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Abstract
Self-supervised learning pre-training exhibited ex-
cellent performance on feature learning by using
only unlabeled examples. Still, it is not clear how
different self-supervised tasks perform under dis-
tinct image domains and there are still training
issues to be tackled under scenarios of limited
labeled data. We investigate two self-supervised
tasks: rotation and Barlow Twins, on three dis-
tinct image domains, exploring a combination
of supervised and self-supervised learning. Our
motivation is to work on scenarios where the pro-
portion of labeled data with respect to unlabeled
data is small, as well as investigate the model’s
robustness to 1-pixel attacks. The models that
combine supervised with self-supervised tasks
can take advantage of the unlabeled data to im-
prove the learned representation in terms of the
linear discrimination, as well as allowing learning
even under attack.

1. Introduction
Deep convolutional neural networks mainly follow the su-
pervised learning paradigm, in which many input-output
pairs are required for training (Razavian et al., 2014; Korn-
blith et al., 2019; Ponti et al., 2021). However, for a given
task, manually labeled data are time-consuming and expen-
sive to obtain, while unlabeled data is often widely available.
Also, some applications involve patterns that are not present
in standard large-scale benchmark datasets. Strategies using
unlabeled and limited annotated data are paramount in this
scenario (Cavallari et al., 2018; Dos Santos et al., 2020).

Self-supervised learning (Kolesnikov et al., 2019) is show-
ing promising results using only unlabeled data, being able
to learn features that are competitive with respect to super-
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vised baselines (He et al., 2020; Chen et al., 2020; Grill et al.,
2020; Caron et al., 2020). However, methods to improve
training of self-supervised tasks are still to be investigated.

In this paper we aim at making the best use of small labeled
training sets, with the additional challenge of not being able
to use a validation set, and still leverage unlabeled data. For
that we explore different training techniques with two self-
supervised tasks: rotation-prediction (Gidaris et al., 2018)
and Barlow Twins (Zbontar et al., 2021), and evaluate the
learned representations in scenarios with unlabeled data,
few labeled data and both unlabeled and few labeled data.
Additionally, we evaluate model’s robustness under 1-pixel
attacks. We compare the methods using 3 image domains
and show how unlabeled data with few labeled data can
allow for more discriminative and robust representations
compared to the supervised baselines.

2. Related Work
Self-supervised learning relies on pretext tasks formulated
using unlabeled data. These models learn low-level fea-
tures as good as via strong supervision (Asano et al., 2019)
even under minimal data-learning (Shi et al., 2020). Semi-
supervised learning (SSL) is a class of algorithms that learn
considering both labeled and unlabeled data. Consistency
regularization methods add auxiliary loss terms computed
on the unlabeled data. The auxiliary loss terms can be con-
sidered as a regularizer. π-Model (Laine & Aila, 2017),
Mean Teacher (Tarvainen & Valpola, 2017) and Virtual Ad-
versarial Training (Miyato et al., 2018) that take advantage
of consistency losses, among other works.

In terms of the semi-supervised training strategy and the
use of the rotation-prediction as an auxiliary task, our work
is most related to S4L (Zhai et al., 2019), SESEMI (Tran,
2019), (Hendrycks et al., 2019) and (Cavallari & Ponti,
2021). Zhai et al. (2019) train semi-supervised models with
the rotation-prediction on the ImageNet dataset. Tran (2019)
uses rotation-prediction task as an auxiliary loss term to train
the model for SVHN, CIFAR-10 and CIFAR-100. Different
from them, we tested also in Fashion-MNIST (a grayscale
dataset) and the Malaria dataset, which is not angle oriented
(unlike photographs that have angle bias). Cavallari & Ponti
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(2021) used only rotation and had unstable results due to the
initialization sensitivity of the models, while we propose a
new way to overcome this as well as exploring the recent
Barlow Twins approach. Hendrycks et al. (2019) indicates
that self-supervision increases the robustness to adversarial
examples, label and input corruptions. We instead perform
1-pixel attacks, use a siamese network, and evaluate the
feature representations and not directly the network model.
Gidaris et al. (2019) and Su et al. (2020) also explore self-
supervision as an auxiliary task but in a few-shot learning
pipeline.

3. Method
We are interested in evaluating the feature representations
resulting from using self-supervised pre-training methods,
fine-tuning and semi-supervised alternatives for image clas-
sification problem on different domains, including natural
and biomedical images. Our experiments consider a small
labeled dataset Dl with Nl pairs of images and labels, and
a much larger unlabeled dataset Du containing Nu images,
from which five experiments were performed:
1. Supervised training in limited annotated data, using 1%
or 5% of labeled data in relation to the total of unlabeled
data. The annotated data are from the Dl set;
2. Unsupervised training with RotNet or BarlowTwins,
which do not use labels, on the unlabeled Du dataset;
3. Semi-supervised training by fine-tuning from the frozen
weights of the models trained in step 2, using 1% or 5% of
labeled data in relation to the total of unlabeled data;
4. Unified semi-supervised training that uses 1% or 5% of
the labeled data in relation to the total of unlabeled data,
that is trained simultaneously with the unlabeled data Du

through siamese architecture and unified cost function:

LSS = λl · ℓl(Dl) + λu · ℓu(Du), (1)

where both ℓl and ℓu optimize a cross-entropy loss function:
the former with the traditional supervised paradigm, and the
latter with a self-supervised task. Weights λl, λu > 0. It
can be used under different self-supervised losses ℓu. The
network has shared weights between the supervised task
and the self-supervised task in the main architecture.
5. Fine-tuning the semi-supervised method from step 4, with
1%/5% of labels in relation to the total of unlabeled data.

We use a ResNet50 backbone, discarding the final classi-
fication layer and adding a Global Average Pooling layer,
that outputs 2048 values. Then, we added a fully connected
layer with ReLU with 128 dimensions, which outputs the
final representation evaluated in the experiments.

For the semi-supervised method (see Figure 1), after a
ResNet50 backbone, separate branches are used: one soft-
max layer for classification (classes’ output), and another
branch for self-supervision. For RotNet a softmax layer

predicting rotation degrees 0, 90, 180 and 270. For Barlow
Twins, two branches of the main network, that receive as
input two altered views of the same image, are connected to
a three-layer MLP. As in Zbontar et al. (2021), the first two
layers have Batch Normalization and ReLu, and the third
one does not, but we used 2048-d layers instead of 8192.

The Barlow Twins task uses the same data augmentation
pipeline and transformations from the original paper. The
rotation task only uses rotation. The labeled images are not
modified with data augmentations.

3.1. Training procedure and learning rates

All models were trained from scratch. For all experiments
λl = λu = 1.0. For experiments using labeled data, each
training was performed using a random partition of labeled
data, with the same labeled random datasets for supervised
and semi-supervised training.

In the first exploratory experiments, we noticed that the con-
vergence of self-supervised methods were highly sensitive
to initialization and learning rates (LR). To overcome this,
for each model we searched LR hyper-parameters: 0.01,
0.001 and 0.0001, with fixed exponential decay e−0.01 after
5% of the total number of epochs. Thus, for every LR value
5 models are trained, each with a different weight initializa-
tion seed. Under the assumption that a small training set
does not allow the ’luxury’ of separating data for validation,
the models used in testing are those 5 trained with the LR
that achieves the lowest mean value of final training loss
value. This way we select the most consistent LR for every
model.

3.2. Datasets

We assess the performance of our experiments on: STL-
10 (Coates et al., 2011), Fashion-MNIST (Xiao et al., 2017)
and Malaria (Rajaraman et al., 2018). STL-10 is designed
for semi-supervised and unsupervised feature learning, con-
taining 96 × 96 RGB images with airplane, bird, car, cat,
deer, dog, horse, monkey, ship and truck classes. Fashion-
MNIST has 28× 28 grayscale images with centered pieces
of 10 classes of clothing and fashion accessories. Malaria
contains instances of parasitized and uninfected cells from
the thin blood smear slide images of segmented cells.

3.3. Experimental setup

Batch size of 32 was used in all experiments, except for
Barlow Twins, since it benefits from larger batches. In
this case we use batch size 200 for STL-10 and Fashion-
MNIST, and size 120 for Malaria. For the STL-10 dataset,
we used the original size of 96×96. For the Fashion-MNIST
dataset, the images were upsized to 96×96. For the Malaria
dataset, images were downsized to 128×128. The number of
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epochs was chosen empirically for each model, observing
stabilization of the loss value between subsequent epochs.

The unified semi-supervised training has shared weights and
receives minibatches with an equal amount of labeled and
unlabeled images (balancing supervised and self-supervised
tasks). At each epoch, the model sees all unlabeled Nu,
while the labeled ones Nl are seen Nu/Nl times. Because
Nu > Nl and batches are balanced, in one epoch all unla-
beled images are seen. Therefore, our network sees repeated
labeled instances in an epoch. We compensate that by al-
lowing more epochs for the supervised setting.

3.4. Evaluation

To assess the discriminative capacity of learned represen-
tations, we train a linear SVM to assess the accuracy as a
proxy measure for linear separability (Mello & Ponti, 2018),
on the features obtained by the 128-D layer just after the
Global Average Pooling of ResNet50 backbone. Using the
best 5 models (with different initialization seeds) trained in
experiments 1 to 5 of as a feature extractor, we consider the
following steps for evaluation:
– 1. Extract the training set representations;
– 2. Train Linear SVM (with C = 1) using the representa-
tions extracted in step 1;
– 3. Extract the test set representations;
– 4. Test the SVM trained in step 2 on test set representations.

We tested other C values for the SVM but it didn’t change
the results. The test set has never been seen during model
or SVM training, and is only used to obtain the accuracies
reported in Tables 1 and 2. The SVM was trained with 1,000
or 5,000 images (1% or 5%) for the STL-10 dataset; 600 or
3,000 images (1% or 5%) for Fashion-MNIST; 137 or 685
images (1% or 5%) for Malaria; and they are the same sets
used in training the models when the model uses labeled
data.

The 1-pixel attack case was produced assuming access to
the training data. Thus, we attack only images contained
in Dl. For each class we arbitrarily insert a white pixel at
the same coordinate in all images. Since we do not use data
augmentations for the labeled images, the location of the
attacked single pixel is not affected.

4. Results
The STL-10 dataset originally consists of 100,000 images in
the unlabeled set, 5,000 images in the training set and 8,000
images in the test set. When training the supervised models,
we use either 1,000 or 5,000 images from the training set
as labeled images (1% or 5% of images in relation to the
total unsupervised set). When training the semi-supervised
model, we use same fractions of labeled data but also use
the whole 100,000 unlabeled images. When training the

purely unsupervised (self-supervised) models we use only
the whole set of 100,000 unlabeled images.

The Fashion-MNIST dataset originally consists of 60,000
images in the training set and 10,000 images in the test
set. When training the supervised models, we use either 1%
(600) or 5% (3,000) of labeled images. When training the
semi-supervised model, we use the same fractions of labeled
data but also use the whole 60,000 images as unlabeled data.
When training the purely unsupervised (self-supervised)
models we use only the whole set of 60,000 training images
discarding the labels.

Malaria dataset originally consists of 27,558 labeled im-
ages in total. For our experiments we consider half of total
images for the training set and the other half for the test
set. When training the supervised baselines, we use either
1% (137) or 5% (685) of the training set. When training
the semi-supervised model, we use the same fractions of
labeled data but also use the whole training set of 13,779
images as unlabeled data. When training the purely unsu-
pervised (self-supervised) models we use only the whole set
of 13,779 unlabeled images.

The results for all datasets using regular data and attacked
data are shown in Table 1 for the use of 1% labeled data, and
2 for 5% of labeled data. Mean and standard deviation of the
5 seeds are shown. Bold Values are the highest accuracies
considering also the standard deviation superposition.

When using either 1% or 5% of available labeled data, the
self-semi-supervised models excel in STL-10 and Fash-
ion. In particular, the datasets under 1-pixel attack suffer
from the use of supervised learning only, while self-semi-
supervised training or pretraining allow significant improve-
ment. This may indicate that the simultaneous training was
able to help the model’s robustness by guiding the cost func-
tion simultaneously in the self-supervised task, which uses
unlabeled data, and in the common classification task, which
used supervised data with noise.

When compared with the best results, we note that the fine-
tuning of the semi-supervised model worsened the accuracy
compared to the semi-supervised models without fine-tuning
except for Fashion 5%. Interestingly, both self-supervised
tasks alone achieved a more competitive accuracy than the
supervised model when only 1% of labeled data is available.

It is noteworthy that Malaria with 5% of data was able
to improve all methods in the non-attacked dataset, but
the attacked one suffered significantly. Contrary to what
usually happened with other datasets, fine-tuning the semi-
supervised model brings an improvement to the accuracy
in all scenarios, in both tasks and with both 1% and 5%
of labeled data. Standard deviation for supervised models
using 1% of data were large, indicating unstable training
compared to other experiments in general.
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Figure 1. As shown on the left, when using the rotation prediction task, we have two separate softmax layers. One for the supervised
classification task and the other for the rotation task. When using the Barlow Twins task, the other two branches of the main network are
used by the Barlow Twins task, that receive as input two altered views of the same image, which will be passed through the backbone of
the main architecture, and then connect to a three-layer MLP of size 2048, as shown on the right.

Table 1. SVM classification accuracies considering 1% of labeled data with regular and 1-pixel attacked (*) datasets.

METHOD STL-10 STL-10* FASHION FASHION* MALARIA MALARIA*

SUPERVISED 36.7 ± 0.4 35.4 ± 0.5 79.8 ± 0.8 75.7 ± 3.1 63.4 ± 10.8 66.7 ± 17.1

ROTATION ONLY 37.6 ± 1.0 - 70.9 ± 0.9 - 68.0 ± 1.4 -
ROTATION ONLY + FINE-TUNING 50.7 ± 1.0 51.1 ± 0.9 77.6 ± 0.9 77.0 ± 1.1 88.4 ± 2.6 81.9 ± 1.7
ROTATION SEMI 58.7 ± 1.3 56.5 ± 3.3 83.1 ± 0.8 78.2 ± 0.7 69.8 ± 2.8 66.3 ± 2.3
ROTATION SEMI + FINETUNING 55.3 ± 2.6 46.8 ± 4.4 81.3 ± 1.4 76.4 ± 3.1 72.8 ± 1.8 74.6 ± 3.0

BARLOW TWINS ONLY 65.5 ± 0.7 - 71.7 ± 3.0 - 71.6 ± 6.9 -
BARLOW TWINS ONLY + FINE-TUNING 69.5 ± 0.6 64.4 ± 0.4 81.1 ± 1.1 76.6 ± 1.4 67.5 ± 6.7 65.3 ± 4.0
BARLOW TWINS SEMI 70.3 ± 0.6 70.4 ± 0.2 72.0 ± 3.7 73.6 ± 1.3 55.8 ± 5.2 55.8 ± 6.7
BARLOW TWINS SEMI + FINETUNING 62.8 ± 2.4 61.5 ± 3.0 79.3 ± 2.5 71.8 ± 3.1 63.8 ± 5.2 61.9 ± 6.2

Table 2. SVM classification accuracies considering 5% of labeled data with regular and 1-pixel attacked (*) datasets.
METHOD STL-10 STL-10* FASHION FASHION* MALARIA MALARIA*

SUPERVISED 52.2 ± 0.8 47.4 ± 3.8 86.5 ± 0.4 76.8 ± 1.3 94.1 ± 0.2 57.4 ± 2.4

ROTATION ONLY 41.5 ± 1.2 - 78.0 ± 1.6 - 71.8 ± 2.5 -
ROTATION ONLY + FINE-TUNING 63.9 ± 2.6 60.5 ± 3.3 87.5 ± 0.1 83.0 ± 0.5 93.9 ± 1.1 90.3 ± 0.7
ROTATION SEMI 71.0 ± 0.6 60.2 ± 3.3 88.3 ± 0.2 82.0 ± 1.1 87.2 ± 3.5 60.5 ± 5.2
ROTATION SEMI + FINETUNING 70.2 ± 0.3 58.0 ± 2.4 88.0 ± 0.2 83.0 ± 0.5 89.0 ± 3.1 71.6 ± 4.9

BARLOW TWINS ONLY 73.1 ± 0.4 - 77.3 ± 2.1 - 75.0 ± 7.6 -
BARLOW TWINS ONLY + FINE-TUNING 77.8 ± 0.4 65.3 ± 1.8 86.7 ± 0.4 79.9 ± 0.8 89.0 ± 4.0 73.9 ± 9.6
BARLOW TWINS SEMI 77.4 ± 0.0 76.1 ± 1.0 77.9 ± 1.0 78.6 ± 1.3 59.7 ± 2.7 61.5 ± 1.2
BARLOW TWINS SEMI + FINETUNING 71.1 ± 0.6 64.5 ± 0.5 84.0 ± 1.6 72.7 ± 6.4 90.7 ± 2.7 73.2 ± 7.1
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4.1. Discussion on the pretext tasks

Overall, the Barlow Twins performed better for the STL-10
dataset. This task uses data augmentations that can benefit
scenarios where we have natural color images, which is
perhaps the reason why we got good results for the STL-10.
A better design of specific image pre-processing may yield
better results for Fashion-MNIST and Malaria datasets.

The Rotation task performed better for the Fashion and
Malaria datasets. The Semi-supervised models had the best
performance in general, followed by the models that used
some self-supervision + Fine-tuning task.

The biomedical image domain is not angle-oriented, thus
the rotation task becomes harder. Nevertheless, significant
improvement was found when incorporating unlabeled data.
Also the attack had an even stronger impact on results due
to the nature of the images, that contain patterns that are
similar to the attack, degrading the results.

5. Conclusion
Obtaining large annotated datasets remains a limitation in
training deep neural nets. Investigating different pre-training
strategies that work under limited labeled data while leverag-
ing unlabeled data is important. Combining self-supervision
with supervised learning using rotation prediction and the
Barlow Twins task is a good choice towards this objective.
We also propose a way to overcome the sensitivity to ini-
tialization and learning-rate hyper-parameter by using the
scarce training data only.

Our method goes beyond the use self-supervised tasks as
pre-training, by simultaneously training supervised and self-
supervised with a siamese architecture. Our semi-supervised
model achieved overall the highest accuracy, followed by
those using fine-tuning of a self-supervised pretext task.
Not only we improve numerical results, but learn more dis-
criminative spaces, as well as a more robust representation
against 1-pixel attacks. Results show that the choice of the
pretext task must take into account the nature of the dataset,
and that a single task may not suit all applications.

Future work may investigate other types of auxiliary tasks
in the context of semi-supervised learning, explore different
weights for supervised/self-supervised losses, as well as test
against other undesired scenarios of attack. In particular, we
believe that handcrafting or learning pretext tasks for each
dataset is a promising path.
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