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ABSTRACT

On two-sided matching platforms such as online dating and recruiting, recom-
mendation algorithms often aim to maximize the total number of matches. How-
ever, this objective creates an imbalance, where some users receive far too many
matches while many others receive very few and eventually abandon the platform.
Retaining users is crucial for many platforms, such as those that depend heavily
on subscriptions. Some may use fairness objectives to solve the problem of match
maximization. However, fairness in itself is not the ultimate objective for many
platforms, as users do not suddenly reward the platform simply because exposure
is equalized. In practice, where user retention is often the ultimate goal, casually
relying on fairness will leave the optimization of retention up to luck.
In this work, instead of maximizing matches or axiomatically defining fairness, we
formally define the new problem setting of maximizing user retention in two-sided
matching platforms. To this end, we introduce a dynamic learning-to-rank (LTR)
algorithm called Matching for Retention (MRet). Unlike conventional algorithms
for two-sided matching, our approach models user retention by learning person-
alized retention curves from each user’s profile and interaction history. Based on
these curves, MRet dynamically adapts recommendations by jointly considering
the retention gains of both the user receiving recommendations and those who
are being recommended, so that limited matching opportunities can be allocated
where they most improve overall retention. Naturally but importantly, empirical
evaluations on synthetic and real-world datasets from a major online dating plat-
form show that MRet achieves higher user retention, since conventional methods
optimize matches or fairness rather than retention.

1 INTRODUCTION

Predominantly, recommendations for two-sided matching platforms like online dating (Neve & Palo-
mares, 2019; Pizzato et al., 2010b; Xia et al., 2015a) and recruitment (Jiang et al., 2020; Le et al.,
2019; Yang et al., 2022), aim to maximize the overall number of matches between the two sides of
users (Mine et al., 2013; Pizzato et al., 2010a; Palomares et al., 2021; Pizzato et al., 2010b; Qu et al.,
2018). However, this objective leads to significant matching imbalances, where some users receive
many matches, while many others rarely receive matches (Chen et al., 2023; Celdir et al., 2024).
Consequently, users who get insufficient matches can be prompted to leave the platform (Pronk &
Denissen, 2020; dos Reis Alba, 2020; Dechant et al., 2019).

Figure 1 shows the probability of a user staying on the platform in the next month given the number
of matches they had, collected on a large-scale online dating platform (details of the data setup
in Appendix B). We observe that the users with smaller numbers of matches have much higher
chances of leaving the platform in the next month. It is problematic for many two-sided platforms
to have users leaving the platform, particularly since many of these platforms rely on models where
user retention directly determines platform success. An illustrative example is an online dating
application that is mostly based on a subscription model, where user retention directly corresponds
to profit. When the system focuses only on maximizing the number of matches, recommendations
become concentrated on a small group of already popular users. This leaves many others with very
few opportunities, even though those users are the most likely to leave if they do not get matches.
As a result, the overall number of matches may increase, but the imbalance inevitably causes more
users to churn (Chen et al., 2023; Celdir et al., 2024).

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: The relationship between retention and the number of matches collected on a large-scale
online dating platform, showing females (left) and males (right). Details of the data in Appendix B.

To account for the problem of match maximization, one might consider fairness as a potential solu-
tion (Tomita & Yokoyama, 2024; Chen et al., 2023; Celdir et al., 2024; Morik et al., 2020). Fairness
objectives, such as fairness of exposure (Singh & Joachims, 2018), typically aim to ensure that every
user receives the amount of exposure in proportion to their potential utility. However, while fairness
might, in rare cases, be the ultimate goal of a platform, this is not true for the majority. Users do
not suddenly change their behavior or reward the platform simply because they receive the amount
of exposure specified by a fairness objective. In contrast, user retention is the ultimate goal for the
majority of platforms, as it is directly tied to long-term sustainability and revenue generation in vari-
ous business models (e.g., subscription-based services). In real-world practice, where user retention
is the ultimate goal, casually choosing fairness formulations or methods leaves the optimization of
retention up to chance. Specifically, fairness objectives are only effective if popular users require
high exposure to stay on the platform, and less popular users need less exposure to stay. Such a
pattern is not promised, as different users would have different satisfaction levels, often regardless
of their popularity.

To deal with the problem that existing methods do not account for user retention, we propose a
new problem setting, where the objective is to maximize user retention for users on both sides of
the matching platform. Instead of axiomatically defining fairness as in existing methods, we build
data-driven algorithms based on formulations aligned with the real-world motivation, where user
retention is the ultimate goal. Specifically, we introduce a novel dynamic Learning-to-Rank (LTR)
algorithm, called Matching for Retention (MRet), which provides recommendations that lead to the
highest rate of user retention. MRet first learns a personalized retention curve for each user based on
profile and interaction history (like Figure 1 but for each user). Then, for each arriving user, MRet
jointly considers two perspectives: the retention probability gains of the user receiving the recom-
mendations, as well as the retention probability gains of the users who are being recommended.
This means that the recommended users are chosen not only because they increase the likelihood
of the receiver retaining, but also because their own retention can be impacted by the interaction.
By explicitly modeling retention probability gains from both sides, our algorithm strategically deter-
mines the ideal recommendations that best maximize user retention across the entire platform. MRet
adapts over time and naturally directs scarce matches to where they have the biggest retention gain
at each time step. As expected yet crucial, empirical evaluations on synthetic and real-world datasets
from a major online dating platform demonstrate that our algorithm maximizes user retention, while
traditional methods focus on match counts or fairness heuristics instead. The code is provided in the
supplementary material.

2 PRELIMINARIES

In this section, we formally define the ranking problem in a two-sided matching setting, clearly
highlighting the limitations of current matching algorithms.

Consider two distinct sets of users, denoted by X and Y , representing the two sides of a matching
platform (e.g., men and women on an online dating platform). At each time step τ , a single user
arrives from one of the two sides: either x ∼ p(x), where x ∈ X , or y ∼ p(y), where y ∈ Y . The
arrival distributions p(x) and p(y) are unknown. Note that x and y also contain user context (user
profile + interaction history) that we can fully use for recommendation.
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Upon arrival, the platform generates a ranking/sequence of K recommendations from the pool of
users in the opposite group. The recommendations may be shown in any format: either as a ranked
list or sequentially one by one. Specifically, when user x ∈ X arrives at time τ , we select an ordered
list of candidates

στ = [στ,1, στ,2, . . . , στ,K ], (1)
with στ,k ∈ Y for all k. Conversely, if the arriving user is y ∈ Y , then στ,k ∈ X . We follow a
common setting used in online matching platforms (Bapna et al., 2023; Pizzato et al., 2010c; Xia
et al., 2015b; Tyson et al., 2016), where the arriving user sees two blocks: (i) all users who have
already liked them, and (ii) the fresh top-K recommendations στ . After viewing the list, the visitor
may like or skip each profile.

Since any one-sided like is always shown to the recipient at their next login, the match probability
r(x, y) ∈ [0, 1] specifically represents the likelihood that both users x and y liked each other, result-
ing in a match. Although the second user’s response can arrive with a delay in practice, the like is
guaranteed to be shown, and the result is fully determined. Thus, following most online bandit and
LTR models (Li et al., 2010; Joachims et al., 2017), we suppose that we observe the binary match
indicators immediately after the recommendation for simplicity. In this work, we take r(x, y) as
given (either available or estimated upstream), since our focus is on user retention rather than on
estimating match probabilities.

Finally, we may let rank position k receive visibility weight αk with 1 = α1 ≥ α2 ≥ · · · ≥ αK ≥ 0.
Then the expected number of matches for the receiver x at time τ , given a ranking στ , is

E
[
mτ (x)

∣∣στ

]
=

K∑
k=1

αk r
(
x, στ,k

)
, (2)

where mτ (x) denotes the number of matches x obtains at time τ .

2.1 MAXIMIZATION OF MATCHES

Typically, existing recommendation algorithms aim to maximize the immediate expected number of
matches. Given a user x, a conventional matching maximization method generates the recommen-
dation set by sorting in the order of match probability

σmax match = argmax
στ

K∑
k=1

αk r
(
x, στ,k

)
= arg sort

y∈Y
r(x, y). (3)

However, optimizing solely for the highest match probabilities leads to imbalanced matches among
users. Some users consistently appear in the recommendations, thereby having many matches. Con-
versely, other users rarely appear high enough in rankings, resulting in limited matches, frustration,
and eventually abandonment from the platform (Tomita & Yokoyama, 2024). We observe a clear
pattern in Figure 1, that users are more likely to leave the platform with fewer matches. Especially,
we observe a special pattern that the first few matches impact retention probabilities much more than
increased match counts. Consequently, recommendations based purely on maximizing matches can
lead to user abandonment, which is the ultimate objective of the platform.

2.2 FAIRNESS IN RANKINGS

Fairness objectives are often used to ensure that even unpopular users receive exposure, which seem-
ingly addresses this problem. The most common fairness objective is the fairness of exposure in a
ranking (Morik et al., 2020; Singh & Joachims, 2018).

Specifically, Morik et al. (2020) has introduced a dynamic LTR algorithm that can effectively ensure
that each user receives exposure in proportion to their merit. If the arriving user is x ∈ X , we aim
to achieve fair exposure for any candidate user y ∈ Y .

Let the exposure of candidate y at time step τ be

Expτ (y) =

K∑
k=1

αk 1
(
στ,k = y

)
. (4)

3
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Then, for any two candidates yi, yj ∈ Y , the disparity

Dτ (yi, yj) =
1
τ

∑τ
t=1 Expt(yi)

Ep(x)[r(x, yi)]
−

1
τ

∑τ
t=1 Expt(yj)

Ep(x)[r(x, yj)]
. (5)

measures how far amortized exposure over τ time steps was fulfilled. When the disparity is zero,
it means that all users are exposed fairly in relative to their expected utility Ep(x)[r(x, y)], which
denotes the expected match probability of user y over the population of users x.

Now, to convert the current fairness disparity into an adjustment term, for every candidate y ∈ Y ,
we set

errτ (y) = (τ − 1)max
y′∈Y

Dτ−1(y
′, y). (6)

This term is zero for users who already have the highest exposure-merit ratio, and grows linearly in
τ for under-exposed users, ensuring stronger corrections when unfairness persists.

With a trade-off parameter λ > 0, at time step τ , FairCo builds the rankings by solving

σFairCo = arg sort
y∈Y

[r(xτ , y) + λ errτ (y)] , (7)

where the first term prioritizes estimated relevance, and the second lifts candidates from underserved
groups.

However, while such fairness objectives can prevent extreme imbalances, they do not directly align
with the true objectives of most platforms. Users do not necessarily remain active or reward the
system simply because exposure meets the fair target. In practice, user retention is often the more
fundamental goal, as it determines both long-term sustainability and revenue. Relying only on
fairness, therefore, makes improvements in retention a matter of luck. Specifically, fairness helps
only when the required exposure happens to match the retention needs of both popular and less
popular users. Since retention behavior varies widely across individuals, such alignment cannot be
assumed. As a result, fairness serves as, at best, a heuristic proxy for retention rather than a reliable
optimization target.

3 OPTIMIZING USER RETENTION

Despite many two-sided platforms having their revenue dependent on user retention, existing meth-
ods do not account for user abandonment. To solve the issue, we define a new problem setting
of explicitly optimizing user retention. User retention is often the ultimate platform objective,
as many two-sided matching platforms are reliant on subscriptions. Thus, rather than maximizing
matches or targeting match maximization or some heuristic fairness objective, we align the formu-
lation with the real-world motivation, where user retention is the ultimate objective.

To solve this new problem, we come up with a novel dynamic LTR framework that updates the
recommendations dynamically given the observed rewards. The framework not only considers the
retention of users receiving the recommendations, but also considers the retention of users being
recommended.

We first consider a retention function f(x,m) that represents the likelihood that a user x ∈ X
stays on the platform (i.e., retention probability) given m matches. We can similarly write f(y,m)
to represent the reward function of user y ∈ Y . The reward function f is estimated by simply
performing reward regression, using the user context. Now, to derive the optimal ranking, denote
the number of matches user x received until time step τ as

m1:τ (x) =

τ−1∑
t=1

mt(x). (8)

At the end of step τ , user x stays with probability f
(
x, m1:τ (x) +mτ (x)

)
and never return.

We aim to recommend a set of users σ that would maximize the retention probability gain for both
the receiving user x ∈ X and the recommended users σ ∈ YK . Specifically, given some receiving
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user x ∈ X , we propose that the optimal ranking on time step τ is

σ∗
τ = argmax

στ

{
f
(
x, m1:τ (x) +

∑K
k=1 αkr

(
x, στ,k

))
− f
(
x,m1:τ (x)

)
︸ ︷︷ ︸

Gain for receiver x

+

K∑
k=1

[
f
(
στ,k, m1:τ (στ,k) + αkr

(
στ,k, x

))
− f
(
στ,k,m1:τ (στ,k)

)]
︸ ︷︷ ︸

Gain for recommended users

}
. (9)

Eq. (9) explicitly chooses a ranking where both the receiver and the recommended users increase
their retention probabilities the most.

Figure 2: Toy example of how a top-1 rank-
ing would be selected for Receiver . In this
case, the optimal recommendation is Candidate
C because it raises the total retention proba-
bility the most.

Figure 2 demonstrates a toy example of how we
select the top-1 ranking for Receiver . Here,
Candidate A has the most gain on the reward
function f from the candidate’s point of view, and
Receiver will gain the most by selecting Candi-
date B . However, since we seek to maximize
the total gain in the reward function, the best op-
tion is Candidate C with a total gain of 60%,
instead of Candidates A or B with the gains
of 50%.

However, directly solving the optimization prob-
lem Eq. (9) is NP-hard. Thus, its direct optimiza-
tion is not practical.

3.1 THE MRET RANKER

To overcome this NP-hard optimization, we introduce our Matching for Retention (MRet) ranker.
MRet quickly approximates Eq. (9) with theoretical grounding.

To demonstrate MRet, we introduce a realistic assumption: the reward function is concave.

Assumption 1 (Concavity of the Reward Function). For every user x ∈ X , the reward
function f(x, ·) is non-decreasing and concave in the number of matches m ≥ 0. Formally,
for all m1,m2 ≥ 0 and every θ ∈ [0, 1],

f
(
x, θm1 + (1− θ)m2

)
≥ θ f(x,m1) + (1− θ) f(x,m2). (10)

We assume similarly for y ∈ Y and f(y, ·).

Intuitively, this assumption implies that as users receive more matches, their retention gain is decel-
erated. This may lead to a peak retention probability at an optimal number of matches, beyond which
additional matches no longer help the retention probability. For example, a user who gets their first
match gains more retention probability than when they get the 10th match. This is a very realistic
assumption, as we can also observe this pattern in Figure 1, which is collected on an actual online
dating application. We also provide experimental results where this assumption does not hold.

Under Assumption 1, the receiver-side term in Eq. (9) admits a Jensen-type lower bound. Writing
A =

∑K
j=1 αj , concavity of f(x, ·) gives the following lemma.

Lemma 1 (Jensen lower bound). Under the Assumption 1, for a ranking στ ,

f

(
x,m1:τ (x) +

K∑
k=1

αkr(x, στ,k)

)
≥

K∑
k=1

αk

A
f (x, m1:τ (x) +Ar(x, στ,k)) . (11)
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On the candidate side, the contribution of a user y depends on the position-specific visibility weight
αk. Concavity again provides a way to bound this dependence using a linear factor based on the
maximum weight αmax.

Lemma 2 (Concavity-based linear bound). Under Assumption 1, for any candidate y ∈ Y
and any 0 ≤ αk ≤ αmax,

f
(
y,m1:τ (y) + αkr(x, y)

)
− f
(
y,m1:τ (y)

)
≥ αk

αmax

(
f
(
y,m1:τ (y) + αmaxr(x, y)

)
− f
(
y,m1:τ (y)

))
.

We prove the Lemmas 1 and 2 in Appendix C.1 and C.2. Using Lemma 1 and 2, we reformu-
late the original optimization problem Eq. (9) into a tractable lower bound maximization problem.
In particular, Lemma 1 provides a decomposition of the receiver side, and by further applying a
concavity-based linear lower bound to each candidate user, the objective can be expressed as

max
στ

K∑
k=1

αk Score(στ,k), (12)

where, with αmax = maxk αk, the per-item score is defined as

Score(y) =
1

A
f(x,m1:τ (x) +Ar(x, y))

+
1

αmax
[f(y,m1:τ (y) + αmaxr(x, y))− f(y,m1:τ (y))] . (13)

By the rearrangement inequality, assigning higher-score candidates to positions with larger visibility
weights αk maximizes this lower bound. Therefore, the MRet ranking is obtained as

σMRet = arg sort
y∈Y

Score(y). (14)

This allows us to solve the problem using argsort, significantly reducing computational complexity.
Specifically, instead of an NP-hard problem, it is transformed into one where we compute an individ-
ual score for each potential candidate user from the opposing set. Assuming constant-time function
evaluations and lookups, the operation takes O(N logN) time. This is a substantial improvement
over the complexity of Eq. (9). We now provide its empirical performance through extensive exper-
iments.

4 EXPERIMENTS

In this section, we report the experimental results with synthetic data and real-world data from a
Japanese online dating platform.

4.1 SYNTHETIC EXPERIMENTS

To generate synthetic data, we consider two user groups, X and Y . We sample 10-dimensional
context vectors x ∈ X , y ∈ Y from the standard normal distribution. We synthesize the match
probability between user x and user y as

r(x, y) = (1− κ) · rbase(x, y) + κ · rpop(x, y),

where rbase(x, y) := x·y
||x||||y|| represents the base reward using cosine similarity, which captures

the compatibility between user x and user y. The second term introduces a popularity skew, where
rpop(x, y) = popx · popy and popx, popy are sampled from a uniform distribution with range [0, 1].
popx and popy represent the popularity levels of user x and user y, respectively. The parameter
κ ∈ [0, 1] controls the strength of the popularity skew, and a larger value of κ leads to a stronger bias.
We assume that r(x, y) is known in advance when selecting a ranking. Next, the user retention label
u ∈ {0, 1} is sampled from a Bernoulli distribution with the user retention probability determined

6
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by f(x,m1:τ (x)), where m1:τ (x) denotes the cumulative number of matches until time step τ for
user x. We define the user retention probability f as

f(x,m1:τ (x)) =

{
ax (m1:τ (x)− bx)

2
+ 0.95 (0 ≤ m1:τ (x) ≤ bx)

1− 0.05 · exp (2(bx −m1:τ (x))) (m1:τ (x) > bx)
(15)

where ax = x ·Ma
1 and bx = x ·Mb are scalar values determined by the user feature vector x. We

refer to bx as the satisfactory match count, since it represents the number of matches at which the
user retention probability substantially levels off. The probability increases quadratically with the
cumulative number of matches m1:τ (x) until reaching bx, after which the growth becomes gradual.

We simulate the dynamics of user retention over time. Let X τ
churn denote the set of users who have

left the platform by time τ , and X τ
retention denote the set of users who remain on the platform. At each

time step, we randomly select a user group (X or Y) according to a proportion parameter ρ ∈ [0, 1].
From the selected group, we then sample a user uniformly at random from those who remain on
the platform (e.g., if X is selected, we sample a user x ∈ X τ

retention). According to each method,
the algorithm recommends a ranked list of users from the opposite group (e.g., y ∈ Yτ

retention), and
the cumulative number of matches m1:τ is updated based on the ranking and r(x, y). After the
recommendation phase, we perform a retention phase in which we independently select every user
(including those not involved in the ranking process) with a probability of 0.2% to undergo a churn
evaluation. For each selected user, we sample a user retention label u ∈ {0, 1} from a Bernoulli
distribution parameterized by f(·,m1:τ (·)). If u = 0, the user is removed from the platform and
X τ

retention and Yτ
retention are updated accordingly. We repeat this process from time step τ = 0 to

τ = T .

Compared methods. We compare MRet with Max Match, Uniform, and FairCo (Morik et al.,
2020). FairCo’s fairness weight λ is set to 100, but we ablate and confirm in Appendix D that
different hyperparameters do not change the conclusion. Uniform selects random rankings without
considering matches. MRet trains a regression model f̂ using XGBoost Chen & Guestrin (2016)
on a dataset {x,m, u}ni=1. We synthesize this dataset by generating n samples, each consisting of a
user feature vector x, a match count m drawn from an exponential distribution with mean 2.0, and a
retention label u determined according to the retention function f . For reference, we also report the
result of MRet (best), which has access to the ground-truth function f and thus serves as an oracle
upper bound of MRet. We clarify here that Tomita & Yokoyama (2024) cannot be compared as a
baseline, because they calculate a doubly-stochastic matrix which takes exponential time when done
in a dynamic LTR setting.

Results. We use default parameters of |X | = 1000, |Y| = 1000, K = 5, n = 5000, T =
2000, κ = 0.5, ρ = 0.5 and αk = 1/k. Each experiment is repeated 10 times with different
random seeds, and we report the average results. We show cumulative number of matches per user(∑

x∈X m1:T (x)+
∑

y∈Y m1:T (y)

|X |+|Y|

)
and user retention rate

(
|XT

retention|+|YT
retention|

|X |+|Y|

)
.

How does MRet perform as the time step increases? Figure 3 shows how the cumulative number
of matches per user and user retention rate change as the time step τ increases. As τ increases,
the cumulative number of matches per user grows approximately proportionally across all methods.
Max Match achieves the highest number of matches by a significant margin, whereas Uniform results
in the lowest. Despite the substantial gap in total matches, Uniform and MaxMatch achieve almost
the same user retention rate. This indicates that simply maximizing the number of matches does not
necessarily help reduce user drop-off. MRet achieves a higher user retention rate than all baselines,
including FairCo, Max Match, and Uniform, with only about 70% of the matches obtained by Max
Match. While MRet does not reach the performance of MRet (best), it maintains a high level of user
retention by effectively allocating matches.

How does MRet perform when user popularity varies? Next, we evaluate how MRet performs
under varying levels of user popularity κ, as shown in Figure 4. We adjust the parameter κ to control
the degree of popularity imbalance across users. When popularity is highly skewed, it becomes
difficult for any method to allocate matches to less popular users. As a result, the gap in user

1Note that ax is scaled to take negative values so that the user retention function f becomes concave.
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Figure 3: Comparison of cumulative number of
matches and user retention rate across different
time steps (τ ).

Figure 4: Comparison of cumulative number of
matches and user retention rate (normalized by
Uniform) under varying levels of user popular-
ity (κ).

retention rate between each method and Uniform tends to narrow. Max Match tends to achieve
higher match counts as popularity skew increases. However, user retention decreases significantly
because popular users receive an even greater share of the matches. FairCo, which emphasizes
fairness, often ends up allocating more matches to already popular users under skewed settings.
This leads to increased disparity and ultimately results in performance that is comparable to that
of Uniform. MRet maintains a high user retention rate across varying levels of popularity and is
particularly effective in preventing retention loss under severe popularity imbalance.

(a) Histogram of actual
match counts m1:T .

(b) Histogram of devia-
tions between actual and
satisfactory match counts
m1:T − b.

Figure 5: Comparison of match allocation strate-
gies between FairCo and MRet for remaining
users at time step T .

Why does Fairco underperform in user re-
tention? Here, we clarify the reason why
FairCo performs worse in terms of user re-
tention, although the cumulative number of
matches it achieves is not substantially differ-
ent from that achieved by MRet (best). Fig-
ure 5a shows the histogram of actual match
counts among users who remain on the plat-
form at time T . While FairCo and MRet (best)
differ slightly in the total number of matches,
their distributional shapes are similar. Never-
theless, Figure 5b reveals a critical difference
between FairCo and MRet (best). This figure
shows a histogram of the differences between
each user’s actual match counts and their satis-
factory match counts (m1:T − b). Since b repre-
sents the threshold at which the retention func-
tion levels off, the quantity m1:T − b directly
indicates whether a user has obtained fewer or
more matches than this satisfactory level. FairCo allocates matches without considering user re-
tention, resulting in a distribution of match counts that is spread out like a normal distribution,
regardless of each user’s satisfactory match counts. In contrast, MRet yields mostly non-negative
differences, indicating that it successfully identifies and allocates matches according to each user’s
necessary amount. These results suggest that fair methods are not sufficient to prevent user churn.

Appendix D further reports and discusses (i) the performance with varying numbers of users, (ii) the
performance on different FairCo hyperparams, (iii) the performance under varying noise levels in the
match probabilities, (iv) the performance when popularity drifts over time, (v) the performance when
FairCo uses the equal-exposure fairness criterion, and (vi) comparison of MRet with the optimal NP-
hard recommendations.

4.2 REAL-WORLD EXPERIMENTS

To assess the real-world applicability of MRet, we report the results of real-world experiments. We
use interaction data from a large-scale Japanese online dating platform with millions of registered
users. On this platform, male users receive recommendation lists of female users and can either send
a “like” or skip each recommendation. When a male user sends a “like,” the female user receives
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a notification and either matches with him or declines the interaction. Once they form a match, the
users can initiate a conversation. Female users follow a similar mechanism in the reverse direction.

To construct the dataset, we first select 1,000 male users and 1,000 female users with relatively many
interactions, and create a 1000× 1000 matching matrix. Each element of this matrix represents the
matching probability, denoted r(x, y), which takes the value 1 if user x and user y have matched and
0 otherwise. For user pairs with unobserved interactions, we apply the Alternating Least Squares
(ALS) Hu et al. (2008) algorithm to impute missing values. We also define user retention as whether
the user logs in again in the following month. Specifically, among users who logged in during
February 2025, we label those who also log in March 2025 as retained, and those who do not as
churned. We aggregate the cumulative match counts for the user retention probability function
from matches obtained in February 2025. Since we cannot obtain user retention labels for arbitrary
numbers of matches for the users included in the matching matrix, we construct the user retention
probability function f using a separate dataset of 60,000 records containing user features, cumulative
match counts, and corresponding user retention labels.

To create the user retention probability f , we first apply k-means clustering to partition male and
female users separately into five clusters based on their user features. For each cluster, we calculate
the average user retention label at each level of cumulative match count. We assume that users
within the same cluster share similar retention behavior, and define the function f by assigning the
corresponding average retention label to each combination of cluster and match count. This enables
us to assign the retention probability for any user based on their cluster and the cumulative number of
matches. Using these definitions derived from real data, the simulation follows the same procedure
as the synthetic data experiments. The detailed experimental settings are provided in Appendix E.

Figure 6: Comparison of cumulative number of
matches and user retention rate across different
time steps (τ ) on real-world data.

Results We evaluate MRet against Max
Match, FairCo, and Uniform varying time steps
τ on the real-world data in Figure 6. In con-
trast to the synthetic experiments, most ele-
ments in the matching matrix are zero in the
real-world data setting, indicating that matches
rarely occur. Under such sparse conditions,
fairness-oriented methods such as FairCo and
Uniform fail to perform effective matching,
resulting in significantly lower user retention.
Max Match turns out to be relatively effective,
achieving higher retention than the fairness-
based baselines. Notably, MRet achieves the
highest user retention with extremely sparse
match data. Moreover, although MRet is origi-
nally designed under the assumption 1 that the user retention function f is concave in the number of
matches, it still performs well even when applied to non-concave functions in the real-world data ex-
periments. This demonstrates that MRet is not only effective but also robust and broadly applicable
in practical scenarios.

Appendix E further reports and discusses the performance (i) with different training data sizes, (ii)
under different exposure probabilities, (iii) under different group recommendation ratios and (iv)
under large-scale user setting.

5 RELATED WORK

Two-sided matching platforms, such as online dating (Neve & Palomares, 2019; Pizzato et al.,
2010b; Xia et al., 2015a) and recruitment (Jiang et al., 2020; Le et al., 2019; Yang et al., 2022),
differ from conventional recommender systems in that they recommend users from one side of the
platform to those on the other, rather than recommending items to users. This reciprocal nature
has motivated the development of Reciprocal Recommender Systems (RRS), which typically focus
on maximizing the total number of matches (Mine et al., 2013; Pizzato et al., 2010a; Palomares
et al., 2021; Pizzato et al., 2010b; Qu et al., 2018; Su et al., 2022; Hayashi et al., 2025). However,
this objective often results in severe imbalances, where popular users accumulate a large number of
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matches, whereas many others receive very few (Chen et al., 2023; Celdir et al., 2024). Such dis-
parities can drive under-served users to leave the platform (Pronk & Denissen, 2020; dos Reis Alba,
2020; Dechant et al., 2019), ultimately threatening platform sustainability.

To address these imbalances, fairness-oriented approaches have been widely studied (Singh &
Joachims, 2018; Tomita & Yokoyama, 2024; Tomita et al., 2023; Celdir et al., 2024; Morik et al.,
2020; Devic et al., 2023; Saito & Joachims, 2022). Several works explicitly integrate fairness
into two-sided matching (Tomita & Yokoyama, 2024; Do et al., 2021; Xia et al., 2019). In ad-
dition, fairness-aware dynamic Learning-to-Rank (LTR) algorithms have been developed, where
past feedback influences future rankings to ensure that users receive exposure proportional to their
merit (Yang & Ai, 2021; Morik et al., 2020; Wang et al., 2024; Biswas et al., 2021). Although
these approaches mitigate disparities, fairness serves only as a heuristic principle rather than a direct
objective, and it does not necessarily align with maximizing user satisfaction or retention.

Beyond short-term optimization, recommender systems research has increasingly emphasized long-
term user engagement. Several studies have proposed models that optimize return visits or sub-
scription renewals (Wu et al., 2017; Zou et al., 2019; McDonald et al., 2023; Hohnhold et al., 2015;
Takehi et al., 2025; Saito et al., 2024) highlighted the necessity of incorporating long-term satisfac-
tion into search and recommendation models. These works underscore the importance of long-term
user engagement, which constitutes a primary objective for platforms.

We propose a new problem setting, where the objective is to maximize user retention on both sides
of the platform. Most prior approaches in two-sided matching optimize probabilistic recommen-
dation lists represented as doubly stochastic matrices (Su et al., 2022; Tomita & Yokoyama, 2024;
Tomita et al., 2023). This formulation becomes computationally prohibitive as the number of users
grows. In contrast, we introduce a different problem setting that extends dynamic LTR (Morik et al.,
2020) to two-sided matching. This framework more realistically captures sequential user arrivals,
significantly reduces computational complexity, and enables direct optimization of user retention.

6 CONCLUSIONS

This paper introduces a new problem of optimizing user retention in a two-sided matching platform.
While existing studies on two-sided platforms typically aim to maximize the number of success-
ful matches between the two user sides, this makes some users receive more matches than others,
prompting unpopular users to leave the platform. A high user abandonment rate is often unaccept-
able for many two-sided matching platforms, as long-term sustainability and revenue depend on
retaining users. Fairness objectives have been explored as a way to mitigate imbalance, but they are
not the ultimate goal for most platforms and do not reliably ensure retention. Therefore, instead of
axiomatically defining fairness, we formulate user retention as the main objective, directly reflecting
the real-world motivation. We provide a theoretically grounded dynamic learning-to-rank algorithm
called MRet, with empirical evaluations on synthetic data and real-world data collected on a ma-
jor online-dating platform. As naturally expected but important, our results demonstrate that MRet
retains significantly more users than match maximization and fairness-based methods.
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A LIMITATIONS & FUTURE WORK

While our work introduces a novel problem setting that directly maximizes user retention in two-
sided matching, several limitations remain. Our model assumes that the matching matrix, which
encodes the preferences of both sides, is given in advance. In practice, such preferences need to be
estimated either offline or online, and an important extension of our framework is to incorporate this
estimation process directly into the model. We also learn user retention functions from offline data,
whereas in real-world platforms, it would be valuable to adaptively update them online, potentially
leading to new models that balance exploration and exploitation. Moreover, our current formulation
treats both sides of the platform as equally important, while in practice the platform’s business model
may prioritize one side over the other. For instance, in online dating, male users are often the paying
side and retention of that group may be more critical, whereas in job matching, where employer
demand often exceeds job seeker supply, it may be desirable to place greater weight on the retention
of job seekers.

B DETAILED DESCRIPTION OF FIGURE 1

We provide a detailed description of the data aggregation procedure in Figure 1. The figure shows
the relationship between the number of matches obtained by users and their login continuation rate
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based on data collected from a large-scale online dating platform in Japan. We focus on users who
logged in during February 2025, where login continuation is defined as whether the user logged in
again in March 2025. For each user, we calculate the total number of matches obtained in February
2025. Male and female users are binned separately according to their total number of matches, and
for each bin, we report both the average login continuation rate and the number of users it contains.
All values are normalized by the bin with the smallest number of matches.

C PROOF

Here, we provide the derivations and proofs that are omitted in the main text.

C.1 PROOF OF LEMMA1
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C.2 PROOF OF LEMMA2
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C.3 PROOF THAT MRET MAXIMIZES A LOWER BOUND OF THE OPTIMIZATION PROBLEM

We show that the original optimization problem Eq. (9) can be reformulated as a tractable lower
bound maximization problem Eq. (14).
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f
(
x, m1:τ (x) +

∑K
k=1 αkr

(
x, στ,k

))
− f
(
x,m1:τ (x)

)
+

K∑
k=1

[
f
(
στ,k, m1:τ (στ,k) + αkr

(
στ,k, x

))
− f
(
στ,k,m1:τ (στ,k)

)]
≥

K∑
k=1

αk

A
f(x, m1:τ (x) +Ar(x, στ,k))− f

(
x,m1:τ (x)

)
+

K∑
k=1

[
f
(
στ,k, m1:τ (στ,k) + αkr

(
στ,k, x

))
− f
(
στ,k,m1:τ (στ,k)

)]
∵ Lemma 1

≥
K∑

k=1

αk

A
f(x, m1:τ (x) +Ar(x, στ,k))− f

(
x,m1:τ (x)

)
+

K∑
k=1

αk

αmax

(
f
(
στ,k, m1:τ (στ,k) + αmaxr(στ,k, x)

)
− f
(
στ,k,m1:τ (στ,k)

))
∵ Lemma 2

=

K∑
k=1

αk Score(στ,k)− f
(
x,m1:τ (x)

)
,

where

Score(στ,k) :=
1

A
f(x, m1:τ (x) +Ar(x, στ,k))+

1

αmax

[
f(στ,k, m1:τ (στ,k) + αmaxr(στ,k, x))−f(στ,k, m1:τ (στ,k))

]
.

Since 1 = α1 ≥ α2 ≥ · · · ≥ αK ≥ 0, it follows that Eq. (14) ensures that MRet maximizes a lower
bound of the original optimization problem.

D SYNTHETIC EXPERIMENTS

Additional Results. We report and discuss additional synthetic experiment results.

Figure 7: Comparison of cumulative number
of matches and user retention rate (normalized
by Uniform) under varying the number of users
(|X |+ |Y|).

Figure 8: Comparison of cumulative number of
matches and user retention rate (normalized by
Uniform) under varying the hyperparameter of
FairCo (λ).

How does the proposed method perform when varying the number of users? Figure 7 shows
the results when increasing the number of users (|X |+ |Y|) with each value normalized by the result
of Uniform. As the number of users increases, the number of possible recommendation candidates
also increases, and thus all methods show improvements in both the cumulative number of matches
and user retention rate compared to Uniform. Max Match slightly outperforms Uniform only when
the number of users is large. In contrast, MRet consistently exhibits superior performance across all
user sizes, with a significant margin.
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How does the hyperparameter of FairCo affect its performance? Figure 8 shows the experi-
mental results when varying the hyperparameter of FairCo λ in Equation 7. A smaller value of λ
places more emphasis on maximizing the number of matches, while a larger value emphasizes fair-
ness. As expected, increasing λ results in a decrease in the number of matches, which aligns with
the theoretical perspective. Regarding user retention rate, FairCo achieves the best user retention
rate at λ = 0.1, but still performs worse than MRet. This shows that even with careful tuning, fair
metrics cannot outperform MRet. In contrast, MRet requires no parameter tuning, making it easier
to apply in real-world scenarios.

Figure 9: Comparison of cumulative number of
matches and user retention rate (normalized by
Uniform) under varying noise levels in the match
probabilities (δ).

Figure 10: Comparison of cumulative number of
matches and user retention rate (normalized by
Uniform) when popularity drifts over time.

How does MRet perform under varying noise levels in the match probabilities? To empirically
assess the robustness of MRet to match probabilities, we conducted an experiment in which noise
was injected into the match probabilities, as shown in Figure 15. Specifically, we perturb the true
probabilities according to

r̃(x, y) = r(x, y) + εx,y, εx,y ∼ U [−δ, δ],

where δ controls the noise level. The results show that as the noise level increases and the accuracy
of the match probabilities deteriorates, the number of matches decreases for MaxMatch, MRet, and
MRet (best). Moreover, both MRet and MRet (best) exhibit lower user retention rates as the noise
increases. However, across all noise levels, MRet consistently outperforms all baseline methods,
demonstrating that it remains robust even when the match probabilities are substantially perturbed.

How does MRet perform when popularity drifts over time? We conducted an experiment to
test how MRet adapts when popularity drifts over time, as shown in Figure 10. In this experiment,
we introduce a time-dependent popularity skew, defining the match probability at time step t as

rt(x, y) = (1− κ) rbase(x, y) + κ popt(x) popt(y).

We assign each user x ∈ X and y ∈ Y one of three popularity trajectories: constant, increasing,
or decreasing. For each user i, we sample an initial popularity ci ∼ Uniform(0, 1) and set a fixed
slope of 0.5.Letting τt ∈ [0, 1] denote the normalized time step index, we define the time-varying
popularity as

popt(i) =


ci, constant,
ci + 0.5τt, increasing,
ci − 0.5τt, decreasing.

We then clip the resulting popt(i) to the range [0, 1] to ensure it remains within a valid bound. Figure
10 shows that MRet outperforms all baselines in terms of user retention rate, demonstrating its
effective adaptation to popularity drifts. This confirms that MRet successfully adapts to popularity
drifts, as expected from its dynamic design.

How does FairCo perform under the equal-exposure fairness criterion? Figure 11 shows the
results from an experiment where we modify FairCo’s fairness definition to require equal exposure
across all users, using the same experimental setting as in Figure 3. We implement this variant by
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Figure 11: Comparison of cumulative number of matches and user retention rate when FairCo uses
the equal-exposure fairness criterion.

removing the “merit” component from FairCo’s original objective. Now, the disparity function for
FairCo (equal exposure) is given by

Dτ (yi, yj) =
1

τ

τ∑
t=1

Expt(yi)−
1

τ

τ∑
t=1

Expt(yj).

FairCo (equal exposure) achieves slightly better performance than the original FairCo, but it follows
the same overall trend and still performs worse than MRet.

Figure 12: Comparison of cumulative number of matches and user retention rate between FairCo
and MRet across different time steps (τ ).

How accurate is MRet as an approximation to the Optimal method? Figure 8 compares the
performance of MRet with that of the Optimal method, which directly maximizes the ranking objec-
tive defined in Eq. 9. Since Optimal requires exhaustive search over all possible rankings to select
the best one, it cannot be applied to large-scale settings due to computational constraints. We there-
fore conduct experiments in a small-scale setting with |X | = 20, |Y| = 20, K = 3, and T = 50, and
compare the performance of the two methods as the time step progresses. As shown in the figure, the
cumulative number of matches and the user retention rate are almost identical. This indicates that
although MRet maximizes a lower bound of the objective function rather than the objective itself, it
achieves sufficiently high approximation accuracy while drastically reducing computation by only
requiring the sorting of item scores.

E REAL-WORLD EXPERIMENTS

Detailed Setup. We describe the training procedure of f and the data employed in this process.
We compute the values of the true user retention probability function f using the cumulative match
counts m from the real data and the user clusters c obtained by k-means. We then sample the
retention label u from a Bernoulli distribution parameterized by f . Finally, we train the predictive
model f̂ with XGBoost using the resulting triples (c,m, u). In practice, we use the XGBClassifier
implementation with 200 trees, a maximum depth of 6, and a learning rate of 0.05.

In the real-world experiments, we set the default parameters to |X | = 1000, |Y| = 1000, K = 5,
n = 5000, T = 3000, ρ = 0.5, and αk = 1/k. Each experiment is repeated 10 times with different
random seeds, and we report the average results.

Additional Results. We report and discuss additional real-world experiment results.
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Figure 13: Comparison of cumulative number
of matches and user retention rate under varying
training data sizes (n) on real-world data.

Figure 14: Comparison of cumulative number
of matches and user retention rate under varying
examination probability functions (αk) on real-
world data.

How does the performance of MRet change as training data size increases? Figure 13 shows
the results when varying the number of training data sizes n used to train the function f̂ that predicts
user retention probability. As the amount of training data increases, the performance of MRet grad-
ually improves, and when n = 16000, it achieves a performance level comparable to MRet (best),
which uses the true function f . Even in the case where training data is limited (n = 2000), MRet
significantly outperforms FairCo and Uniform, and performs at least on par with Max Match. These
results indicate that MRet is effective even with relatively small amounts of training data.

How does MRet perform under variations in examination probability? Next, Figure 14 shows
the results under varying examination probability functions. We consider four types of examination
functions: ‘exp’ corresponds to αk = 1/ exp(k), ‘inv’ to αk = 1/k, ‘log’ to αk = 1/ log2(2 +
k), and ‘uniform’ to αk = 1. The figure is arranged so that values on the right correspond to
more uniform examination probabilities across positions, while values on the left indicate stronger
position bias, where higher-ranked positions receive substantially more attention. MRet consistently
outperforms existing baseline methods across all examination probability patterns. This confirms
that MRet exhibits high robustness to variations in the examination probability.

Figure 15: Comparison of cumulative number of
matches and user retention rate under varying the
ratio of male and female users receiving recom-
mendations (ρ) on real-world data.

Figure 16: Comparison of cumulative number of
matches and user retention rate under large-scale
user settings on real-world data.

How does MRet perform under variations in group recommendation ratio? Figure 15 shows
the experimental results when varying the ratio ρ, which controls whether male or female users
receive recommendations on the platform. When ρ = 0, the system recommends only male users to
female users, whereas when ρ = 1.0, it recommends only female users to male users. The results
suggest that MRet performs well even under extreme settings where only one side (either male or
female) receives recommendations. While this experiment is based on online dating data, it also
implies that MRet is applicable to more general matching scenarios, such as job matching, where
one side is always the recipient of recommendations (ρ = 0 or ρ = 1.0). This demonstrates that
MRet is broadly applicable to a wide range of matching problems.
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How does MRet perform under large-scale user settings on real-world data? To examine how
MRet performs in large-scale user settings, we conduct an experiment on real data with nx = ny =
5000 in Figure 16. We observe that even in this substantially larger setting, MRet remains the
best-performing algorithm.
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