
Reinforcement Learning with Logarithmic Regret

and Policy Switches

Grigoris Velegkas

Yale University
grigoris.velegkas@yale.edu

Zhuoran Yang

Yale University
zhuoran.yang@yale.edu

Amin Karbasi

Yale University, Google Research
amin.karbasi@yale.edu

Abstract

In this paper, we study the problem of regret minimization for episodic Rein-
forcement Learning (RL) both in the model-free and the model-based setting. We
focus on learning with general function classes and general model classes, and
we derive results that scale with the eluder dimension of these classes. In contrast
to the existing body of work that mainly establishes instance-independent regret
guarantees, we focus on the instance-dependent setting and show that the regret
scales logarithmically with the horizon T , provided that there is a gap between
the best and the second best action in every state. In addition, we show that such
a logarithmic regret bound is realizable by algorithms with O(log T) switching
cost (also known as adaptivity complexity). In other words, these algorithms rarely
switch their policy during the course of their execution. Finally, we complement
our results with lower bounds which show that even in the tabular setting, we
cannot hope for regret guarantees lower than O(log T).

1 Introduction

The main goal of Reinforcement Learning (RL) is the design and analysis of algorithms for auto-
mated decision making in complex and unknown environments. The environment is modeled as
a state space and the available decisions are modeled as an action space. In recent years, RL has
seen tremendous success in practical applications including, but not limited to, games and robotics
[MKS+15, SHM+16, DCH+16, SSS+17, VBC+19]. Despite this success, a theoretical understand-
ing of the algorithms that are deployed in these settings remains elusive. Traditionally, theoretical
RL approaches have focused on the tabular setting where the complexity of the algorithms depends
on the cardinality of the aforementioned spaces [SB18]. Thus, they are not suitable for applications
where the state-action space is very large.

A different approach that has gained a lot of attention recently is the function approximation regime
where the cumulative reward of the algorithm is modeled through a function, such as linear functions
over some feature space. The advantage of this approach is that the algorithm can perform its search
over a lower-dimensional space. There is a long line of work that provides regret guarantees for
RL in the function approximation setting [OVR14, OVRW16, YW20, JYWJ20, AJS+20, CYJW20,
KKL+20, ZBB+20, HZG21, KSWY21, ZHG21, ICN+21].

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

Most of these works have focused on establishing worst-case
p
T -regret guarantees, where T is

the number of interactions with the environment. The caveat with these guarantees is that they are
pessimistic since they neglect benign settings where even an exponential improvement over these
bounds is achievable. To address this issue, there are some works that obtain instance-dependent
regret bounds for RL in the tabular setting and in the linear function approximation setting [SJ19,
YW20, HZG21]. However, getting logarithmic regret bounds in the context of general function
approximation remains open. Hence, a natural question is the following:

Can we establish instance-dependent logarithmic regret bounds with general function approximation?

In this paper, we provide an affirmative answer to this question. Following the assumptions in the
existing literature, we model the RL problem as an MDP that enjoys the property that the optimal
policies are at least gapmin better than the rest, where gapmin > 0 is a parameter that captures the
hardness of the underlying problem. We focus both on the model-free and the model-based settings
with general function approximation, where we represent the value function or the transition model
by a given function class, respectively.

In the model-free setting, we study the algorithm proposed in [KSWY21], which is a variant of
the least-squares value iteration (LSVI) with upper confidence bound (UCB) bonuses that guide
exploration. Here, the bonus functions are given by the width of a data-dependent confidence
region for LSVI. For the model-based setting, we develop a similar algorithm which combines
value-targeted regression with UCB bonuses. On top of the logarithmic regret guarantees they enjoy,
our algorithms feature lazy policy updates, in the sense that the policy is updated rarely and only when
certain conditions are met. For both settings, we establish O(poly(log T) · poly(H) · poly(dF) ·
1/gapmin) regret guarantees, where T is the number of interactions with the environment, H is the
planning horizon, dF is a term that captures the complexity of the function class F which is used
to approximate either the value function or the transition model. In particular, dF involves both
the eluder dimension [RVR13] and the log-covering numbers of the function classes. That is, for
benign MDPs these RL algorithms achieve logarithmic regret, which is exponentially better than the
worst-case O(

p
T)-regret. Moreover, we extend the result of [KSWY21] regarding the adaptivity

complexity of the algorithm, i.e. the number of different policies it uses, to the model-based and
show that it is logarithmic in T . We remark that in many real-world applications, like medical
trials and personalized recommendation, there is a high cost and overhead associated with changing
the underlying policy. Thus, coming up with algorithms that have low adaptivity complexity is an
important task. To the best of our knowledge, this is the first work that establishes a logarithmic
instance-dependent regret guarantee for RL with general function approximation.

1.1 Related Work

Logarithmic regret bounds for bandits. There is a long line of work that establishes logarithmic
regret guarantees in bandit problems. Essentially, bandits are a special case of RL where the transition
to the next state does not depend on the action that was taken by the agent. An extensive list of such
algorithms can be found in [BCB12, Sli19, LS20].
Logarithmic regret bounds for RL. A series of works are devoted to proving instance-dependent
logarithmic regret bounds in tabular RL. [OPT18, SJ19] prove lower bounds that show that a loga-
rithmic dependence on T is unavoidable. Considering the upper bounds, [AO07, TB07] establish
logarithmic regret guarantees in the average reward setting. Both of these guarantees are asymptotic
as they require the number of interactions T with the MDP to be large enough. Regarding non-
asymptotic bounds, [JOA10] provide such an algorithm that achieves O(D2|S|2|A| log(T)/gapmin)
regret for the average-reward MDP, where D is the diameter of the MDP. For episodic MDPs, loga-
rithmic regret upper bounds are established in [SJ19, YYD21]. The work that is probably the most
closely related to ours is [HZG21]. It provides instance-dependent logarithmic regret guarantees
both in the model-free and model-based setting with linear function approximation. Moreover, the
proposed algorithms update the policy in every episode. Our work generalizes these results since the
linear regime is a special case of the setting we are studying. Furthermore, we achieve an exponential
improvement on the adaptivity complexity over their algorithms.
Bandits with limited adaptivity complexity. There is a lot of interest in obtaining bandit algorithms
that update their policies rarely [AYPS11, PRCS16, AAAK17, GHRZ19, DLZZ20, RYZ21]. No-
tably, [DLZZ20] study rare policy switching constraints for a broader class of online learning and
decision making problems such as logit bandits.

2

RL with limited adaptivity complexity. Recently, there has been a lot of interest in developing
RL algorithms that achieve sub-linear regret and have low adaptivity complexity [BXJW19, ZZJ20,
CK20, WZG21, KSWY21, GXDY21]. We develop an algorithm with low adaptivity complexity that
works in the model-based, general function approximation setting.
RL with general function approximation. As we have alluded to already, it is important to develop
and analyze algorithms in the function approximation regime. So far, the most commonly studied
setting is RL with linear function approximation [YW20, JYWJ20, DLMW20, WSY20, ZLKB20,
AKKS20]. Recently, there are also important results in RL with general function approximation. To
be specific, [JKA+17] design an efficient algorithm whose sample complexity is bounded in terms of
the Bellman rank of the function class. [AJS+20] develop an algorithm for model-based RL, whose
regret bound depends on the eluder dimension of the underlying class of models. [JLM21] propose an
algorithm for problems where the underlying class has bounded Bellman eluder dimension. Recent
works such as [WSY20, KSWY21, FRSLX20] develop algorithms in the model-free setting whose
regret scale with the eluder dimension of the functions.

2 Preliminaries

2.1 Notation

We use the notation [N] = {1, 2, . . . , N}. We also define the infinity norm of some function f : X !
R, where X is some domain, to be ||f ||1 = sup

x2X |f(x)|. For a dataset D = {(xi, qi)}ni=1 ✓
X ⇥ R and a function f : X ! R, we define the following norm ||f ||D =

�P
n

i=1(f(xi)� qi)2
�1/2.

Given a set Z = {xi}ni=1 ✓ X we let ||f ||Z =
�P

n

i=1 f(xi)2
�1/2 be the data-dependent norm.

Given a measurable set X , we denote with �(X) the probability simplex over X . We also denote by
[E] the indicator function of the event E and by poly(x) a function that is a polynomial in x.

2.2 Episodic Markov Decision Processes

The learning agent interacts with the environment over a sequence of K rounds which we call
episodes. We model the interaction of the agent with the environment in every episode as a Markov

Decision Process (MDP). We denote an MDP by M = (S,A, P, r,H, s1), where S is the state

space, A is the action space, P = {Ph : S ⇥A! �(S)}H
h=1 are the transition kernels, r = {rh :

S⇥A! [0, 1]}H
h=1 are the reward functions which we assume to be deterministic, H is the planning

horizon, which is the length of every episode, and s1 is the initial state of every episode. We let
T = K ·H be the total number of interactions with the MDP. During every episode, the agent uses
a policy ⇡ = {⇡h : S ! A}H

h=1, to take an action at a given state. We use the Q-function and
V-function to evaluate the expected total reward generated by a policy ⇡. More specifically, we define

Q⇡

h
(s, a) = E

"
HX

h0=h

rh0(sh0 , ah0)
��sh = s, ah = a,⇡

#
, V ⇡

h
(s) = E

"
HX

h0=h

rh0(sh0 , ah0)
��sh = s,⇡

#
,

where the actions are picked according to ⇡ and sh0+1 ⇠ Ph0(·|sh0 , ah0). For simplicity, we denote
hPh(·|s, a), V i = Es0⇠Ph(·|s,a)[V (s0)]. We denote the optimal policy for a given MDP with ⇡⇤. For
the optimal Q-function, V-function we use Q⇤

h
(s, a) = Q⇡

⇤

h
(s, a), V ⇤

h
(s) = V ⇡

⇤

h
(s), respectively.

The goal of the learner is to improve its performance as it interacts with the unknown environment.
In the episodic setting, the agent commits to a policy at the beginning of every episode. We let ⇡k

denote the policy that the agent uses in the k-th episode. At each step h 2 [H], the agent observes the
state sk

h
, chooses an action according to ⇡k, and then observes the reward rh(skh, a

k

h
) and the next

state sk
h+1 ⇠ Ph(·|skh, akh). In this work, to measure the performance of the agent we use the notion

of regret, defined as

Regret(K) =
KX

k=1

⇣
V ⇤
1 (s1)� V ⇡

k

1 (s1)
⌘
.

The regret measures the difference between the total reward that the agent would have accumulated
if she was following the optimal policy and the reward she actually accumulates. We strive for

3

algorithms that guarantee sub-linear regret, because, as K ! 1, the reward of the algorithm
approaches that of the the optimal policy.

An assumption we make in order to achieve logarithmic regret guarantees is that the minimum
sub-optimality gap is positive.
Definition 2.1. We define the sub-optimality gap of a state-action pair (s, a) at step h to be

gap
h
(s, a) = V ⇤

h
(s)�Q⇤

h
(s, a).

The minimum sub-optimality gap is defined to be

gapmin = inf
h,s,a

{gap
h
(s, a) : gap

h
(s, a) 6= 0}.

It is well-known that if we do not make any assumptions the best regret guarantee we can hope for
is O(

p
T) [JOA10]. In this work, we derive instance-dependent regret guarantees that achieve an

exponential improvement on T when gapmin > 0. We remark that this assumption is not restrictive
and it rules out some pathological cases. In particular, it allows us to handle MDPs with multiple
optimal policies. For a detailed discussion, we kindly refer the reader to Appendix A.1.

2.3 Model-Free Assumption

In this paper, we deal with general function classes. In the model-free setting we assume that we have
access to a function class F ✓ {f : S ⇥A! [0, H + 1]}. Our goal is to use the functions in F to
approximate the optimal Q-function. In order to derive meaningful results we assume that this class
has some structure. We follow the same assumption as in [WSY20, KSWY21].
Assumption 2.2 (Bellman Operator Assumption). For any h 2 [H] and V : S ! [0, H] there exists
some fV 2 F such that for all (s, a) 2 S ⇥A we have

fV (s, a) = rh(s, a) +
X

s02S
Ph(s

0|s, a)V (s0).

The intuition behind this assumption is that if we apply the one-step Bellman backup operator
to some value function V , i.e. rh(s, a) +

P
s02S Ph(s0|s, a)V (s0), the result will remain in the

function class. Thus, it implicitly poses some constraints both on the transition probabilities and
the reward function. It is known that both the tabular setting and the linear MDP setting satisfy
this assumption [YW19, JYWJ20]. Another assumption we make is that the function class and the
state-action space have bounded covering numbers. We will show that the dependence of the regret
on the covering number is poly-logarithmic. This assumption has also appeared in other works
[RVR13, WSY20, JLM21, KSWY21].
Assumption 2.3 (Bounded Covering Number). We say that N (F , ") is a bound on the "-covering
number of F , if for any " > 0 there is an "-cover C(F , ") ✓ F with size |C(F , ")|  N (F , "), so
that for all f 2 F there is some f 0 2 C(F , ") such that ||f � f 0||1  ". Similarly, we say that
N (S ⇥ A, ") is a bound on the "-covering number of S ⇥ A with respect to F , if for any " > 0
there is an "-cover C(S ⇥ A, ") ✓ S ⇥ A with size |C(S ⇥ A, ")|  N (S ⇥ A, "), so that for all
(s, a) 2 S ⇥A there is some (s0, a0) 2 C(S ⇥A, ") such that sup

f2F |f(s, a)� f(s0, a0)|  ".

The intuition behind this assumption is straightforward: even if the function class or the state-action
space are infinite, we can approximate them using a small number of points.

2.4 Model-Based Assumption

The assumptions in Section 2.3 are model-free since they impose some structure on the function class
that approximates the Q-function instead of the transition kernel. In order to derive our results, we can
also follow a different route and impose some structure directly on the transition kernel [AJS+20].
Assumption 2.4 (Known Transition Model Family). For all h 2 [H], the transition model Ph belongs
to a family of models Ph which is known to the learner. The elements of Ph are transition kernels
that map state-action pairs to signed distributions over the state space S .

4

We allow signed distributions in our model class to increase its generality. For example, this is useful
when we are given access to a model class that can be compactly represented only when it includes
non-probability kernels. For an extensive discussion about this, the reader is referred to [PS16].

Transition kernels have been used to model complex stochastic controlled systems. For instance,
transitions in robotics systems are often modelled using parameters of the environment, such as
friction. An important class that satisfies this assumption are the linear mixture models.
Definition 2.5. The class of models P with feature mapping �(s0|s, a) : S ⇥S ⇥A! Rd and some
✓⇤ 2 Rd whose euclidean norm is bounded, is called linear mixture model if:

• P (s0|s, a) = h�(·|s, a), ✓⇤i .

• For any bounded function V : S ! [0, H] and any pair (s, a) 2 S ⇥ A, we have
||�V (s, a)||2 

p
H , where �V (s, a) = h�(·|s, a), V i .

One way to interpret the linear mixture model is as an aggregation of some basis models which are
known to the designer [MJTS20]. Another interesting way to think about it comes from large-scale
queuing networks where both the arrival rate of jobs and the processing speed for the queues are
unknown. If we approximate this system in discrete time, then the transition matrix from timestep
t to timestep t + �t approaches that of a linear function with respect to the arrival rate and the
processing time [GK89]. Another interesting setting that satisfies this assumption is the linear-factored
MDP [YW20].

2.5 Complexity Measure: Eluder Dimension

Our results depend on the complexity of the function classes and the model classes that we consider.
To measure this complexity, we use the eluder dimension of these classes [RVR13].
Definition 2.6. Fix some " � 0 and a sequence of n points Z = {(xi)}i2[n] ✓ X . Then:

1. A point x 2 X is "-dependent on Z with respect to F if for all f, f 0 2 F such that
||f � f 0||Z  " it holds that |f(x)� f 0(x)|  ".

2. A point x is "-independent of Z with respect to F if x is not "-dependent on Z .

3. The "-eluder dimension of F , which is denoted by dimE(F , "), is the length of the longest
sequence of elements in X such that every element in this sequence is "0-independent of its
predecessors, for some "0 � ".

Intuitively, the eluder dimension of F quantifies the smallest set of elements Z ✓ X so that if all
f 2 F are close with respect to Z , then they are close on all elements of X .

It is known that when X = S ⇥ A, f : S ⇥ A ! [0, H], and S,A are finite, we have that
dimE(F , ")  |S| · |A|, for all " > 0 [RVR13, WSY20]. Moreover, when F is the class of linear
functions, i.e., f✓(s, a) = ✓T�(s, a), for a given feauture vector �(s, a), the eluder dimension of F
is bounded by dimE(F , ") = O(d log(1/")), for all " > 0. We remark that classes which go beyond
linear functions have bounded eluder dimension. Some examples are quadratic functions, generalized
linear functions (e.g. sigmoids) which have the form g(h�(s), xi), where g is increasing and Lipshitz-
continuous with non-zero derivative, all finite function classes, sparse linear combinations of features,
linear thresholds with Gaussian i.i.d. features, etc. [RVR13, OVR14, LKFS21]. It is an ongoing line
of work to understand what is the most general class of functions that has bounded eluder dimension.
We refer to the setting we are working on as general function approximation to align with the previous
works that study function classes with bounded eluder dimension.

2.6 Switching Cost

Essentially, the switching cost or the adaptivity complexity measures the number of episodes the algo-
rithm has to update its policy in order to achieve the guaranteed regret bound [BXJW19, KSWY21].
Definition 2.7. We define the switching cost of an algorithm A over K episodes to be

Nswitch =
K�1X

k=1

[⇡k 6= ⇡k+1].

5

3 Overview of the Algorithms and Main Results

In this section, we present our main results and give a high-level description of the techniques we use.
We treat both the model-free and the model-based setting in a unified way. The algorithm for the
model-free setting comes directly from [KSWY21]. We extend it appropriately in order to handle the
model-based setting. The main algorithm is presented in Algorithm 1. The only differences between
the two settings are the different sampling routine and Q-function estimator used by Algorithm 1. In
a nutshell, the low-switching cost algorithm works as follows:

• After each round of the interaction with the MDP, Algorithm 1 adds elements to the current
dataset with some probability that depends on their significance and updates the policy only
if the dataset has changed. This guarantees that the adaptivity of the algorithm depends
logarithmically on T , without hurting the regret guarantee. The sampling routines are
postponed to Appendix A.2.

• There is a least-squares estimate of the Q-function (transition kernel) in the model-free
(model-based) setting.

• A bonus is added to this estimate which encourages exploration and, with high probability,
guarantees that the current estimate of the Q-function serves as an element-wise upper
bound of Q⇤. This bonus is based on a sub-sampled dataset that has been accumulated from
previous interactions with the MDP.

Before we delve deeper into the two settings separately, we describe a parameter that is crucial for
both of the algorithms we are using. Following [KSWY21], the sensitivity of an element z with
respect to a dataset Z and a function class F is defined to be

sensitivityZ,F (z) = min

(
sup

f1,f22F

(f1(z)� f2(z))
2

min{||f1 � f2||2Z , T (H + 1)2}+ �
, 1

)
.

Intuitively, this parameter captures the importance of the current element z relative to the dataset we
are working with. We will elaborate on the choice of the parameter � for each of the two settings
separately. To establish the regret guarantee, we propose a novel regret decomposition for this
algorithm where we utilize the “peeling technique” that has been applied in prior works in local
Rademacher complexities [BBM05] and in RL [HZG21, YYD21]. By doing that, we show how the
regret of the algorithm relates to the suboptimality gap.

To establish the lower bound on the regret of any algorithm in the settings we are interested in, we
utilize a result that was proved in [OPT18, SJ19]. It states that for all algorithms that achieve sublinear
regret, there exists a tabular MDP where its regret is at least ⌦(poly(log(T)) · poly(H) · 1/gapmin).
We remark that tabular MDPs satisfy both the model-free assumption [WSY20] and the model-based
assumption [AJS+20], thus the lower bounds follow immediately from this result.

3.1 Model-Free Setting

We first present the approach we use in the model-free setting, i.e., where we have access to some
function class F and state-action space S ⇥ A that satisfy Assumption 2.2 and Assumption 2.3,
respectively. The algorithm we use comes from [KSWY21]. The Q-function estimator and the
sampling routine that we use for this setting are presented in Algorithm 2 and Algorithm 4, respectively.
The dataset includes pairs of the form zk

h
= (sk

h
, ak

h
). The Q-function routine is a least-squares

estimator that is based on all the previous interactions with the MDP. Notice that the bonus function
is based only on the sub-sampled dataset and depends on a hardcoded parameter �. This parameter is
chosen in a way that ensures the Q-function is an optimistic estimate of the actual one and the bonus
we add is not too large. The choice of � is given in [KSWY21].

A crucial part of the algorithm is the online sub-sampling routine. The reason we are using this routine
is twofold. Firstly, if we use the entire dataset there will be a huge number of distinct elements in it,
which can make the exploration bonus unstable since it changes constantly and can take infinitely
many different values. In order to establish the optimism of the Q-function estimation, namely,

Q⇤
h
(s, a)  Qk

h
(s, a)  hPh(·|s, a), V k

h
i+ 2bk

h
(s, a),

6

[KSWY21] show that it is crucial to bound the complexity of the exploration bonus. Secondly, if we
sub-sample the dataset based on the importance of the elements, we can achieve the regret guarantees
that we are aiming for by switching the policy only when an important element has been added. Notice
that whenever an element is added to the dataset, multiple copies are included. This is to make the
sub-sampled dataset behave like an unbiased estimator of the orignal one. Then, using concentration
bounds one can show that it approximates the original one with high probability [KSWY21]. The
full description of this procedure is presented in Algorithm 4. For a more detailed discussion about
the importance of sub-sampling the dataset, the interested reader is referred to [WSY20, KSWY21].

Algorithm 1 Low Switching Cost Value Itera-
tion (with parameters �,K)
Require: Failure probability � 2 (0, 1), number

of episodes K, and setting of operation
1: ek 1
2: bZ1

h
 ;, 8h 2 [H]

3: for k 2 [K] do

4: for h = H,H � 1, . . . , 1 do

5: if k � 2 then

6: bZk

h
 Sample(F , bZk�1

h
, zk�1

h
, �)

7: end if

8: end for

9: if k = 1 or 9h 2 [H] : bZk

h
6= bZek

h
then

10: ek k
11: Qk

H+1(·, ·) 0, V k

H+1(·) 0
12: for h = H,H � 1, . . . , 1 do

13: T k

h
 history of execution

14: Qk

h
(·, ·) Q-Estimator(T k

h
,Zk

h
)

15: V k

h
(·) = maxa2A Qk

h
(·, a)

16: ⇡k

h
(·) argmaxa2A Qk

h
(·, a)

17: end for

18: end if

19: Receive initial state s1 of episode k
20: for h 2 [H] do

21: Take action ak
h
 ⇡

ek
h
(sk

h
)

22: end for

23: end for

Algorithm 2 Q-function Model-Free Estimator
Require: Current sub-sampled dataset bZ , history

of execution T
1: Dk

h
 {(s⌧

h
, a⌧

h
, r⌧

h
+ V k

h+1(s
⌧

h+1))}⌧2[k�1]

2: bf argminf2F ||f ||2D
3: bF k

h
 {f1, f2 2 F : min{kf1 �

f2k2bZk
h

, T (H + 1)2  �}
4: bk

h
(·, ·) sup

f1,f22 bFk
h
|f1(·, ·)� f2(·, ·)|

5: Return min{fk

h
(·, ·) + bk

h
(·, ·), H}

Algorithm 3 Q-function Model-Based Estima-
tor
Require: Function class F , current sub-sampled

dataset bZ , current regression dataset D
1: bP k

h
 argminP2Ph

P
k�1
k0=1

⇣
hP (·|sk0

h
, ak

0

h
), V k

0

h+1i � V k
0

h+1(s
k
0

h+1)
⌘2

2: Fk

h
= {f1, f2 : min{||f1 � f2|| bZk

h
, T (H +

1)2}  �}
3: bk

h
(·, ·) sup

f1,f22Fk
h
|f1(·, ·, Vh+1) �

f2(·, ·, Vh+1)|
4: Return min{rh(·, ·) + h bP k

h
(·|·, ·), V k

h+1i +
bk
h
(·, ·), H}

We are now ready to state our main result in this setting.
Theorem 3.1. There exists an absolute constant C > 0, and a proper parameter � for Algorithm 1

such that with probability of at least 1� dlog T ee�⌧ � � the regret of the algorithm is bounded by

Regret(K)  CdFH5 log4 T

gapmin

+
16H2⌧

3
+ 2,

for any �, ⌧ > 0, where dF = dim2
E
(F , 1/T) · log(N (F , �/T 2)/�) · log(N (S ⇥A, �/T 2)/�) is a

parameter that captures the complexity of the function class. The value of the parameter � is

� = Cd0FH
2 log4 T,

where d0F = log(N (F , �/T 3)/�) dimE(F , 1/T) log(N (S ⇥A, �/T 3)/�)). Moreover, the number

of switching policies is bounded by

O
⇣
H log(TN (F ,

p
�/T 2)/�) dimE(F , 1/T) log2 T

⌘
.

3.2 Model-Based Setting

In this regime, we assume that the MDP satisfies Assumption 2.4. We also assume that the reward
function is known to the learner similar to [AJS+20]. If the reward is unknown, we just estimate it
and construct a confidence region.

7

Before we discuss the details of our approach, we need to describe an important set of functions that
show up in our algorithm and in the regret guarantee. Let V be the set of all measurable functions that
are bounded by H . Let Ph be the set of potential models in step H . We also let f : S ⇥A⇥ V ! R
and define the following set:

Fh =

⇢
f : 9 ePh 2 Ph so that f(s, a, V) =

Z

S
ePh(s

0|s, a)V (s0)ds0, 8(s, a, V) 2 S ⇥A⇥ V
�
.

The bounds we state scale with the complexity of Fh. The Q-function estimator and the sampling
routine we use that are specific to this setting are presented in Algorithm 3 and Algorithm 5,
respectively. The dataset includes elements of the form zk

h
= (sk

h
, ak

h
, V k

h+1(·)). The Q-function
routine works in the following way. We first estimate a model bPh 2 Ph using a least-squares estimator
that is based on all the previous interactions with the MDP. Using a concentration argument for this
estimator of the model, similar to [RVR13, AJS+20], we can show that for an appropriate choice
of �, the estimated model lies in a data-dependent ball centered at bPh, with high probability (see
Lemma C.11 in the Appendix). Thus, we can set the bonus function to be the diameter of this ball
in order to ensure that bQh is an optimistic estimate of Q⇤

h
. In addition, the choice of � ensures

that the bonus we add is not very large. Notice also that since the concentration argument in this
setting differs with that in the model-free setting, we do not need to round the elements that we are
adding to the sub-sampled dataset. In this setting, the main reason we sub-sample the dataset is to
achieve logarithmic adaptivity. To bound the adaptivity complexity, we use a similar approach as
in [KSWY21].

We are now ready to state our main result in this setting.
Theorem 3.2. There exists an absolute constant C and a proper value of the parameter � for

Algorithm 1 such that with probability at least 1 � dlog T ee�⌧ � � the regret of the algorithm is

bounded by

Regret(K)  CdFH5 log T

gapmin

+
16H2⌧

3
+ 2,

where dF = log(N (F , 1/T)/�) dim2
E
(F , 1/T). The value of the parameter � is

� = 4H2 log(2N (F , 1/T)/�) + 4/H
⇣
C +

p
H2/4 log(T/�)

⌘
,

where N (F , 1/T) = maxh2[H] N (Fh, 1/T), dimE(F , 1/T) = maxh2[H] dimE(Fh, 1/T).

The number of switching policies is bounded by

O
⇣
H log(TN (F,

p
�/(64T 3))/�) dimE(F , 1/T) log2 T

⌘
.

We remark that the eluder dimension and the log-covering numbers, which show up in both of our
bounds, depend on T . To the best of our knowledge, in all the known cases that the eluder dimension
is bounded (e.g. linear functions, quadratic functions, generalized linear functions), the scaling is
poly(log T) (see e.g. [RVR13]).

3.3 Technical Contributions

We briefly highlight the main technical contributions of this work. Regarding algorithmic contri-
butions, we extend the algorithm from [KSWY21], which works in the model-free setting, to the
model-based setting. Even though these two algorithms look similar, the approach to prove concentra-
tion, optimism, and correctness in the model-based setting is different (see, e.g., Lemma C.12). This
perspective provides a unified treatment of both settings that can be beneficial and leads to new results.
For instance, if we wish to get instance-independent regret guarantees using the standard regret
decomposition, we can get

p
T -regret with poly(log T) adaptivity complexity in the model-based

setting. This is an exponential improvement in the adaptivity complexity compared to [AJS+20].
Furthermore, the analysis to get the instance-dependent guarantees of both algorithms diverges
significantly from [KSWY21] since we use a different regret decomposition. Logarithmic regret
guarantees in the linear function approximation setting have been established in [HZG21]. However,
the technical results that are needed to derive the guarantees in this setting are tailor-made to linear

8

functions. Importantly, [HZG21] bound several quantities in terms of �(s, a)>(⇤k

h
)�1�(s, a) where

�(s, a) are the features of the state-action pair (s, a) and ⇤k

h
=

P
k�1
i=1 �(si

h
, ai

h
)�(si

h
, ai

h
)> + �I.

Since we are working with general functions, we need to derive bounds that scale with the eluder

dimension of these classes (see, e.g. Lemma C.13).
Remark 3.3 (Computational Complexity). As it argued in [KSWY21], the main computational
bottleneck of the algorithms is solving a (weighted) least squares problem over some set. Given
such a procedure, one can also construct the confidence region and estimate the exploration bonus
and the sensitivity. [KSWY21] shows that the computational complexity of the algorithm overall
is O (poly(dFH logK) . Importantly, if there is some structure on the space and solving the least-
squares problem becomes easier then the computational complexity of the algorithm drops. We
underline that solving a least-squares problem is an important component of most theoretical RL
algorithms that we are aware of which go beyond the tabular setting. A similar result holds in the
model-based setting as well.

4 Proof Sketch of Main Results

In this section, we sketch the proof of our main results. Due to space limitation, we only discuss
the model-free setting. The full proofs in the model-free, model-based setting can be found in
Appendix B, Appendix C, respectively.

The first step in our analysis is the regret decomposition of the algorithm. Lemma B.1 shows that
E [Regret(K)] = E

hP
K

k=1

P
H

h=1 gap
h
(sk

h
, ak

h
)
i
. Thus, we see that to bound the regret it is enough

to bound
P

K

k=1 gap
h
(sk

h
, ak

h
) for every h 2 [H]. Towards this end, notice that gap

h
(sk

h
, ak

h
) = 0

or gap
h
(sk

h
, ak

h
) 2 [gapmin, H]. We apply the “peeling technique” that has also been used in local

Rademacher complexities [BBM05] and in [HZG21, YYD21]. The idea is to split the interval [0, H]
into log(H/gapmin) intervals, where the i-th interval is [2i�1gapmin, 2

igapmin]. Hence, for every
gap

h
(sk

h
, ak

h
) that falls in the i-th interval its contribution to the regret is at most 2igapmin. Thus, to

bound the regret it suffices to bound the number of suboptimalities that fall into every interval. Notice
that for some gap

h
(sk

h
, ak

h
) in this interval we have that

V ⇤
h
(sk

h
)�Q⇡k

h
(sk

h
, ak

h
) � gap

h
(sk

h
, ak

h
) � 2i�1gapmin,

so it suffices to bound the number of sub-optimalities V ⇤
h
(sk

h
)�Q⇡k

h
(sk

h
, ak

h
) that fall into the i-th

interval. Both for the model-free and the model-based setting, we can derive such a bound. Finally,
notice that once we have bounded the number of suboptimilaties in every interval, it is not difficult to
bound the total regret. Let Ci = [2i�1gapmin, 2

igapmin) and N = log(H/gapmin). Then, we know
that Regret(K) can be upper bounded by

KX

k=1

HX

h=1

gap
h
(sk

h
, ak

h
) =

NX

i=1

X

gaph(skh,a
k
h)2Ci

gap
h
(sk

h
, ak

h
) 

NX

i=1

KX

k=1

2i
⇥
gap

h
(sk

h
, ak

h
) 2 Ci

⇤


NX

i=1

2i
KX

k=1

⇥
V ⇤
h
(sk

h
)�Q⇡k

h
(sk

h
, ak

h
) � 2i�1gapmin

⇤
.

Hence, deriving the regret guarantee boils down to bounding
KX

k=1

⇥
V ⇤
h
(sk

h
)�Q⇡k

h
(sk

h
, ak

h
) � 2igapmin

⇤
.

We provide such a bound in Lemma B.9, which depends polynomially on log T, 1/gapmin, and
the complexity parameters of the function class. The outline of the proof is the following. We
fix some episode h 2 [H] and let K 0 be the set of rounds where V ⇤

h
(sk

h
) � Q⇡k

h
(sk

h
, ak

h
) �

2igapmin. To get a bound on |K 0|, our approach is to lower bound and upper bound the quan-
tity

P|K0|
i=1 Qki

h
(ski

h
, aki

h
) � Q

⇡ki
h

(s
⇡ki
h

, a
⇡ki
h

) by f1(|K 0|), f2(|K 0|), respectively. Then, we use
the fact that f1(|K 0|)  f2(|K 0|) to establish our bound. For the lower bound, using the defi-
nition of K 0 we get f1(|K 0|) = 2igapmin|K 0|. For the upper bound, we leverage the fact that
Qki

h
(ski

h
, aki

h
)  hPh(·|ski

h
, aki

h
), V ki

h+1i + 2bki
h
(ski

h
, aki

h
) (cf. Lemma B.8) and obtain f2(|K 0|) 

9

P|K0|
i=1

P
H

h0=h
"ki
h0 +

P|K0|
i=1

P
H

h0=h
bki
h0(s

ki
h0 , a

ki
h0), where "ki

h
forms a bounded martingale difference

sequence. We bound each term on the RHS separately. For the first one, we use the Azuma-Hoeffding
inequality which can be found in Lemma B.7. For the second term, we generalize the bound on the
summation of the bonus functions over all the episodes from [KSWY21], and show that a similar
bound holds for the summation of the bonus over any set of episodes K 0 (see Lemma B.6). Putting
everything together, we get that |K 0| = O

�
1/(4igapmin) ·H4 · log4 T · poly(dF)

�
, where dF is the

complexity parameter of the class.

5 Conclusion and Societal Impact

In this paper, we consider episodic RL with general function approximation. We prove that there are
algorithms with logarithmic adaptivity complexity both in the model-free and model-based settings
that achieve logarithmic instance-dependent regret guarantees. This is theoretical work and does not
have any negative societal implications.

Acknowledgments and Disclosure of Funding

Grigoris Velegkas is supported by NSF (IIS-1845032), an Onassis Foundation PhD Fellowship and a
Bodossaki Foundation PhD Fellowship. Amin Karbasi acknowledges funding in direct support of this
work from NSF (IIS-1845032), ONR (N00014- 19-1-2406), and the AI Institute for Learning-Enabled
Optimization at Scale (TILOS). The authors would like to thank the anonymous reviewers for helpful
comments and suggestions.

References

[AAAK17] Arpit Agarwal, Shivani Agarwal, Sepehr Assadi, and Sanjeev Khanna. Learning with
limited rounds of adaptivity: Coin tossing, multi-armed bandits, and ranking from
pairwise comparisons. In Conference on Learning Theory, pages 39–75. PMLR, 2017.

[AJS+20] Alex Ayoub, Zeyu Jia, Csaba Szepesvari, Mengdi Wang, and Lin Yang. Model-based
reinforcement learning with value-targeted regression. In International Conference on

Machine Learning, pages 463–474. PMLR, 2020.

[AKKS20] Alekh Agarwal, Sham Kakade, Akshay Krishnamurthy, and Wen Sun. Flambe:
Structural complexity and representation learning of low rank mdps. arXiv preprint

arXiv:2006.10814, 2020.

[AO07] Peter Auer and Ronald Ortner. Logarithmic online regret bounds for undiscounted
reinforcement learning. In Advances in neural information processing systems, pages
49–56, 2007.

[AYPS11] Yasin Abbasi-Yadkori, Dávid Pál, and Csaba Szepesvári. Improved algorithms for linear
stochastic bandits. Advances in neural information processing systems, 24:2312–2320,
2011.

[BBM05] Peter L Bartlett, Olivier Bousquet, and Shahar Mendelson. Local rademacher complexi-
ties. The Annals of Statistics, 33(4):1497–1537, 2005.

[BCB12] Sébastien Bubeck and Nicolo Cesa-Bianchi. Regret analysis of stochastic and non-
stochastic multi-armed bandit problems. arXiv preprint arXiv:1204.5721, 2012.

[BXJW19] Yu Bai, Tengyang Xie, Nan Jiang, and Yu-Xiang Wang. Provably efficient q-learning
with low switching cost. arXiv preprint arXiv:1905.12849, 2019.

[CBL06] Nicolo Cesa-Bianchi and Gábor Lugosi. Prediction, learning, and games. Cambridge
university press, 2006.

[CK20] Tongyi Cao and Akshay Krishnamurthy. Provably adaptive reinforcement learning in
metric spaces. Advances in Neural Information Processing Systems, 33:9736–9744,
2020.

10

[CYJW20] Qi Cai, Zhuoran Yang, Chi Jin, and Zhaoran Wang. Provably efficient exploration
in policy optimization. In International Conference on Machine Learning, pages
1283–1294. PMLR, 2020.

[DCH+16] Yan Duan, Xi Chen, Rein Houthooft, John Schulman, and Pieter Abbeel. Benchmarking
deep reinforcement learning for continuous control. In International conference on

machine learning, pages 1329–1338. PMLR, 2016.

[DLMW20] Simon S Du, Jason D Lee, Gaurav Mahajan, and Ruosong Wang. Agnostic q-learning
with function approximation in deterministic systems: Near-optimal bounds on ap-
proximation error and sample complexity. Advances in Neural Information Processing

Systems, 2020, 2020.

[DLZZ20] Kefan Dong, Yingkai Li, Qin Zhang, and Yuan Zhou. Multinomial logit bandit with low
switching cost. In International Conference on Machine Learning, pages 2607–2615.
PMLR, 2020.

[Fre75] David A Freedman. On tail probabilities for martingales. the Annals of Probability,
pages 100–118, 1975.

[FRSLX20] Dylan J Foster, Alexander Rakhlin, David Simchi-Levi, and Yunzong Xu. Instance-
dependent complexity of contextual bandits and reinforcement learning: A
disagreement-based perspective. arXiv preprint arXiv:2010.03104, 2020.

[GHRZ19] Zijun Gao, Yanjun Han, Zhimei Ren, and Zhengqing Zhou. Batched multi-armed
bandits problem. arXiv preprint arXiv:1904.01763, 2019.

[GK89] Boris Vladimirovich Gnedenko and Igor Nikolaevich Kovalenko. Introduction to

queueing theory. Birkhauser Boston Inc., 1989.

[GXDY21] Minbo Gao, Tianle Xie, Simon S Du, and Lin F Yang. A provably efficient algo-
rithm for linear markov decision process with low switching cost. arXiv preprint

arXiv:2101.00494, 2021.

[HZG21] Jiafan He, Dongruo Zhou, and Quanquan Gu. Logarithmic regret for reinforcement
learning with linear function approximation. In International Conference on Machine

Learning, pages 4171–4180. PMLR, 2021.

[ICN+21] Haque Ishfaq, Qiwen Cui, Viet Nguyen, Alex Ayoub, Zhuoran Yang, Zhaoran Wang,
Doina Precup, and Lin Yang. Randomized exploration in reinforcement learning
with general value function approximation. In International Conference on Machine

Learning, pages 4607–4616. PMLR, 2021.

[JKA+17] Nan Jiang, Akshay Krishnamurthy, Alekh Agarwal, John Langford, and Robert E
Schapire. Contextual decision processes with low bellman rank are pac-learnable. In
International Conference on Machine Learning, pages 1704–1713. PMLR, 2017.

[JLM21] Chi Jin, Qinghua Liu, and Sobhan Miryoosefi. Bellman eluder dimension: New
rich classes of rl problems, and sample-efficient algorithms. arXiv preprint

arXiv:2102.00815, 2021.

[JOA10] Thomas Jaksch, Ronald Ortner, and Peter Auer. Near-optimal regret bounds for rein-
forcement learning. Journal of Machine Learning Research, 11(4), 2010.

[JYWJ20] Chi Jin, Zhuoran Yang, Zhaoran Wang, and Michael I Jordan. Provably efficient
reinforcement learning with linear function approximation. In Conference on Learning

Theory, pages 2137–2143. PMLR, 2020.

[KKL+20] Sham Kakade, Akshay Krishnamurthy, Kendall Lowrey, Motoya Ohnishi, and Wen
Sun. Information theoretic regret bounds for online nonlinear control. arXiv preprint

arXiv:2006.12466, 2020.

[KSWY21] Dingwen Kong, Ruslan Salakhutdinov, Ruosong Wang, and Lin F Yang. Online
sub-sampling for reinforcement learning with general function approximation. arXiv

preprint arXiv:2106.07203, 2021.

11

[LKFS21] Gene Li, Pritish Kamath, Dylan J Foster, and Nathan Srebro. Eluder dimension and
generalized rank. arXiv preprint arXiv:2104.06970, 2021.

[LS20] Tor Lattimore and Csaba Szepesvári. Bandit algorithms. Cambridge University Press,
2020.

[MJTS20] Aditya Modi, Nan Jiang, Ambuj Tewari, and Satinder Singh. Sample complexity of
reinforcement learning using linearly combined model ensembles. In International

Conference on Artificial Intelligence and Statistics, pages 2010–2020. PMLR, 2020.

[MKS+15] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,
Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg
Ostrovski, et al. Human-level control through deep reinforcement learning. nature,
518(7540):529–533, 2015.

[OPT18] Jungseul Ok, Alexandre Proutiere, and Damianos Tranos. Exploration in structured
reinforcement learning. arXiv preprint arXiv:1806.00775, 2018.

[OVR14] Ian Osband and Benjamin Van Roy. Model-based reinforcement learning and the eluder
dimension. arXiv preprint arXiv:1406.1853, 2014.

[OVRW16] Ian Osband, Benjamin Van Roy, and Zheng Wen. Generalization and exploration via
randomized value functions. In International Conference on Machine Learning, pages
2377–2386. PMLR, 2016.

[PRCS16] Vianney Perchet, Philippe Rigollet, Sylvain Chassang, and Erik Snowberg. Batched
bandit problems. The Annals of Statistics, 44(2):660–681, 2016.

[PS16] Bernardo Ávila Pires and Csaba Szepesvári. Policy error bounds for model-based
reinforcement learning with factored linear models. In Conference on Learning Theory,
pages 121–151. PMLR, 2016.

[RVR13] Daniel Russo and Benjamin Van Roy. Eluder dimension and the sample complexity of
optimistic exploration. In NIPS, pages 2256–2264. Citeseer, 2013.

[RYZ21] Yufei Ruan, Jiaqi Yang, and Yuan Zhou. Linear bandits with limited adaptivity and
learning distributional optimal design. In Proceedings of the 53rd Annual ACM SIGACT

Symposium on Theory of Computing, pages 74–87, 2021.

[SB18] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT
press, 2018.

[SHM+16] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van
Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc
Lanctot, et al. Mastering the game of go with deep neural networks and tree search.
nature, 529(7587):484–489, 2016.

[SJ19] Max Simchowitz and Kevin G Jamieson. Non-asymptotic gap-dependent regret bounds
for tabular mdps. Advances in Neural Information Processing Systems, 32:1153–1162,
2019.

[Sli19] Aleksandrs Slivkins. Introduction to multi-armed bandits. arXiv preprint

arXiv:1904.07272, 2019.

[SSS+17] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang,
Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Master-
ing the game of go without human knowledge. nature, 550(7676):354–359, 2017.

[TB07] Ambuj Tewari and Peter L Bartlett. Optimistic linear programming gives logarithmic
regret for irreducible mdps. In NIPS, pages 1505–1512. Citeseer, 2007.

[VBC+19] Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, Andrew
Dudzik, Junyoung Chung, David H Choi, Richard Powell, Timo Ewalds, Petko Georgiev,
et al. Grandmaster level in starcraft ii using multi-agent reinforcement learning. Nature,
575(7782):350–354, 2019.

12

[WSY20] Ruosong Wang, Ruslan Salakhutdinov, and Lin F Yang. Reinforcement learning with
general value function approximation: Provably efficient approach via bounded eluder
dimension. arXiv preprint arXiv:2005.10804, 2020.

[WZG21] Tianhao Wang, Dongruo Zhou, and Quanquan Gu. Provably efficient reinforcement
learning with linear function approximation under adaptivity constraints. arXiv preprint

arXiv:2101.02195, 2021.

[YW19] Lin Yang and Mengdi Wang. Sample-optimal parametric q-learning using linearly
additive features. In International Conference on Machine Learning, pages 6995–7004.
PMLR, 2019.

[YW20] Lin Yang and Mengdi Wang. Reinforcement learning in feature space: Matrix bandit,
kernels, and regret bound. In International Conference on Machine Learning, pages
10746–10756. PMLR, 2020.

[YYD21] Kunhe Yang, Lin Yang, and Simon Du. Q-learning with logarithmic regret. In Interna-

tional Conference on Artificial Intelligence and Statistics, pages 1576–1584. PMLR,
2021.

[ZBB+20] Andrea Zanette, David Brandfonbrener, Emma Brunskill, Matteo Pirotta, and Alessan-
dro Lazaric. Frequentist regret bounds for randomized least-squares value iteration.
In International Conference on Artificial Intelligence and Statistics, pages 1954–1964.
PMLR, 2020.

[ZHG21] Dongruo Zhou, Jiafan He, and Quanquan Gu. Provably efficient reinforcement learning
for discounted mdps with feature mapping. In International Conference on Machine

Learning, pages 12793–12802. PMLR, 2021.

[ZLKB20] Andrea Zanette, Alessandro Lazaric, Mykel Kochenderfer, and Emma Brunskill. Learn-
ing near optimal policies with low inherent bellman error. In International Conference

on Machine Learning, pages 10978–10989. PMLR, 2020.

[ZZJ20] Zihan Zhang, Yuan Zhou, and Xiangyang Ji. Almost optimal model-free reinforcement
learning via reference-advantage decomposition. arXiv preprint arXiv:2004.10019,
2020.

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] Yes, for example we have

described which function classes have bounded eluder dimension.
(c) Did you discuss any potential negative societal impacts of your work? [Yes] In

Section 5.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes] We have
described the assumptions under which our results are correct(Assumption 2.3, 2.2
, 2.4, positive minimum sub-optimality gap).

(b) Did you include complete proofs of all theoretical results? [Yes] Due to space limita-
tions, the full proofs are postponed to the appendix.

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [N/A]

13

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [N/A]

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [N/A]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [N/A]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [N/A]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

14

	Introduction
	Related Work

	Preliminaries
	Notation
	Episodic Markov Decision Processes
	Model-Free Assumption
	Model-Based Assumption
	Complexity Measure: Eluder Dimension
	Switching Cost

	Overview of the Algorithms and Main Results
	Model-Free Setting
	Model-Based Setting
	Technical Contributions

	Proof Sketch of Main Results
	Conclusion and Societal Impact
	Omitted Details from Main Body
	Minimum Suboptimality Gap Assumption
	Omitted Algorithms

	Proof of Theorem 3.1
	Supporting Lemmas: Theorem 3.1

	Proof of Theorem 3.2
	Supporting Lemmas: Theorem 3.2

