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ABSTRACT

Active feature acquisition (AFA) is a sequential decision-making problem where
the goal is to improve model performance for test instances by adaptively se-
lecting which features to acquire. In practice, AFA methods often learn from
retrospective data with systematic missingness in the features and limited task-
specific labels. Most prior work addresses acquisition for a single predetermined
task, limiting scalability. To address this limitation, we formalize the meta-AFA
problem, where the goal is to learn acquisition policies across various tasks. We
introduce Learning-to-Measure (L2M), which consists of i) reliable uncertainty
quantification over unseen tasks, and ii) an uncertainty-guided greedy feature ac-
quisition agent that maximizes conditional mutual information. We demonstrate a
sequence-modeling or autoregressive pre-training approach that underpins reliable
uncertainty quantification for tasks with arbitrary missingness. L2M operates di-
rectly on datasets with retrospective missingness and performs the meta-AFA task
in-context, eliminating per-task retraining. Across synthetic and real-world tab-
ular benchmarks, L2M matches or surpasses task-specific baselines, particularly
under scarce labels and high missingness.

1 INTRODUCTION

Machine learning (ML) methods typically operate under the assumption that all input features are
available at inference time. However, this assumption does not hold in scenarios where acquiring
certain features involves significant costs or risks, such as medical diagnostics (Erion et al., [2022).
For example, acquiring imaging data or invasive biopsies may incur substantial financial costs and
pose potential risks to patient safety (Callender et al., 2021). In such cases, there is a need to
adaptively determine the value of feature acquisition against its costs to make informed decisions.

Active feature acquisition (AFA) addresses this problem by learning an agent to adaptively select
which features to acquire or observe for each sample (Ma et al.,|2018];|Shim et al., 2018} von Kleist
et al., 2023b)). AFA is naturally a sequential decision-making problem, where conditioning on past
feature acquisitions can inform collection in the future. Prior AFA work uses either greedy acqui-
sition strategies that maximize an estimate of the one-step expected information gain (Ma et al.}
2018;|Gong et al.,[2019; |Covert et al., 2023} |Chattopadhyay et al., 2023 Gadgil et al., 2023)), or RL
approaches that learn a value (or Q-) function to improve multi-step feature acquisition (Shim et al.,
2018; |Kachuee et al.,|2019; |Janisch et al., [2019; |Li & Oliva, [2021)).

Most AFA methods suffer from common bottlenecks. First, they are trained on retrospective data,
which consists of intrinsically missing features (von Kleist et al., [2023aib)). For example, clinical
data are often incomplete and shaped by clinical protocols, resource constraints, workflow deci-
sions, and patient behavior. This leads to systematic missingness in features across subpopulations
and limited task-specific data labels (Jeanselme et al.,|2022; |Chang et al.| 2024} Zink et al., [2024).
Consider chest-pain triage in the emergency department, where the guidelines typically prioritize
first-line laboratory tests, followed by additional invasive testing or X-ray studies, leading to miss-
ingness dependent on past observations. Agents trained on retrospective data may encode the same
acquisition bias. Imputing features will not calibrate on the informativeness of the feature; likewise,
models that ignore missingness without modulating uncertainty will replicate missingness patterns.
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Meta-Active Feature Acquisition Across Tasks
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Figure 1: Schematic of the meta-AFA problem. The model can acquire lab measurements for mul-
tiple tasks, Tasks 1-3. The input is a sequence of past observations together with a query, and the
policy 7y outputs the next greedy acquisition action. The updated query is then used for the follow-
ing step. After k acquisitions, the predictor f produces the final label prediction.

Second, existing AFA methods target single predetermined tasks rather than a general capability
aligned with the foundation model paradigm (Bommasani et al.,2021)). Prior approaches also rely on
complex latent-variable models with heuristic approximations to make generative modeling feasible.
These methods typically obtain uncertainty through posterior sampling, which is often unreliable,
especially in high-dimensional settings (Ma et al., 2018 [Li & Oliva, [2021} [Peis et al.| |[2022).

To address these challenges, we introduce Learning-to-Measure (L2M), a new in-context AFA
approach building on the uncertainty quantification capabilities of pre-trained sequence models
(Nguyen & Grover, 2022} Ye & Namkoong|, 2024} Mittal et al.,2025)). At its core, L2M couples un-
certainty quantification with a greedy decision policy for selecting the next acquisition action. L2M
operates directly on datasets with retrospective missingness and solves the AFA task in-context, pro-
vided the missingness satisfies certain assumptions such as missing at random (MAR) and the data
contains sufficient coverage of acquisitions.

L2M consists of two stages: (i) pretraining across tasks with missingness to quantify predictive
uncertainty of a target variable given partially observed inputs, and (ii) meta-training a policy net-
work to greedily acquire features that reduce the predictive uncertainty via a smooth, differentiable
approximation to information gain, enabling end-to-end optimization. We implement the first state
using sequence modeling over data sequences to capture reliable beliefs under missingness. This de-
sign yields a principled approach to sequential information acquisition across tasks. L2M removes
latent-variable approximations and performs calibrated, scalable uncertainty estimation via direct
sequence prediction. Figure[I]depicts the schematic of the L2M framework at inference.

Our contributions are the following:

1. Meta-learning AFA across diverse tasks and missingness patterns: We formalize the problem
of meta-learning AFA policies across (time-invariant) tasks with diverse input data distributions and
retrospective missingness mechanisms.

2. Combining uncertainty estimation and decision-making via sequence modeling: We pro-
pose L2M, a scalable transformer-based approach for end-to-end sequential information maximiza-
tion. The sequence model provides reliable uncertainty estimates for partially observed inputs and
leverages these estimates to predict the next optimal feature to acquire. To learn the policy, we
design a smooth, differentiable approximation of the acquisition problem, resulting in a fully auto-
differentiable training framework.
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3. Robustness to limited labeled data and missingness: We empirically show that our meta-
learning-based approach, L2M, outperforms task-specific baselines across tasks of varying sizes
and degrees of missingness, particularly when labeled data is scarce and feature missingness is high.

In the following, we first introduce the meta-AFA problem setup in Section [3] Next, we extend
meta-AFA to settings where tasks can contain missingness and provide identifiability conditions
that allow the optimization problem to be solved using observational data (Section [3.1)). Section ]
presents the main components of our proposed solution. We introduce our meta-learning framework
using a sequence modeling approach in Section4.1] Section[d.2]outlines our proposed loss function
and the model training procedure.Section [5]demonstrates the empirical utility of our method.

2 RELATED WORK

Active Feature Acquisition (AFA). Time-invaryiant AFA methods fall into two main classes:

Greedy AFA policies: These methods iteratively acquire features by greedily maximizing the ex-
pected information gain (Ma et al.| 2018} |Covert et al.| 2023} |Chattopadhyay et al., [2023). For
example, Ma et al.| (2018)); |Gong et al.| (2019); |Chattopadhyay et al.| (2022) use generative mod-
els to impute potential outcomes of all possible acquisitions and select the greedy action. |Covert
et al.| (2023)) uses a policy network to directly predict the greedy action, guided by the loss of a
separate prediction model. |Gadgil et al.[(2023)) learns a value network to estimate the information
gain directly. Theoretical work have shown that greedy policies achieve near-optimal performance
compared to non-myopic ones under certain conditions (Golovin & Krause}|2011;/Chen et al.,[2015]).

MDP-based policies. An alternative view treats AFA as a sequential decision-making problem ad-
dressed using reinforcement learning (RL). Model-based approaches learn a generative transition
model using synthetic rollouts for data-efficient policy learning (Zannone et al., 2019; [Li & Oliva,
2021). Model-free approaches directly learn value or Q-functions from offline data, selecting fea-
tures that maximize expected returns (Shim et al.| 2018} |[Kachuee et al.,|2019; Janisch et al.,[2019).
MDP-based approached are prone to model misspecification, given the challenges of offline value
approximation and credit assignment over long acquisition trajectories (Erion et al., [2022).

AFA under retrospective missingness. Few studies examine how missingness mechanisms in ret-
rospective data affect feature acquisitions (Ma & Zhang, 2021; von Kleist et al., [2023b). Most
prior work either assumes fully observed data or uses simple imputation strategies such as con-
ditional mean imputation, inducing statistical bias in policy evaluation (von Kleist et al., 2023b).
Model-based approaches provide a principled alternative when missingness assumptions hold, but
face practical limitations: task-specific generative models are hard to estimate with limited data,
particularly in high dimensions (Zannone et al.| 2019;|Li & Olival, [2021};2024)).

Meta-learning via Sequence modeling. Our proposed solution leverages sequence modeling, by
framing feature acquisition as an in-context decision-making process rather than relying on explicit
generative modeling assumptions. There is a growing body of work formalizing the connection
between using sequence models for meta-learning and in-context learning (ICL), and Bayesian in-
ference (Miiller et al., [2021; Nguyen & Grover, 2022} |Ye & Namkoong| [2024). Other work has
applied this framework to decision-making problems (Lee et al., 2023}; |[Lin et al.| 2023}; Tianhui Cai
et al.,2024). The AFA problem differs in that we do not directly observe the reward-maximizing
action and must learn policies strictly from offline data.

3 THE META-ACTIVE FEATURE ACQUISITION PROBLEM

We consider a supervised learning task where X € R? is a d-dimensional feature vector and Y € R
is the target variable. We assume the features are time-invariant, i.e., the values of X do not evolve
over time. We let X ; denote the value of feature j and X denote the baseline features that are always
observed. At each acquisition step ¢t € {1,...,T}, the agent selects an action A; € {1,...,d},
indicating the index of the next feature to acquire. We write X, = {Xo,..., X4, } for the set of
acquired features up to and including step ¢. Throughout this work, realizations of random variables
are written in lowercase.
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Meta-active feature acquisition (meta-AFA) trains an agent to acquire features sequentially with the
goal of efficiently reducing prediction error for a given task distribution. We assume that each task
T is drawn from an unknown distribution p(7). For each task 7, data pairs (X,Y) ~ p7(X,Y) are
sampled from the task-specific distribution. Given a new task, meta-AFA algorithms seek to sequen-
tially select, at each step ¢, the next feature to acquire based on the partially available information
X,, to efficiently reduce the predictive uncertainty on the target variable Y. We focus on settings
with a fixed budget k£ < d and (without loss of generality), uniform feature costs.

One common approach to (task-specific) AFA is to acquire features greedily based on the expected
reduction in uncertainty, an approach rooted in Bayesian experimental design (Bernardo, [1979).
At each step ¢, the method acquires the feature that maximizes the conditional mutual information
(CMI) with the target:

Ir(Y; X5 | X, =2,) 2E [DkL(pr(Y | X, UX) [ pr(Y | X)) | X, = 2] . (1

This requires modeling one-step conditional probabilities p7(X;|X,), pr(Y|X,,X;) and
pr(Y|X,). In practice, the historical data often contain incomplete observations, complicating the
estimation of these conditionals.

3.1 TASKS WITH RETROSPECTIVE MISSINGNESS

We refer to inherent missingness in the historical data as ‘retrospective missingness’, where miss-
ingness mechanisms and rates vary across tasks, which can impact AFA performance. We extend the
meta-AFA problem to settings with retrospective missingness. Essentially, CMI is only identifiable
and can be estimated from data retrospective missingness under certain conditions. We outline these
conditions using causal identifiability (Rubin, [1976), which allows us to formalize the conditions
under which relevant underlying distributions (to estimate CMI) can be estimated from data with
retrospective missingness. We define R € {0, 1}¢ as the binary missingness indicators correspond-
ing to each feature (Nabi et al.,2020). X (1) is the “potential outcome” of X, had R = 1 been true,
i.e., the measurement had been observed. For a given X;(1) € X(1) and corresponding R; € R,
each variable is set by the following deterministic feature revelation mechanism:

v [ X iR =1
I iR =0

The CMI estimand (Equation ) can be equivalently denoted as:
IT(V; X; | Xy = 2y) = Ir(Y; X;(1)[ X, = zy), (2)

and needs to be estimated under p7(X(1),Y), which is the reference distribution, i.e., the joint
distribution in the absence of the missingness. The identification of p7(X(1),Y") from data (with
missingness) depends on the missingness mechanism, given by the following assumptions:

Assumption 3.1. (Missing at Random or MAR) R; 1l X;(1) | X,.
Assumption 3.2. (Exclusion Restriction) R; 11 'Y | X;(1), X,.
Assumption 3.3. (Positivity) p(R; = 1| X, = x,) > 0 for all values z, and j € {1, ...,d}

Intuitively, Assumption[3.T|posits that any systematic differences between observed and missing data
can be fully explained by the observed features, rather than by unobserved confounders. Assumption
[3.2 states that measuring a feature does not directly affect the target variable. Assumption [3.3]
requires sufficient data coverage of each feature acquisition action. These assumptions are analogous
to standard assumptions in off-policy evaluation, and yield the following identification result.

Theorem 3.4. (Identification of CMI with retrospective missingness) The CMI for any subset X, C
X given by IT(Y; X;(1)|X, = z,) is identified when p1(X (1),Y') is identified. Under Assumption
-1 (MAR), [3.2)(exclusion restriction), and [3.3|(positivity), the CMI can be estimated by

Ir(YV; X;(D)| Xy = 2y) = I7(Y; XX, = 24, Rj = 1) 3)



Under review as a conference paper at ICLR 2026

The proof is provided in Section Intuitively, if the joint p7-(X(1),Y) is identified, then any
functional of the joint is identified. However, estimating these functionals directly from complete
cases (I; = 1) at step t is valid only under the posited assumptions. The restrictive nature is
due to targeting pointwise identification of the greedy action for every z,. In practice, this level of
generality is often unnecessary as some states are never encountered.

4 METHOD

‘We now present our end-to-end AFA framework (LL.2M) based on amortized optimization and meta-
learning a greedy policy with a sequence model parameterized using transformers (Vaswanti et al.,
2017). We note that our framework can leverage transformers trained from scratch, or pretrained
large language models (LLMs). We begin by introducing our proposed Bayesian analog of the
CMI objective using sequence models in Theorem However, the CMI objective is generally
intractable to compute directly. To overcome this, we formulate a tractable surrogate optimization
problem that approximates the CMI objective. We then relax the discrete action-selection problem
with a smooth, differentiable approximation, which allows us to directly learn the policy using
gradient-based methods.

4.1 META-LEARNING VIA SEQUENCE MODELING

Formally, in meta-AFA, we consider the set of all test-time query samples with partially observed
features, {X §‘1)}{1V:m 11. For each query instance g, our goal is to select the next acquisition action

based on their currently observed features X §‘1) and task-specific context of historical samples Dy =
{Xxtm RLm y1lmY The key challenge of meta-AFA is to model the joint predictive distribution,

p(Outcomes | Partial Observations, Historical Data) = p(Y™ 1V | xm+EN poy

with sufficient flexibility while while providing principled uncertainty estimates to guide feature
acquisition. Sequence modeling offers a compelling solution: instead of explicitly modeling la-
tent variables, autoregressive training over data sequences, together with invariance-inducing in-
ductive biases (Definitions [A7), provides a practical way to approximate posterior inference
from observations alone, building on prior works that have formalized this connection (Nguyen &
Groverl, 2022; Ye & Namkoong| [2024; Mittal et al., 2025)). We note that the sequence model can be
meta-learned using synthetically generated tasks (Miiller et al.l [2021)), or using real-world datasets
(Gardner et al., [2024).

Sequence modeling decomposes the joint predictive prediction over query samples into a product of
one-step conditional probabilities:

N
p(Ym+1:N | X?’L-FI:N’DT) — H p(Y(‘Z) |X§‘I)’ Zl:m)
g=m-+1
where we denote the context for each query sample as Z1 = {X1m RIm ylml and assume

conditional independence across queries given context Z™ and inputs X' Q”H’N . Intuitively, by
conditioning on a variable-length context containing historical data, the sequence model infers the
task-specific mechanism from context and amortizes uncertainty estimation across partially ob-
served queries. Once uncertainty is exactly recovered via the one-step conditional probabilities,
the ideal greedy strategy is to acquire the feature with the maximum CMI given by

LY@ X | XY =z, 28 = 2 R = 1) “)
Directly maximizing this CMI is impractical because it requires access to the true step-wise con-

ditionals, and expectations over all candidate feature X ](-q). In the following section, we detail our
methodology for constructing a surrogate optimization problem using learned approximations.

4.2 PoLICY OPTIMIZATION

Rather than computing the CMI exactly, we adopt the practical approximation of|Covert et al.| (2023
Prop. 2): optimize the one-step-ahead predictive loss achieved by a predictor f, after acquiring a
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candidate feature X;. We train a policy mg to directly minimize this one-step loss, providing a
tractable surrogate for the CMI objective.
To facilitate gradient-based optimization, we consider stochastic policies that output a categorical

distribution over actions o (- | X §q), Ztm™) e A?"!. Additionally, we restrict the learned feature
acquisition policy to “blocked policies”, ensuring that features unavailable during training are not
sampled by the policy. This removes the need for full generative modeling of the joint p(X (1),Y)
to sample missing potential outcomes (von Kleist et al., [2023b)):

Definition 4.1 (Blocked Policy). A blocked policy 7y is a stochastic policy over feature acquisitions
that satisfies the following condition: at each step t, it assigns non-zero probability only to features
that have support in retrospectively observed data, i.e.,

mo(j ) =0 if R;=0,
where R; = 1 indicates that feature j is available.

Having restricted attention to blocked policies, we now define the surrogate objective used to jointly
train the policy and predictor. Denote the state for the m-th sample in the sequence as S7" =
(X7, A7), and A, is an action sampled from 7y (5™, Z*™). Let the per-action expected loss be

Has gl 2 = By s [((fal- |27 HUXE 21, v,
lem',Ratil

where we use ¢ to denote the log loss (negative log likelihood) for evaluating the predictor. Con-
cretely, the sequence prediction loss is defined as

N-1
L(fy,m9) = Z Z Egm+1 gum g {EAW%(-s;“*l,zl:m)[J(At%X?@H» Zl:m)}] SN )
T~p(T) m=1

Our main theorem shows that minimizing the above sequence loss recovers the greedy CMI actions.
Theorem 4.2 (Surrogate optimality for greedy CMI with context). Consider the sequence modeling
objective in Eq. 5| with cross-entropy loss. Let Z''™ = (X1™ RY™ Y1™m) be the task-specific
context and X tm'H:N the partially observed features for the N — m query points at step t. Then any
Joint minimizer (0*, ¢*) of L satisfies:

1. Per-query Bayes-optimality. For each g € {m+1,...,N},
For (-] X, Z0m) = p(y@ | X, z0m),

2. Step-wise CMI-optimal acquisition for every query. For each query index q €

{m+1,..., N} and for @,Eq), 25™) the policy places mass only on actions that maximize
CMI:

jeag max 1(YW;X0| X0 =20, RO =1, 71m = 2tm).

atiRq, =1

(9) 1:nL)

If the maximizer is unique, 7o (- | ;" , 2 is a point mass on that action.

The proof is an extension of the result in (Covert et al., 2023) and is provided in Appendix @

Direct optimization of Equation[3]is non-differentiable because A, is sampled from a categorical dis-
tribution. To obtain gradients, we use a Gumbel-Softmax relaxation of the discrete index sampling
operation a; ~ Ty, which reduces variance of the gradient estimate by introducing bias (Maddison
et al.,2016) (compared to REINFORCE (Ful 2006; |Williams,|1992)). We denote the sampled index

Ay~ 7g(- | ST 2V as Ay = go(n; ST, Z1™) and reparameterize Equation|[3]as follows:
Vgﬁ(a, ¢) = ES’Z”“H,ZL"",R IEanumbe](O,l)J(let; X;n+1a Zl:m) ) (6)

where 1 ~ Gumbel(0, 1) is the Gumbel distribution and gg(n) = softmax(log”%"'"). The softmax

computation smoothly approaches the discrete argmax computation as 7 — 0 while preserving the
relative order of the Gumbels, log 79 + 7.
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While our method is agnostic to the specific parameterization of sequence models, we use a modified
Transformer model with a separate predictor and policy head. Relative to a standard Transformer,
we (1) modify the input representation by concatenating masked input features to the label (or padded
zeros), (ii) remove positional embeddings, and (iii) replace causal masking with an alternative atten-
tion masking structure during both training and inference. The details of our architecture are given

in Appendix [A4]

Training In practice, our pretraining consists of two stages. Since the optimal predictor fy is
independent of the policy 7y, we first pretrain f, on random feature subsets X, for any o C [d],
then jointly training the model and policy head. At each training step, we sample a batch of tasks
from p(7) and treat them as randomly permuted sequences. Details of the training procedure are
provided in Algorithm[T]and Algorithm2](Appendix[A-4). Figure[2|(left) summarizes the procedure.

Inference After pretraining, the sequence model 7y is deployed for online AFA decision-making.
Algorithm [3] (Appendix [A-4) summarizes the feature-acquisition procedure for unseen query sam-
ples in a given task, which requires no gradient updates (see Figure 2] (right)).

Offline pretraining with semi-synthetic tasks Inference-time Active Feature Acquisition
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Figure 2: (On the left) Pretraining procedure for the predictor f; and policy ms. The modified

transformer encoder model takes as input task-specific context and partially observed states X,SJ )
and learns to predict outcomes Y'(/) and the optimal greedy action AU) via a sequence loss. (On
the right) The trained transformer model is able to predict labels and optimal actions for new unseen
query tasks in-context. The attention mask to enable handling different context lengths used in the
Transformer is given in Appendix [A-4]

5 EXPERIMENTS

Datasets We aim to demonstrate the feasibility of our L2M framework across multiple tasks and
diverse applications. While we provide comprehensive experimental details in the Appendix [A25]
we provide a brief overview in this section.

First, we train and evaluate on fully synthetic regression tasks sampled from a Gaussian Process
(GP) prior. Each task is sampled from GPs with randomized RBF kernels 7; ~ GP(m, k) with
m(xz) = 0 and contains d = 10 features for acquisition. To simulate incomplete observations,
features are randomly dropped according to a missing completely at random (MCAR) mechanism.
We sample evaluation tasks of varying context lengths from GPs with RBF kernels, as well as Matern
kernels, which are unseen during training (Matern).

Next, we evaluate L2M on realistic tasks derived from real-world tabular datasets: Metabric (Curtis
et al.,[2012), MiniBooNE (Roe et al., [2005), MIMIC-IV (Johnson et al.,|2023)). For these datasets,
during pre-training, we construct semi-synthetic classification tasks where labels are sampled from
Bayesian Neural Network (BNN) priors (Miiller et al.l [2021). The feature distributions for the
training tasks are obtained by sampling real instances and introducing synthetic missingness. We
then evaluate the model performance on test datasets, constructed with varying sizes and degrees
of missingness, where the labels are obtained from the original datasets. This setup preserves real-
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istic feature distributions, enables controlled evaluation across varying degrees of missingness and
sample sizes, and assesses model generalization to tasks with real labels.

To further demonstrate our model’s capability on real datasets, we evaluate L2M on MNIST, where
training task labels are drawn from real binary digit-pair tasks rather than semi-synthetic priors. Im-
ages are divided into d = 20 candidate pixel blocks for acquisition. At each training step, we sample
a binary classification task between two randomly chosen digits, training the model to adaptively dif-
ferentiate between images of two digits in-context. We evaluate the performance on datasets with
varying missingness and sample sizes, using unseen queries.

Baselines Because prior AFA work is task-specific, we compare against AFA methods that train
a separate model for each task. We focus on two greedy, CMI-based approaches: gradient dynamic
feature selection (GDFS (Covert et al.,[2023))), which uses MLPs instead of sequence modeling, and
discriminative mutual information estimation (DIME (Gadgil et al.| [2023)), which trains an MLP
as a value network to estimate CMI directly. To ensure fair evaluation, both L2M and task-specific
models are evaluated on the same held-out tasks and query sets. We also include an RL baseline
using Deep Q-learning (DQN) (Shim et al.l |2018; [Kachuee et al., 2019} Janisch et al.| [2019), but
exclude it from synthetic tasks due to the prohibitive computational cost of learning hundreds of
test tasks. To ensure comparability with greedy strategies, we define the per-step reward as the log
likelihood under the current predictor, and each trajectory terminates when all features are acquired.
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< «
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Figure 3: Left: Improvement in uncertainty estimation relative to baseline task-specific MLP (higher
is better). The L2M approach shows progressively increasing gains as more features are acquired in
the trajectory. Right: Coverage plots comparing MLP and L.2M at various acquisition steps. L2M
also shows robust coverage compared to the MLP at various acquisition steps. Error represents
standard error across 200 sampled evaluation tasks.To ensure a fair comparison, both methods are
evaluated on the same random acquisition trajectories using consistent evaluation tasks and samples.

Results Figure[3|shows the absolute improvement of L2M over task-specific MLP baselines in un-
certainty quantification on synthetic GP tasks, evaluated by log loss and mean squared error (MSE).
Corresponding semi-synthetic and real-world task results are in Appendix Figure [§] Overall, L2M
provides more reliable uncertainty estimates, with larger gains in log loss and MSE as more fea-
tures are acquired. This phenomenon likely arises because, at later acquisition steps, retrospective
missingness reduces joint data coverage for the required feature sets, which makes MLPs struggle
to learn. In contrast, L2M leverages its learned prior to mitigate reduced coverage. Improved uncer-
tainty quantification is particularly important, as it directly translates to better downstream feature
acquisition performance as shown in both the RBF and Matern kernel tasks in Figure [

Figure [ demonstrates improved log loss of L2M over all relevant baselines on evaluation tasks
across datasets (additional metrics are shown in Appendix Figure[d). The magnitude of L2M’s gains
over baselines varies by dataset, depending on how well the pretraining task prior aligns with the
downstream task. Our adaptive strategies offer only marginal gains over random acquisition on some
real datasets. We attribute this to high task complexity and limited training data, which together limit
the benefits of adaptivity. Nonetheless, the benefit of reliable uncertainty quantification, particularly
leveraging pretraining on diverse tasks, is clear compared to task-specific AFA. The performance of
task-specific AFA baselines deteriorate as more features are acquired, due to difficulties in learning a
predictor and policy with limited data. Figure [5|demonstrates that L2M delivers the largest benefits
in settings with shorter contexts and higher rates of retrospective missingness. This is especially
useful in healthcare, where labeled data may be limited, and certain measurements may exhibit high
rates of retrospective missingness.
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Figure 4: Acquisition performance quantified by log loss averaged over tasks derived from various
synthetic and real-world datasets. MIMIC-IV demonstrate the ability for a single pretrained L2M
model to generalize to diverse tasks with real unseen labels. The acquisition performance also often
outperforms task-specific greedy and RL approaches.
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Figure 5: Average improvement in log loss (y-axis) for the GP tasks and MIMIC-LOS for a fixed
set of evaluation tasks while varying the number of context samples, and levels of retrospective
missingness in each task (x-axis). Task-specific improvements are averaged over 100 (GP) and 50
(MIMIC) tasks. L.2M is robust to settings with fewer shots (labeled samples) and with higher rates
of feature missingness. L2M also achieves length generalization for the GP task, as it is only trained
on sequences of 500 samples.

6 DISCUSSION

In this work, we formulate the meta-AFA problem and present an end-to-end differentiable
uncertainty-driven approach for greedy feature acquisition that performs in-context learning across
tasks. We show significant improvement using L.2M in benchmarks and realistic healthcare datasets,
demonstrating robustness under limited labeled data or significant retrospective missingness.

Limitations (i) Our approach relies on sufficient offline action coverage and MAR, an untestable
but realistic assumption about the missingness mechanism. Future work will relax these assumptions
and investigate whether our uncertainty estimates can serve as informative bounds or diagnostics for
violations of positivity or MAR (Jesson et al.l 2020). (ii) Empirically, we demonstrate the utility
with simple synthetic or real task priors in pre-training. Scaling to diverse, large-scale real datasets
across domains is deferred to future work, highlighting the need for principled prior-specification
procedures to enable scalability and broad applicability. (iii) Finally, we restrict attention to time-
invariant settings; extending to time-varying dynamics is a crucial aspect of future work.
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Ethics Statement Our paper is a technical proof-of-concept. While we demonstrate evaluations
in healthcare, additional evaluation regarding fairness and generalizability is necessary before this
method is deployed in the real-world.

Reproducibility Statement We evaluate on publicly available datasets. All code to reproduce
our experiments will be publicly available, and a link to anonymous source code is provided in Ap-
pendix[A.5.8] Details of the experimental design and hyperparameters are outlined in Appendix[A.5]
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A APPENDIX

A.1 PROOF OF THEOREM [3.4]

Theorem [3.4 The CMI objective under missing data is given by
I(Y; X;(1) | X,)

_ p(Y, X;(1) \L)

= o e | Ko

_ , o PO XG(1), X)p(X; (1))

—Y,%j(l)p(Y | X;(1), X,)p(X;(1)|X,) log oV | X)p(X, (1) | X,)

_ _ o _ 1o PO TXG(1), Xy By = Dp(X;(1)|1X
_Y’gl)p(mxj(l),xt,& Dp(X;(1)|X,, Rip1 = 1) log AP ATEE OB

Y | Xj?zt’Rj = 1) (X |Xt>R = 1)
p(Y | Xy)p(X; | Xy)

p
> p(Y | Xj, X, Ry = 1)p(X;|X,, R; = 1) log (

Y, X;
p(Y,X; | X, R =1)
= 3 (VX | X, Ry = 1)log
2N KR, PV 1 Xp(%; | X0 By = 1)

= I(Y;Xj |Xt7Rj = 1)7

The third equality holds due to the MAR assumption R; 1L X;(1)|X, and exclusion restriction (no
direct measurement effect) R; 1l Y| X;(1),X,. Positivity ensures all conditional distributions are
well-defined.

A.2 PROOF OF PROPOSITION[A.2]

We begin by showing that minimizing the surrogate one-step loss given in Equation [/ for a single
task recovers the greedy CMI actions. Our result is a slight modification from the result shown in
(Covert et al., 2023)).

The surrogate loss for a single task 7 ~ p7 is given by:

L(0,¢) = Es, a,~r(150.R |Exa, v | X,.0a, =1 [{(fo(- | X, UX4,),Y)] @)

where states are denoted as S; = (X, A,) and the acquisition action is sampled from the blocked
policy A; ~ 7o(- | St).

Remark A.1. For this theorem, the loss can average over the state distribution at step ¢, denoted
d7°(- | T), obtained by rolling out the (blocked) policy 7y for ¢ steps from the initial law do(- | T
induced by p7(X, R,Y). The choice of d; is flexible (with caveats) and should have sufficient
overlap with the intended deployment state distribution. Note that the per-state argmax (the optimal
acquisition action at each step) does not change regardless of the outer state distribution.

Proposition A.2. (Surrogate optimality for greedy CMI) For a given task T, consider the population
objective (Eq. [7]with cross-entropy loss). Then any joint minimizer (0*, ¢*) of L satisfies:

1. ¢* is Bayes-optimal: fu (- | X,) = pr(Y | X,);
2. my« places all its mass on actions that maximize the conditional mutual information

j € arg max IT(Y;Xj | X, =z, R; = 1),
JiR;=1

i.e. mp« (7 | z,) > 0 only if j is a greedy-CMI maximizer. If the maximizer is unique, To« is
a point mass on that action.

Proof. Part1 - Proof of Bayes-optimality:

14
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We fix 0 and consider the predictor. We begin with a standard fact: under cross-entropy loss for a
discrete binary outcome, the conditional risk is minimized by the true conditional. In other words,
to minimize expected loss the model f; needs to closely approximate the true distribution p. We
show that this holds agnostic to the choice of T

Lemma A.3 (Bayes optimality under cross-entropy). Let £(q,y) = —log q(y). Then the minimizer
@* satisfies
for(Xy) = arg ;ng Eyix, [0(fs(- | X3), V)] =p(Y | X,).
Jo "

Furthermore, this minimizer does not depend on 6. In particular, any fg« that matches the true
conditional for all such (z,,x;) is a global minimizer for every policy.

Proof. We denote p(i | X,) = p; as the conditional class probabilities and f; = fy(i | X,) as the
learner’s predicted class probabilities, where i € {0, 1} are the binary class labels. The conditional
risk decomposes as

1
Eyix, [((fs(- | X),Y)) == pilog fi
=0

1 1

Di

=~ pilogpi + Y pilog Ut = H(Y | X,) +KL(p(Y]X,) || £6(Y]X,)).
i=0 i=0 fi ——

Constant

Part II - Proof of maximizer equivalence

Once we have Bayes optimality with the learner at ¢*, we can rewrite the inner risk as the expected
conditional entropy using the following lemma:

Lemma A.4 (Risk reduces to (expected) conditional entropy at ¢*). With £(q,y) = —log q(y) and
for asin Lemma@ for any task T and step t, any history x, and retrospective feature availability
T

By, x,z,.8,=r; L(fo (- | 2, U X;),Y)] = Ex o, 0, =r, [ HT (Y | 2, X;) ]

Consequently, the policy-evaluated inner term in equation[7]is

B, o (-ls0) BXo, 2, Ray =1 | HT(Y | 24, Xa,) .

Proof. Performing the similar decomposition as in Lemma[A.3]
By x|z, [((for (- | 2,0X;),Y)]
= Exjla,.r; [EYIQ“XJ [ —log fo- (Y | 2y, Xj)]]
= B e, [TV |2 X,) + Ko7 (Y |2 X) | for (V| 21, X))
=Ex;ja,.r, [HT(Y | 20, Xj) ]

Where the first equality follows from iterated expectations. In the last equality, the KL term vanishes
at o*. O

Now, we consider the loss in equation[7} Plugging ¢* and using Lemmal[A 4| for the given choice of
task 7,

L(0,9%) = ESt,R|:]EAt~7”rg(-|st) Ex,, |z, 0, =1 [HT(Y | 24, Xa,) ]

blo;ked Z Z p(st’r) Z ﬁg(at | St) EX% |z,, Ra,=1 [HT(Y | &tht)]

st re{0,1}4 {at:Ra, =1}
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where {a; : R,, = 1} is the set of available features at step ¢. For fixed z,,
> m(aclse) Ex, o, Ro,=1[HT(Y | 24, Xa,)]
at€{as:Rqy =1}
is linear over the simplex on {a; : R,, = 1} and is therefore minimized by placing all mass on

ar min Ex |z 1 Hr (Y | 2, Xa,)] -
8 e in ) Ex e R, HT (Y | 24, Xa,)]

Since H (Y | z,) does not depend on ay,

ar min Ex |z 1 Hr(Y | z,, X4, )] = ar max I+ (Y; Xq, | 24, Re, = 1),
8 oty EXa e e, [Hr (Y [ 24, Xa,)] I 7( | z, )

because
IT(Y; X, |24, R, = 1) = Hr (Y | z,) — EXa.t Igt,Ratzl[HT(Y | 24, Xa,)] -

If the maximizer is unique, the minimizer 7y« (- | s¢) is a point mass on that action. O

A.3 PROOF OF THEOREM [4.2]

Our main theorem is an extension of Proposition[A.2]to a Bayesian setting, which we approximate
using sequence models.

We leverage the following conditional independence assumption, which improves tractability by
removing the need to fully model the joint via an autoregressive factorization.

Assumption A.5 (Conditional independence across queries). Given the context Z'™ and the per-

query partial inputs X TH:N , the query points are conditionally independent:

N
p(Ym+1:N |X;n+1:N, Zl:m) _ H p(Y(q) ‘XEQ)7 Zl:m) )
qg=m-+1

Theorem [E[Surrogate optimality for greedy CMI with context] Consider the sequence modeling
objective in Eq. |5| with cross-entropy loss. Let Z1'™ = (X1m Rlm yLm) pe the task-specific

context and X' ;"H N the partially observed features for the N — m query points at step ¢. Then any

joint minimizer (6*, ¢*) of L satisfies:
1. Per-query Bayes-optimality. For each ¢ € {m+1,..., N},
For (-1 X490, Z0m) = p(Y@ | X37, Z1m).
Consequently by assumption ,
for (- |XT+1:N721:m) = p(ymHLN |XF+1:N721:m)

2. Step-wise CMI-optimal acquisition for every query. For each query index ¢ €

{m+1,..., N} and for (gl(f), 2™, the policy places mass only on actions that maximize
CMI:

Jj € arg max I(Y(Q);Xl(l‘f)

at:Ra,=

Xi‘]) — QSI)’ Rz(z(i) =1, Zl:m — Zl:m) )

If the maximizer is unique, g« (- | g§Q)7 2™ is a point mass on that action.

Part I - Proof of Bayes-optimality:
We first fix 6 and consider the predictor. The loss is given by

f¢77r9 Z ZESnH»l Zlm R|: Atww(‘3m+1 Z1: 7”)[ (At;iln+17zl:m)} ]
T~p(T)m
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where
L om4+1 _1: _ m—+1 +1 1: +1
J(ag; 2" 2™ = EX;Y;+11)/T‘VL+1‘§:7L+17 {é(]%( | zy UX; ™, z ™), Ym )}
zl:afn7 Ratzl
is the per-action expected loss.

We show [1] by showing that to minimize expected loss, fs needs to closely approximate the true
distribution p, analogous to Lemma[A3]

Proof. Without loss of generality, we fix the context length m. We consider the minimizer ¢* of the
loss summed over each query ¢ € {m + 1,..., N}. Lemmam applied to each query shows that
this loss recovers the per-query conditional i.e.

f¢*(' |X§Q)7 Zl:m) :p(Y(q) ‘XEQ)7 Zl:m).

We now show that the loss minimizer also recovers the joint conditional

N
Z Ey<q) ‘ng)7zl:m |:£(f¢*( | XEQ)’ Zl:m)7Y(q))]

g=m+1

N q :
change of measure Z p(Y(q) | Xﬁ )7 z! m)
= Ey(q) ‘XIYL+1:N.,ZI:"L

- p(Y@ | XN Ztm) log fr (Y@ |X§Q),Zlim)}
Ay s

qg=m-+1

i p(Y(q) |XEQ)721:m)

(V@) | X[ HEN | Z1im)

linearity of E

log fy (V) | X;7, 2"™)

Ym+1:N|§;"+1=N’lern [ -
g=m-+1 p

N
CI assumption m
opt @]EYWLH:NK?H:N’ZLM l— Z log f (Y(q) | XEQ)’ Zm)

g=m+1

N
log manipulation .
& manipulat Eym+1:N|§;n+1:N7Z1:m [— log H for (Y(q) ‘ XEQ)’ Zl.m)

g=m+1

factorized predictor

E [ _ 10g fd)" (Ym+1:N | X?H_l:Nv Zl:m)

_ H(merl:N |X?+1:N’lem) +I{]—_‘(p(y*erl:N ‘XT+1:N,ZLm) ||f¢(Ym+1:N ‘X;nle:N’Zl:m))
O

Part II - Proof of CMI-optimal acquisition

Proof. We consider the loss in equation [3} and plug ¢* in and use Lemma [A4] for the sequence
scenario.

We first rewrite the per-action expected loss in terms of the conditional entropy.
L am41 1 *\ m—+1 +1 1: +1
J(ag; 2" 2™ ¢Y) = Exgj+17ym+1|£;n+17 [€(f¢*( | zy UXZZ: 2l ym )}
Zlﬂn7 Ratzl
_ m—+1 m+1 _m+1 _1:m
= ]EX;Y:+17|£;,L+17 |:H(Y | Xat s Lt y 2 ):|

Zl:'m,7 Ratzl

Now we use the same logic as in Theorem [A.2] Plugging the per-action expected loss back into the
total loss:
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L(fpm)= Y Z Egrnt1 gum R[]EAWM( st e [T (A X701, 20, 7))
T~p<T>m 1

Y Y YN e | S Rl s

T~p(T)m=1 :71+1721 :m re{0,1}4 aftirg, =1

Therefore, for each tuple (57", 21™ r), the inner summation

Z ) ( |Sm+1 Zl:m)J(at ’x;nJrl’ 1:m7¢*)

Mo j—
ay’irq, =1

is linear over the simplex on {a}* : r,, = 1} and is therefore minimized when we select the
acquisition action arg min, . J(af"; 2t 21 ). Therefore, the loss minimizer 7o+ places all

mass on the CMI optimal action.
O

A.4 MODEL ARCHITECTURE AND TRAINING DETAILS

The goal is to model the one-step predictive distributions p(Y (@ | X{? = gl ztm —  tm)
also referred to as posterior predictive distributions (PPD). We refer to various previous works for
formalizing the connection between sequence modeling and Bayesian inference (Miiller et al., 2021}
Nguyen & Grover, 2022; [Ye & Namkoong, [2024). We leverage the insight that the sequence model
for performing explicit Bayesian inference must satisfy the following inductive invariances (Nguyen
& Grover, 2022; Ye & Namkoong| [2024)).

A.4.1 MODEL ARCHITECTURE

Definition A.6. Context Invariance. A model fy is context invariant if for any
choice of permutation function 7 and m € [I,N — 1], fa(YHEN| XmHN Zlm)  —
f¢(Ym+1:N|X:n+1:N, Zﬂ(l):‘n’(m))

Definition A.7. Target Equivariance. A model fy is target equivariant if for any

choice of permutation function 7 and m € [I,N — 1], fa(YmHEN| xmHLN Zlm)  —
fd)(Yﬂ' (m+1): N)|X7r(m+1) i (N) Zl m)

We approximate these invariances using a Transformer model (Vaswani et al.| 2017) with several
modifications. For each input query sample 7, the sufficient statistics for the state s} are the partially
observed feature values z! € RY together with the acquisition mask ai_; € {0, 1}¢, which records
which features have been acquired so far. The state is encoded by applying the mask to the feature
vector, z; © ay_;, and concatenating this with the mask itself. Finally, we append a zero vector
of length c to represent the unobserved target outcome Y. The resulting input representation for a
query sample is

Z(Z]ry = [1’; @Q;,l, Qiflv OC] € R2d+c'
For each context sample ¢, the sufficient statistics consist of the partially observed feature values
x' € R together with the retrospective missingness mask r* € {0, 1}, which indicates which
features were collected in the past. We append the observed target outcome y* to form the encoded
representation.

2l = [2" @rt, )yt ] e R?e,

Next, we remove standard positional embeddings and replace the usual causal attention mask with
a custom design, since causal masking does not satisfy the invariances in Definition[A.6] To enable
efficient computation of the autoregressive loss, we also introduce target points into the sequence
during training.
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Attention Mask
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Figure 6: Attention mask used during training with 2 context samples and 3 query samples. Each
query has a paired target sample that shares the same features but includes the observed outcome y
and retrospective mask r instead of zero-padding.

Each input sequence for autoregressive loss computation has length 2N — m and is ordered as

1 m m-+1 N m—+1 N
{ Zatr - -+ Zetxs 2ot s+ - s Zars Zary ,...,zqry}.

Each target point z} shares the same underlying feature vector z* as its corresponding query zéry,
but encodes the retrospective mask ¢ and observed outcome 3* in place of zero-padding.

The attention mask [6] enforces the following structure:
» Context points can attend freely to one another.

» Each target point can attend to all context points and all preceding target points.

* Each query point zéry can attend to context points and preceding target points, but not to
other queries.
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A.4.2 TRAINING

We provide the algorithm for pretraining the predictor in Algorithm [I]and pretraining the policy in
Algorithm 2| The inference procedure is provided in Algorithm

Algorithm 1 Autoregressive training for sequence model f; given p(7T)

Input: Predictor f, Require: Sequence length N, batch size J
1: for until convergence do
2:  for each task Dy = { XN YN RUNY in mini-batch do
3 Initialize the set of observed indices A(l):N , Ay C [d] with always available feature indices
4: fort € {1,...d — 1} do
5: forme {l,..,N—1}do
6 Predict next label using the sequence model:

}A/m+1 ~ f¢( ‘X;m+1,X1:m7R1:m7yl:m)

7: Sample a random feature index j : R;-”“ = 1 to acquire, so A7« AT U {5}
8: end for
9: end for

10:  end for

11:  Compute mini-batch loss f¢ and update parameters ¢ <— ¢ — nV¢i¢
12: end for .
13: return trained model fg

Algorithm 2 Autoregressive training for sequence model 7y given p(T)

Input: Policy 7y, predictor f Require: Sequence length N, batch size J
1: for until convergence do

2:  for each task Dy = {X 1N YN RUNY in mini-batch do

3: Initialize the set of observed indices AS{N , Ay C [d] with always available feature indices
4: fort € {1,...,d—1} do

5: forme {1,..,N —1}do

6: Given the state S" "' = (X7 A7™%1), output action distribution using policy:

Aerl ~ 7T¢9(' | Stm+1,X1:m’R1:m7yl:m)
7: Approximate argmax using straight through gumbel-softmax: Am+1
8: Compute and accumulate one-step loss using the predictor:
E(f¢( | X;nJrl U XA? Xl:m’ Rl:m7yl:m)’ Yerl)

9: Sample a random feature index j : R;-”“ = 1 to acquire, so A"« AT U {5}
10: end for
11: end for
12:  end for . .

13:  Compute mini-batch loss ly and update parameters 6 < 6 — nVyly
14: end for

15: return trained model 7y
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Algorithm 3 Test-time inference procedure for solving an AFA task 7

Require: Pretrained sequence models fy, m9 Input: Samples from Dy = {X1m, Rlim ylm}
and query samples X" feature budget k < d

I: fort € {1,...,k} do

2. forge{m+1,...,N}do

3: Compute 7r9(A§‘I) | X EQ), qujl, D7) and select action

ai = argmax my(a | XEQ),AEQ_)DDT)

Update X Ei)l + x\9 U X,, with chosen action
end for
end for
: Return: Predictions for all test samples in task 7

Vie fo(| XiDr), Vie{m+1,...,N}

AR AN

A.5 EXPERIMENT DETAILS

A.5.1 DATASETS

For each dataset, we construct two disjoint splits: a training set of size ny.in and a test pool of size
Neest- FOr each dataset, we specify three components:

* Baseline features (X): features that are always observed at the start of an acquisition
trajectory.

* Acquirable features (X,,): candidate features available for sequential acquisition.
* Label space (Y): the outcome variable or class labels used for evaluation.

1. Metabric (nga, = 1,000, ey = 898):
Xo ={age at diagnosis}, X,; ={ccnbl, cdkl, e2f2, e2f7, stat5b, notchl,
rbpj, bcl2, egfr, erbb2, erbb3, abcbl}.
Y € {Luminal A, Luminal B, HER2-enriched,
Basal-like, Normal-like, Claudin-low}.

2. MiniBooNE (14, = 5,000, ney = 10,000):
X = {Feature 1, Feature 17, Feature 23, Feature 32, Feature 3,
Feature 27, Feature 12, Feature 4, Feature 25, Feature 2}.
Y e{0,1}.
3. MNIST (rain = 30,000, nese = 30,000):

Xm = {block,0,4, block_1_6, block_2_2, block_3.5, block_0_3,
block-0_2, block 5.2, block_4_6, block_ 5.0, block_4_2,
block_4_3, block._5.6, block_6_3, block_3_3, block_1_3,
block 5.1, block_4_4, block 3.2, block_ 5.5, block_2_4}.

Y €{0,1,2,3,4,5,6,7,8,9}.
4. MIMIC-IV (Johnson et al., 2023)) (nyain = 5,000, ngese = 10,000):
Xo = {Age, Gender, ICU}, X,, = {Hemoglobin, Platelet, RBC, WBC,
BUN, Calcium, Chloride,Creatinine, Glucose, RDW}.
YLength of stay S {07 1}7
YMortality € {07 1}7
YReadmission € {07 l}-
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Table 1: Label prevalences (%) for final evaluation datasets.

Dataset % Positive
MiniBooNE 72.16
MIMIC-LOS 34.12
MIMIC-Readmission 14.72
MIMIC-Mortality 3.48

Preprocessing We define three binary classification tasks on MIMIC-IV. For each unique patient,
we retain a single admission and set the prediction time to 48 hours after admission. Patients with an
admission shorter than 48 hours are excluded. For each feature, we use the most recent measurement
recorded before the prediction time; if no measurement is available from admission up to prediction
time, the feature is treated as missing. To ensure that all ground-truth measurements are available
for evaluation, we also exclude patients with missing values in any of the selected features in X,,,.
The tasks are defined as follows:

* Length of stay (LOS): whether the hospital stay extends at least 7 days beyond the predic-
tion time.

* Mortality: whether the patient dies during the same hospital admission.

* Readmission: whether the patient is readmitted to the hospital within 30 days of discharge.

The tasks are generated using MEDS to facilitate reproducibility (Arnrich et al., 2024)).

A.5.2 PRETRAINING TASK PRIOR

Here we describe the synthetic task prior used for pretraining our L2M models.

GP. We define a Gaussian process task prior with an RBF kernel to generate synthetic regression
tasks. For each sampled task, we randomly select a subset of the input dimensions to be infor-
mative, while the remaining dimensions are treated as noise features. The kernel is parameterized
with batch-specific lengthscales and output scales: lengthscales are drawn uniformly from the in-
terval [0.1,5.0] for each dimension, and output scales are drawn uniformly from [0.5,2.0]. Non-
informative features are assigned a large lengthscale, effectively removing their contribution. An
observation noise term o2 with o, = 2 x 102 is added for numerical stability.

BNN. We define a Bayesian neural network (BNN) task prior for classification tasks that generates
synthetic labeling functions over feature inputs. For each sampled task, we proceed as follows:

1. Selection of informative features. For each batch, we randomly select a subset of features
between [min_feats, max_feats]. Data points are grouped into 1-3 clusters by generating
cluster centers sampled from a Gaussian distribution. Each datapoint z € R? is assigned
a cluster label via its closest cluster center according to Euclidean distance. Then each
cluster is assigned its own subset of informative features. Features not selected are masked
out and do not influence the label.

2. Random BNN weights. A two-layer feedforward neural network with hidden dimension
H = 8 and tanh nonlinearity is constructed. Weights and biases are drawn from Gaus-
sian distributions and scaled by random importance weights and scale factors sampled
uniformly from given ranges. The masked input features are passed through the random
network, producing output logits.

3. Task-specific adjustments. Logits are rescaled by a random temperature parameter sam-
pled from a uniform range. For binary tasks, a random bias shift is applied to match a target
label prevalence p € [0.05,0.95].

4. Label generation. The final logits are passed through a sigmoid to produce probabilities,
from which labels Y are sampled as Bernoulli (for binary classification) or categorical (for
multi-class) random variables.
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Table 2: Experimental setup across datasets. Each training step samples sequences of length N from
the pretraining pool. Feature values are normalized within each sequence.

Dataset Sequence length N Missingness Task

GP 500 MCAR Regression
MiniBooNE 1000 MCAR Binary Classification
MNIST 1000 MCAR Binary Classification
Metabric 500 MAR Multi-class Classification
MIMIC-1V 1000 MAR Binary Classification

This procedure defines a flexible family of tasks where both the informative feature subsets and the
underlying labeling functions vary across tasks, simulating heterogeneity in feature importance for
AFA.

A.5.3 ADDITIONAL TRAINING DETAILS

At each training step, we sample sequences of length N from the pretraining pool. Feature values
are normalized using the mean and variance of each feature within the task sequence. Missing-
ness is introduced either by randomly dropping features (MCAR) or by sampling feature-specific
missingness mechanisms from the BNN prior (MAR) that depend only on the baseline covariates
Xo. The missingness rates vary by feature, and we set the maximum probability of missingness
p(R; = 0]X() < 0.5. A summary of the experimental design is provided in Table

A.5.4 COMPUTE DETAILS

All experiments were run on a server with 4 NVIDIA H100 NVL GPUs, 2 Intel(R) Xeon(R) Plat-
inum 8480+ CPUs (56 cores each) with 2Tb of memory.

A.5.5 RUNTIMES

The pretraining procedure for both the predictor and policy using the GP prior (sequence length of
500, 10 features, 100000 training steps) takes approximately 10 hours total on a single GPU.

A.5.6 HYPERPARAMETERS

For our L2M model, we use the same hyperparameter configurations for all our experiments as
shown in[3| For pretraining the predictor, all models are trained for 100000 steps with a batch size
of 8 tasks (with the exception of MNIST, which was trained for 50000 steps). The predictor is
trained with the Adam optimizer with the default optimizer parameters and with linear decay. We
checkpoint the model at every 500 steps and save the model with the best validation loss.

For the policy, we use a fixed temperature of 0.1 and a batch size of 8 for a total of 50000 training
steps, with no learning rate decay. The transformer backbone and predictor weights are also jointly
updated, with a lower learning rate of 1 x 1072,

Hyperparameter Value
Hidden Layer Size 512
Model Dimension 256
Number of Layers 6
Attention Heads 4
Embedding Depth 4
Dropout 0

Predictor Learning Rate 1 x 107
Policy Learning Rate 1x 1074
Warmup steps 500

Table 3: Transformer Model Hyperparameters
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A.5.7 BASELINES

We describe the baselines used in our experiments, noting several modifications made to improve
computational tractability when evaluating across a large number of tasks.

MLP (Random). For each evaluation task, we train a two-layer multilayer perceptron (MLP) with
hidden dimension 128. The model is trained on randomly selected feature subsets to predict the
target label, using a batch size of 64 for 300 epochs. At test time, acquisition actions are chosen
uniformly at random, and the MLP is used to make predictions. This task-specific MLP serves as
the predictor model for the remaining baselines.

GDFS (Covert et al.l [2023)). The policy network is also a two-layer MLP with hidden dimension
128. In contrast to the original paper, which trains the selector policy using Gumbel-softmax with
a temperature decay schedule, we train using the straight-through Gumbel-softmax estimator with a
fixed temperature of 0.5.

DIME (Gadgil et al., 2023)). The reward predictor is also a two-layer MLP with hidden dimension
128. We train the reward predictor using random acquisitions, rather than the e-greedy acquisition
strategy with decay as described in the original paper.

DQN (Janisch et al., [2019) We adopt the Q-learning framework, where the action-value function
Q(s¢,a) estimates the expected return from state s; after taking action a. The optimal acquisition
actions are selected by taking the action with the largest Q-value estimate Q(s¢, a).

We consider a dueling network architecture (Wang et al., [2016)). The dueling network consists of
two MLPs with two hidden layers of dimension 128: one head outputs V' (s;), and the other outputs
A(st, a) for all actions a. The final Q-value estimate is computed as

Qstsa) = V(si) + (Alsi,a) = g D Alsi, ),

Because the final log likelihood is identical across complete trajectories, we apply a strong discount
factor to prioritize early acquisitions that reduce predictive loss. The one-step temporal-difference
(TD) target is defined as

Yr = T +ymax Qo-(s41,0a"),

where 7; is the immediate reward, (Qy— denotes the target Q-network, and v = 0.9 is the discount
factor. We train for 200 episodes using an experience buffer of size 10,000, with samples col-
lected via an e-greedy strategy. Training updates use mini-batches of 128 samples, and the target
Q-network is synchronized every 4 episodes.

A.5.8 SOURCE CODE

https://anonymous.4open.science/r/Learning—-To—Measure—-5635
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A.6 ADDITIONAL RESULTS

A.6.1 UNCERTAINTY QUANTIFICATION

We perform analogous evaluations as in Figure [3 for the classification tasks. We first evaluate
the ability for L2ZM to recover the ground true probabilities in a set of evaluation tasks randomly
sampled from the same semi-synthetic BNN task prior used during training. To evaluate uncertainty
quantification for classification, we compute the KL divergence and brier score (MSE) between the
predicted probabilities and ground truth probabilities. We also additionally show the AUROC to
assess the ability for the model to rank samples.

METABRIC: Absolute Improvements on Synthetic BNN tasks
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Figure 7: We identify a similar pattern where the quality of uncertainty quantification is better than
the task-specific MLP, and the gains are larger as we acquire more features.
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Next, we evaluate L2M on classification using semi-synthetic tasks built from real labels that were
unseen during training. Because these tasks provide hard (binary) labels rather than ground-truth
probabilities, we report negative log-likelihood (binary cross-entropy) and Brier score to assess un-
certainty. Accordingly, we do not use KL divergence in this setting.
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Figure 8: The performance on real tasks is mixed, and dependent on various factors such as whether
the pretraining BNN tasks are closely aligned to the real unseen tasks.
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A.6.2 AFA PoLicYy EVALUATION

Performance We provide additional metrics for quantifying AFA performance.
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Figure 9: Using the same evaluation tasks and samples, we plot the MSE for the regression tasks
and AUROC for the classification tasks

Policy Visualization We demonstrate how our sequence modeling approach is able to learn task-
specific policies. We visualize the selected actions by the greedy policy in example evaluation tasks.
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Figure 10: MIMIC-IV Dataset: Example feature acquisition for a set of semi-synthetic evaluation
tasks constructed using the BNN prior. Each task contains 500 query samples.
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Figure 11: MIMIC-IV Dataset: Example feature acquisition for a set of 500 query samples on the
semi-synthetic tasks with real labels.
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Benefit of Adaptivity Tasks such as LOS and mortality prediction are heterogeneous and may
depend on different mechanisms across patients. We provide an ablation where we use the same
L2M model but instead of the per-instance optimal action predicted by the model, we take the most
frequently selected action across the entire test set at each step (majority vote). We find that the
instance-wise adaptive feature selection is beneficial for some tasks, but other simpler tasks do not
require granular acquisition.
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Figure 12: Simpler tasks such as Miniboone do not benefit from instance-wise adaptive selection.
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Figure 13: Adaptivity is beneficial for some real tasks (LOS, Mortality), but not as beneficial for
others (Readmission)
A.7 LLM USAGE
LLMs were used to assist in code generation, specifically computing evaluation metrics and code

for generating result figures. All Al-assisted code was checked for accuracy. LLMs were also used
for checking grammar and formatting assistance.
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