drawing fundamental conclusions about the
DDPM algorithm. Additionally, we experiment with our modified objective function on these four
synthetic datasets and extend our validation to unconditional image generation.

The contributions of this work are as follows:
• We introduce I-Diff: a modified approach that introduces an isotropic constraint on the

predicted noise objective function to steer the generative process in a structurally coherent
manner. This results in improved fidelity of the generated data distribution. We believe, to
the best of our knowledge, that we are the first to propose such a modified loss based on the
structural properties of the noise.

• We analyze the simple loss function in the DDPM and its connection to isotropy. Moreover,
we show that the isotropy of the data distribution monotonically increases and converges
to the maximum isotropy value, which corresponds to an isotropic Gaussian distribution.
This confirms that the definition of isotropy mentioned in this paper, conveys information
about the structure of the data distribution when the data distribution undergoes the forward
process in DDPMs.

• We evaluate and validate our approach on four 2D synthetic datasets as well as on the task of
unconditional image generation on Oxford Flower (Nilsback & Zisserman, 2008), Oxford-
IIIT Pet (Parkhi et al., 2012), CIFAR-10 (Krizhevsky et al.) and CIFAR-100 (Krizhevsky
et al.) datasets. Considering the key evaluation metrics, such as Precision and Recall
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(Kynkäänniemi et al., 2019), Density and Coverage (Naeem et al., 2020), Frechet Inception
Distance (FID) (Heusel et al., 2017) and Inception Score (IS) (Salimans et al., 2016), the
modified objective is able to surpass the original DDPM with a significant gap in terms of
the fidelity metrics, Density and Precision.

• We conduct an in-depth analysis of the Density and Coverage metrics to evaluate the
generative capabilities of I-Diff compared to DDPM. This analysis facilitates a detailed
comparison between the generated and true data distributions, visually illustrating I-Diff’s
superior alignment with the true distribution. Furthermore, it highlights the importance of
these metrics for assessing generative AI algorithms in computer vision applications.

2 RELATED WORK

Generative models, particularly in recent years, have gained significant momentum due to their
applications in various fields. They began with specific use cases and have evolved along a clear
trajectory, as outlined below.

Deep Generative Models like GANs (Goodfellow et al., 2020), VAEs (Kingma & Welling, 2013),
flow-based models (Rezende & Mohamed, 2015), autoregressive models (Salimans et al., 2017) and
diffusion models (Ho et al., 2020; Sohl-Dickstein et al., 2015) learn the probability distribution of
given data, allowing us to sample new data points from the distribution. Deep generative models have
been used for generating images, videos (Ho et al., 2022a), 3D objects (Mo et al., 2023), audio and
speech (Kong et al., 2021), crystal structures (Yang et al., 2024), etc. Moreover, these models have
been used for inverse problem solving (Song et al., 2021; Laroche et al., 2023) and to understanding
the latent representations of the distributions.

Diffusion Models, in particular, have been making huge improvements and have been used in many
domains due to their high generative capabilities. There are mainly two types of diffusion models,
one is the Score based approach introduced by Song & Ermon (2019) and the other, which is the
focus of this work, is the one introduced by Ho et al. (2020). Both modeling types have been able to
achieve state-of-the-art performance in generative modeling tasks and have motivated the growth of
many subsequent works in generative models.

Improving Diffusion Models: In the context of DDPMs (Ho et al., 2020), there have been several
works contributed to advance DDPMs beyond their original formulation. Improved diffusion models
(Nichol & Dhariwal, 2021) introduced techniques such as cosine-based variance schedules to enhance
training stability and sample quality. Variational diffusion models further extended this direction
by proposing a unifying framework with refined objectives. Denoising Diffusion Implicit Models
(DDIM) (Song et al., 2022) provided a non-Markovian formulation that allows deterministic sampling,
while Pro-DDPM (Salimans & Ho, 2022) accelerated generation through progressive distillation.
Complementing these methods, the Min-SNR weighting strategy (Hang et al., 2023) improved
training efficiency by adapting the importance assigned to different noise levels.

More recent research has focused on modifying the noise design in the forward diffusion process.
Blue-noise diffusion (Huang et al., 2024) replaced standard Gaussian noise with structured blue-
noise patterns to produce perceptually sharper generations. Edge-preserving diffusion models
(Vandersanden et al., 2025) introduced noise schemes that emphasize boundaries and fine details.
Extending these ideas to non-Euclidean domains, directional diffusion models (Yang et al., 2023)
applied noise injection strategies tailored to graph structures, enabling more expressive representation
learning and recommendation (Yi et al., 2024).These approaches highlight that ongoing research
continues to seek further improvements at the fundamental level of diffusion design.

However, most of these improvements were focused on improving the models based on the most
widely used metrics for image generation, FID and IS. But some of the recent work ((Kynkäänniemi
et al., 2019; Naeem et al., 2020; Rosasco et al., 2024)), in generative models has pointed out that
FID and IS are not necessarily indicative of the actual fidelity of the samples generated by generative
models. Thus, researchers have been focusing on finding other metrics, such as Precision and Density,
to assess the fidelity of these generated samples (Dufour et al., 2024; Singh et al., 2024). In particular,
we observed that the Density takes the local context (measuring how close it is to densely packed
samples of the true distribution) of a sample into account during its calculation. We believe that this
makes the Density a vital metric to assess the samples’ fidelity.
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3 BACKGROUND

3.1 DEFINITIONS

In the DDPM, we simply add a Gaussian noise, which varies according to a specific variance schedule
βt ∈ (0, 1). The noise at each time step corrupts the data, such that by the time the time step reaches
its final value T , the data will be mapped to an almost isotropic Gaussian distribution. However, the
learning occurs when we try to learn the reverse process by which we try to denoise along the same
trajectory starting from the almost isotropic Gaussian distribution. The first process, in which we add
noise, is called the forward process and the latter, in which we denoise, is called the reverse process.
The forward process is often characterized by q and the reverse process by p. Both of which are
modeled as Gaussian distributions.

The forward process is defined as follows,

q(x1, x2, . . . xT |x0) =

T∏
t=1

q(xt|xt−1) (1)

q(xt|xt−1) ∼ N (xt;
√
1− βtxt−1, βtI) (2)

Moreoever, by introducing αt = 1− βt as well as ᾱt =
∏t

i=1 αi the forward process can be further
simplified into the following expression via the re-parametrization trick (Kingma & Welling, 2013).
Since,

q(xt|xt−1) ∼ N (xt;
√
1− βtxt−1, βtI) (3)

q(xt|x0) ∼ N (xt;
√
ᾱtx0,

√
1− ᾱtI) (4)

xt =
√
ᾱtx0 +

√
1− ᾱtϵ (5)

where, ϵ ∈ N (0, I).

The reverse process, given by p ∼ N (xt−1|xt), can be obtained in terms of the forward process
distribution q and Baye’s Theorem. However, the reverse process only becomes tractable when
the posterior distribution q(xt−1|xt), is conditioned on the input data x0. Thus, during training,
the model tries to learn the tractable q(xt−1|xt, x0) distribution. This distribution, which is also a
Gaussian distribution, is defined by the following equation and parameters.

q(xt−1|xt, x0) ∼ N (xt−1; µ̃(xt, x0), β̃tI) (6)

β̃t =
1− ᾱt−1

1− ᾱt
βt (7)

µ̃t(xt, x0) =

√
ᾱt−1βt

1− ᾱt
x0 +

√
αt(1− ᾱt−1)

1− ᾱt
xt (8)

3.2 TRAINING PROCESS

To train, however, one could make the model predict the mean of the reverse process distribution at
each time step. But Ho et al. (2020) mentions that predicting the additive noise, ϵ, leads to better
results. The additive noise and the mean of the reverse process distribution at each time step are
elegantly linked by Equations 5 and 8. This results in the following re-parametrization of µ̃(xt, t),

µ̃(xt, t) =
1

√
αt

(
xt −

1− αt√
1− ᾱt

ϵ

)
(9)

Therefore, predicting the additive noise ϵ, is adequate for the task of predicting the mean of the
backward process distribution. Moreover, since the forward process’ variance schedule is fixed, the
reverse process variance, β̃t, is also assumed to be fixed according to β̃t.

Thus, Ho et al. (2020) proposes to optimize the following simple objective function during the training
process.

Lsimple = Et,x0,ϵ[||ϵ− ϵθ(xt, t)||2] (10)

where ϵθ(xt, t) is the predicted noise.
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3.3 WHY ISOTROPIC STRUCTURAL REGULARIZER

Let us reformulate the diffusion framework on a metric space to reimagine its underlying mechanisms
visually. Consider a metric space where each point represents a distribution, and the distance
between points is measured using the L2 norm. Furthermore, we assume that the origin of this space
corresponds to an isotropic Gaussian distribution (p(·)), which reflects the structural vanishing point
of the forward diffusion process. Mathematically, for a given predicted noise distribution, the distance
from the origin is

dL2(pθ,t(·), p(·), t) =
(∫

(pθ,t(y)− p(y))2 dy

)1/2

(11)

Here, pθ,t(·) is the probability distribution function of the predicted noise (ϵθ) for a given data point
xt at time sample t. It is obtained as the solution to the minimization problem defined in Equation
10. This distance quantifies how far a given distribution is from an isotropic Gaussian distribution.
The reverse diffusion process can thus be seen as a path in this space, starting at origin, and moving
toward the desired distribution, with the L2 norm providing a metric structure. For this to be a metric
space, the distance must satisfy certain conditions mentioned and derived in the Appendix A.1. The
original DDPM algorithm, at the kth step of the reverse process, predicts a noise distribution by
learning how to map adjacent points in a metric space that represents the difference between xk

and xk−1 (as in Equation 10). However, this formulation is limited to learning only the L2 norm
disparity. Consequently, if two distributions share the same L2 norm but differ in an anisotropic
manner within this metric space, the algorithm remains agnostic to those differences (See Figure 2(a)).
Building upon this, if the transition from xk to xk−1 is defined in terms of an L2 norm, multiple
anisotropic distributions with the same L2 norm may exist at the same point within this space. As a
result, an L2-norm-based metric space alone may fail to distinguish structural differences between
the generated data distributions. Under this formulation, the reverse process iteratively refines xk to
xk−1 until the desired final distribution, x0 is generated, ultimately forming the final data distribution,
which might be handicapped by the aforementioned limitations. To address this, incorporating an

Figure 2: How the isotropy-based regularizer guides the model toward a more structurally
coherent data distribution compared to the reverse process of the standard DDPM: The left
side of the figure illustrates that during the reverse diffusion process, when the model encounters
equidistant distributions at a particular time step, it is not explicitly guided to select the most
structurally coherent distribution, leading to a mismatch with the true underlying data distribution. On
the right side, when the isotropy constraint (I-Diff) is applied, previously equidistant distributions are
now separated by distinct distances. This explicit structural enforcement enables the reverse diffusion
process to steer towards a distribution that more accurately aligns with the true data distribution.

isotropic measure into the metric space allows the model to account for both L2 norm disparity and
isotropic variations. This enables the predicted noise to encode structural differences more effectively.
Mathematically, the distance in the metric space after encoding the structural regularizer (I-Diff
Space) is,
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dnew(pθ,t(·), p(·), t) = dL2(pθ,t(·), p(·), t) + λ · dI(pθ,t(·), p(·), t) (12)

Here, dL2(pθ,t(·), p(·), t) denotes the default L2 norm distance, and dI(pθ,t(·), p(·), t) denotes the
isotropic measure that captures the disparity in the predicted noise for a given xt at time sample t
compared to isotropic Gaussian distribution p(ϵ), and λ is the regularization parameter. It can be
derived that I-Diff space becomes a metric space as mentioned in the Appendix A.1. As a result,
after noise adjustment, the generated data distributions reflect not only L2 norm-based deviations but
also structural disparities. In this revised metric space, two distributions with identical L2 norms but
distinct isotropic properties can be mapped to separate points, as illustrated in Figure 2(b), thereby
facilitating enhanced structural encoding on the generated data distribution. In this structurally
enriched metric space, the final distribution, x0 which is recursively formed by transitioning from xk

to xk−1 while imposing isotropic properties of the distribution. This process inherently provides a
greater capability to capture the complex geometries of the data distribution, which is reflected in the
results, even with a computationally inexpensive amendment to the objective function.

4 ISOTROPY BASED LOSS FUNCTION

In the default DDPM model, the variance schedule drives the transformation toward an isotropic
Gaussian distribution by restricting the degrees of freedom for the movement of information of
the distribution, without using backpropagation to adaptively learn the degree of isotropy achieved,
making it, a non-learnable process. With the identified need for an isotropic structural regularizer,
Vershynin (2018) suggested the expected squared norm of ϵ 13 as an isotropic measure.

Isotropy = E(ϵT ϵ) (13)

Then, we proceeded to modify the objective function Lsimple to include a regularization term which
penalizes the model, if the model predicts a noise which is not necessarily isotropic. Hence, the new
modified objective function we propose to optimize is,

Lmodified = E(||ϵ− ϵθ||2) + λ(E(ϵTθ ϵθ)− n)2 (14)

where λ is the regularization parameter. Under the assumption of a complex optimizer surface
with many local minima, the additional regularizer helps guide the optimizer toward more effective
directions, reducing the likelihood of suboptimal solutions (Goodfellow et al., 2016).

However, this modified objective needs to be further simplified so as to make this new error, indepen-
dent of the size of the dimension of the random vector. Thus, we make the following modification
during implementation.

Lmodified = E(||ϵ− ϵθ||2) + λ

(
E
(
ϵTθ ϵθ
n

)
− 1

)2

(15)

5 INTERPRETATION OF EVALUATION METRICS

Let us define a couple of terms that would be useful to understand the evaluation metrics. A
Neighborhood Sphere is the local area around a data point that includes nearby points, defined by a
radius that is the distance to the k-th nearest neighbor (see Figure 3). True manifold is created with
the collection of neighborhood spheres formed by real data points. Similarly, a generated sample
manifold is created with the collection of neighborhood spheres formed by generated data points.

Precision denotes the fraction of generated data that lies in the true manifold by counting whether
each generated data point falls within a neighborhood sphere of real samples. This measure reflects
how closely the generated points align with the true manifold (Kynkäänniemi et al., 2019; Sajjadi
et al., 2018). In the left of Figure 3, all four generated points lie within the true manifold; therefore,
Precision is 4/4.

Recall denotes the fraction of true data that lies in the generated sample manifold. This measure
indicates how well the true points align with the generated sample manifold (Kynkäänniemi et al.,
2019; Sajjadi et al., 2018). However, the lack of generated samples near sparse outliers in the true
data leads to low Recall, as the sample manifold fails to capture these regions. In the right of Figure
3, five out of seven real samples are covered; therefore, Recall is 5/7.

Density counts the number of neighborhood spheres of real samples that encompass each generated
data point. This allows Density to reward generated samples located in areas densely populated
by real samples, reducing sensitivity to outliers. This enables us to consider the local context of a
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distribution by measuring how close a sample is to densely packed points in the true distribution
(Naeem et al., 2020). In the left of Figure 3, summing the overlaps, which are 3, 2, 2, and 1; therefore,
Density equals 8/7.

Coverage measures the fraction of real samples whose neighborhoods contain at least one generated
sample. Moreover, Coverage measures the diversity of a distribution by assessing whether all aspects
of the distribution are represented. However, the presence of sparse outliers in the true manifold
and the absence of the generated samples near those outliers may result in low Coverage (Naeem
et al., 2020). In the left of Figure 3, five out of seven real samples have a generated sample nearby;
therefore, Coverage is 5/7.

Figure 3: An example scenario for illustrating a situation where high Density and low Coverage is
recorded. Generating samples in the neighborhoods of the highly dense regions over the outliers in
the true manifold has resulted in a high Density and low Coverage.

6 EXPERIMENTS

6.1 PERFORMANCE COMPARISON BETWEEN DDPM AND I-DIFF

To compare the performance between DDPM and I-Diff, the modified loss function was utilized in
all four 2D synthetic datasets, Oxford Flower dataset, Oxford IIIT Pet dataset and CIFAR-10 dataset.
Precision, Recall, Density along with Coverage were used to evaluate and compare the performance
of the two models on 2D synthetic datasets. In addition to those four evaluation metrics, FID and
IS were used to evaluate the quality of the generated samples for the image datasets Oxford Flower,
Oxford-IIIT Pet, CIFAR-10 and CIFAR-100.

Table 1: Comparison of Evaluation Metrics for the two methods: DDPM and I-DiffDDPM for the 2D
Datasets

Metrics Swiss Roll Scattered Moon Moon with Two Circles Central Banana

DDPM I-DiffDDPM DDPM I-DiffDDPM DDPM I-DiffDDPM DDPM I-DiffDDPM

Precision (↑) 0.9458 0.9893 (+4.60%) 0.9990 0.9993 (+0.03%) 0.9921 0.9982 (+0.61%) 0.8974 0.9072 (+1.09%)
Recall (↑) 0.9927 0.9709 (-2.19%) 0.9962 0.9736 (-2.27%) 0.9967 0.9694 (-2.74%) 0.9977 0.9417 (-5.61%)
Density (↑) 0.8946 0.9908 (+10.75%) 1.0015 1.0049 (+0.34%) 0.9925 1.0081 (+1.57%) 0.8785 0.8962 (+2.01%)
Coverage (↑) 0.8932 0.8458 (-5.31%) 0.9605 0.8254 (-14.07%) 0.9498 0.8572 (-9.75%) 0.9102 0.6840 (-24.85%)

Table 1 demonstrates the comparison between the best performing isotropy based model (I-Diff)
and DDPM in terms of the generative model’s evaluation metrics along with the percentage change
from DDPM. Across all these 2D synthetic datasets we observed that the fidelity metrics, Precision
and Density have been improved in I-Diff. The results of Table 2 further confirm the improvements
made by our modified loss on the quality of image samples. The Density of the generated images
has been significantly improved for all four datasets. Moreover, the FID score has been significantly
improved in the CIFAR-10 dataset by the proposed method. Furthermore, the results in Table 3 back
up these improvements by showing steady gains with another diffusion model (LDM), proving that
our approach works well across different diffusion methods.

Although the performance of the modified loss function has been able to produce samples that
surpass the original DDPM’s samples quality, the quality depends on the regularization parameter
of the modified loss function. In particular, we performed a few more experiments by considering
a range of values for the regularization parameter. The metrics for the Oxford Flower dataset and
Oxford-IIIT-Pet dataset with different values of the regularization parameter ranging from 0.01 to
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0.30 are tabulated in Table 4 and Table 5 in supplementary materials. We observe that, there exists an
optimal λ that maximizes the overall improvement across these metrics.

Table 2: Comparison of Evaluation Metrics for the two methods: DDPM and I-DiffDDPM for the
Image Datasets

Metrics Oxford Flower Oxford-IIIT-Pet CIFAR-10 CIFAR-100

DDPM I-DiffDDPM DDPM I-DiffDDPM DDPM I-DiffDDPM DDPM I-DiffDDPM

FID (↓) 55.590 47.310 (-14.9%) 34.087 31.900 (-6.4%) 6.314 5.303 (-19.1%) 9.619 6.543 (-47.0%)
IS (↑) 3.097 3.504 (+13.1%) 7.083 7.531 (+6.3%) 8.952 8.969 (+0.2%) 10.588 10.595 (+0.1%)
Precision (↑) 0.725 0.944 (+30.3%) 0.819 0.954 (+16.5%) 0.566 0.602 (+6.3%) 0.502 0.585 (+16.4%)
Recall (↑) 0.184 0.056 (-69.8%) 0.152 0.063 (-58.4%) 0.481 0.466 (-3.0%) 0.521 0.472 (-9.3%)
Density (↑) 2.632 11.039 (+319.4%) 6.704 15.778 (+135.4%) 1.214 1.313 (+8.2%) 0.979 1.248 (+27.5%)
Coverage (↑) 0.959 0.994 (+3.6%) 0.9996 0.9999 (+0.03%) 0.980 0.985 (+0.4%) 0.961 0.979 (+1.9%)

Table 3: Comparison of Evaluation Metrics for the two methods: LDM and I-DiffLDM for the Image
Datasets

Metrics CIFAR-10 CIFAR-100

LDM I-DiffLDM LDM I-DiffLDM

FID (↓) 10.447 10.361 (-0.8%) 15.597 14.591 (-6.4%)
IS (↑) 8.602 8.610 (+0.1%) 9.314 9.424 (+1.2%)
Precision (↑) 0.674 0.712 (+5.6%) 0.662 0.680 (+2.8%)
Recall (↑) 0.396 0.370 (-6.4%) 0.399 0.380 (-4.7%)
Density (↑) 1.726 2.013 (+16.6%) 1.729 1.900 (+9.9%)
Coverage (↑) 0.992 0.995 (+0.3%) 0.989 0.992 (+0.3%)

Although the FID and IS are considered to be the most widely used evaluation metrics for assessing
image generation, we see that in the case of all four datasets, they convey little to no discerning
information about the generative ability of the proposed method and the original DDPM. But, by
using other metrics such as the Precision, Recall, Density and Coverage (PRDC), we can state that
while our proposed method suffers a bit in terms of Recall, the generated samples, are very close to
being real (see Figure 1), as indicated by the improvements in the Precision and Density metrics.

6.2 INTERPRETATION OF THE RESULTS OF 2D DATA DISTRIBUTIONS USING PRDC VALUES

We believe that the disparity in the changes of Precision, Recall, Density and Coverage is a direct
consequence of imposing a structural constraint on the objective function. It is evident that by
focusing on the structure or the isotropy of the distribution, our method is capable of capturing
highly dense mode regions and generating samples near them rather than being too diverse. Thus, it
increases the fidelity but decreases the diversity of the generated samples.

Figure 4: Central Banana, Swiss Roll, and Scattered Moon 2D synthetic datasets: (a),(d),(g)
True distribution points, color-coded by k=5 nearest neighbor radius. (b),(e),(h) DDPM-generated
points, color-coded by true manifold span per point. (c),(f),(i) I-Diff generated points, color-coded by
true manifold span per point.

As illustrated in the Figure 4(a), the Central Banana distribution was designed by introducing a
distinct mode to the main structure of the distribution resulting in a multimodal distribution with
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a density gradient. Once, it is generated via I-Diff as indicated in Figure 4(c), it is evident that,
I-Diff, is capable of capturing the main structure even with the discontinuities of the density gradient.
However, the illustrations show that DDPM lacks the capability of capturing the discontinuity in the
density gradient between the tail end of the main distribution and the distinct mode. Instead, it tries
to generate data points that are actually not even in the true distribution by interpolating along the
main lobe’s trend (see Figure 4(b)). Moreover, the limited capability to capture the discontinuity in
the density gradient of DDPM can be further observed in the Swiss Roll distribution 4(d) as well
(see Figure 4(e) and 4(f)). The increase in Density and decrease in Coverage for the datasets Swiss
Roll and Central Banana are clear evidence for the aforementioned observations. Hence, it is limited
in ability to capture the underlying structure of the distribution. Additionally, there is a noticeable
trend of generating data points (blue points in Figure 4(b), 4(c)), outside the boundaries of the highly
dense regions of the main lobe. This effect is likely due to the model’s focus on these high-density
regions. However, compared to DDPM, I-Diff effectively regulates the overgeneration of data points
outside the boundaries of densely packed regions. This improvement is likely a result of the added
regularization in the improved object function, which encourages capturing the main semantics of the
true distribution.

As illustrated in the Figure 4(g), the Scattered Moon distribution was designed by imposing scattered
noise around the main structure of the data distribution. Once, it is generated via I-Diff as indicated
in the Figure 4(i), it is evident that, the model has tried to only capture the underlying semantics of
the distribution without being susceptible to the low probable regions. Whereas, the DDPM model
shows limitations in capturing the distinction between the main structure and the scattered noise (see
Figure 4(h)). The increased Density and reduced Coverage values support this observation. This
shows that the proposed objective function, enforces the generated samples to contain properties that
push them to be closely linked to the real data. Thus, we can directly observe an improvement in
the Density metric as it measures the sample fidelity. We believe that in the context of unconditional
image generation, the isotropy based objective function helps the model learn to keep the generated
samples closer to the high-density regions of the ground-truth distribution.

These observations highlight the proposed algorithm’s ability to increase Density by focusing on
the dense regions of the true distribution. At the same time, the absence of generated data in
the neighborhoods of low probable data points in the true distribution may result in a reduction in
Coverage. When scattering is minimal, Coverage remains consistent. This indicates that the algorithm
effectively captures the main structure of the true distribution without extending into low probable
regions. Also, each of these metrics has their own utility depending on the application (Kynkäänniemi
et al., 2019). Thus, this should motivate the research community to propose new evaluation metrics
such as Density, which is a much more meaningful measure of fidelity over FID and IS, to assess
generative models.

Preserving the modality of a data distribution is essential, as failing to capture it can lead to a loss of
semantic details or edge information, both of which represent high-level features in computer vision
and image processing tasks (Guo et al., 2020; Shaham et al., 2019)

7 CONCLUSION

Denoising Diffusion Probabilistic Models (DDPMs) excel in generative tasks like image recon-
struction and inverse problem solving. However, evaluating Generative AI demands more than just
FID metrics like Precision, Recall, Density, and Coverage reveal shortcomings in most diffusion
models. Notably, DDPMs struggle to impose structural constraints on the reverse process, limiting
their ability to capture complex data geometries. To address this, we propose the I-Diff regularizer,
which enhances the ability to capture complex geometries effectively. This aligns the generated data
distribution more closely with the true distribution. Testing on DDPM and LDM shows improved FID,
IS, Precision, and Density demonstrating that our modified loss function is framework-independent
and better captures data fidelity. We firmly believe that our work provides other researchers with
novel perspectives into the workings of DDPMs and highlights the effectiveness of PRDC measures
in evaluating generative models, paving the way for more robust diffusion-based approaches.
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A APPENDIX

A.1 VERIFYING THE STANDARD DIFFUSION SPACE AND I-DIFF SPACE AS METRIC SPACES

dL2(p, q) =

[∫
(p(y)− q(y))2 dy

] 1
2

(16)

As mentioned in Section 3.3, for the standard diffusion space, defined by the distance dL2(p, q) to
qualify as a metric space, the distance must satisfy the following properties:

Non-negativity
(p(y)− q(y))2 ≥ 0 ; as p(y), q(y) ∈ R∫

(p(y)− q(y))2 dy ≥ 0 (integrating a non-negative quantity cannot yield a negative result)[∫
(p(y)− q(y))2 dy

] 1
2

≥ 0

∴ dL2(p, q) ≥ 0 (17)

dL2(p, q) = 0 if and only if p(y) = q(y) for every y. Therefore, the dL2 distance is zero only when
the functions are essentially identical.

Hence, dL2(p, q) satisfies the non-negativity property.

Symmetry

dL2(p, q) =

[∫
(p(y)− q(y))2 dy

]1/2
=

[∫
(−(q(y)− p(y)))2 dy

]1/2
=

[∫
(q(y)− p(y))2 dx

]1/2
= dL2(q, p) (18)

∴ dL2(p, q) = dL2(q, p) (19)

Hence, dL2(p, q) satisfies the symmetry property.

Triangle inequality

dL2(p, r) =

[∫
(p(y)− r(y))2 dy

] 1
2

d2L2(p, r) =

∫
(p(y)− r(y))2 dy

=

∫
((p(y)− q(y)) + (q(y)− r(y)))

2
dy

=

∫
(p(y)− q(y))2dy +

∫
(q(y)− r(y))2dy

+ 2

∫
(p(y)− q(y))(q(y)− r(y)) dy (20)

However, by the Cauchy–Schwarz inequality:∣∣∣∣∫ (p(y)− q(y))(q(y)− r(y)) dy

∣∣∣∣ ≤
√∫

(p(y)− q(y))2 dy ·

√∫
(q(y)− r(y))2 dy

= dL2(p, q) · dL2(q, r) (21)
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By applying the result in Equation equation 21 to Equation equation 20, we obtain;

2

∫
(p(y)− q(y))(q(y)− r(y)) dy ≤ 2dL2(p, q) · dL2(q, r) (22)

∴ d2L2(p, r) ≤ d2L2(p, q) + d2L2(q, r) + 2dL2(p, q) · dL2(q, r)

= [dL2(p, q) + dL2(q, r)]
2

Hence,
dL2(p, r) ≤ dL2(p, q) + dL2(q, r) (23)

i.e. dL2(p, q) satifies the triangle inequality condition. Thus, dL2(p, q) qualifies as a metric space.

Now, let us define the new distance measure with isotropy regularizer as:

dnew(p, q) = dL2(p, q) + λ · dI(p, q) (24)

Where:

dL2(p, q) =

[∫
(p(y)− q(y))2 dy

] 1
2

and dI(p, q) = |I(p)− I(q)|

Here, I is the isotropic measure mentioned in the Section 4, and λ(> 0) is the regularization
parameter.

As mentioned in Section 3.3, for the new distance dnew(p, q) in the I-Diff Space, to qualify as a metric
space, the distance must satisfy the following properties:

Non-negativity
According to the result in Equation equation 17, dL2(p, q) ≥ 0.
Since I(p), I(q) ∈ R, we have |I(p)− I(q)| ≥ 0. ∴ dI(p, q) ≥ 0.
Thus,

dnew(p, q) ≥ 0

Hence, dnew(p, q) satisfies the non-negativity property.

Symmetry
According to Equation equation 19, dL2(p, q) = dL2(q, p).
Also, |I(p)− I(q)| = |I(q)− I(p)|. ∴ dI(p, q) = dI(q, p).
Thus,

dnew(p, q) = dnew(q, p)

Hence, dnew(p, q) satisfies the symmetry property.

Triangle inequality
According to the Equation equation 23,

dL2(p, r) ≤ dL2(p, q) + dL2(q, r) (25)

Since I(p), I(q), I(r) ∈ R, we have

|I(p)− I(r)| = |(I(p)− I(q)) + (I(q)− I(r))| ≤ |I(p)− I(q)|+ |I(q)− I(r)| (26)

From Equations equation 25 and equation 26, it follows that:

dL2(p, r) + λ · dI(p, r) ≤ dL2(p, q) + λ · dI(p, q) + dL2(q, r) + λ · dI(q, r)
∴ dnew(p, r) ≤ dnew(p, q) + dnew(q, r)

Hence, dnew(p, q) satisfies the triangle inequality.

Thus, both the standard diffusion space with the dL2(p, q) distance and the new I-Diff space with the
dnew(p, q) distance measure are metric spaces.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A.2 ADDITIONAL RESULTS

Table 4: Metrics Variation with the Regularization Parameter for the Oxford Flower Dataset (λ)

Method FID (↓) IS (↑) Precision (↑) Recall (↑) Density (↑) Coverage (↑)

DDPM 55.590 3.097 0.725 0.184 2.632 0.959
I-Diff λ = 0.01 53.337 3.202 0.784 0.157 3.345 0.976
I-Diff λ = 0.05 54.706 3.221 0.733 0.176 2.638 0.959
I-Diff λ = 0.10 47.310 3.504 0.944 0.056 11.039 0.994
I-Diff λ = 0.30 51.582 3.311 0.946 0.055 12.544 0.995

Table 5: Metrics Variation with the Regularization Parameter for the Oxford-IIIT-Pet Dataset (λ)

Method FID (↓) IS (↑) Precision (↑) Recall (↑) Density (↑) Coverage (↑)

DDPM 34.087 7.083 0.819 0.152 6.704 0.9996
I-Diff λ = 0.01 32.728 7.530 0.881 0.123 7.974 0.9991
I-Diff λ = 0.05 32.488 7.516 0.863 0.126 8.035 0.9997
I-Diff λ = 0.10 33.341 7.481 0.910 0.102 10.635 1.0000
I-Diff λ = 0.30 31.900 7.531 0.954 0.063 15.778 0.9999

A.3 IMPLEMENTATION DETAILS

A.3.1 EXPERIMENTAL SETUP

To validate our approach, we consider 2D synthetic data as well as images. For the 2D data, we utilized
a conditional dense network consisting of 3 fully-connected hidden layers with ReLU activations
instead of the conventional U-Net model as the noise prediction model. The learning rate was fixed at
1× 10−3. All the datasets were learned using 1000 time-steps and 1000 epochs.

Evaluation metrics are reported as the average of 3 training runs per dataset, with Precision, Recall,
Density and Coverage (PRDC) values calculated using k=5 nearest neighbors for each dataset.
Moreover, all the experiments were run on one Quadro GV-100 GPU with 32GB of VRAM.

A.3.2 IMPLEMENTATION

We implemented diffusion models following the designs of Ho et al. (2020) and Rombach et al. (2022).
We used an open-sourced codebase of the Denoising Diffusion Implicit Model for DDPM training
and that of Rombach et al. (2021) for latent diffusion training. Our networks are ResNet-based
U-Nets with sinusoidal time embeddings. We included self-attention at specified spatial scales and
used dropout only where noted below. We maintained an exponential moving average (EMA) of
model parameters (decay = 0.9999) for all models. The details for each configuration are as follows.

DDPM on CIFAR-10 and CIFAR-100
Model architecture: We used a U-Net similar to that of DDPM by Ho et al. (2020). Inputs are
32×32 RGB images; the network had four spatial resolutions (32×32 → 16×16 → 8×8 → 4×4).
The base number of channels is 128, which doubles at each downsampling stage. We inserted a
self-attention layer at the 16 × 16 feature map (the second scale). Dropout (p = 0.1) was applied
only on CIFAR-10; it was disabled for CIFAR-100.

Diffusion setup: We used 1000 timesteps with a linear variance schedule (β1 = 1 × 10−4 to
βT = 2 × 10−2). This matches the schedule chosen in Ho et al. (2020). At each step, the U-Net
predicts ϵθ(xt, t); we trained on the standard variational bound objective and on the objective function
mentioned in this.

Training hyperparameters: Adam optimizer was used with a learning rate of 2 × 10−4 for the
optimization. We trained for 790K iterations with a batch size of 128. An EMA of the weights was
kept with decay of 0.9999.

Latent DDPM on CIFAR-10 and CIFAR-100
Autoencoder: We first encoded 32 × 32 images into a learned latent space using a convolutional
variational autoencoder (AutoencoderKL). The encoder downsamples by 2 to produce a 16 × 16

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

spatial latent with 3 channels (embed dim = 3). A KL-divergence loss encourages the latent to match
a standard normal prior (this is similar to the VAE in Rombach et al. (2022)). The decoder mirrors
this structure to reconstruct 32× 32 RGB outputs.

Latent U-Net: The diffusion U-Net operates on the 16 × 16 × 3 latent. We set model channels
= 128 (base channels) exactly as in the pixel-space model. We applied self-attention at the full
latent resolution (16× 16). Dropout p = 0.1 was again used only for CIFAR-10. The decoder and
upsampling mirror the encoder’s downsampling with channel multipliers [1, 2, 2, 4].

Diffusion and Training: We used the same diffusion settings as above: 1000 timesteps and a linear
β-schedule from 1× 10−4 to 2× 10−2. The optimizer is Adam (learning rate = 2× 10−4), EMA =
0.9999, batch size 128, for 790K iterations. All other training details match the pixel-space runs.

DDPM on Oxford-IIIT-Pet and Oxford Flower
Model architecture: We used a U-Net architecture similar to Ho et al. (2020). Inputs are 64× 64
RGB images (3 channels). The network operates across four spatial resolutions (64×64 → 32×32 →
16× 16 → 8× 8), with a base channel size of 64 and channel multipliers [1, 2, 4, 8].

Diffusion setup: We employed 1000 timesteps with a linear variance schedule (β1 = 0.0001 to
βT = 0.02), following Ho et al. (2020). The U-Net predicts ϵθ(xt, t) at each timestep, trained on the
standard variational bound objective with a fixed large variance type and on the objective function
mentioned in Equation 15.

Training hyperparameters:Adam optimizer was used with a learning rate = 2 × 10−4 for the
optimization. Gradient clipping is applied with a maximum norm of 1.0. Training runs for 230K
iterations on the Oxford-IIIT-Pet dataset and 256K iterations on the Oxford Flower dataset, with a
batch size of 32. An EMA of model weights is maintained with a decay of 0.999.

Algorithm 1 and 2 show the complete training and sampling procedure with the modified objective
function, including the isotropy regularizer.

Algorithm 1: Training Algorithm 2: Sampling

1: repeat 1: xT ∼ N (0, I)
2: x0 ∼ q(x0) 2: for t = T, . . . , 1 do
3: t ∼ Uniform({1, . . . , T}) 3: z ∼ N (0, I) if t > 1, else z = 0

4: ϵ ∼ N (0, I) 4: xt−1 = 1√
αt

(
xt − 1−αt√

1−αt
ϵ0(xt, t)

)
+ σtz

5: Take gradient descent step on 5: end for

∇θ

(
E ∥ϵ− ϵθ∥2 + λ

(
E
(

ϵTθ ϵθ
n

)
− 1

)2
)

6: until converged 6: return x0

A.4 LIMITATIONS

This is a foundational work, positioned as a seminal contribution to this approach, focusing on
introducing the core concept of I-Diff and examining the mathematical and theoretical validity
of the proposed isotropic modifier as a proof of concept. The evaluation is conducted on vanilla
DDPM and Latent Diffusion models, validated using 2D synthetic datasets and standard real-world
image datasets. Our primary focus has been to showcase the ability of this model-agnostic modifier
to impose structural information on data distributions, thereby enhancing its capability to capture
complex geometries and model intricate data distributions. However, given that such a modifier
can be applied in a much more expansive manner, there is significant potential to explore its use
across multiple, application-specific datasets, though this is not the main focus of the present study.
We encourage future researchers to conduct more application-specific and extensive investigations,
whether on more complex architectures or across a wider range of datasets, as an extension of this
work. Such efforts would further help assess the feasibility and effectiveness of I-Diff in broader
contexts and real-world applications.

A.5 LLM USAGE

The authors used ChatGPT for language editing and subsequently reviewed and revised the text,
taking full responsibility for the final content.
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