
Deep Self-expressive Learning
Chen Zhao1, Chun-Guang Li1, Wei He1, and Chong You2

1School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing, China
2Department of EECS, University of California, Berkeley, CA, USA

Self-expressive model is a method for clustering data drawn from a union of low-
dimensional linear subspaces. It gains a lot of popularity due to its 1) simplicity,
based on the observation that each data point can be expressed as a linear combina-
tion of the other data points, 2) provable correctness under broad geometric and
statistical conditions, and 3) many extensions for handling corrupted, imbalanced,
and large-scale real data. This paper extends the self-expressive model to a Deep
sELf-expressiVE model (DELVE) for handling more challenging case that the data
lies in a union of nonlinear manifolds. DELVE is constructed from stacking multiple
self-expressive layers, each of which maps each data point to a linear combination of
the other data points, and can be trained via minimizing self-expressive losses. With
such a design, the operator, architecture, and training of DELVE have the explicit
interpretation of producing progressively linearized representations from the input
data in nonlinear manifolds. Moreover, by leveraging existing understanding and
techniques for self-expressive models, DELVE has a collection of benefits such as
design choice by principles, robustness via specialized layers, and efficiency via spe-
cialized optimizers. We demonstrate on image datasets that DELVE can effectively
perform data clustering, remove data corruptions, and handle large scale data.

1. Introduction

High-dimensional datasets in the forms of image, video, and text often have much fewer degrees of
freedom than their measurement dimension, i.e., they are intrinsically low-dimensional [1]. While
techniques such as the principal component analysis long existed for datawith linear low-dimensional
structures, practical data often lie in nonlinear manifolds. Moreover, complex data may contain
multiple classes, hence are better modeled by multiple manifolds. Furthermore, it may be unknown
a priori which data point lies in which manifold. Here we consider the problem of jointly learning a
linearized representation and a clustering of data drawn from a union of nonlinear manifolds.
Many methods have been developed for learning linear representations for data in a nonlinear
manifold, with extensions to handling multiple manifolds. Popular methods include Locally Linear
Embedding [2], Laplacian Eigenmap [3], and many others, which are based on constructing a local
neighborhood graph on the data and computing a linearized representation (i.e., low-dimensional
embedding) that preserves desired properties of the graph. Although simple and intuitive, these
methods require a large number of samples to reasonably estimate the local relationship, particularly
when the samples are insufficient(i.e., not uniformly and densely sampled) or highly noisy, or the
intrinsic dimension of the manifold is not low [4, 5].
Over the past decade, deep learning based methods, e.g., autoencoders [6–9], have become a pow-
erful alternative with great empirical success. Based on performing a sequence of transforms (as
opposed to a single-step transform in early methods), deep learningmethods were argued to be more
parameter-efficient for handling complex input-output relations [10]. Yet, popular deep architectures
are constructed with generic layers, such as fully connected, convolutional, and ReLU, which are
agnostic to the intrinsic structure(s) of the data. As a result, the network is usually deployed as a
“black-box”, lacking of understanding on the role of individual layers for learning with manifold(s).

First Conference on Parsimony and Learning (CPAL 2024).

(a) Input data (b) Self-expression (c) Output of a layer (d) Output of DELVE
Figure 1: Conceptual illustration of DELVE. (a) Input data X = [x1, . . . ,xN] in a union of two manifolds
M1 ∪M2 (points on M1 are not drawn for simplicity). (b) Inspired by the self-expressive model, we express
each data point (with x2 as an example) as an approximate linear combination of other data points with
coefficient vector c∗2 computed from problem (2). (c) With x̂2 := Xc∗2 computed, we illustrate the output of a
self-expressive layer, which maps x2 to x̂2 and likewise for all other data points. (d) Stacking self-expressive
layers progressively on output of the previous layer produces linearized representations as output.

A “Whitebox” Deep Manifold(s) Learning Model. This paper presents a deep learning framework
with a “white-box” design for learning manifolds, where each layer explicitly models the intrinsic
low-dimensional manifold structures of the data. We draw inspiration from the self-expressive model
[11], a popular tool for clustering data lying in a union of linear low-dimensional subspaces into their
respective subspaces. Given a data matrix X = [x1, · · · ,xN] ∈ IRD×N , the self-expressive model
exploits a simple observation that each point xj can be expressed as a linear combination of other
points in X that are from the same subspace as xj , i.e., xj = Xcj where cj ∈ IRN with cij ̸= 0 only if
xi,xj are in the same subspace. The coefficient vector cj that satisfies such a property is referred to
as being subspace-preserving and can be provably found by solving an optimization problem

min
cj

r(cj) s.t. xj =
∑
i̸=j

cijxi, (1)

with a proper choice of the regularizer r(·), e.g., the ℓ1 norm. Once the problem in (1) is solved, the
coefficients {cj}Nj=1 are used to construct a similarity graph for the data where the weight between
xi and xj is set to |cij |+ |cji| by default, and spectral clustering [12] can be used to segment the data.
We now switch to the problem of interest of this paper, namely, the case where the columns of X
lie in a union of nonlinear manifolds. First, note that for data in nonlinear manifolds (see Fig. 1a),
each data point xj may not be expressed as an exact linear combination of other points from its
own manifold. Nonetheless, a subspace-preserving cj may still be found by solving the following
problem with the constraint in (1) relaxed:

c∗j
.
= argmin

cj

r(cj) + γ · κ
(
xj ,

∑
i ̸=j

cijxi

)
, (2)

where κ(·, ·) can be, e.g., the squared ℓ2 distance with γ > 0 being a trade-off parameter (see Fig. 1b).
Put differently, while each manifold is globally nonlinear, at a local scale it is approximately linear. A
key contribution of our work is to introduce a self-expressive layer from coefficients computed in (2),
which performs a mapping Γ : xj 7→ x̂j := Xc∗j for each data point (see Fig. 1c). The intuition is
that, if c∗j is subspace-preserving, then the collection of output data points of the self-expressive layer
is slightly more “linearized” than its input data points. Hence, by stacking multiple self-expressive
layers, which gives rise to a deep architecture referred to as the Deep sELf-expressiVE model (DELVE),
the underlying nonlinear manifolds are progressively transformed into linear subspaces, producing
linear representations at the last layer (see Fig. 1d).
DELVE is a novel deepmodel with a “white-box” design. In particular, the operators, the architecture,
and the training ofDELVE are all explicitly designed tomodel the intrinsic low-dimensional structures.
This allows us to understand the transformation performed by individual layer. In Fig. 2 we provide
a visualization of the learned representation from DELVE on synthetic data on a single nonlinear
manifold, and compare it with results from an autoencoder with tanh(·) as the activation function.
To enforce the autoencoder to learn low-dimensional embeddings, we set the dimension of encoder
output to be 2. With DELVE, the output becomes increasingly linearized when more layers (i.e.,
larger ℓ) are used, and with ℓ = 40 the output lies closely on the unit sphere of a two-dimensional
linear subspace. In contrast, the results with the autoencoder are less interpretable and desirable.

2

(a)H(0) ≡ X (b) H(10) (c)H(20) (d) H(30) (e) H(40) (f) Singular values

(g)H(0) ≡ X (h)H(1) (i)H(2) (j)H(3) (k) H(4) (l) Singular values
Figure 2: Visualization of learning a linearized representation for data lying in a nonlinear manifold of IR3

by DELVE (top row) vs. autoencoder (bottom row). (a) - (e): Intermediate embeddings from DELVE at the
0, 10, 20, 30, 40-th layers. (g) - (k): Intermediate embeddings at the 0, 1, 2, 3, 4-th encoder of an autoencoder.
(f) and (l): Singular values of the embeddings.

The benefits of the “white-box” design of DELVE compared to popular deep methods are as follows.
• Design Choices by Principles. Various design choices for DELVE can be made from principle.

For example, the choice of r(·) in (2) controls a trade-off between obtaining subspace-preserving
solutions and connectedness of points in each cluster, which can be examined by appropriate
measures on the solution cj , providing useful guidance for how to tune r(·) in practice.

• Robustness via Specialized Layers. Owning to the existence of many extensions of the self-
expressive models to handling various types of data corruptions, DELVE may be made robust by
adapting the design of the self-expressive layers accordingly. For example, by choosing κ(·, ·) in
(2) to be ℓ1 norm, DELVE can be made robust to inputs corrupted with spurious noise.

• Efficiency via Specialized Optimizers. In DELVE, specialized optimizers may be developed to
accelerate model training in optimizing (2). For example, active support methods [13, 14] may be
used to gain efficiency by exploiting sparsity of the solution when r(·) is sparsity-promoting.

2. Related Work
Manifold Learning andDenoising. Classical methods formanifold learning are based on computing
local neighborhood relationships using, e.g., linear coefficients that reconstruct each data point from
its local neighbors [2, 15], local tangent space estimation [16], and heat kernels [3, 17]. Then, a linear
representation can be obtained by spectral embedding (i.e., scalingmethod) [2, 3, 15, 17] or alignment
techniques [16] that yield low-dimensional embeddings by preserving the local neighborhood
relations. Similar ideas are used for manifold denoising using diffusion method [18] and robust
Principal Component Analysis [19]. Ourmethod is different from existingmethods as we use amulti-
layer self-expressive model to compute a sequence of neighborhood relationships with progressively
linearized data and does not need spectral embedding or alignment technique.
Self-Expressive Models and Subspace Clustering. Prior work on the self-expressive model includes
those that study the choice of regularization on the self-expressive coefficients [11, 14, 20–27], choice
of data corruption penalty terms [22, 28–30], design of scalable algorithms [31–41], etc. Beside data
clustering, the self-expressive model can be used for outlier detection [42, 43], filling in missing
entries [44–47], exemplar selection [48, 49], concept discovery [50], etc. Many of the aforementioned
techniques based on the self-expressive model have provable guarantees for correctness [42, 51–55]
under mild conditions on the subspaces arrangement and data distribution. To handle nonlinear
manifolds, self-expressive models may be extended by using the kernel trick [56], but it has the
challenge of how to select an appropriate kernel. Recently, methods based on combining the self-
expressive model with deep models to simultaneously learn feature representation and clustering of

3

data have become very popular [57–67]. However, there is lack of evidence that such an approach
can produce the desired linear structures in the latent space [68].
Whitebox Network Architectures. In view of the lack of understanding of popular deep architec-
tures there have been many alternative architectures with a “whitebox” design, e.g., [69–71], and
reinterpretation of existing architectures, e.g., [72]. Among them the most relevant to our DELVE
include those that learns low-dimensional linear representations [73–75]. However, [73, 74] requires
labels to train and [75] only handles a single manifold. In contrast, our DELVE can handle multiple
manifolds and does not require labels.

3. Deep Self-Expressive Model (DELVE)

Problem Formulation. Consider a data matrix X = [x1, . . . ,xN] ∈ IRD×N with columns in a
collection of n unknown low-dimensional nonlinear manifolds {M1, . . . ,Mn}. Assume that the
data are unlabeled, i.e., the membership of the data points to each manifold is unknown. The goal
is to simultaneously: 1) segment the columns ofX into their respective manifolds, and 2) learn a
linearized representation for each manifold.1

3.1. Self-Expressive Layer

Definition 3.1 (Self-expressive Layer). Given an input H = [h1, . . . ,hN] ∈ RD×N , a self-expressive
layer is a triplet (C,Γ,Ω), whereC = [c1, . . . , cN] ∈ RN×N is referred to as the self-expressive coefficient
matrix, Γ(H,C)

.
= HC is referred to as the self-expressive map, and

Ω(H,C | r(·), γ, κ(·, ·)) =
N∑
j=1

r(cj) + γ · κ
(
hj ,
∑
i ̸=j

cijhi

) (3)

is referred to as the self-expressive losswhere r(·) : RN → R, γ ∈ R+, and κ(·, ·) : RD × RD → R are
design choices of the layer.

As in a neural network layer, the self-expressive layer defines an input-output mapping H 7→
Γ(H,C) := HC with C being the matrix of the trainable parameters, hence can be used to construct
a deep neural network. Unlike a neural network layer, the self-expressive layer itself comes with the
self-expressive loss, which can be used for network training (explained in Section 3.2). The design
idea of the self-expressive layer is explained in the introduction. Namely, if the columns of H lie in a
union of nonlinear manifolds each data point may be expressed approximately as a linear combination
of a few other points from its local neighborhood in its own manifold. That is, there exist a matrix C
that satisfiesH ≈ HC, such that C is manifold-preserving2, i.e., the i, j-th entry of C is nonzero only
if hi,hj are from the same manifold. Motivated by the case of linear subspaces, one may hope to
recover such a representation as a solution C∗ to minimizing the self-expressive loss in (3), with
γ <∞ a finite real number, and κ(·, ·) as e.g., the Euclidean distance. Then, because H ≈ HC∗, the
self-expressive map produces the output of the layer HC∗ that deviates slightly from the layer input
H . The intuition, as illustrated by an example in Fig. 1c, is that the output HC∗ linearizes the input
H slightly and thus reduces the curvature of the manifolds slightly.
Because the self-expressive layer has immediate interpretation as modeling the low-dimensionality
of data, the particular design choices, such as r(·), γ, κ(·, ·), and algorithm for optimizing the self-
expressive loss, can be made from principle. Moreover, the self-expressive layer can be customized
for particular use cases, e.g., for handling corruptions in layer input. We explain the details below.
Choice of γ. As discussed above, a large value of γ should be used when the manifolds are close to
being linear, while smaller values of γ should be used if the “degree” of nonlinearity is high.

1The problem is sometimes referred to as manifold clustering [76], or nonlinear subspace clustering [77].
2This term is adopted with its analogy to the notion of “subspace-preserving”.

4

Choice of r(·). When the manifolds are linear, conditions under which the solution to minimizing
(3) is subspace-preserving has been well-studied for many choices of r(·). The broadest conditions
are established for r(·) being a sparse regularizer, such as the ℓ1 norm [42, 53, 78], making them the
desired choice. However, sparse regularizers produce sparse solutions C, which is an undesirable
property for the purpose of data clustering using the affinity graph |C|+ |C|⊤ because data from the
same manifold may not form a single connected component in this graph [79]. One of the successful
strategies towards solving this problem is to set r(·) as the elastic net regularizer [14]:

r(cj) = λ∥cj∥1 +
1− λ

2
∥cj∥22, (4)

where λ ∈ [0, 1] is a trade-off parameter. Here, the introduction of the ℓ2 norm term has the effect
of improving the density of the solution, motivated by earlier works [24, 80, 81]. Finally, while the
aforementioned results have not been examined in the case of nonlinear manifolds, we may still use
them as the guiding principle for choosing r(·) in self-expressive layers.
Choice of κ(·, ·). Different choices of κ(·, ·) are used to handle different types of corruptions in data.
For example, the ℓ2 norm is used to handle dense Gaussian noise [82], while the ℓ1 norm is used
to handle sparse corruptions [83]. In the self-expressive layer and when the underlying manifolds
in the inputH are nonlinear, κ(·, ·)may be used to handle corruptions in H in the same way as in
linear subspaces; However, it also needs to model the deviation of the underlying manifold from
linearity, i.e., the fact that a point on a manifold cannot be expressed as an exact linear combination
of its neighboring points. Motivated by the form of the elastic net regularizer in (4), in this paper,
we will use the penalty term

κ(h, ĥ) = η∥h− ĥ∥1 +
1− η

2
∥h− ĥ∥22, (5)

where the first term may be used if the input is expected to have sparse corruptions, and the second
term may be used if the input is expected to have dense Gaussian noise, η > 0 is a tuning parameter.
Choice of optimization algorithm. Many optimization algorithms were developed for minimizing
the self-expressive loss in (3) depending on the choice of r(·) and κ(·, ·). For a sparse regularizer
r(·), e.g., the elastic net regularizer in (4) with a large λ close to 1, there are active support based
algorithms [14, 84, 85] that leverage such sparsity for performing fast computation, and can handle
relatively large scale datasets with 100, 000 data points. In this paper, we use the solver in [14].
We also mention that there also exists many approximate algorithms based on subsampling [31],
sketching [35], divide-and-conquer [86] and beyond, which have O(N) complexity and can handle
datasets with a million points. These algorithms may be used to further scaling up our DELVE.

3.2. DELVE: Architecture and Training

We now introduce DELVE which is a deep learning model built upon self-expressive layers. Denote
H(0) .

= X the model input. Then, the architecture of DELVE is obtained from alternatively applying
self-expressive layers and normalization layers to the input. That is,

Ĥ(ℓ+1) = H(ℓ)C(ℓ+1), H(ℓ+1) = Π(Ĥ(ℓ+1)), (6)
for ℓ = 0, . . . , L−1. In above, {C(ℓ)}Lℓ=1 are the self-expressive coefficient matrices ofL self-expressive
layers, which are trainable parameters. Π(·) is a mapping that normalizes each column of its input
by its ℓ2 norm. Without it we empirically find that the representations tend to collapse to the origin.
Because each self-expressive layer has a loss function, DELVE can be trained in an unsupervised
way. Specifically, given any {(r(ℓ)(·), γ(ℓ), κ(ℓ)(·, ·))}Lℓ=1 associated with the L self-expressive layers,
DELVE may be trained by solving the following optimization problem:

min
C(1),...,C(L)

L∑
ℓ=1

Ω(ℓ)
(
H(ℓ−1), C(ℓ)

)
.
=

L∑
ℓ=1

Ω
(
H(ℓ−1), C(ℓ) | r(ℓ)(·), γ(ℓ), κ(ℓ)(·, ·)

)
. (7)

We use a layer-wise training algorithm for optimizing (7). That is, the weights from shallower
layers to deeper layers, i.e., C(1), C(2), . . . , C(L) are trained sequentially. Moreover, when optimiz-

5

Algorithm 1 Layer-wise Training Procedure for DELVE.
Input: Data X = [x1, · · · ,xN], number of layers L, {(r(ℓ)(·), γ(ℓ), κ(ℓ)(·, ·))}Lℓ=1.
1: Initialize ℓ = 1, H(ℓ−1) = X ;
2: while ℓ ≤ L do
3: Compute C(ℓ)∗ = argminC(ℓ) Ω(H(ℓ−1), C(ℓ) | r(ℓ)(·), γ(ℓ), κ(ℓ)(·, ·));
4: Set Ĥ(ℓ) = H(ℓ−1)C(ℓ)∗;
5: Set H(ℓ) = Π(Ĥ(ℓ)) from dividing each column of Ĥ(ℓ) by its ℓ2 norm;
6: ℓ← ℓ+ 1;
7: end while

Output: Learned representation H(L) and learned network parameters {C(ℓ)}Lℓ=1.

ing C(ℓ), while all loss terms in deeper layers, i.e., {Ω(ℓ′)(H(ℓ′−1), C(ℓ′)}ℓ′≥ℓ are a function of C(ℓ)

(because H(ℓ′−1) depends on C(ℓ) for all ℓ′ > ℓ), we only minimize the loss term at the ℓ-th layer,
i.e., Ω(ℓ)(H(ℓ−1), C(ℓ)). We summarize the layer-wise training procedure for DELVE in Algorithm 1.
Finally, we note that (7) may be solved (or fine-tuned after the layer-wise training) by other algo-
rithms, such as gradient descent on gradients calculated via back-propagation. We defer a study of
such alternative training techniques to future work.
Once DELVE is trained, the output from the last layerH(L) is the learned representation for the input
dataX . In addition, the learned parameters C(L) in the last layer can be used to construct a similarity
graph for the data with weight matrix |C(L)|+ |C(L)|⊤. We can then apply spectral clustering to the
similarity graph to obtain the membership of columns of X to the manifolds.

(a) DELVE (b) Autoencoder (c) Self-Attention (d) GCN
Figure 3: Comparison of building block of DELVE with those of related deep learning architectures.

3.3. Related Architectures

Comparing with popular deep models for manifold learning, such as autoencoders, DELVE is
fundamentally different. Specifically, given a layer input X , each layer of DELVE computes a linear
combination of all data points, i.e.,XC, see Fig. 3a. In contrast, each layer of an autoencoder performs
a linear mapping on each data point, i.e.,WX , see Fig. 3b. From this perspective, DELVE is more
similar to self-attention models and graph convolutional networks as explained next.
Connection to Self-Attention Models. Self-attention is a broadly used building block for Trans-
formers [87], Graph Attention Networks [88], and so on. Given a sequence of input vectors
X = [x1, . . . ,xN], a self-attention model computes a sequence of output vectors where each vector is
a linear combination of the input vectors, i.e.,XC, withC being anN×N matrix. Such a computation
is the same as the self-expressive map performed by self-expressive layers, see Definition 3.1.3 The
main difference lies in how the matrix C is computed. In self-attention models, C is computed by the
inner product of the embeddings from the key and query followed by a softmax layer. As illustrated
in Fig. 3c, the key K and query Q are computed from parameterized functions of X in which the

3Broadly, the connection of self-attention and self-expressive models has been noted in [41, 89].

6

Methods BP DA EYaleB COIL100 MNIST
ACC NMI ARI ACC NMI ARI ACC NMI ARI

k-means 9.47 13.02 1.31 47.72 74.96 42.47 55.29 49.17 37.42
SC [12] 42.13 56.41 13.71 53.28 81.24 24.67 67.23 79.81 62.54
SSC [11] 67.98 74.85 20.54 67.84 73.74 19.32 79.47 78.33 69.49
LSR [24] 70.51 75.40 51.37 46.74 72.24 38.92 - - -
LRSC [23] 69.40 74.56 50.95 49.39 74.48 43.01 - - -
EnSC [14] 68.18 74.46 19.45 66.11 89.31 63.22 83.27 82.67 76.12
SSC-OMP [13] 79.91 83.78 53.04 31.46 58.20 15.25 47.41 48.77 34.94
S3COMP [40] 84.25 85.27 68.05 75.19 93.06 72.29 63.77 65.58 52.33
LLMC [94] 55.68 64.88 28.54 74.39 92.29 70.14 - - -
KSSC [56] 72.25 - - 62.72 - - - - -
SMCE [95] 56.20 60.72 29.83 80.01 94.32 76.80 - - -
AE+SSC [58] ✓ 74.67 - - 56.07 - - - - -
AE+LSR [68] ✓ 71.96 - - 44.84 - - - - -
DSCNet-ℓ2 [58, 68]4 ✓ 59.09 - - 45.67 - - - - -
DSC-ℓ1 [63] ✓ - - - 69.63 87.51 58.35 - - -
DSC-ℓ2 [63] ✓ - - - 69.03 86.75 60.01 - - -
NMCE [96] ✓ ✓ - - - 88.47 - - - - -
DELVE (ours) 89.76 ±1.05 90.12 ±0.19 73.64 ±1.47 78.96 ±0.46 93.86 ±0.04 75.81±0.39 96.38 ±0.05 90.95 ±0.14 92.19 ±0.09

Table 2: Clustering performance (%) on EYaleB, COIL100, and MNIST. Best and second best results are
highlighted. BP: method requires back-propagation. DA: method requires data augmentation.

parametersWQ,WK can be learned from training data. In contrast, in DELVE, C itself is the trainable
parameter that can be learned from data.
Connection to Graph Convolution Networks (GCNs). GCN [90] is a popular model for learning
from data associated with graphs. Consider a graph G(V, E , C)where V is the set of vertices, E is the
set of edges and C is an adjacency matrix for the vertices. Each vertex vj in V is associated with an
embedding vector xj . One of the most important operations in GCN is to aggregate information for
each vertex vj from its neighbors on the graph. This is achieved by updating the embedding vector
associated with vertex vj by the summation of the embedding vectors of its neighbors. Collecting
the embeddings of all vertices as matrix X = [x1, . . . ,xN], such an aggregation operation can be
represented asXC, which is the same as the self-expressivemap in self-expressive layers (see Fig. 3d).
Hence, the self-expressive layer can be interpreted as a generalization of the information aggregation
layer, where the adjacency matrix C is learned from data, rather than given and fixed.

4. Experiments
To verify the effectiveness of DELVE, we conduct experiments on datasets COIL-100 [91], Extended
Yale B (EYaleB) [92], and MNIST [93], for which the key information is summarized in Table 1.
Details on datasets, DELVE implementation, and comparing methods are provided in Appendix C.
Results on additional datasets are provided in Appendix B.3.

4.1. Evaluating DELVE for Data Clustering

Datasets # Total samples # Classes Image size Feature dimension
COIL100 7,200 100 32× 32 1,024
EYaleB 2,432 38 48× 42 2,016
MNIST 70,000 10 28× 28 784

Table 1: Summary of dataset information.

We report the clustering perfor-
mance measured by clustering
accuracy (ACC), normalizedmu-
tual information (NMI), and ad-
justed rand index (ARI) (see
e.g. [97] for their definitions) in
Table 2. It can be seen that DELVE is the best performing method on EYaleB andMNIST. On COIL100,
DELVE is the third best performingmethod following SMCE [95] andNMCE [96]. Here, wemention
that SMCE is a method based on the self-expressive model with an additional locality constraint.
Motivated by SMCE, we also trained a version of DELVE, referred to as DELVE-SMCE, with such
a constraint added to the self-expressive loss in (3). The ACC, NMI, and ARI of DELVE-SMCE
on COIL100 are given by 84.64%, 94.38%, and 81.94%, respectively, which are considerably higher
than those of SMCE. In a nutshell, with a proper choice of self-expressive loss, DELVE is the best
performing method on COIL100 except for NMCE [96]. The better performance of NMCE relies
critically on its use of data augmentation, for which our DELVE does not use.

7

Methods ACC NMI ARI
k-SCN-G [98] 82.22 73.97 71.10
k-SCN-S [98] 87.14 78.15 75.81
PSSC [66] 89.00 79.00 -
EDESC [99] 91.30 86.20 -
DELVE (ours) 96.38 90.95 92.19

Table 3: Clustering accuracy (%) on
MNIST compared to scalable methods.

DELVE is Scalable. We highlight an advantage of DELVE
overmany recent deep subspace clusteringmethods, namely,
DELVE can effectively handle large-scale datasets. As shown
in Table 2, the results for DSCNet and DSC are not listed for
MNIST because they cannot handle 70,000 data points. The
reason is that these methods require full batch training via
back-propagation, where all data points and all their inter-
mediate feature maps need to be loaded into the memory.
In contrast, with the layer-wise training strategy for DELVE, the intermediate feature maps of already
trained layers can be removed from thememory when training subsequent layers. Finally, while there
are recently developed scalable deep subspace clustering methods, such as k-SCN-G and k-SCN-S
[98], PSSC [66], and EDESC [99], their performance lags far behind our method (see Table 3).

(a) Clustering accuracy (b) Residual
Figure 4: Evaluation of DELVE on COIL20 across
layers under varying choices of γ.

Effect ofModelDepth. We evaluate how clustering
accuracy changes across layers. We take 20 classes
from COIL-100 (a.k.a., COIL-20) and plot the results
under varying choices of parameter γ for the self-
expressive loss (3) in Fig. 4a. In a wide range of γ,
the clustering accuracy increases rapidly in the first
few layers which shows the effectiveness of DELVE.
Meanwhile, the clustering accuracy starts to drop
after a certain layer, showing an over-fitting issue.
We leave a study on the cause of overfitting to future
work. In Fig. 4b, we report self-expressive residual
(SER), defined as ∥H(ℓ)−H(ℓ−1)∥2

F

∥H(ℓ−1)∥2
F

, which measures
the relative changes from the output to the input of layer ℓ. We see that SER progressively decreases
as the number of iteration increases. This shows that the effect of adding more layers in DELVE is
diminishing. Such a behavior is qualitatively similar to that observed in residual networks [100].

4.2. Understanding and Customizing DELVE

As discussed in Section 3.1, DELVE can be customized to accommodate different use cases with
proper choices of the regularizer r(·), the penalty term κ(·, ·), and the optimization algorithm.
Understanding the Choice of Regularization Term r(·). As discussed in Section 3.1, the property
of the learned weight matrices {C(ℓ)} relies on the choice of the regularization r(·). In particular,
{C(ℓ)} should neither be too sparse, as this may hurt within-class connectivity, nor be too dense, as
this may lead to violation of the subspace-preserving (i.e., manifold-preserving) property. With r(·)
being the elastic net regularizer in (4), such a trade-off is controlled by the hyper-parameter λ. In
the following, we explain how the effect of λ on DELVE can be observed and measured explicitly for
gaining insights into how DELVE performs. Specifically, we consider the following three metrics.
• Subspace-representation error (SRE) [83]: The proportion of magnitude of entries in C(ℓ) that

comes from the wrong class, i.e., 1
N

∑
j

(∑
i wij |c(ℓ)ij |/∥c

(ℓ)
j ∥1

)
where wij is 1 if i, j are in different

classes and 0 otherwise. If C(ℓ) is subspace-preserving, then its SRE is 0.
• Connectivity [13]: We compute the algebraic connectivity [101] of graph Laplacian defined from

C(ℓ) for each class and report the minimum over all classes. Hence, this measure is zero if and
only if there exist a class that the similarity graph associated with C(ℓ) is not connected.

• Sparsity: It measures the average number of nonzero entries per columns in C(ℓ).

4The DSCNet [58] uses a very complex postprocessing step that is highly tuned on EYaleB. However, [68]
shows that adding the same postprocessing significantly improves other self-expressive methods. In order to
have a fair comparison with all methods, we follow [68, 77] to report results without such a postprocessing.

8

(a) (b) (c) (d) (e)
Figure 5: Effect of λ in the regularizer r(·) on DELVE using COIL20.

We use COIL20 for the evaluation and report the three metrics listed above, as well as ACC and SER,
in Fig. 5. From Fig. 5c, using λ = 1.0 leads to a zero connectivity after 10 iterations, which explains
its inferior clustering performance demonstrated in Fig. 5b. By reducing λ, the sparsity increases as
shown in Fig. 5e and we obtain a better connected solution C(ℓ) which leads to a better and more
stable clustering performance. Yet, setting λ to be too small increases SRE as shown in Fig. 5d hence
worse clustering performance. This example shows that the effect of λ for DELVE can be examined
in a principled way by measuring the properties of learned weights.5

Figure 6: Robustness Evalua-
tion of DELVE to sparse corrup-
tions on EYaleB.

Robustness by Choice of Penalty Term κ(·, ·). We demonstrate
that DELVE can be customized to handle sparse corruptions by a
proper choice of the penalty term κ(·, ·). We randomly pick 30% of
all images in EYaleB, and add sparse (i.e., pepper-and-salt) noise to
p ∈ {0, 20, 40, 60, 80, 100} percent of the pixels in each of the selected
images. To model sparse corruptions, we use κ(x, x̂) = ∥x − x̂∥1 in
each layer of DELVE, and report the clustering accuracy in Fig. 6. We
can observe that our DELVE is robust to the corruption with a very
small performance drop as long as the percentage of pixel corruptions
p% is less than 70%. This behavior is in sharp contrast to DSCNet
[58, 68], a deep learning based approachwhere the performance drops
rapidly even when p% is small. We provide a visualization of the learned representations at the
output of DELVE under varying corruption level in Fig. B.1 (see appendix).

5. Conclusion and Discussion

This paper presented the Deep sELf-expressiVE model (DELVE) for jointly learning a linearized
representation and performing clustering of data drawn from a union of low-dimensional nonlinear
manifolds. Different from the conventional self-expressive model that operates on the original data
and is inherently shallow, DELVE is built upon a multi-layer architecture where each layer linearizes
the data by performing self-expression and the entire model operates on progressively linearized
data. Such a construction is “’whitebox’ in nature and opens up the possibility of leveraging the
rich results developed for the self-expressive model, including both theory and practical algorithms,
for the development of next generation deep models that are more amenable to theoretical study
and principled design. While this paper cannot fully explore all such potentials, our experiments
already demonstrate the promising features in terms of explainability and robustness compared
to existing approaches. Moving forward, we believe that many other techniques in self-expressive
models such those developed for handling outliers, missing entries, imbalanced data, large-scale
data can be leveraged to further improve the capability of DELVE.
Acknowledgment C. Zhao, C.-G. Li, and W. He are supported by the National Natural Science Foundation of
China under Grant 61876022. C. You is currently at Google Research, New York City, and contributed to this
work while he was at UC Berkeley and supported by the Tsinghua-Berkeley Shenzhen Institute Research Fund.
We acknowledge helpful comments from Benjamin D. Haeffele from Johns Hopkins University.

5This is in contrast to deep learning where it is hard to understand the effect of hyper-parameters.

9

References
[1] Phillip Pope, Chen Zhu, Ahmed Abdelkader, Micah Goldblum, and Tom Goldstein. The intrinsic

dimension of images and its impact on learning. arXiv preprint arXiv:2104.08894, 2021.

[2] S. Roweis and L. Saul. Nonlinear dimensionality reduction by locally linear embedding. Science, 290
(5500):2323–2326, 2000.

[3] M. Belkin and P. Niyogi. Laplacian eigenmaps for dimensionality reduction and data representation.
Neural Computation, 15(6):1373–1396, 2003.

[4] Yoshua Bengio and Martin Monperrus. Non-local manifold tangent learning. Advances in Neural Informa-
tion Processing Systems, 17(1):129–136, 2005.

[5] Hariharan Narayanan and Sanjoy Mitter. Sample complexity of testing the manifold hypothesis. In
Proceedings of the 23rd International Conference on Neural Information Processing Systems-Volume 2, pages
1786–1794, 2010.

[6] Mark A Kramer. Nonlinear principal component analysis using autoassociative neural networks. AIChE
journal, 37(2):233–243, 1991.

[7] Geoffrey E Hinton and Ruslan R Salakhutdinov. Reducing the dimensionality of data with neural
networks. science, 313(5786):504–507, 2006.

[8] Jonathan Masci, Ueli Meier, Dan Ciresan, and Jurgen Schmidhuber. Stacked convolutional auto-encoders
for hierarchical feature extraction. In International conference on artificial neural networks, pages 52–59.
Springer, 2011.

[9] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114,
2013.

[10] Yoshua Bengio and Yann LeCun. Scaling learning algorithms towards ai. Large-scale kernel machines, 34
(5):1–41, 2007.

[11] E. Elhamifar and R. Vidal. Sparse subspace clustering. In IEEE Conference on Computer Vision and Pattern
Recognition, pages 2790–2797, 2009.

[12] Jianbo Shi and Jitendra Malik. Normalized cuts and image segmentation. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 22(8):888–905, 2000.

[13] ChongYou, Daniel Robinson, and RenéVidal. Scalable sparse subspace clustering by orthogonalmatching
pursuit. In IEEE Conference on Computer Vision and Pattern Recognition, pages 3918–3927, 2016.

[14] Chong You, Chun-Guang Li, Daniel Robinson, and René Vidal. Oracle based active set algorithm for
scalable elastic net subspace clustering. In IEEE Conference on Computer Vision and Pattern Recognition,
pages 3928–3937, 2016.

[15] S. Roweis and L. Saul. Think globally, fit locally: Unsupervised learning of low dimensional manifolds.
Journal of Machine Learning Research, 4:119–155, 2003.

[16] Zhenyue Zhang and Hongyuan Zha. Principal manifolds and nonlinear dimensionality reduction via
tangent space alignment. SIAM J. Sci. Comput., 26(1):313–338, 2005. ISSN 1064-8275.

[17] M. Belkin and P. Niyogi. Laplacian eigenmaps and spectral techniques for embedding and clustering. In
Neural Information Processing Systems, pages 585–591, 2002.

[18] Matthias Hein and Markus Maier. Manifold denoising. In Advances in Neural Information Processing
Systems, volume 19, pages 561–568. MIT Press, 2006.

[19] He Lyu, Ningyu Sha, Shuyang Qin, Ming Yan, Yuying Xie, and Rongrong Wang. Manifold denoising
by nonlinear robust principal component analysis. In Advances in Neural Information Processing Systems,
volume 32, pages 13390–13400. Curran Associates, Inc., 2019.

[20] Eva L. Dyer, Aswin C. Sankaranarayanan, and Richard G. Baraniuk. Greedy feature selection for subspace
clustering. Journal of Machine Learning Research, 14(1):2487–2517, 2013.

[21] Yingzhen Yang, Jiashi Feng, Nebojsa Jojic, Jianchao Yang, and Thomas S Huang. ℓ0-sparse subspace
clustering. In European Conference on Computer Vision, pages 731–747, 2016.

10

[22] Guangcan Liu, Zhouchen Lin, and Yong Yu. Robust subspace segmentation by low-rank representation.
In Proceedings of the 27th International Conference on Machine Learning (ICML-10), June 21-24, 2010, Haifa,
Israel, pages 663–670, 2010. URL https://icml.cc/Conferences/2010/papers/521.pdf.

[23] Paolo Favaro, René Vidal, and Avinash Ravichandran. A closed form solution to robust subspace
estimation and clustering. In IEEE Conference on Computer Vision and Pattern Recognition, pages 1801 –1807,
2011.

[24] C-Y. Lu, H. Min, Z-Q. Zhao, L. Zhu, D-S. Huang, and S. Yan. Robust and efficient subspace segmentation
via least squares regression. In European Conference on Computer Vision, pages 347–360, 2012.

[25] Yu-Xiang Wang, Huan Xu, and Chenlei Leng. Provable subspace clustering: When LRR meets SSC. In
Neural Information Processing Systems, 2013.

[26] Pan Ji, Mathieu Salzmann, and Hongdong Li. Efficient dense subspace clustering. In IEEE Winter
Conference on Applications of Computer Vision, pages 461–468. IEEE, 2014.

[27] Chun-Guang Li, Chong You, and René Vidal. Structured sparse subspace clustering: A joint affinity
learning and subspace clustering framework. IEEE Transactions on Image Processing, 26(6):2988–3001,
2017.

[28] Baohua Li, Ying Zhang, Zhouchen Lin, and Huchuan Lu. Subspace clustering by mixture of gaussian
regression. In IEEE Conference on Computer Vision and Pattern Recognition, pages 2094–2102, 2015.

[29] R. He, L. Wang, Z. Sun, Y. Zhang, and B. Li. Information theoretic subspace clustering. IEEE Transactions
on Neural Networks and Learning Systems, 27(12):2643–2655, 2016.

[30] Yuanman Li, Jiantao Zhou, Xianwei Zheng, Jinyu Tian, and Yuan Yan Tang. Robust subspace clustering
with independent and piecewise identically distributed noise modeling. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 8720–8729, 2019.

[31] X. Peng, L. Zhang, and Z. Yi. Scalable sparse subspace clustering. In 2013 IEEE Conference on Computer
Vision and Pattern Recognition, pages 430–437, June 2013.

[32] Jie Shen, Ping Li, and Huan Xu. Online low-rank subspace clustering by basis dictionary pursuit. In
Proceedings of the 33rd International Conference on Machine Learning, pages 622–631, 2016.

[33] A. Adler, M. Elad, and Y. Hel-Or. Linear-time subspace clustering via bipartite graph modeling. IEEE
Transactions on Neural Networks and Learning Systems, 26(10):2234 – 2246, 2015.

[34] Akram Aldroubi, Ali Sekmen, Ahmet Bugra Koku, and Ahmet Faruk Cakmak. Similarity matrix frame-
work for data from union of subspaces. Applied and Computational Harmonic Analysis, 2017.

[35] P. A. Traganitis and G. B. Giannakis. Sketched subspace clustering. IEEE Transactions on Signal Processing,
66(7):1663–1675, April 2018. ISSN 1053-587X. doi: 10.1109/TSP.2017.2781649.

[36] Maryam Abdolali, Nicolas Gillis, and Mohammad Rahmati. Scalable and robust sparse subspace
clustering using randomized clustering and multilayer graphs. Signal Processing, 163:166–180, 2019.

[37] Shin Matsushima and Maria Brbic. Selective sampling-based scalable sparse subspace clustering. In
Advances in Neural Information Processing Systems, 2019.

[38] Jun Li, Yu Kong, and Yun Fu. Sparse subspace clustering by learning approximation ℓ0 codes. In Proc. of
the AAAI Conf. on Artif. Intell, pages 2189–2195, 2017.

[39] Jun Li, Hongfu Liu, Zhiqiang Tao, Handong Zhao, and Yun Fu. Learnable subspace clustering. arXiv
preprint arXiv:2004.04520, 2020.

[40] Ying Chen, Chun-Guang Li, and Chong You. Stochastic sparse subspace clustering. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages 4155–4164, 2020.

[41] Shangzhi Zhang, Chong You, Rene Vidal, and Chun-Guang Li. Learning a self-expressive network for
subspace clustering. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pages 12393–12403, June 2021.

[42] M. Soltanolkotabi and E. J. Candès. A geometric analysis of subspace clustering with outliers. Annals of
Statistics, 40(4):2195–2238, 2012.

[43] Chong You, Daniel P. Robinson, and René Vidal. Provable self-representation based outlier detection in a
union of subspaces. In IEEE Conference on Computer Vision and Pattern Recognition, pages 4323–4332, 2017.

11

https://icml.cc/Conferences/2010/papers/521.pdf

[44] Chun-Guang Li and René Vidal. A structured sparse plus structured low-rank framework for subspace
clustering and completion. IEEE Transactions on Signal Processing, 64(24):6557–6570, 2016.

[45] C. Yang, D. Robinson, and R. Vidal. Sparse subspace clustering with missing entries. In International
Conference on Machine Learning, 2015.

[46] Manolis Tsakiris and Rene Vidal. Theoretical analysis of sparse subspace clustering with missing entries.
In Proceedings of the 35th International Conference on Machine Learning, pages 4975–4984, 2018.

[47] Connor Lane, Ron Boger, Chong You, Manolis Tsakiris, Benjamin Haeffele, and Rene Vidal. Classifying
and comparing approaches to subspace clustering with missing data. In IEEE International Conference on
Computer Vision Workshops, 2019.

[48] E. Elhamifar, G. Sapiro, andR.Vidal. See all by looking at a few: Sparsemodeling for finding representative
objects. In IEEE Conference on Computer Vision and Pattern Recognition, 2012.

[49] Chong You, Chi Li, Daniel Robinson, and Rene Vidal. Self-representation based unsupervised exemplar
selection in a union of subspaces. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020.

[50] Johanna Vielhaben, Stefan Blücher, and Nils Strodthoff. Sparse subspace clustering for concept discovery
(SSCCD). In arXiv:2203.06043, 2022.

[51] Chong You and René Vidal. Geometric conditions for subspace-sparse recovery. In International Conference
on Machine Learning, pages 1585–1593, 2015.

[52] Canyi Lu, Jiashi Feng, Zhouchen Lin, Tao Mei, and Shuicheng Yan. Subspace clustering by block diagonal
representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018.

[53] Chun-Guang Li, Chong You, and René Vidal. On geometric analysis of affine sparse subspace clustering.
IEEE Journal on Selected Topics in Signal Processing, 12(6):1520–1533, 2018.

[54] Chong You, Chun-Guang Li, Daniel Robinson, and René Vidal. Is an affine constraint needed for affine
subspace clustering? In Proceedings of IEEE International Conference on Computer Vision, 2019.

[55] Mustafa D Kaba, Chong You, Daniel P Robinson, Enrique Mallada, and Rene Vidal. A nullspace property
for subspace-preserving recovery. In International Conference on Machine Learning, pages 5180–5188, 2021.

[56] V. M. Patel and R. Vidal. Kernel sparse subspace clustering. In IEEE International Conference on Image
Processing, pages 2849–2853, 2014.

[57] X. Peng, S. Xiao, J. Feng, Wei Yun Yau, and Z. Yi. Deep subspace clustering with sparsity prior. In
International Joint Conference on Artificial Intelligence, pages 1925–1931, 2016.

[58] P. Ji, T. Zhang, H. Li, M. Salzmann, and I. Reid. Deep subspace clustering networks. In Neural Information
Processing Systems (NIPS), 2017.

[59] Pan Zhou, Yunqing Hou, and Jiashi Feng. Deep adversarial subspace clustering. In Proceedings of IEEE
International Conference on Computer Vision and Pattern Recognition, pages 1596–1604, June 2018.

[60] Xi Peng, Jiashi Feng, Shijie Xiao, Wei-Yun Yau, Joey Tianyi Zhou, and Songfan Yang. Structured autoen-
coders for subspace clustering. IEEE Transactions on Image Processing, 27(10):5076–5086, 2018.

[61] Junjian Zhang, Chun-Guang Li, Chong You, Xianbiao Qi, Honggang Zhang, Jun Guo, and Zhouchen
Lin. Self-supervised convolutional subspace clustering network. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 5473–5482, 2019.

[62] Tong Zhang, Pan Ji, Mehrtash Harandi, Wenbing Huang, and Hongdong Li. Neural collaborative
subspace clustering. In International Conference on Machine learning, pages 7384–7393, 2019.

[63] Xi Peng, Jiashi Feng, Joey Tianyi Zhou, Yingjie Lei, and Shuicheng Yan. Deep subspace clustering. IEEE
Transactions on Neural Networks and Learning Systems, 31(12):5509–5521, 2020.

[64] Mohsen Kheirandishfard, Fariba Zohrizadeh, and Farhad Kamangar. Deep low-rank subspace clustering.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pages
864–865, 2020.

[65] Mohsen Kheirandishfard, Fariba Zohrizadeh, and Farhad Kamangar. Multi-level representation learning
for deep subspace clustering. In The IEEE Winter Conference on Applications of Computer Vision, pages
2039–2048, 2020.

12

[66] Juncheng Lv, Zhao Kang, Xiao Lu, and Zenglin Xu. Pseudo-supervised deep subspace clustering. IEEE
Transactions on Image Processing, 30:5252–5263, 2021.

[67] Mahdi Abavisani, Alireza Naghizadeh, Dimitris Metaxas, and Vishal Patel. Deep subspace clustering
with data augmentation. Advances in Neural Information Processing Systems, 33:10360–10370, 2020.

[68] Benjamin D Haeffele, Chong You, and René Vidal. A critique of self-expressive deep subspace clustering.
International Conference on Learning Representations, 2021.

[69] Joan Bruna and Stéphane Mallat. Invariant scattering convolution networks. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 35(8):1872–1886, 2013.

[70] Sara Sabour, Nicholas Frosst, and Geoffrey E Hinton. Dynamic routing between capsules. Advances in
neural information processing systems, 30, 2017.

[71] Mengye Ren, Simon Kornblith, Renjie Liao, and Geoffrey Hinton. Scaling forward gradient with local
losses. arXiv preprint arXiv:2210.03310, 2022.

[72] Vardan Papyan, Yaniv Romano, and Michael Elad. Convolutional neural networks analyzed via convolu-
tional sparse coding. arXiv preprint arXiv:1607.08194, 2016.

[73] Kwan Ho Ryan Chan, Yaodong Yu, Chong You, Haozhi Qi, John Wright, and Yi Ma. ReduNet: A
white-box deep network from the principle of maximizing rate reduction. Journal of Machine Learning
Research, 2022.

[74] Yaodong Yu, Sam Buchanan, Druv Pai, Tianzhe Chu, Ziyang Wu, Shengbang Tong, Benjamin D Haeffele,
and Yi Ma. White-box transformers via sparse rate reduction. arXiv preprint arXiv:2306.01129, 2023.

[75] Michael Psenka, Druv Pai, Vishal Raman, Shankar Sastry, and Yi Ma. Representation learning via
manifold flattening and reconstruction. arXiv preprint arXiv:2305.01777, 2023.

[76] R. Souvenir and R. Pless. Manifold clustering. In IEEE International Conference on Computer Vision, volume I,
pages 648–653, 2005.

[77] MaryamAbdolali andNicolas Gillis. Beyond linear subspace clustering: A comparative study of nonlinear
manifold clustering algorithms. arXiv preprint arXiv:2103.10656, 2021.

[78] Daniel P Robinson, Rene Vidal, and Chong You. Basis pursuit and orthogonal matching pursuit for
subspace-preserving recovery: Theoretical analysis. arXiv preprint arXiv:1912.13091, 2019.

[79] B. Nasihatkon and R. Hartley. Graph connectivity in sparse subspace clustering. In IEEE Conference on
Computer Vision and Pattern Recognition, pages 2137–2144, 2011.

[80] Pan Ji, M. Salzmann, and Hongdong Li. Efficient dense subspace clustering. In IEEE Winter Conference on
Applications of Computer Vision, pages 461–468, March 2014. doi: 10.1109/WACV.2014.6836065.

[81] Yu-Xiang Wang and Huan Xu. Noisy sparse subspace clustering. In International Conference on Machine
Learning, pages 89–97, 2013.

[82] Yu-Xiang Wang and Huan Xu. Noisy sparse subspace clustering. Journal of Machine Learning Research, 17
(12):1–41, 2016.

[83] E. Elhamifar and R. Vidal. Sparse subspace clustering: Algorithm, theory, and applications. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 35(11):2765–2781, 2013.

[84] Bradley Efron, Trevor Hastie, Iain Johnstone, and Robert Tibshirani. Least angle regression. Annals of
Statistics, 32(2):407–499, 2004.

[85] Bangti Jin, Dirk Lorenz, and Stefan Schiffler. Elastic-net regulariztion: error estimates and active set
methods. Inverse Problems, 25(11), 2009.

[86] Chong You, Claire Donnat, Daniel P. Robinson, and René Vidal. A divide-and-conquer framework for
large-scale subspace clustering. In Asilomar Conference on Signals, Systems and Computers, 2016.

[87] Ashish KVaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Neural Information Processing Systems, pages
5998–6008, 2017.

[88] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua Bengio.
Graph attention networks. In International Conference on Learning Representations, 2018.

13

[89] Rene Vidal. Attention: Self-expression is all you need, 2022. URL https://openreview.net/forum?id=
MmujBClawFo.

[90] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
CoRR, abs/1609.02907, 2016. URL http://arxiv.org/abs/1609.02907.

[91] S.-A. Nene, S.-K. Nayar, and H. Murase. Columbia object image library. Columbia University, 1996.
[92] Kuang-Chih Lee, J. Ho, and D. J. Kriegman. Acquiring linear subspaces for face recognition under

variable lighting. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(5):684–698, May 2005.
ISSN 0162-8828. doi: 10.1109/TPAMI.2005.92.

[93] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition.
Proceedings of the IEEE, 86(11):2278–2324, Nov 1998. ISSN 0018-9219. doi: 10.1109/5.726791.

[94] A. Goh and R. Vidal. Segmenting motions of different types by unsupervised manifold clustering. In
IEEE Conference on Computer Vision and Pattern Recognition, pages 1–6, 2007.

[95] E. Elhamifar and R. Vidal. Sparse manifold clustering and embedding. In Neural Information Processing
and Systems, 2011.

[96] Zengyi Li, Yubei Chen, Yann LeCun, and Friedrich T Sommer. Neural manifold clustering and embedding.
arXiv preprint arXiv:2201.10000, 2022.

[97] Yaodong Yu, Kwan Ho Ryan Chan, Chong You, Chaobing Song, and Yi Ma. Learning diverse and
discriminative representations via the principle of maximal coding rate reduction. In Neural Information
Processing Systems (NIPS), 2020.

[98] TongZhang, Pan Ji, MehrtashHarandi, RichardHartley, and Ian Reid. Scalable deep k-subspace clustering.
In Asian Conference on Computer Vision, 2018.

[99] Jinyu Cai, Jicong Fan, Wenzhong Guo, Shiping Wang, Yunhe Zhang, and Zhao Zhang. Efficient deep
embedded subspace clustering. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2022.

[100] Stanislaw Jastrz Ebski, Devansh Arpit, Nicolas Ballas, Vikas Verma, Tong Che, and Yoshua Bengio.
Residual connections encourage iterative inference. In International Conference on Learning Representations,
2018.

[101] Bojan Mohar. The laplacian spectrum of graphs. Graph Theory, Combinatorics, and Applications, 2:871–898,
1991.

[102] Joan Bruna and Stéphane Mallat. Invariant scattering convolution networks. IEEE Transactions on Pattern
Analysis andMachine Intelligence, 35(8):1872–1886, 2013. URL http://dblp.uni-trier.de/db/journals/
pami/pami35.html#BrunaM13.

[103] Jianlong Chang, Lingfeng Wang, Gaofeng Meng, Shiming Xiang, and Chunhong Pan. Deep adaptive
image clustering. In IEEE International Conference on Computer Vision, 2017.

[104] Sudipto Mukherjee, Himanshu Asnani, Eugene Lin, and Sreeram Kannan. ClusterGAN: Latent space
clustering in generative adversarial networks. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 33, pages 4610–4617, 2019.

[105] Jianlong Wu, Keyu Long, Fei Wang, Chen Qian, Cheng Li, Zhouchen Lin, and Hongbin Zha. Deep
comprehensive correlation mining for image clustering. In IEEE International Conference on Computer
Vision, pages 8150–8159, 2019.

[106] J. MacQueen. Some methods for classification and analysis of multivariate observations. In Proceedings of
the Fifth Berkeley Symposium on Mathematical Statistics and Probability, pages 281–297, 1967.

[107] R. Vidal and P. Favaro. Low rank subspace clustering (LRSC). Pattern Recognition Letters, 43:47–61, 2014.
[108] Chun-Guang Li, Junjian Zhang, and Jun Guo. Constrained sparse subspace clustering with side infor-

mation. In Proceedings of the 24th International Conference on Pattern Recognition (ICPR), pages 2093–2099,
August 2018.

14

https://openreview.net/forum?id=MmujBClawFo
https://openreview.net/forum?id=MmujBClawFo
http://arxiv.org/abs/1609.02907
http://dblp.uni-trier.de/db/journals/pami/pami35.html#BrunaM13
http://dblp.uni-trier.de/db/journals/pami/pami35.html#BrunaM13

Appendices
The appendices are organized as follows. In Section A we provide implementation details for the
results in Figure 2, and additional results for the case where the data are corrupted by noise. In
Section B we provide additional experiments on real datasets. In Section C we provide description
of datasets and implementation details for experiments on real datasets. In Section D we provide the
implications and limitations of our proposed DELVE.

A. Additional Materials for Experiments on Synthetic Data

A.1. Implementation Details
We provide details for results reported in Figure 2.
The data are generated by sampling 60 data points from

(x, y, z) = (cos(θ) cos(ϕ), cos(θ) sin(ϕ), sin(θ)), (A.1)
with θ = π

12 sin(4ϕ) and ϕ taken uniformly from [0, 2π]. Our DELVE is trained with the elastic net
regularizer in Eq. (4) and a penalty term κ(x, x̂) = 1

2∥x− x̂∥22 in each self-expressive layer, where
we fix λ = 0.8 and γ = 100.

A.2. Results on Corrupted Data

(a)X(0) ≡ X (b)X(20) (c)X(40) (d) X(60) (e) X(80)
(f) Singular val-
ues

Figure A.1: Visualization of learning a clean representation for corrupted data that lies approximately in a
nonlinear manifold in IR3. (a) 60 data points in a nonlinear manifold corrupted by noise. (b)-(e): Output from
DELVE at the 20, 40, 60, 80-th layers. (f): Singular values.

We further test the ability of DELVE in handling cases where the data are corrupted by noises hence
do not lie exactly on the nonlinear manifold. Specifically, we add i.i.d. Gaussian noises with zero
mean and standard deviation 0.2 to θ when generating data points with Eq. (A.1) (see Fig. A.1 (a)).
The outputs of DELVE at different layers are displayed in Fig. A.1 (b)-(e). We can observe that the
noises are progressively filtered out and the outputs are progressively linearized, though it took
more iterations to achieve so than with clean data. The singular values of the output data at different
layers, as shown in Fig. A.1 (f), confirm that DELVE produces linearized representations.
It is worth to note that we did not compare with a 40-layer autoencoder because: a) there is difficulty
to train it, and b) increasing the number of layers for autoencoder does not qualitatively change the
results. On the other hand, we are showing the result for DELVE at the 40th layer rather than the 4th
layer because DELVE cannot produce linear representations with only 4 layers. This does not mean
that our comparison of a 40-layer DELVE to a 4-layer autoencoder is unfair.

B. Additional Experimental Results on Real Data

B.1. Experiments with Other Choices of r(·)
In Section 4, all our results for DELVE are obtained with r(·) being the elastic net regularizer. Here we
show that other choices of regularizers can also be adopted. In particular, we conduct experiments
with the following choices of r(·).

1

Methods Extended Yale B COIL100 MNIST
ACC NMI ARI ACC NMI ARI ACC NMI ARI

SSC 67.98 74.85 20.54 67.84 73.74 19.32 79.47 78.33 69.49
DELVE-SSC (ours) 88.53 89.03 66.11 78.61 93.54 71.99 81.58 72.55 80.37
SMCE 56.20 60.72 29.83 80.01 94.32 76.80 - - -
DELVE-SMCE (ours) 67.26 71.93 32.26 84.64 94.38 81.94 - - -

Table 4: Clustering performance of DELVE with varying choices of regularizer r(·). “-” means that the method
cannot handle large scale data.

• The ℓ1-norm. This is used in SSC [11].
• The ℓ1-norm with a locality constraint, i.e., cij = 0 if hj is not a k-nearest neighbor of hi, where k

is a hyper-parameter. This is used in SMCE [95].
We refer to the methods above to be DELVE-{SSC, SMCE}, respectively. To distinguish from these
three methods, we will refer to the method of DELVE in Table 2 as DELVE-EnSC when there is risk
of confusion.
Experimental results are shown in Table 4.
Recall that from the architecture of DELVE, the methods {SSC, SMCE} are special cases of DELVE-
{SSC, SMCE }with only one layer. Hence, as DELVE-{SSC, SMCE} improves upon {SSC, SMCE},
respectively, in all three metrics of ACC, NMI, and ARI, the result demonstrates the benefit of
having multiple layers, i.e., the effectiveness of the architecture of DELVE. In addition, comparing
the results reported in Table 4 with those reported in Table 2, we can see that DELVE-SMCE is the
best performing method on COIL100 among all comparing methods.

B.2. Visualization of Corruption Removal on EYaleB

To have a clear perception of the robustness of our DELVE, we visualize the learned representations
at the output of DELVE by reshaping each representation vector into an image and display in Fig. B.1
a subset of such learned representations under varying corruption level. It can be seen that DELVE
provides a recovery of the clean image as long as the percentage of corruption is no more than 60%.

Figure B.1: Visualization for Corruption Removal. Top: Selected 4 samples from 4 different classes corrupted
by p ∈ {0%, 20%, 40%, 60%, 80%, 100%} pixels. Bottom: Corresponding output at the last layer of DELVE.

B.3. Experiments on CIFAR10 and Fashion-MNIST

To further evaluate the performance of DELVE, we conduct a set of experiments on two additional
datasets, namely CIFAR-10 and Fashion-MNIST datasets.

2

CIFAR-10 contains 60,000 color images in 10 classes, where each image is of size 32 × 32. In ex-
periments, we use the feature representation extracted by MCR2 [97], which aims to learn feature
representation lying in a union-of-subspacewith a self-supervised learning strategy. Fashion-MNIST
contains 70,000 grey-scale images of various types of fashion products. Fashion products (e.g., coat,
trouser, shirt, dress, bag, etc.) with different styles correspond to 10 categories. We compute a
feature vector of dimension 3,472 using the scattering convolution network [102], which extracts
translation-invariant and deformation-stable features, and then we reduce the dimension to 500 via
PCA. All feature vectors are normalized to have unit ℓ2 norm.
The results are reported in Table 5, where we compare DELVE with EnSC and a few deep clustering
methods and deep subspace clustering methods, including DAC [103], k-SCN-S [98], NCSC [62],
ClusterGAN [104]. We can observe that DELVE-EnSC yields notable improvement over EnSC, and
outperforms other competing methods.

Methods CIFAR-10 FashionMNIST
ACC NMI ARI ACC NMI ARI

DAC [103] 52.20 39.60 30.60 - - -
ClusterGAN [104] - - - 66.20 64.50 -
DCCM [105] 62.30 49.60 40.80 - - -
k-SCN-S[98] - - - 60.02 62.30 -
NCSC[62] - - - 72.10 68.60 59.20
EnSC 66.43 63.01 44.07 72.04 68.40 56.82
DELVE-EnSC (ours) 68.70 63.57 47.13 74.01 71.14 62.09

Table 5: Comparison of clustering performance on CIFAR-10 and Fashion-MNIST. The results of comparing
methods (other than EnSC) are taken from their respective papers.

C. Implementation Details for Experiments on Real Data

C.1. Description of Datasets
EYaleB is a dataset that contains frontal face images of 38 individuals where each individual is
taken under 64 different illumination conditions. Hence, the images associated with each face can be
modeled as a 9 dimensional linear subspace plus sparse corruption, where the linearity comes from
the characterization of reflection of Lambertian object and the sparse corruption is due to deviations
from Lambertian property caused by e.g., shadows and specularities. In our experiments, we resize
each image from the original size of 192× 168 pixels into 48× 42 pixels and concatenate the gray
pixels as a 2016-dimensional vector.
COIL-100 is an image dataset of 100 different objects. For each object, 72 images were taken by
rotating the object on a turnable through 360 degrees with an interval of 5 degrees. Hence, each class
lies closely to a one-dimensional nonlinear manifold. We convert the images to gray-scale, resize
each image to the size 32× 32, and concatenate the pixel values in each image as a 1024-dimensional
vector.
MNIST contains 70,000 gray-scale images of handwritten digits “0” to “9” of size 28× 28. In our
experiments, we concatenate the gray pixels in each image as a 784-dimensional vector, without
other feature extraction step.

C.2. Details for Comparing Methods
We evaluate DELVE by its performance on clustering the datasets, and compare it with the following
5 categories of methods. 1) Standard clustering methods, including k-means [106] and spectral
clustering (SC) [12]. 2) Subspace clustering methods, including SSC [11], LSR [24], LRSC [107],
EnSC [14], SSCOMP [13], and S3COMP [40]. 3) (Shallow) manifold clustering methods, including
KSSC [56], LLMC [94], and SMCE [95]. 4) Autoencoder + subspace clustering methods, including
AE+SSC and AE+LSR, where a convolutional autoencoder extracts the features on which subspace

3

clustering methods are applied. 5) Deep subspace clustering methods that jointly trains a deep
network for feature extraction and clusters the features, including DSCNet-ℓ2 [58], DSC-ℓ1 / -ℓ2 [63],
and NMCE [96].
We provide implementation details for these methods in Table 2.
For Spectral Clustering (SC) [12], we use the similarity matrix computed from an adaptive Gaussian
kernel:

aij = exp

(
−∥xi − xj∥22

σ
(k)
i σ

(k)
j

)
, (C.1)

where σ(k)
i and σ

(k)
j are the Euclidean distance of data points xi and xj to their corresponding k-th

nearest neighbors, respectively. In our experiments, we tune the parameter k on each dataset for best
clustering accuracy.
For Kernel SSC (KSSC) [56], AE+LSR, and SEDSC, we report the results obtained from [58, 68].
For subspace clusteringmethods including SSC [11], LSR [24], LRSC [107], EnSC [14], SSCOMP [13],
S3COMP [40], as well as manifold clustering methods including LLMC [94], SMCE [95], we produce
the experimental results using the codes provided by the respective authors and tune the parameters
for the best clustering accuracy.
For autoencoder + subspace clustering methods and deep subspace clustering methods, we cite the
results reported in corresponding papers.

C.3. Implementation Details for DELVE

For our DELVE, the number of layers L and {(r(ℓ)(·), γ(ℓ), κ(ℓ)(·, ·))}Lℓ=1 in the self-expressive layers
are subject to design choices. For simplicity, we use r(ℓ)(·) .

= r(·), γ(ℓ) .
= γ, and κ(ℓ)(·, ·) .

= κ(·, ·),
with r(·) chosen to be the elastic net regularizer in (4) and κ(·, ·) chosen to be (5), unless specified
otherwise. Then, the parameters L, γ, as well as λ in (4) and η in (5) are hyper-parameters tuned for
each dataset. To train our DELVE, we use the LARS solver [84] in the SPAMS package available at
http://thoth.inrialpes.fr/people/mairal/spams/ for COIL100 andMNIST, and an Alternating
Direction Method of Multiplier (ADMM) algorithm modified from the implementation provided in
[83] for EYaleB.
In Table 6, we provide the parameters used in DELVE and related methods for experimental results
reported in Table 4 and Table 2. The parameters include the following.
• λ: The trade-off parameter in the elastic net regularizer (4);
• γ: The trade-off paraemter in the self-expressive loss (3);
• η: The trade-off parameter in the penalty term (5);
• L: the number of layers of DELVE;
• k: parameter used in SMCE.

Methods Extended Yale B COIL100 MNIST
k λ γ η L k λ γ η L k λ γ η L

SSC - 1 30 1 - - 1 15 0 - - 1 3 0 -
DELVE-SSC - 1 30 1 4 - 1 10 0 3 - 1 3 0 2
EnSC - 0.9 30 1 - - 0.90 3 0 - - 0.3 0.5 0 -
DELVE-EnSC - 0.9 30 1 6 - 0.95 30 0 11 - 0.3 0.5 0 7
SMCE 400 1 30 0 - 7 1 10 0 - - - - - -
DELVE-SMCE 400 1 30 0 2 20 1 10 0 5 - - - - -

Table 6: Parameters used in each algorithm on each dataset for results reported in Table 4 and Table 2. “-”
means that the method does not have this parameter.

4

http://thoth.inrialpes.fr/people/mairal/spams/

In Table 7, we provide the parameters used in DELVE and related methods for experimental results
reported in Table 5.

Methods CIFAR-10 FashionMNIST
k λ γ η L k λ γ η L

EnSC [14] - 0.8 200 0 - - 0.9 100 0 -
DELVE-EnSC - 0.5 200 0 8 - 0.9 200 0 3

Table 7: Parameters used in each algorithm on each dataset for results reported in Table 5. “-” means that the
method does not have this parameter.

D. Broader Implications and Limitations
There are broader implications of constructing deep network architecture from the self-expressive
models. Note that self-expressive models are extensively studied in the past decade, in terms of both
theoretical guarantee for correctness and algorithms for handling practical data (see Section 2 for a
review). Such results provide the arsenal for better understanding and further improving DELVE, in
ways that are not viable for standard deep neural networks.
Meanwhile, as the first work on constructing a novel deep network architecture from self-expressive
models, this paper focuses on delineating relevant background and promises of the approach and
on showing proof-of-concept experimental results, but fall short of providing a comprehensive study
of this new framework and addressing all theoretical / practical challenges. In particular, we face at
least the following immediate challenges.
Theoretical challenges. When the underlying low-dimensional manifolds are linear or affine, there
exist well-established theoretical conditions (such as those based on subspace angle and point
distribution) on whether a self-expressive model can successfully recover the manifolds. With the
underlying manifolds being potentially nonlinear, it is natural to ask whether theoretical conditions
can be established for the correctness of DELVE as well.
In particular, the theoretical guarantee for correctness of DELVE may be established if we have
affirmative answers to the following two questions:

• Does the self-expressive model finds manifold-preserving representations (i.e., each point is
represented only by others from its own manifold) for data in nonlinear manifold?

• Suppose that the representation matrix is manifold-preserving, does the self-expressive map
“linearizes” the manifold?

For the first question, existing study [81] shows that even if the data points do not perfectly lie in
linear subspaces but are corrupted by noise, self-expressive model still finds subspace-preserving
solutions. Such a result may be generalized to the case where data lies in nonlinear manifolds, which
we leave as a future study. For the second question, this paper provides intuitive argument and
empirical evidence, but does not have theoretical justification yet.
Practical challenges. Some notable challenges with DELVE for practical applications are as follows.

1. Inference. While DELVE can be used to generate a linearized embedding for a given (training)
dataset, it does not provide an explicit embedding function after training. Hence, it becomes
nontrivial to apply a trained DELVE for generating embeddings for a set of new (test) data points.
A naive strategy (as in many classical manifold learning techniques) is to add the new data points
to the training set and retrain a DELVE model, which will produce an embedding for all data
points. However, such a strategy has a high computational cost. Another idea is to parameterize
each layer of DELVE by a self-expressive neural network [41] which, once trained, can be used to
provide an embedding for any new (test) data. We leave a detailed study of this second idea to
future work.

5

2. Extension to (semi-)supervised learning. DELVE is designed for unsupervised learning but in
many practical cases the data may contain human annotations. When such annotation provides
information on which points lie in the same manifold and which points do not, then it may be
leveraged to produce self-expressive coefficients with better subspace-preserving properties (e.g.,
[108]). More broadly, annotation may be used to design supervised learning losses imposed on
the output of DELVE to provide additional training signals for DELVE.

3. Handling complex images. Natural image is a particular case where the data can be modeled by
a union of low-dimensional manifolds, hence DELVE can be used for performing image clustering
tasks as shown in our experiments. However, images also contain additional patterns other than
the low-dimensionality, and such additional patterns are usually pivotal for image related learning
tasks particularly for images of high complexity and large size. Hence, effectively handling such
image data with DELVE may require additional engineering designs, such as pixel or patch-level
processing, invariance, data augmentation, and so on.

6

	. Introduction
	. Related Work
	. Deep Self-Expressive Model (DELVE)
	. Self-Expressive Layer
	. DELVE: Architecture and Training
	. Related Architectures

	. Experiments
	. Evaluating DELVE for Data Clustering
	. Understanding and Customizing DELVE

	. Conclusion and Discussion
	Appendices
	. Additional Materials for Experiments on Synthetic Data
	. Implementation Details
	. Results on Corrupted Data

	. Additional Experimental Results on Real Data
	. Experiments with Other Choices of r()
	. Visualization of Corruption Removal on EYaleB
	. Experiments on CIFAR10 and Fashion-MNIST

	. Implementation Details for Experiments on Real Data
	. Description of Datasets
	. Details for Comparing Methods
	. Implementation Details for DELVE

	. Broader Implications and Limitations

