

000 001 002 003 004 005 LEARNING-TO-MEASURE: IN-CONTEXT ACTIVE FEA- 006 TURE ACQUISITION 007 008 009

010 **Anonymous authors**
011

012 Paper under double-blind review
013
014
015
016
017
018
019
020
021
022
023
024
025
026

027 ABSTRACT 028

029 Active feature acquisition (AFA) is a sequential decision-making problem where
030 the goal is to improve model performance for test instances by adaptively se-
031 lecting which features to acquire. In practice, AFA methods often learn from
032 retrospective data with systematic missingness in the features and limited task-
033 specific labels. Most prior work addresses acquisition for a single predetermined
034 task, limiting scalability. To address this limitation, we formalize the meta-AFA
035 problem, where the goal is to learn acquisition policies across various tasks. We
036 introduce Learning-to-Measure (L2M), which consists of i) reliable uncertainty
037 quantification over unseen tasks, and ii) an uncertainty-guided greedy feature ac-
038 quisition agent that maximizes conditional mutual information. We demonstrate a
039 sequence-modeling or autoregressive pre-training approach that underpins reliable
040 uncertainty quantification for tasks with arbitrary missingness. L2M operates di-
041 rectly on datasets with retrospective missingness and performs the meta-AFA task
042 in-context, eliminating per-task retraining. Across synthetic and real-world tab-
043 ular benchmarks, L2M matches or surpasses task-specific baselines, particularly
044 under scarce labels and high missingness.
045

046 1 INTRODUCTION 047

048 Machine learning (ML) methods typically operate under the assumption that all input features are
049 available at inference time. However, this assumption does not hold in scenarios where acquiring
050 certain features involves significant costs or risks, such as medical diagnostics (Erion et al., 2022).
051 For example, acquiring imaging data or invasive biopsies may incur substantial financial costs and
052 pose potential risks to patient safety (Callender et al., 2021). In such cases, there is a need to
053 adaptively determine the value of feature acquisition against its costs to make informed decisions.

054 Active feature acquisition (AFA) addresses this problem by learning an agent to adaptively select
055 which features to acquire or observe for each sample (Ma et al., 2018; Shim et al., 2018; von Kleist
056 et al., 2023b). AFA is naturally a sequential decision-making problem, where conditioning on past
057 feature acquisitions can inform collection in the future. Prior AFA work uses either greedy acqui-
058 sition strategies that maximize an estimate of the one-step expected information gain (Ma et al.,
059 2018; Gong et al., 2019; Covert et al., 2023; Chattopadhyay et al., 2023; Gadgil et al., 2023), or RL
060 approaches that learn a value (or Q-) function to improve multi-step feature acquisition (Shim et al.,
061 2018; Kachuee et al., 2019; Janisch et al., 2019; Li & Oliva, 2021).

062 Most AFA methods suffer from common bottlenecks. First, they are trained on retrospective data,
063 which consists of intrinsically missing features (von Kleist et al., 2023a;b). For example, clinical
064 data are often incomplete and shaped by clinical protocols, resource constraints, workflow deci-
065 sions, and patient behavior. This leads to systematic missingness in features across subpopulations
066 and limited task-specific data labels (Jeanselme et al., 2022; Chang et al., 2024; Zink et al., 2024).
067 Consider chest-pain triage in the emergency department, where the guidelines typically prioritize
068 first-line laboratory tests, followed by additional invasive testing or X-ray studies, leading to miss-
069 ingness dependent on past observations. Agents trained on retrospective data may encode the same
070 acquisition bias. Imputing features will not calibrate on the informativeness of the feature; likewise,
071 models that ignore missingness without modulating uncertainty will replicate missingness patterns.
072

Figure 1: Schematic of the meta-AFA problem. The model can acquire lab measurements for multiple tasks, Tasks 1-3. The input is a sequence of past observations together with a query, and the policy π_θ outputs the next greedy acquisition action. The updated query is then used for the following step. After k acquisitions, the predictor f produces the final label prediction.

Second, existing AFA methods target single predetermined tasks rather than a general capability aligned with the foundation model paradigm (Bommasani et al., 2021). Prior approaches also rely on complex latent-variable models with heuristic approximations to make generative modeling feasible. These methods typically obtain uncertainty through posterior sampling, which is often unreliable, especially in high-dimensional settings (Ma et al., 2018; Li & Oliva, 2021; Peis et al., 2022).

To address these challenges, we introduce Learning-to-Measure (**L2M**), a new in-context AFA approach building on the uncertainty quantification capabilities of pre-trained sequence models (Nguyen & Grover, 2022; Ye & Namkoong, 2024; Mittal et al., 2025). At its core, **L2M** couples uncertainty quantification with a greedy decision policy for selecting the next acquisition action. **L2M** operates directly on datasets with retrospective missingness and solves the AFA task in-context, provided the missingness satisfies certain assumptions such as missing at random (MAR) and the data contains sufficient coverage of acquisitions.

L2M consists of two stages: (i) pretraining across tasks with missingness to quantify predictive uncertainty of a target variable given partially observed inputs, and (ii) meta-training a policy network to greedily acquire features that reduce the predictive uncertainty via a smooth, differentiable approximation to information gain, enabling end-to-end optimization. We implement the first stage using sequence modeling over data sequences to capture reliable beliefs under missingness. This design yields a principled approach to sequential information acquisition across tasks. **L2M** removes latent-variable approximations and performs calibrated, scalable uncertainty estimation via direct sequence prediction. Figure 1 depicts the schematic of the **L2M** framework at inference.

Our contributions are the following:

1. **Meta-learning AFA across diverse tasks and missingness patterns:** We formalize the problem of meta-learning AFA policies across (time-invariant) tasks with diverse input data distributions and retrospective missingness mechanisms.
2. **Combining uncertainty estimation and decision-making via sequence modeling:** We propose **L2M**, a scalable transformer-based approach for end-to-end sequential information maximization. The sequence model provides reliable uncertainty estimates for partially observed inputs and leverages these estimates to predict the next optimal feature to acquire. To learn the policy, we design a smooth, differentiable approximation of the acquisition problem, resulting in a fully auto-differentiable training framework.
3. **Robustness to limited labeled data and missingness:** We empirically show that our meta-learning-based approach, **L2M**, outperforms task-specific baselines across tasks of varying sizes and degrees of missingness, particularly when labeled data is scarce and feature missingness is high.

108 In the following, we first introduce the meta-AFA problem setup in Section 3. Next, we extend
 109 meta-AFA to settings where tasks can contain missingness and provide identifiability conditions
 110 that allow the optimization problem to be solved using observational data (Section 3.1). Section 4
 111 presents the main components of our proposed solution. We introduce our meta-learning framework
 112 using a sequence modeling approach in Section 4.1. Section 4.2 outlines our proposed loss function
 113 and the model training procedure. Section 5 demonstrates the empirical utility of our method.
 114

115 2 RELATED WORK

116 **Active Feature Acquisition (AFA).** Time-invariant AFA methods fall into two main classes:

117 *Greedy AFA policies:* These methods iteratively acquire features by greedily maximizing the ex-
 118 pected information gain (Ma et al., 2018; Covert et al., 2023; Chattopadhyay et al., 2023). For
 119 example, Ma et al. (2018); Gong et al. (2019); Chattopadhyay et al. (2022) use generative mod-
 120 els to impute potential outcomes of all possible acquisitions and select the greedy action. Covert
 121 et al. (2023) uses a policy network to directly predict the greedy action, guided by the loss of a
 122 separate prediction model. Gadgil et al. (2023) learns a value network to estimate the information
 123 gain directly. Theoretical work have shown that greedy policies achieve near-optimal performance
 124 compared to non-myopic ones under certain conditions (Golovin & Krause, 2011; Chen et al., 2015).

125 *MDP-based policies.* An alternative view treats AFA as a sequential decision-making problem ad-
 126 dressed using reinforcement learning (RL). Model-based approaches learn a generative transition
 127 model using synthetic rollouts for data-efficient policy learning (Zannone et al., 2019; Li & Oliva,
 128 2021). Model-free approaches directly learn value or Q-functions from offline data, selecting fea-
 129 tures that maximize expected returns (Shim et al., 2018; Kachuee et al., 2019; Janisch et al., 2019).
 130 MDP-based approached are prone to model misspecification, given the challenges of offline value
 131 approximation and credit assignment over long acquisition trajectories (Erion et al., 2022).

132 **AFA under retrospective missingness.** Few studies examine how missingness mechanisms in ret-
 133rospective data affect feature acquisitions (Ma & Zhang, 2021; von Kleist et al., 2023b). Most
 134 prior work either assumes fully observed data or uses simple imputation strategies such as con-
 135 ditional mean imputation, inducing statistical bias in policy evaluation (von Kleist et al., 2023b).
 136 Model-based approaches provide a principled alternative when missingness assumptions hold, but
 137 face practical limitations: task-specific generative models are hard to estimate with limited data,
 138 particularly in high dimensions (Zannone et al., 2019; Li & Oliva, 2021; 2024).

139 **Meta-learning via Sequence modeling.** Our proposed solution leverages sequence modeling, by
 140 framing feature acquisition as an in-context decision-making process rather than relying on explicit
 141 generative modeling assumptions. There is a growing body of work formalizing the connection
 142 between using sequence models for meta-learning and in-context learning (ICL), and Bayesian in-
 143 ference (Müller et al., 2021; Nguyen & Grover, 2022; Ye & Namkoong, 2024). Other work has
 144 applied this framework to decision-making problems (Lee et al., 2023; Lin et al., 2023; Tianhui Cai
 145 et al., 2024). The AFA problem differs in that we do not directly observe the reward-maximizing
 146 action and must learn policies strictly from offline data.

147 3 THE META-ACTIVE FEATURE ACQUISITION PROBLEM

148 We consider a supervised learning task where $X \in \mathbb{R}^d$ is a d -dimensional feature vector and $Y \in \mathbb{R}$
 149 is the target variable. We assume the features are time-invariant, i.e., the values of X do not evolve
 150 over time. We let X_j denote the value of feature j and X_0 denote the baseline features that are always
 151 observed. At each acquisition step $t \in \{1, \dots, T\}$, the agent selects an action $A_t \in \{1, \dots, d\}$,
 152 indicating the index of the next feature to acquire. We write $\underline{X}_t = \{X_0, \dots, X_{A_t}\}$ for the set of
 153 acquired features up to and including step t . Throughout this work, realizations of random variables
 154 are written in lowercase.

155 *Meta-active feature acquisition (meta-AFA)* trains an agent to acquire features sequentially with the
 156 goal of efficiently reducing prediction error for a given task distribution. We assume that each task
 157 \mathcal{T} is drawn from an unknown distribution $p(\mathcal{T})$. For each task \mathcal{T} , data pairs $(X, Y) \sim p_{\mathcal{T}}(X, Y)$ are
 158 sampled from the task-specific distribution. Given a new task, meta-AFA algorithms seek to sequen-
 159 tially select, at each step t , the next feature to acquire based on the partially available information

\underline{X}_t , to efficiently reduce the predictive uncertainty on the target variable Y . We focus on settings with a fixed budget $k < d$ and (without loss of generality), uniform feature costs.

One common approach to (task-specific) AFA is to acquire features *greedily* based on the *expected* reduction in uncertainty, an approach rooted in Bayesian experimental design (Bernardo, 1979). At each step t , the method acquires the feature that maximizes the conditional mutual information (CMI) with the target:

$$I_{\mathcal{T}}(Y; X_j | \underline{X}_t = \underline{x}_t) \triangleq \mathbb{E} [D_{\text{KL}}(p_{\mathcal{T}}(Y | X_j \cup \underline{X}_t) \| p_{\mathcal{T}}(Y | \underline{X}_t)) | \underline{X}_t = \underline{x}_t]. \quad (1)$$

This requires modeling one-step conditional probabilities $p_{\mathcal{T}}(X_j | \underline{X}_t)$, $p_{\mathcal{T}}(Y | \underline{X}_t, X_j)$ and $p_{\mathcal{T}}(Y | \underline{X}_t)$. In practice, the historical data often contain incomplete observations, complicating the estimation of these conditionals.

3.1 TASKS WITH RETROSPECTIVE MISSINGNESS

We refer to inherent missingness in the historical data as ‘retrospective missingness’, where missingness mechanisms and rates vary across tasks, which can impact AFA performance. We extend the meta-AFA problem to settings with retrospective missingness. Essentially, CMI is only identifiable and can be estimated from data retrospective missingness under certain conditions. We outline these conditions using causal identifiability (Rubin, 1976), which allows us to formalize the conditions under which relevant underlying distributions (to estimate CMI) can be estimated from data with retrospective missingness. We define $R \in \{0, 1\}^d$ as the binary missingness indicators corresponding to each feature (Nabi et al., 2020). $X(1)$ is the “potential outcome” of X , had $R = 1$ been true, i.e., the measurement had been observed. For a given $X_j(1) \in X(1)$ and corresponding $R_j \in R$, each variable is set by the following deterministic feature revelation mechanism:

$$X_j = \begin{cases} X_j(1) & \text{if } R_j = 1 \\ "?" & \text{if } R_j = 0 \end{cases}$$

The CMI estimand (Equation 1) can be equivalently denoted as:

$$I_{\mathcal{T}}(Y; X_j | \underline{X}_t = \underline{x}_t) \equiv I_{\mathcal{T}}(Y; X_j(1) | \underline{X}_t = \underline{x}_t), \quad (2)$$

and needs to be estimated under $p_{\mathcal{T}}(X(1), Y)$, which is the *reference distribution*, i.e., the joint distribution in the absence of the missingness. The identification of $p_{\mathcal{T}}(X(1), Y)$ from data (with missingness) depends on the missingness mechanism, given by the following assumptions:

Assumption 3.1. (*Missing at Random or MAR*) $R_j \perp\!\!\!\perp X_j(1) | \underline{X}_t$.

Assumption 3.2. (*Exclusion Restriction*) $R_j \perp\!\!\!\perp Y | X_j(1), \underline{X}_t$.

Assumption 3.3. (*Positivity*) $p(R_j = 1 | \underline{X}_t = \underline{x}_t) > 0$ for all values \underline{x}_t and $j \in \{1, \dots, d\}$

Intuitively, Assumption 3.1 posits that any systematic differences between observed and missing data can be fully explained by the observed features, rather than by unobserved confounders. Assumption 3.2 states that measuring a feature does not directly affect the target variable. Assumption 3.3 requires sufficient data coverage of each feature acquisition action. These assumptions are analogous to standard assumptions in off-policy evaluation, and yield the following identification result.

Theorem 3.4. (*Identification of CMI with retrospective missingness*) *The CMI for any subset $\underline{X}_t \subseteq X$ given by $I_{\mathcal{T}}(Y; X_j(1) | \underline{X}_t = \underline{x}_t)$ is identified when $p_{\mathcal{T}}(X(1), Y)$ is identified. Under Assumption 3.1 (MAR), 3.2 (exclusion restriction), and 3.3 (positivity), the CMI can be estimated by*

$$I_{\mathcal{T}}(Y; X_j(1) | \underline{X}_t = \underline{x}_t) = I_{\mathcal{T}}(Y; X_j | \underline{X}_t = \underline{x}_t, R_j = 1) \quad (3)$$

The proof is provided in Section A.1. Intuitively, if the joint $p_{\mathcal{T}}(X(1), Y)$ is identified, then any functional of the joint is identified. However, estimating these functionals *directly from complete cases* ($R_j = 1$) at step t is valid only under the posited assumptions. The restrictive nature is due to targeting pointwise identification of the greedy action for every \underline{x}_t . In practice, this level of generality is often unnecessary as some states are never encountered.

216

4 METHOD

218 We now present our end-to-end AFA framework (**L2M**) based on amortized optimization and meta-
 219 learning a greedy policy with a sequence model parameterized using transformers (Vaswani et al.,
 220 2017). We note that our framework can leverage transformers trained from scratch, or pretrained
 221 large language models (LLMs). We begin by introducing our proposed Bayesian analog of the
 222 CMI objective using sequence models in Theorem 3.4. However, the CMI objective is generally
 223 intractable to compute directly. To overcome this, we formulate a tractable surrogate optimization
 224 problem that approximates the CMI objective. We then relax the discrete action-selection problem
 225 with a smooth, differentiable approximation, which allows us to directly learn the policy using
 226 gradient-based methods.

277

4.1 META-LEARNING VIA SEQUENCE MODELING

299 Formally, in meta-AFA, we consider the set of all test-time query samples with partially observed
 300 features, $\{\underline{X}_t^{(q)}\}_{q=m+1}^N$. For each query instance q , our goal is to select the next acquisition action
 301 based on their currently observed features $\underline{X}_t^{(q)}$ and task-specific context of historical samples $\mathcal{D}_{\mathcal{T}} =$
 302 $\{X^{1:m}, R^{1:m}, Y^{1:m}\}$. The key challenge of meta-AFA is to model the joint predictive distribution,

$$p(\text{Outcomes} \mid \text{Partial Observations, Historical Data}) \equiv p(Y^{m+1:N} \mid \underline{X}_t^{m+1:N}, \mathcal{D}_{\mathcal{T}}),$$

394 with sufficient flexibility while providing principled uncertainty estimates to guide feature acquisition.
 395 Sequence modeling offers a compelling solution: instead of explicitly modeling latent variables,
 396 autoregressive training over *data sequences*, together with invariance-inducing inductive biases
 397 (Definitions A.8, A.9), provides a practical way to approximate posterior inference from ob-
 398 servations alone, building on prior works that have formalized this connection (Nguyen & Grover,
 399 2022; Ye & Namkoong, 2024; Mittal et al., 2025). We note that the sequence model can be meta-
 400 learned using synthetically generated tasks (Müller et al., 2021), or using real-world datasets (Gard-
 401 ner et al., 2024).

402 Sequence modeling decomposes the joint predictive prediction over query samples into a product of
 403 one-step conditional probabilities:

$$p(Y^{m+1:N} \mid \underline{X}_t^{m+1:N}, \mathcal{D}_{\mathcal{T}}) = \prod_{q=m+1}^N p(Y^{(q)} \mid \underline{X}_t^{(q)}, Z^{1:m})$$

606 where we denote the context for each query sample as $Z^{1:m} = \{X^{1:m}, R^{1:m}, Y^{1:m}\}$, and assume
 607 conditional independence across queries given context $Z^{1:m}$ and inputs $\underline{X}_t^{m+1:N}$. Intuitively, by
 608 conditioning on a variable-length context containing historical data, the sequence model infers the
 609 task-specific mechanism from context and amortizes uncertainty estimation across partially ob-
 610 served queries. Once uncertainty is exactly recovered via the one-step conditional probabilities,
 611 the ideal greedy strategy is to acquire the feature with the maximum CMI given by

$$I_{\mathcal{T}}(Y^{(q)}; X_j^{(q)} \mid \underline{X}_t^{(q)} = \underline{x}_t, Z^{1:m} = z^{1:m}, R_j^{(q)} = 1) \quad (4)$$

733 Directly maximizing this CMI is impractical because it requires access to the true step-wise con-
 734 ditionals, and expectations over all candidate feature $X_j^{(q)}$. In the following section, we detail our
 735 methodology for constructing a surrogate optimization problem using learned approximations.

736

4.2 POLICY OPTIMIZATION

824 Rather than computing the CMI exactly, we adopt the practical approximation of Covert et al. (2023,
 825 Prop. 2): optimize the *one-step-ahead* predictive loss achieved by a predictor f_{ϕ} after acquiring a
 826 candidate feature X_j . We train a policy π_{θ} to directly minimize this one-step loss, providing a
 827 tractable surrogate for the CMI objective.

828 To facilitate gradient-based optimization, we consider stochastic policies that output a categorical
 829 distribution over actions $\pi_{\theta}(\cdot \mid \underline{X}_t^{(q)}, Z^{1:m}) \in \Delta^{d-1}$. Additionally, we restrict the learned feature

270 acquisition policy to “blocked policies”, ensuring that features unavailable during training are not
 271 sampled by the policy. This removes the need for full generative modeling of the joint $p(X(1), Y)$
 272 to sample missing potential outcomes (von Kleist et al., 2023b):

273 **Definition 4.1** (Blocked Policy). A blocked policy $\tilde{\pi}_\theta$ is a stochastic policy over feature acquisitions
 274 that satisfies the following condition: at each step t , it assigns non-zero probability only to features
 275 that have support in retrospectively observed data, i.e.,

$$276 \quad \pi_\theta(j \mid \cdot) = 0 \quad \text{if } R_j = 0,$$

277 where $R_j = 1$ indicates that feature j is available.
 278

279 Having restricted attention to blocked policies, we now define the surrogate objective used to jointly
 280 train the policy and predictor. Denote the state for the m -th sample in the sequence as $S_t^m =$
 281 $(\underline{X}_t^m, \underline{A}_{t-1}^m)$, and A_t is an action sampled from $\tilde{\pi}_\theta(S_t^m, Z^{1:m})$. Let the per-action expected loss be

$$282 \quad J(a_t; \underline{x}_t^{m+1}, z^{1:m}) = \mathbb{E}_{X_{a_t}^{m+1}, Y^{m+1} \mid \underline{x}_t^{m+1}, z^{1:m}, R_{a_t}=1} [\ell(f_\phi(\cdot \mid \underline{x}_t^{m+1} \cup X_{a_t}^{m+1}, z^{1:m}), Y^{m+1})],$$

285 where we use ℓ to denote the log loss (negative log likelihood) for evaluating the predictor. Con-
 286 cretely, the sequence prediction loss is defined as

$$287 \quad \mathcal{L}(f_\phi, \pi_\theta) = \sum_{\mathcal{T} \sim p(\mathcal{T})} \sum_{m=1}^{N-1} \mathbb{E}_{S_t^{m+1}, Z^{1:m}, R} \left[\mathbb{E}_{A_t \sim \tilde{\pi}(\cdot \mid S_t^{m+1}, Z^{1:m})} [J(A_t; \underline{X}_t^{m+1}, Z^{1:m})] \right]. \quad (5)$$

290 Our main theorem shows that minimizing the above sequence loss recovers the greedy CMI actions.

291 **Theorem 4.2** (Surrogate optimality for greedy CMI with context). *Consider the sequence modeling
 292 objective in Eq. 5 with cross-entropy loss. Let $Z^{1:m} = (X^{1:m}, R^{1:m}, Y^{1:m})$ be the task-specific
 293 context and $\underline{X}_t^{m+1:N}$ the partially observed features for the $N - m$ query points at step t . Then any
 294 joint minimizer (θ^*, ϕ^*) of \mathcal{L} satisfies:*

- 295 1. **Per-query Bayes-optimality.** For each $q \in \{m+1, \dots, N\}$,

$$296 \quad f_{\phi^*}(\cdot \mid \underline{X}_t^{(q)}, Z^{1:m}) = p(Y^{(q)} \mid \underline{X}_t^{(q)}, Z^{1:m}).$$

- 297 2. **Step-wise CMI-optimal acquisition for every query.** For each query index $q \in$
 298 $\{m+1, \dots, N\}$ and for $(\underline{x}_t^{(q)}, z^{1:m})$, the policy places mass only on actions that maximize
 299 CMI:

$$300 \quad j \in \arg \max_{a_t: R_{a_t}=1} I(Y^{(q)}; X_{a_t}^{(q)} \mid \underline{X}_t^{(q)} = \underline{x}_t^{(q)}, R_{a_t}^{(q)} = 1, Z^{1:m} = z^{1:m}).$$

301 *If the maximizer is unique, $\pi_{\theta^*}(\cdot \mid \underline{x}_t^{(q)}, z^{1:m})$ is a point mass on that action.*

302 The proof is an extension of the result in (Covert et al., 2023) and is provided in Appendix A.3.

303 Direct optimization of Equation 5 is non-differentiable because A_t is sampled from a categorical dis-
 304 tribution. To obtain gradients, we use a Gumbel–Softmax relaxation of the discrete index sampling
 305 operation $a_t \sim \tilde{\pi}_\theta$, which reduces variance of the gradient estimate by introducing bias (Maddison
 306 et al., 2016) (compared to REINFORCE (Fu, 2006; Williams, 1992)). We denote the sampled index
 307 $A_t \sim \tilde{\pi}_\theta(\cdot \mid S_t^{m+1}, Z^{1:m})$ as $\tilde{A}_t = g_\theta(\eta; S_t^{m+1}, Z^{1:m})$ and reparameterize Equation 5 as follows:

$$308 \quad \nabla_\theta \mathcal{L}(\theta, \phi) = \mathbb{E}_{S_t^{m+1}, Z^{1:m}, R} \left[\mathbb{E}_{\eta \sim \text{Gumbel}(0, 1)} J(\tilde{A}_t; \underline{X}_t^{m+1}, Z^{1:m}) \right], \quad (6)$$

309 where $\eta \sim \text{Gumbel}(0, 1)$ is the Gumbel distribution and $g_\theta(\eta) = \text{softmax}(\frac{\log \pi_\theta + \eta}{\tau})$. The softmax
 310 computation smoothly approaches the discrete argmax computation as $\tau \rightarrow 0$ while preserving the
 311 relative order of the Gumbels, $\log \pi_\theta + \eta$.

312 While our method is agnostic to the specific parameterization of sequence models, we use a modified
 313 Transformer model with a separate predictor and policy head. Relative to a standard Transformer,
 314 we (i) modify the input representation by concatenating masked input features and the missingness
 315 indicator mask (which is a common strategy in past AFA work (Covert et al., 2023; Gadgil et al.,
 316 2023; Norcliffe et al., 2025) to the label (or padded zeros), (ii) remove positional embeddings, and
 317 (iii) replace causal masking with an alternative attention masking structure during both training and
 318 inference. The details of our architecture are given in Appendix A.5.

324 **Training** In practice, our pretraining consists of two stages. Since the optimal predictor f_ϕ is
 325 independent of the policy π_θ , we first pretrain f_ϕ on random feature subsets X_o for any $o \subset [d]$,
 326 then jointly training the model and policy head. At each training step, we sample a batch of tasks
 327 from $p(\mathcal{T})$ and treat them as randomly permuted sequences. **Blocking ensures that missing features**
 328 **(with $R_j = 0$) are not acquired by the policy during training.** Details of the training procedure are
 329 provided in Algorithm 1 and Algorithm 2 (Appendix A.5). Figure 2 (left) summarizes the procedure.
 330

331 **Inference** After pretraining, the sequence model π_θ is deployed for online AFA decision-making.
 332 Algorithm 3 (Appendix A.5) summarizes the feature-acquisition procedure for unseen query sam-
 333 ples in a given task, which requires no gradient updates (see Figure 2 (right)).
 334

335 Figure 2: (On the left) Pretraining procedure for the predictor f_ϕ and policy π_θ . The modified
 336 transformer encoder model takes as input task-specific context (a training dataset with retrospective
 337 feature missingness) and partially observed queries $X_o^{(j)}$ and predicts the outcomes $Y^{(j)}$ and the
 338 optimal greedy action $A^{(j)}$ for the queries. The parameters are learned end-to-end by backpropagating
 339 the autoregressive sequence loss over queries. (On the right) The trained transformer model is able
 340 to predict labels and optimal actions for unseen query tasks in-context. The attention mask to enable
 341 handling different context lengths used in the Transformer is given in Appendix A.5.
 342

343 5 EXPERIMENTS

344 **Datasets** We aim to demonstrate the feasibility of our **L2M** framework across multiple tasks and
 345 diverse applications. While we provide comprehensive experimental details in the Appendix A.6,
 346 we provide a brief overview in this section.

347 First, we train and evaluate on fully synthetic regression tasks sampled from a Gaussian Process
 348 (**GP**) prior. Each task is sampled from GPs with randomized RBF kernels $\mathcal{T}_i \sim \mathcal{GP}(m, k)$ with
 349 $m(x) = 0$ and contains $d = 10$ features for acquisition. To simulate incomplete observations,
 350 features are randomly dropped according to a missing completely at random (MCAR) mechanism.
 351 We sample evaluation tasks of varying context lengths from GPs with RBF kernels, as well as Matern
 352 kernels, which are unseen during training (Matern).

353 Next, we evaluate **L2M** on realistic tasks derived from real-world tabular datasets: **Metabric** (Curtis
 354 et al., 2012), **MiniBooNE** (Roe et al., 2005), **MIMIC-IV** (Johnson et al., 2023). For these datasets,
 355 during pre-training, we construct semi-synthetic classification tasks where labels are sampled from
 356 Bayesian Neural Network (BNN) priors (Müller et al., 2021). The feature distributions for the
 357 training tasks are obtained by sampling real instances and introducing synthetic missingness. We
 358 then evaluate the model performance on test datasets, constructed with varying sizes and degrees
 359 of missingness, where the labels are obtained from the original datasets. This setup preserves real-
 360 istic feature distributions, enables controlled evaluation across varying degrees of missingness and
 361 sample sizes, and assesses model generalization to tasks with real labels.

362 To further demonstrate our model’s capability on real datasets, we evaluate **L2M** on **MNIST**, where
 363 training task labels are drawn from real binary digit-pair tasks rather than semi-synthetic priors. Im-
 364 ages are divided into $d = 20$ candidate pixel blocks for acquisition. At each training step, we sample
 365

378 a binary classification task between two randomly chosen digits, training the model to adaptively differ-
 379 entiate between images of two digits in-context. We evaluate the performance on datasets with
 380 varying missingness and sample sizes, using unseen queries.
 381

382 **Baselines** Because prior AFA work is task-specific, we compare against AFA methods that train
 383 a separate model for each task. We focus on two greedy, CMI-based approaches: gradient dynamic
 384 feature selection (**GDFS** (Covert et al., 2023)), which uses MLPs instead of sequence modeling, and
 385 discriminative mutual information estimation (**DIME** (Gadgil et al., 2023)), which trains an MLP
 386 as a value network to estimate CMI directly. To ensure fair evaluation, both **L2M** and task-specific
 387 models are evaluated on the same held-out tasks and query sets. We also include an RL baseline
 388 using Deep Q-learning (**DQN**) (Shim et al., 2018; Kachuee et al., 2019; Janisch et al., 2019), but
 389 exclude it from synthetic tasks due to the prohibitive computational cost of learning hundreds of
 390 test tasks. To ensure comparability with greedy strategies, we define the per-step reward as the log
 391 likelihood under the current predictor, and each trajectory terminates when all features are acquired.
 392

401 Figure 3: Left: Improvement in uncertainty estimation relative to baseline task-specific MLP (*higher*
 402 *is better*). The **L2M** approach shows progressively increasing gains as more features are acquired in
 403 the trajectory. Right: Coverage plots comparing MLP and **L2M** at various acquisition steps. **L2M**
 404 also shows robust coverage compared to the MLP at various acquisition steps. Error represents
 405 standard error across 200 sampled evaluation tasks. To ensure a fair comparison, both methods are
 406 evaluated on the same random acquisition trajectories using consistent evaluation tasks and samples.
 407
 408

409 **Results** Figure 3 shows the absolute improvement of **L2M** over task-specific MLP baselines in un-
 410 certainty quantification on synthetic GP tasks, evaluated by log loss and mean squared error (MSE).
 411 Corresponding semi-synthetic and real-world task results are in Appendix Figure 7. Overall, **L2M**
 412 provides more reliable uncertainty estimates, with larger gains in log loss and MSE as more fea-
 413 tures are acquired. This phenomenon likely arises because, at later acquisition steps, retrospective
 414 missingness reduces joint data coverage for the required feature sets, which makes MLPs struggle
 415 to learn. In contrast, **L2M** leverages its learned prior to mitigate reduced coverage. Improved un-
 416 certainty quantification is particularly important, as it directly translates to better downstream feature
 417 acquisition performance as shown in both the RBF and Matern kernel tasks in Figure 4.

418 Figure 4 demonstrates improved log loss of **L2M** over all relevant baselines on evaluation tasks
 419 across datasets (additional metrics are shown in Appendix Figure 9). The magnitude of **L2M**'s gains
 420 over baselines varies by dataset, depending on how well the pretraining task prior aligns with the
 421 downstream task. Our adaptive strategies offer only marginal gains over random acquisition on some
 422 real datasets. We attribute this to high task complexity and limited training data, which together limit
 423 the benefits of adaptivity. Nonetheless, the benefit of reliable uncertainty quantification, particularly
 424 leveraging pretraining on diverse tasks, is clear compared to task-specific AFA. The performance of
 425 task-specific AFA baselines deteriorate as more features are acquired, due to difficulties in learning a
 426 predictor and policy with limited data. Figure 5 demonstrates that **L2M** delivers the largest benefits
 427 in settings with shorter contexts and higher rates of retrospective missingness. **Autoregressive meta-
 428 training via sequence loss enables reliable propagation of uncertainty at different context (dataset)
 429 sizes, leading to robustness at different context lengths. Furthermore, we hypothesize that robust
 430 performance across varying rates of retrospective missingness arises from our sequence modeling
 431 framework that both explicitly represents and effectively propagates the uncertainty arising from
 432 missingness in the historical data. This is especially useful in healthcare, where labeled data may be
 433 limited, and certain measurements may exhibit high rates of retrospective missingness.**

Figure 4: Acquisition performance quantified by log loss averaged over tasks derived from various synthetic and real-world datasets. MIMIC-IV demonstrate the ability for a single pretrained L2M model to generalize to diverse tasks with real unseen labels. The acquisition performance also often outperforms task-specific greedy and RL approaches.

Figure 5: Average improvement in log loss (y-axis) for the GP tasks and MIMIC-LOS for a fixed set of evaluation tasks while varying the number of context samples, and levels of retrospective missingness in each task (x-axis). Task-specific improvements are averaged over 100 (GP) and 50 (MIMIC) tasks. **L2M** is robust to settings with fewer shots (labeled samples) and with higher rates of feature missingness. **L2M** also achieves length generalization for the GP task, as it is only trained on sequences of 500 samples.

6 DISCUSSION

In this work, we formulate the meta-AFA problem and present an end-to-end differentiable uncertainty-driven approach for greedy feature acquisition that performs in-context learning across tasks. We show significant improvement using **L2M** in benchmarks and realistic healthcare datasets, demonstrating robustness under limited labeled data or significant retrospective missingness.

Limitations *(i)* Our approach relies on sufficient offline action coverage and MAR, an untestable but realistic assumption about the missingness mechanism. Future work will relax these assumptions and investigate whether our uncertainty estimates can serve as informative bounds or diagnostics for violations of positivity or MAR (Jesson et al., 2020). *(ii)* Empirically, we demonstrate the utility with tabular models pretrained from scratch on simple synthetic task priors. Scaling to diverse, large-scale real datasets across domains is deferred to future work, highlighting the need for principled prior-specification procedures to enable scalability and broad applicability. Leveraging priors encoded in pretrained language models is another promising direction. *(iii)* We focus on learning greedy one-

486 step acquisition policies and therefore do not consider multi-step planning for long-term reward.
487 We discuss limitations of greedy acquisition in Appendix A.3 and leave planning with in-context
488 reinforcement learning (Moeini et al., 2025) to future work. **(iv)** While we demonstrate proof-of-
489 concept on medium-scale tabular datasets, extension to large tabular datasets is a crucial engineering
490 challenge. **(v)** Finally, we restrict attention to time-invariant settings; extending to time-varying
491 dynamics is a crucial aspect of future work.

492

493 **Ethics Statement** Our paper is a technical proof-of-concept. While we demonstrate evaluations
494 in healthcare, additional evaluations regarding fairness and generalizability are necessary before this
495 method is deployed in the real world.

496

497 **Reproducibility Statement** We evaluate on publicly available datasets. All code to reproduce
498 our experiments will be publicly available, and a link to anonymous source code is provided in Ap-
499 pendix A.6.8. Details of the experimental design and hyperparameters are outlined in Appendix A.6.

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540 REFERENCES
541

- 542 Bert Arnrich, Edward Choi, Jason Alan Fries, Matthew BA McDermott, Jungwoo Oh, Tom Pollard,
543 Nigam Shah, Ethan Steinberg, Michael Wornow, and Robin van de Water. Medical event data
544 standard (meds): Facilitating machine learning for health. In *ICLR 2024 Workshop on Learning
from Time Series For Health*, pp. 03–08, 2024.
- 545
- 546 José M Bernardo. Expected information as expected utility. *the Annals of Statistics*, pp. 686–690,
547 1979.
- 548 Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx,
549 Michael S Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, et al. On the opportu-
550 nities and risks of foundation models. *arXiv preprint arXiv:2108.07258*, 2021.
- 551
- 552 Thomas Callender, Mark Emberton, Stephen Morris, Paul DP Pharoah, and Nora Pashayan. Benefit,
553 harm, and cost-effectiveness associated with magnetic resonance imaging before biopsy in age-
554 based and risk-stratified screening for prostate cancer. *JAMA Network Open*, 4(3):e2037657–
555 e2037657, 2021.
- 556 Trenton Chang, Mark Nuppnau, Ying He, Keith E Kocher, Thomas S Valley, Michael W Sjoding,
557 and Jenna Wiens. Racial differences in laboratory testing as a potential mechanism for bias in ai:
558 A matched cohort analysis in emergency department visits. *PLOS Global Public Health*, 4(10):
559 e0003555, 2024.
- 560 Aditya Chattopadhyay, Stewart Slocum, Benjamin D Haefele, René Vidal, and Donald Geman. In-
561 terpretable by design: Learning predictors by composing interpretable queries. *IEEE Transactions
562 on Pattern Analysis and Machine Intelligence*, 45(6):7430–7443, 2022.
- 563
- 564 Aditya Chattopadhyay, Kwan Ho Ryan Chan, Benjamin D Haefele, Donald Geman, and
565 René Vidal. Variational information pursuit for interpretable predictions. *arXiv preprint
566 arXiv:2302.02876*, 2023.
- 567 Yuxin Chen, S Hamed Hassani, Amin Karbasi, and Andreas Krause. Sequential information max-
568 imization: When is greedy near-optimal? In *Conference on Learning Theory*, pp. 338–363.
569 PMLR, 2015.
- 570 Ian Connick Covert, Wei Qiu, Mingyu Lu, Na Yoon Kim, Nathan J White, and Su-In Lee. Learning
571 to maximize mutual information for dynamic feature selection. In *International Conference on
572 Machine Learning*, pp. 6424–6447. PMLR, 2023.
- 573
- 574 Christina Curtis, Sohrab P Shah, Suet-Feung Chin, Gulisa Turashvili, Oscar M Rueda, Mark J Dun-
575 ning, Doug Speed, Andy G Lynch, Shamith Samarajiwa, Yinyin Yuan, et al. The genomic and
576 transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. *Nature*, 486(7403):
577 346–352, 2012.
- 578 Gabriel Erion, Joseph D Janizek, Carly Hudelson, Richard B Utarnachitt, Andrew M McCoy,
579 Michael R Sayre, Nathan J White, and Su-In Lee. A cost-aware framework for the development of
580 ai models for healthcare applications. *Nature Biomedical Engineering*, 6(12):1384–1398, 2022.
- 581 Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation
582 of deep networks. In *International conference on machine learning*, pp. 1126–1135. PMLR, 2017.
- 583
- 584 Michael C Fu. Gradient estimation. *Handbooks in operations research and management science*,
585 13:575–616, 2006.
- 586 Soham Gadgil, Ian Covert, and Su-In Lee. Estimating conditional mutual information for dynamic
587 feature selection. *arXiv preprint arXiv:2306.03301*, 2023.
- 588
- 589 Josh Gardner, Juan C Perdomo, and Ludwig Schmidt. Large scale transfer learning for tabular data
590 via language modeling. *Advances in Neural Information Processing Systems*, 37:45155–45205,
591 2024.
- 592 Marta Garnelo, Dan Rosenbaum, Christopher Maddison, Tiago Ramalho, David Saxton, Murray
593 Shanahan, Yee Whye Teh, Danilo Rezende, and SM Ali Eslami. Conditional neural processes. In
594 *International conference on machine learning*, pp. 1704–1713. PMLR, 2018.

- 594 Daniel Golovin and Andreas Krause. Adaptive submodularity: Theory and applications in active
 595 learning and stochastic optimization. *Journal of Artificial Intelligence Research*, 42:427–486,
 596 2011.
- 597
- 598 Wenbo Gong, Sebastian Tschiatschek, Sebastian Nowozin, Richard E Turner, José Miguel
 599 Hernández-Lobato, and Cheng Zhang. Icebreaker: Element-wise efficient information acqui-
 600 sition with a bayesian deep latent gaussian model. *Advances in neural information processing*
 601 *systems*, 32, 2019.
- 602 Jaromír Janisch, Tomáš Pevný, and Viliam Lisý. Classification with costly features using deep rein-
 603 forcement learning. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 33,
 604 pp. 3959–3966, 2019.
- 605
- 606 Vincent Jeanselme, Maria De-Arteaga, Zhe Zhang, Jessica Barrett, and Brian Tom. Imputation
 607 strategies under clinical presence: Impact on algorithmic fairness. In *Machine Learning for*
 608 *Health*, pp. 12–34. PMLR, 2022.
- 609 Andrew Jesson, Sören Mindermann, Uri Shalit, and Yarin Gal. Identifying causal-effect inference
 610 failure with uncertainty-aware models. *Advances in Neural Information Processing Systems*, 33:
 611 11637–11649, 2020.
- 612
- 613 Alistair EW Johnson, Lucas Bulgarelli, Lu Shen, Alvin Gayles, Ayad Shammout, Steven Horng,
 614 Tom J Pollard, Sicheng Hao, Benjamin Moody, Brian Gow, et al. Mimic-iv, a freely accessible
 615 electronic health record dataset. *Scientific data*, 10(1):1, 2023.
- 616
- 617 Mohammad Kachuee, Orpaz Goldstein, Kimmo Karkkainen, Sajad Darabi, and Majid Sarrafzadeh.
 618 Opportunistic learning: Budgeted cost-sensitive learning from data streams. *arXiv preprint*
arXiv:1901.00243, 2019.
- 619
- 620 Jonathan Lee, Annie Xie, Aldo Pacchiano, Yash Chandak, Chelsea Finn, Ofir Nachum, and Emma
 621 Brunskill. In-context decision-making from supervised pretraining. In *ICML Workshop on New*
622 Frontiers in Learning, Control, and Dynamical Systems, 2023.
- 623
- 624 Yang Li and Junier Oliva. Active feature acquisition with generative surrogate models. In *Inter-
 625 national conference on machine learning*, pp. 6450–6459. PMLR, 2021.
- 626
- 627 Yang Li and Junier Oliva. Distribution guided active feature acquisition. *arXiv preprint*
arXiv:2410.03915, 2024.
- 628
- 629 Licong Lin, Yu Bai, and Song Mei. Transformers as decision makers: Provable in-context reinforce-
 630 ment learning via supervised pretraining. *arXiv preprint arXiv:2310.08566*, 2023.
- 631
- 632 Chao Ma and Cheng Zhang. Identifiable generative models for missing not at random data imputa-
 633 tion. *Advances in Neural Information Processing Systems*, 34:27645–27658, 2021.
- 634
- 635 Chao Ma, Sebastian Tschiatschek, Konstantina Palla, José Miguel Hernández-Lobato, Sebastian
 636 Nowozin, and Cheng Zhang. Eddi: Efficient dynamic discovery of high-value information with
 637 partial vae. *arXiv preprint arXiv:1809.11142*, 2018.
- 638
- 639 Chris J Maddison, Andriy Mnih, and Yee Whye Teh. The concrete distribution: A continuous
 640 relaxation of discrete random variables. *arXiv preprint arXiv:1611.00712*, 2016.
- 641
- 642 Daksh Mittal, Ang Li, Tzu-Ching Yen, Daniel Guetta, and Hongseok Namkoong. Architec-
 643 tural and inferential inductive biases for exchangeable sequence modeling. *arXiv preprint*
arXiv:2503.01215, 2025.
- 644
- 645 Amir Moeini, Jiuqi Wang, Jacob Beck, Ethan Blaser, Shimon Whiteson, Rohan Chandra, and Shang-
 646 tong Zhang. A survey of in-context reinforcement learning. *arXiv preprint arXiv:2502.07978*,
 647 2025.
- 648
- 649 Samuel Müller, Noah Hollmann, Sebastian Pineda Arango, Josif Grabocka, and Frank Hutter. Trans-
 650 formers can do bayesian inference. *arXiv preprint arXiv:2112.10510*, 2021.

- 648 Razieh Nabi, Rohit Bhattacharya, and Ilya Shpitser. Full law identification in graphical models
 649 of missing data: Completeness results. In *International conference on machine learning*, pp.
 650 7153–7163. PMLR, 2020.
- 651
- 652 Tung Nguyen and Aditya Grover. Transformer neural processes: Uncertainty-aware meta learning
 653 via sequence modeling. *arXiv preprint arXiv:2207.04179*, 2022.
- 654
- 655 Alexander Norcliffe, Changhee Lee, Fergus Imrie, Mihaela Van Der Schaar, and Pietro Lio. Stochas-
 656 tic encodings for active feature acquisition. *arXiv preprint arXiv:2508.01957*, 2025.
- 657
- 658 Ignacio Peis, Chao Ma, and José Miguel Hernández-Lobato. Missing data imputation and acqui-
 659 sition with deep hierarchical models and hamiltonian monte carlo. *Advances in Neural Information
 Processing Systems*, 35:35839–35851, 2022.
- 660
- 661 Kate Rakelly, Aurick Zhou, Chelsea Finn, Sergey Levine, and Deirdre Quillen. Efficient off-policy
 662 meta-reinforcement learning via probabilistic context variables. In *International conference on
 machine learning*, pp. 5331–5340. PMLR, 2019.
- 663
- 664 Byron P Roe, Hai-Jun Yang, Ji Zhu, Yong Liu, Ion Stancu, and Gordon McGregor. Boosted decision
 665 trees as an alternative to artificial neural networks for particle identification. *Nuclear Instruments
 and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associ-
 ated Equipment*, 543(2-3):577–584, 2005.
- 666
- 667 Donald B Rubin. Inference and missing data. *Biometrika*, 63(3):581–592, 1976.
- 668
- 669 Hajin Shim, Sung Ju Hwang, and Eunho Yang. Joint active feature acquisition and classification
 670 with variable-size set encoding. *Advances in neural information processing systems*, 31, 2018.
- 671
- 672 Tiffany Tianhui Cai, Hongseok Namkoong, Daniel Russo, and Kelly W Zhang. Active exploration
 673 via autoregressive generation of missing data. *arXiv e-prints*, pp. arXiv-2405, 2024.
- 674
- 675 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
 676 Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural informa-
 tion processing systems*, 30, 2017.
- 677
- 678 Henrik von Kleist, Alireza Zamanian, Ilya Shpitser, and Narges Ahmadi. Evaluation of active feature
 679 acquisition methods for time-varying feature settings. *arXiv preprint arXiv:2312.01530*, 2023a.
- 680
- 681 Henrik von Kleist, Alireza Zamanian, Ilya Shpitser, and Narges Ahmadi. Evaluation of active feature
 682 acquisition methods for static feature settings. *arXiv preprint arXiv:2312.03619*, 2023b.
- 683
- 684 Zhi Wang, Li Zhang, Wenhao Wu, Yuanheng Zhu, Dongbin Zhao, and Chunlin Chen. Meta-dt:
 685 Offline meta-rl as conditional sequence modeling with world model disentanglement. *Advances
 in Neural Information Processing Systems*, 37:44845–44870, 2024.
- 686
- 687 Ziyu Wang, Tom Schaul, Matteo Hessel, Hado Hasselt, Marc Lanctot, and Nando Freitas. Dueling
 688 network architectures for deep reinforcement learning. In *International conference on machine
 learning*, pp. 1995–2003. PMLR, 2016.
- 689
- 690 Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
 691 learning. *Machine learning*, 8(3):229–256, 1992.
- 692
- 693 Naimeng Ye and Hongseok Namkoong. Exchangeable sequence models quantify uncertainty over
 694 latent concepts. *arXiv preprint arXiv:2408.03307*, 2024.
- 695
- 696 Sara Zannone, José Miguel Hernández-Lobato, Cheng Zhang, and Konstantina Palla. Odin: Optimal
 697 discovery of high-value information using model-based deep reinforcement learning. In *ICML
 Real-world Sequential Decision Making Workshop*, 2019.
- 698
- 699 Anna Zink, Hongzhou Luan, and Irene Y Chen. Access to care improves ehr reliability and clinical
 700 risk prediction model performance. *arXiv preprint arXiv:2412.07712*, 2024.
- 701

702 **A APPENDIX**

703 **A.1 PROOF OF THEOREM 3.4**

704 **Theorem 3.4** The CMI objective under missing data is given by

$$\begin{aligned}
 & I(Y; X_j(1) | \underline{X}_t) \\
 &= \sum_{Y, X_j(1)} p(Y, X_{t+1}(1) | \underline{X}_t) \log \frac{p(Y, X_j(1) | \underline{X}_t)}{p(Y | \underline{X}_t) p(X_j(1) | \underline{X}_t)} \\
 &= \sum_{Y, X_j(1)} p(Y | X_j(1), \underline{X}_t) p(X_j(1) | \underline{X}_t) \log \frac{p(Y | X_j(1), \underline{X}_t) p(X_j(1) | \underline{X}_t)}{p(Y | \underline{X}_t) p(X_j(1) | \underline{X}_t)} \\
 &= \sum_{Y, X_j(1)} p(Y | X_j(1), \underline{X}_t, R_j = 1) p(X_j(1) | \underline{X}_t, R_{t+1} = 1) \log \frac{p(Y | X_j(1), \underline{X}_t, R_j = 1) p(X_j(1) | \underline{X}_t, R_j = 1)}{p(Y | \underline{X}_t) p(X_j(1) | \underline{X}_t)} \\
 &= \sum_{Y, X_j} p(Y | X_j, \underline{X}_t, R_j = 1) p(X_j | \underline{X}_t, R_j = 1) \log \frac{p(Y | X_j, \underline{X}_t, R_j = 1) p(X_j | \underline{X}_t, R_j = 1)}{p(Y | \underline{X}_t) p(X_j | \underline{X}_t)} \\
 &= \sum_{Y, X_j} p(Y, X_j | \underline{X}_t, R_j = 1) \log \frac{p(Y, X_j | \underline{X}_t, R_j = 1)}{p(Y | \underline{X}_t) p(X_j | \underline{X}_t, R_j = 1)} \\
 &= I(Y; X_j | \underline{X}_t, R_j = 1),
 \end{aligned}$$

724 The third equality holds due to the MAR assumption $R_j \perp\!\!\!\perp X_j(1) | \underline{X}_t$ and exclusion restriction (no
725 direct measurement effect) $R_j \perp\!\!\!\perp Y | X_j(1), \underline{X}_t$. Positivity ensures all conditional distributions are
726 well-defined.

727 **A.2 PROOF OF PROPOSITION A.2**

728 We begin by showing that minimizing the surrogate one-step loss given in Equation 7 for a single
729 task recovers the greedy CMI actions. Our result is a slight modification from the result shown in
730 (Covert et al., 2023).

731 The surrogate loss for a single task $\mathcal{T} \sim p_{\mathcal{T}}$ is given by:

$$\mathcal{L}(\theta, \phi) = \mathbb{E}_{S_t, A_t \sim \tilde{\pi}(\cdot | S_t), R} \left[\mathbb{E}_{X_{A_t}, Y | \underline{X}_t, R_{A_t}=1} [\ell(f_{\phi}(\cdot | \underline{X}_t \cup X_{A_t}), Y)] \right] \quad (7)$$

732 where states are denoted as $S_t = (\underline{X}_t, A_t)$ and the acquisition action is sampled from the blocked
733 policy $A_t \sim \tilde{\pi}_{\theta}(\cdot | S_t)$.

734 *Remark A.1.* For this theorem, the loss can average over the state distribution at step t , denoted
735 $d_t^{\tilde{\pi}_{\theta}}(\cdot | \mathcal{T})$, obtained by rolling out the (blocked) policy $\tilde{\pi}_{\theta}$ for t steps from the initial law $d_0(\cdot | \mathcal{T})$
736 induced by $p_{\mathcal{T}}(X, R, Y)$. The choice of d_t is flexible (with caveats) and should have sufficient
737 overlap with the intended deployment state distribution. Note that the per-state argmax (the optimal
738 acquisition action at each step) does not change regardless of the outer state distribution.

739 **Proposition A.2.** *(Surrogate optimality for greedy CMI) For a given task \mathcal{T} , consider the population
740 objective (Eq. 7 with cross-entropy loss). Then any joint minimizer (θ^*, ϕ^*) of \mathcal{L} satisfies:*

- 741 1. ϕ^* is Bayes-optimal: $f_{\phi^*}(\cdot | \underline{X}_t) = p_{\mathcal{T}}(Y | \underline{X}_t)$;
- 742 2. π_{θ^*} places all its mass on actions that maximize the conditional mutual information

$$743 \quad j \in \arg \max_{j: R_j=1} I_{\mathcal{T}}(Y; X_j | \underline{X}_t = \underline{x}_t, R_j = 1),$$

744 *i.e. $\pi_{\theta^*}(j | \underline{x}_t) > 0$ only if j is a greedy-CMI maximizer. If the maximizer is unique, π_{θ^*} is
745 a point mass on that action.*

746 *Proof.* Part I - Proof of Bayes-optimality:

We fix θ and consider the predictor. We begin with a standard fact: under cross-entropy loss for a discrete binary outcome, the conditional risk is minimized by the true conditional. In other words, to minimize expected loss the model f_ϕ needs to closely approximate the true distribution p . We show that this holds agnostic to the choice of \mathcal{T} .

Lemma A.3 (Bayes optimality under cross-entropy). *Let $\ell(q, y) = -\log q(y)$. Then the minimizer ϕ^* satisfies*

$$f_{\phi^*}(\underline{X}_t) = \arg \min_{f_\phi(\cdot)} \mathbb{E}_{Y|\underline{X}_t} [\ell(f_\phi(\cdot | \underline{X}_t), Y)] = p(Y | \underline{X}_t).$$

Furthermore, this minimizer does not depend on θ . In particular, any f_{ϕ^*} that matches the true conditional for all such (\underline{x}_t, x_j) is a global minimizer for every policy.

Proof. We denote $p(i | \underline{X}_t) = p_i$ as the conditional class probabilities and $f_i = f_\phi(i | \underline{X}_t)$ as the learner's predicted class probabilities, where $i \in \{0, 1\}$ are the binary class labels. The conditional risk decomposes as

$$\begin{aligned} \mathbb{E}_{Y|\underline{X}_t} [\ell(f_\phi(\cdot | \underline{X}_t), Y)] &= - \sum_{i=0}^1 p_i \log f_i \\ &= - \sum_{i=0}^1 p_i \log p_i + \sum_{i=0}^1 p_i \log \frac{p_i}{f_i} = \underbrace{H(Y | \underline{X}_t)}_{\text{Constant}} + \text{KL}(p(Y | \underline{X}_t) \| f_\phi(Y | \underline{X}_t)). \end{aligned}$$

□

Part II - Proof of maximizer equivalence

Once we have Bayes optimality with the learner at ϕ^* , we can rewrite the inner risk as the expected conditional entropy using the following lemma:

Lemma A.4 (Risk reduces to (expected) conditional entropy at ϕ^*). *With $\ell(q, y) = -\log q(y)$ and f_{ϕ^*} as in Lemma A.3, for any task \mathcal{T} and step t , any history \underline{x}_t and retrospective feature availability r_j*

$$\mathbb{E}_{Y, X_j | \underline{x}_t, R_j = r_j} [\ell(f_{\phi^*}(\cdot | \underline{x}_t \cup X_j), Y)] = \mathbb{E}_{X_j | \underline{x}_t, R_j = r_j} [H_{\mathcal{T}}(Y | \underline{x}_t, X_j)].$$

Consequently, the policy-evaluated inner term in equation 7 is

$$\mathbb{E}_{A_t \sim \tilde{\pi}_\theta(\cdot | s_t)} \mathbb{E}_{X_{a_t} | \underline{x}_t, R_{a_t} = 1} [H_{\mathcal{T}}(Y | \underline{x}_t, X_{a_t})].$$

Proof. Performing the similar decomposition as in Lemma A.3,

$$\begin{aligned} \mathbb{E}_{Y, X_j | \underline{x}_t, r_j} [\ell(f_{\phi^*}(\cdot | \underline{x}_t \cup X_j), Y)] &= \mathbb{E}_{X_j | \underline{x}_t, r_j} \left[\mathbb{E}_{Y | \underline{x}_t, X_j} [-\log f_{\phi^*}(Y | \underline{x}_t, X_j)] \right] \\ &= \mathbb{E}_{X_j | \underline{x}_t, r_j} \left[H_{\mathcal{T}}(Y | \underline{x}_t, X_j) + \text{KL}(p_{\mathcal{T}}(Y | \underline{x}_t, X_j) \| f_{\phi^*}(Y | \underline{x}_t, X_j)) \right] \\ &= \mathbb{E}_{X_j | \underline{x}_t, r_j} [H_{\mathcal{T}}(Y | \underline{x}_t, X_j)] \end{aligned}$$

Where the first equality follows from iterated expectations. In the last equality, the KL term vanishes at ϕ^* . □

Now, we consider the loss in equation 7. Plugging ϕ^* and using Lemma A.4 for the given choice of task \mathcal{T} ,

$$\begin{aligned} \mathcal{L}(\theta, \phi^*) &= \mathbb{E}_{S_t, R} \left[\mathbb{E}_{A_t \sim \tilde{\pi}_\theta(\cdot | s_t)} \mathbb{E}_{X_{a_t} | \underline{x}_t, R_{a_t} = 1} [H_{\mathcal{T}}(Y | \underline{x}_t, X_{a_t})] \right] \\ &\stackrel{\text{blocked}}{=} \sum_{s_t} \sum_{r \in \{0, 1\}^d} p(s_t, r) \left[\sum_{\{a_t: R_{a_t} = 1\}} \tilde{\pi}_\theta(a_t | s_t) \mathbb{E}_{X_{a_t} | \underline{x}_t, R_{a_t} = 1} [H_{\mathcal{T}}(Y | \underline{x}_t, X_{a_t})] \right] \end{aligned}$$

810 where $\{a_t : R_{a_t} = 1\}$ is the set of available features at step t . For fixed \underline{x}_t ,

$$812 \quad \sum_{a_t \in \{a_t : R_{a_t} = 1\}} \pi(a_t | s_t) \mathbb{E}_{X_{a_t} | \underline{x}_t, R_{a_t} = 1} [H_{\mathcal{T}}(Y | \underline{x}_t, X_{a_t})]$$

814 is linear over the simplex on $\{a_t : R_{a_t} = 1\}$ and is therefore minimized by placing all mass on

$$816 \quad \arg \min_{a_t \in \{a_t : R_{a_t} = 1\}} \mathbb{E}_{X_{a_t} | \underline{x}_t, R_{a_t} = 1} [H_{\mathcal{T}}(Y | \underline{x}_t, X_{a_t})].$$

818 Since $H(Y | \underline{x}_t)$ does not depend on a_t ,

$$820 \quad \arg \min_{a_t \in \{a_t : R_{a_t} = 1\}} \mathbb{E}_{X_{a_t} | \underline{x}_t, R_{a_t} = 1} [H_{\mathcal{T}}(Y | \underline{x}_t, X_{a_t})] = \arg \max_{a_t \in \{a_t : R_{a_t} = 1\}} I_{\mathcal{T}}(Y; X_{a_t} | \underline{x}_t, R_{a_t} = 1),$$

821 because

$$823 \quad I_{\mathcal{T}}(Y; X_{a_t} | \underline{x}_t, R_{a_t} = 1) = H_{\mathcal{T}}(Y | \underline{x}_t) - \mathbb{E}_{X_{a_t} | \underline{x}_t, R_{a_t} = 1} [H_{\mathcal{T}}(Y | \underline{x}_t, X_{a_t})].$$

824 If the maximizer is unique, the minimizer $\pi_{\theta^*}(\cdot | s_t)$ is a point mass on that action. \square

826 A.3 PROOF OF THEOREM 4.2

828 Our main theorem is an extension of Proposition A.2 to a Bayesian setting, which we approximate
829 using sequence models.

831 We leverage the following conditional independence assumption, which improves tractability by
832 removing the need to fully model the joint via an autoregressive factorization.

833 **Assumption A.5** (Conditional independence across queries). Given the context $Z^{1:m}$ and the per-
834 query partial inputs $\underline{X}_t^{m+1:N}$, the query points are conditionally independent:

$$835 \quad p(Y^{m+1:N} | \underline{X}_t^{m+1:N}, Z^{1:m}) = \prod_{q=m+1}^N p(Y^{(q)} | \underline{X}_t^{(q)}, Z^{1:m}).$$

839 **Theorem 4.2** [Surrogate optimality for greedy CMI with context] Consider the sequence modeling
840 objective in Eq. 5 with cross-entropy loss. Let $Z^{1:m} = (X^{1:m}, R^{1:m}, Y^{1:m})$ be the task-specific
841 context and $\underline{X}_t^{m+1:N}$ the partially observed features for the $N - m$ query points at step t . Then any
842 joint minimizer (θ^*, ϕ^*) of \mathcal{L} satisfies:

- 843 **1. Per-query Bayes-optimality.** For each $q \in \{m+1, \dots, N\}$,

$$845 \quad f_{\phi^*}(\cdot | \underline{X}_t^{(q)}, Z^{1:m}) = p(Y^{(q)} | \underline{X}_t^{(q)}, Z^{1:m}).$$

847 Consequently by assumption A.5,

$$848 \quad f_{\phi^*}(\cdot | \underline{X}_t^{m+1:N}, Z^{1:m}) = p(Y^{m+1:N} | \underline{X}_t^{m+1:N}, Z^{1:m})$$

- 850 **2. Step-wise CMI-optimal acquisition for every query.** For each query index $q \in \{m+1, \dots, N\}$ and for $(\underline{x}_t^{(q)}, z^{1:m})$, the policy places mass only on actions that maximize
851 CMI:

$$853 \quad j \in \arg \max_{a_t : R_{a_t} = 1} I(Y^{(q)}; X_{a_t}^{(q)} | \underline{X}_t^{(q)} = \underline{x}_t^{(q)}, R_{a_t}^{(q)} = 1, Z^{1:m} = z^{1:m}).$$

855 If the maximizer is unique, $\pi_{\theta^*}(\cdot | \underline{x}_t^{(q)}, z^{1:m})$ is a point mass on that action.

857 Part I - Proof of Bayes-optimality:

859 We first fix θ and consider the predictor. The loss is given by

$$862 \quad \mathcal{L}(f_{\phi}, \pi_{\theta}) = \sum_{\mathcal{T} \sim p(\mathcal{T})} \sum_{m=1}^{N-1} \mathbb{E}_{S_t^{m+1}, Z^{1:m}, R} \left[\mathbb{E}_{A_t \sim \bar{\pi}(\cdot | S_t^{m+1}, Z^{1:m})} [J(A_t; \underline{X}_t^{m+1}, Z^{1:m})] \right].$$

864 where

$$866 \quad J(a_t; \underline{x}_t^{m+1}, z^{1:m}) = \mathbb{E}_{\substack{X_{a_t}^{m+1}, Y^{m+1} | \underline{x}_t^{m+1}, \\ z^{1:m}, R_{a_t}=1}} \left[\ell(f_\phi(\cdot | \underline{x}_t^{m+1} \cup X_{a_t}^{m+1}, z^{1:m}), Y^{m+1}) \right]$$

868 is the per-action expected loss.

870 We show [1] by showing that to minimize expected loss, f_ϕ needs to closely approximate the true
871 distribution p , analogous to Lemma A.3.

873 *Proof.* Without loss of generality, we fix the context length m . We consider the minimizer ϕ^* of the
874 loss summed over each query $q \in \{m+1, \dots, N\}$. Lemma A.3 applied to each query shows that
875 this loss recovers the per-query conditional i.e.

$$877 \quad f_{\phi^*}(\cdot | \underline{X}_t^{(q)}, Z^{1:m}) = p(Y^{(q)} | \underline{X}_t^{(q)}, Z^{1:m}).$$

879 We now show that the loss minimizer also recovers the joint conditional

$$\begin{aligned} 881 \quad & \sum_{q=m+1}^N \mathbb{E}_{Y^{(q)} | \underline{X}_t^{(q)}, Z^{1:m}} \left[\ell(f_{\phi^*}(\cdot | \underline{X}_t^{(q)}, Z^{1:m}), Y^{(q)}) \right] \\ 882 \quad & \stackrel{\text{change of measure}}{=} \sum_{q=m+1}^N \mathbb{E}_{Y^{(q)} | \underline{X}_t^{m+1:N}, Z^{1:m}} \left[-\frac{p(Y^{(q)} | \underline{X}_t^{(q)}, Z^{1:m})}{p(Y^{(q)} | \underline{X}_t^{m+1:N}, Z^{1:m})} \log f_{\phi^*}(Y^{(q)} | \underline{X}_t^{(q)}, Z^{1:m}) \right] \\ 883 \quad & \stackrel{\text{linearity of } \mathbb{E}}{=} \mathbb{E}_{Y^{m+1:N} | \underline{X}_t^{m+1:N}, Z^{1:m}} \left[-\sum_{q=m+1}^N \frac{p(Y^{(q)} | \underline{X}_t^{(q)}, Z^{1:m})}{p(Y^{(q)} | \underline{X}_t^{m+1:N}, Z^{1:m})} \log f_{\phi^*}(Y^{(q)} | \underline{X}_t^{(q)}, Z^{1:m}) \right] \\ 884 \quad & \stackrel{\text{CI assumption A.5}}{=} \mathbb{E}_{Y^{m+1:N} | \underline{X}_t^{m+1:N}, Z^{1:m}} \left[-\sum_{q=m+1}^N \log f_{\phi^*}(Y^{(q)} | \underline{X}_t^{(q)}, Z^{1:m}) \right] \\ 885 \quad & \stackrel{\text{log manipulation}}{=} \mathbb{E}_{Y^{m+1:N} | \underline{X}_t^{m+1:N}, Z^{1:m}} \left[-\log \prod_{q=m+1}^N f_{\phi^*}(Y^{(q)} | \underline{X}_t^{(q)}, Z^{1:m}) \right] \\ 886 \quad & \stackrel{\text{factorized predictor}}{=} \mathbb{E} \left[-\log f_{\phi^*}(Y^{m+1:N} | \underline{X}_t^{m+1:N}, Z^{1:m}) \right] \\ 887 \quad & = H(Y^{m+1:N} | \underline{X}_t^{m+1:N}, Z^{1:m}) + \text{KL} \left(p(Y^{m+1:N} | \underline{X}_t^{m+1:N}, Z^{1:m}) \| f_\phi(Y^{m+1:N} | \underline{X}_t^{m+1:N}, Z^{1:m}) \right) \end{aligned}$$

901 \square

902

903

904 Part II - Proof of CMI-optimal acquisition

905

906

907 *Proof.* We consider the loss in equation 5, and plug ϕ^* in and use Lemma A.4 for the sequence
908 scenario.

909 We first rewrite the per-action expected loss in terms of the conditional entropy.

$$\begin{aligned} 911 \quad J(a_t; \underline{x}_t^{m+1}, z^{1:m}, \phi^*) &= \mathbb{E}_{\substack{X_{a_t}^{m+1}, Y^{m+1} | \underline{x}_t^{m+1}, \\ z^{1:m}, R_{a_t}=1}} \left[\ell(f_{\phi^*}(\cdot | \underline{x}_t^{m+1} \cup X_{a_t}^{m+1}, z^{1:m}), Y^{m+1}) \right] \\ 912 \quad &= \mathbb{E}_{\substack{X_{a_t}^{m+1}, | \underline{x}_t^{m+1}, \\ z^{1:m}, R_{a_t}=1}} \left[H(Y^{m+1} | X_{a_t}^{m+1}, x_t^{m+1}, z^{1:m}) \right] \end{aligned}$$

913 Now we use the same logic as in Theorem A.2. Plugging the per-action expected loss back into the
914 total loss:

$$\begin{aligned}
\mathcal{L}(f_\phi, \pi_\theta) &= \sum_{\mathcal{T} \sim p(\mathcal{T})} \sum_{m=1}^{N-1} \mathbb{E}_{S_t^{m+1}, Z^{1:m}, R} \left[\mathbb{E}_{A_t \sim \tilde{\pi}_\theta(\cdot | S_t^{m+1}, Z^{1:m})} [J(A_t; \underline{X}_t^{m+1}, Z^{1:m}, \phi^\star)] \right] \\
&= \sum_{\mathcal{T} \sim p(\mathcal{T})} \sum_{m=1}^{N-1} \sum_{s_t^{m+1}, z^{1:m}} \sum_{r \in \{0,1\}^d} p(s_t^{m+1}, z^{1:m}, r) \left[\sum_{a_t^m: r_{a_t}=1} \tilde{\pi}_\theta(a_t^m | s_t^{m+1}, z^{1:m}) J(a_t^m; \underline{x}_t^{m+1}, z^{1:m}, \phi^\star) \right].
\end{aligned}$$

Therefore, for each tuple $(s_t^{m+1}, z^{1:m}, r)$, the inner summation

$$\sum_{a_t^m: r_{a_t}=1} \tilde{\pi}_\theta(a_t^m | s_t^{m+1}, z^{1:m}) J(a_t^m; \underline{x}_t^{m+1}, z^{1:m}, \phi^\star)$$

is linear over the simplex on $\{a_t^m : r_{a_t} = 1\}$ and is therefore minimized when we select the acquisition action $\arg \min_{a_t^m} J(a_t^m; \underline{x}_t^{m+1}, z^{1:m}, \phi^\star)$. Therefore, the loss minimizer $\tilde{\pi}_{\theta^*}$ places all mass on the CMI optimal action. \square

A.4 DISCUSSION ON GREEDY ACQUISITION

We provide additional discussion on greedy acquisition using the concept of adaptive submodularity (Golovin & Krause, 2011). Let there be d available features with index set $[d] := \{1, \dots, d\}$. A full realization is $x \in \mathcal{X}^d$, where the value of feature j is $x_j \in \mathcal{X}$. We aim to maximize a nonnegative utility $f : 2^{[d]} \times \mathcal{X}^d \rightarrow \mathbb{R}_{\geq 0}$, where $g(S, x)$ evaluates the utility of acquiring the subset $S \subseteq [d]$ under realization x .

We begin by recalling submodularity.

Definition A.6. A set function $g : 2^{[d]} \rightarrow \mathbb{R}$ is *submodular* if for all $A \subseteq B \subseteq [d]$ and every $j \in [d] \setminus B$,

$$g(A \cup \{j\}) - g(A) \geq g(B \cup \{j\}) - g(B).$$

Intuitively, the property of submodularity implies diminishing returns. We now recall the definition of adaptive submodularity for feature acquisition

Definition A.7. Let $X = (X_1, \dots, X_d) \in \mathcal{X}^d$ be random. A utility $f : 2^{[d]} \times \mathcal{X}^d \rightarrow \mathbb{R}_{\geq 0}$ is *adaptively submodular* if for all sets $S \subseteq S' \subseteq [d]$, for all indices $j \in [d] \setminus S'$, and for all partial realizations x_S and $x_{S'}$, the conditional expected marginal benefit does not increase as more outcomes are observed:

$$\begin{aligned}
\Delta(j | x_S) &= \mathbb{E}_{X|x_S} [f(S \cup \{j\}, X) - f(S, X)] \\
&\geq \mathbb{E}_{X|x_{S'}} [f(S' \cup \{j\}, X) - f(S', X)] = \Delta(j | x_{S'}).
\end{aligned}$$

The theoretical result in (Golovin & Krause, 2011) shows that for a fixed budget k , the greedy policy for a distribution that satisfies definition A.7 (and adaptive monotone) achieves an $(1 - e^{-1})$ approximation to the expected reward of the best policy, following from the result that the optimality gap shrinks by an $(1 - k^{-1})$ factor at each step. However, greedy CMI-based acquisition is not adaptively submodular for problems where features are jointly informative. For example, feature j (a chest X-ray) may only be informative after a different feature has been observed due to synergistic information (an electrocardiogram), but uninformative on its own. (Norcliffe et al., 2025) provides an intuitive example using an indicator variable that determines which features are informative, and also discusses limitations of CMI if the objective is 0-1 loss minimization.

A.5 MODEL ARCHITECTURE AND TRAINING DETAILS

The goal is to model the one-step predictive distributions $p(Y^{(q)} | \underline{X}_t^{(q)} = \underline{x}_t^{(q)}, Z^{1:m} = z^{1:m})$, also referred to as posterior predictive distributions (PPD). We refer to various previous works for

972 formalizing the connection between sequence modeling and Bayesian inference (Müller et al., 2021;
 973 Nguyen & Grover, 2022; Ye & Namkoong, 2024). We leverage the insight that the sequence model
 974 for performing explicit Bayesian inference must satisfy the following inductive invariances (Nguyen
 975 & Grover, 2022; Ye & Namkoong, 2024).

976

977 A.5.1 MODEL ARCHITECTURE

978

Definition A.8. Context Invariance. A model f_ϕ is context invariant if for any
 979 choice of permutation function π and $m \in [1, N - 1]$, $f_\phi(Y^{m+1:N} | \underline{X}_t^{m+1:N}, Z^{1:m}) =$
 980 $f_\phi(Y^{m+1:N} | \underline{X}_t^{m+1:N}, Z^{\pi(1):\pi(m)})$

Definition A.9. Target Equivariance. A model f_ϕ is target equivariant if for any
 982 choice of permutation function π and $m \in [1, N - 1]$, $f_\phi(Y^{m+1:N} | \underline{X}_t^{m+1:N}, Z^{1:m}) =$
 983 $f_\phi(Y^{\pi(m+1):\pi(N)} | \underline{X}_t^{\pi(m+1):\pi(N)}, Z^{1:m})$

984

We approximate these invariances using a Transformer model (Vaswani et al., 2017) with several
 985 modifications. For each input query sample i , the sufficient statistics for the state s_t^i are the partially
 986 observed feature values $\underline{x}_t^i \in \mathbb{R}^d$ together with the acquisition mask $\underline{a}_{t-1}^i \in \{0, 1\}^d$, which records
 987 which features have been acquired so far. The state is encoded by applying the mask to the feature
 988 vector, $\underline{x}_t^i \odot \underline{a}_{t-1}^i$, and concatenating this with the mask itself. Finally, we append a zero vector
 989 of length c to represent the unobserved target outcome Y . The resulting input representation for a
 990 query sample is

$$z_{\text{qry}}^i = [\underline{x}_t^i \odot \underline{a}_{t-1}^i, \underline{a}_{t-1}^i, \mathbf{0}^c] \in \mathbb{R}^{2d+c}.$$

991 For each context sample i , the sufficient statistics consist of the partially observed feature values
 992 $\underline{x}^i \in \mathbb{R}^d$ together with the retrospective missingness mask $r^i \in \{0, 1\}^d$, which indicates which
 993 features were collected in the past. We append the observed target outcome y^i to form the encoded
 994 representation.

$$z_{\text{ctx}}^i = [\underline{x}^i \odot r^i, r^i, y^i] \in \mathbb{R}^{2d+c}.$$

995

1000 Next, we remove standard positional embeddings and replace the usual causal attention mask with
 1001 a custom design, since causal masking does not satisfy the invariances in Definition A.8. To enable
 1002 efficient computation of the autoregressive loss, we also introduce *target points* into the sequence
 1003 during training.

1004 Each input sequence for autoregressive loss computation has length $2N - m$ and is ordered as

$$\{z_{\text{ctx}}^1, \dots, z_{\text{ctx}}^m, z_{\text{tar}}^{m+1}, \dots, z_{\text{tar}}^N, z_{\text{qry}}^{m+1}, \dots, z_{\text{qry}}^N\}.$$

1005 Each target point z_{tar}^i shares the same underlying feature vector \underline{x}^i as its corresponding query z_{qry}^i ,
 1006 but encodes the retrospective mask r^i and observed outcome y^i in place of zero-padding.

1007 The attention mask 6 enforces the following structure:

1008

- 1009 • Context points can attend freely to one another.
- 1010 • Each target point can attend to all context points and all preceding target points.
- 1011 • Each query point z_{qry}^i can attend to context points and preceding target points, but not to
 1012 other queries.

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026	
1027	
1028	Attention Mask
1029	z_{ctx}^1
1030	z_{ctx}^2
1031	z_{tar}^3
1032	z_{tar}^4
1033	z_{tar}^5
1034	z_{qry}^3
1035	z_{qry}^4
1036	z_{qry}^5
1037	
1038	
1039	
1040	

Figure 6: Attention mask used during training with 2 context samples and 3 query samples. Each query has a paired target sample that shares the same features but includes the observed outcome y and retrospective mask r instead of zero-padding.

A.5.2 TRAINING

We provide the algorithm for pretraining the predictor in Algorithm 1 and pretraining the policy in Algorithm 2. The inference procedure is provided in Algorithm 3.

Algorithm 1 Autoregressive training for sequence model f_ϕ given $p(\mathcal{T})$

Input: Predictor f_ϕ **Require:** Sequence length N , batch size J

```

1: for until convergence do
2:   for each task  $\mathcal{D}_T = \{X^{1:N}, Y^{1:N}, R^{1:N}\}$  in mini-batch do
3:     Initialize the set of observed indices  $\underline{A}_0^{1:N}, \underline{A}_0 \subseteq [d]$  with always available feature indices
4:     for  $t \in \{1, \dots, d-1\}$  do
5:       for  $m \in \{1, \dots, N-1\}$  do
6:         Predict next label using the sequence model:
7:          $\hat{Y}^{m+1} \sim f_\phi(\cdot | \underline{X}_t^{m+1}, X^{1:m}, R^{1:m}, Y^{1:m})$ 
8:         Sample a random feature index  $j : R_j^{m+1} = 1$  to acquire, so  $\underline{A}_t^{m+1} \leftarrow \underline{A}_{t-1}^{m+1} \cup \{j\}$ 
9:       end for
10:      end for
11:      Compute mini-batch loss  $\hat{l}_\phi$  and update parameters  $\phi \leftarrow \phi - \eta \nabla_\phi \hat{l}_\phi$ 
12:    end for
13:  return trained model  $\hat{f}_\phi$ 

```

1080 **Algorithm 2** Autoregressive training for sequence model π_θ given $p(\mathcal{T})$
1081 **Input:** Policy π_θ , predictor f_ϕ **Require:** Sequence length N , batch size J
1082 1: **for** until convergence **do**
1083 2: **for** each task $\mathcal{D}_\mathcal{T} = \{X^{1:N}, Y^{1:N}, R^{1:N}\}$ in mini-batch **do**
1084 3: Initialize the set of observed indices $\underline{A}_0^{1:N}, \underline{A}_0 \subseteq [d]$ with always available feature indices
1085 4: **for** $t \in \{1, \dots, d-1\}$ **do**
1086 5: **for** $m \in \{1, \dots, N-1\}$ **do**
1087 6: Given the state $S_t^{m+1} = (\underline{X}_t^{m+1}, \underline{A}_{t-1}^{m+1})$, output action distribution using policy:
1088
$$\hat{A}^{m+1} \sim \pi_\theta(\cdot \mid S_t^{m+1}, X^{1:m}, R^{1:m}, Y^{1:m})$$

1089 7: Approximate argmax using straight through gumbel-softmax: \tilde{A}^{m+1}
1090 8: Compute and accumulate one-step loss using the predictor:
1091
$$\ell(f_\phi(\cdot \mid \underline{X}_t^{m+1} \cup X_{\tilde{A}}, X^{1:m}, R^{1:m}, Y^{1:m}), Y^{m+1})$$

1092 9: Sample a random feature index $j : R_j^{m+1} = 1$ to acquire, so $\underline{A}_t^{m+1} \leftarrow \underline{A}_{t-1}^{m+1} \cup \{j\}$
1093 10: **end for**
1094 11: **end for**
1095 12: **end for**
1096 13: Compute mini-batch loss \hat{l}_θ and update parameters $\theta \leftarrow \theta - \eta \nabla_\theta \hat{l}_\theta$
1097 14: **end for**
1098 15: **return** trained model $\hat{\pi}_\theta$

1104
1105 **Algorithm 3** Test-time inference procedure for solving an AFA task \mathcal{T}
1106 **Require:** Pretrained sequence models f_ϕ, π_θ **Input:** Samples from $\mathcal{D}_\mathcal{T} = \{X^{1:m}, R^{1:m}, Y^{1:m}\}$,
1107 and query samples $\underline{X}_0^{m+1:N}$ feature budget $k \leq d$
1108 1: **for** $t \in \{1, \dots, k\}$ **do**
1109 2: **for** $q \in \{m+1, \dots, N\}$ **do**
1110 3: Compute $\pi_\theta(A_t^{(q)} \mid \underline{X}_t^{(q)}, \underline{A}_{t-1}^{(q)}, \mathcal{D}_\mathcal{T})$ and select action
1111
$$a_t^i = \arg \max_a \pi_\theta(a \mid \underline{X}_t^{(q)}, \underline{A}_{t-1}^{(q)}, \mathcal{D}_\mathcal{T})$$

1112 4: Update $\underline{X}_{t+1}^{(q)} \leftarrow \underline{X}_t^{(q)} \cup X_{a_t}$ with chosen action
1113 5: **end for**
1114 6: **end for**
1115 7: **Return:** Predictions for all test samples in task \mathcal{T}
1116
$$\hat{Y}^i \sim f_\phi(\cdot \mid \underline{X}_k^i, \mathcal{D}_\mathcal{T}), \quad \forall i \in \{m+1, \dots, N\}$$

1122
1123 A.6 EXPERIMENT DETAILS

1124 A.6.1 DATASETS

1125 For each dataset, we construct two disjoint splits: a training set of size n_{train} and a test pool of size
1126 n_{test} . For each dataset, we specify three components:

- 1127
1128
1129 • **Baseline features** (X_0): features that are always observed at the start of an acquisition
1130 trajectory.
1131
1132 • **Acquirable features** (X_m): candidate features available for sequential acquisition.
1133
1134 • **Label space** (Y): the outcome variable or class labels used for evaluation.

1134

Table 1: Label prevalences (%) for final evaluation datasets.

1135

1136

1137

1138

1139

1140

1141

1142

1143

1. **Metabric** ($n_{\text{train}} = 1,000$, $n_{\text{test}} = 898$):

1144

$$X_m = \{\text{ccnb1, cdk1, e2f2, e2f7, stat5b, notch1, rbpj, bcl2, egfr, erb2, erb3}\}.$$

1145

1146

1147

1148

1149

1150

1151

2. **MiniBooNE** ($n_{\text{train}} = 5,000$, $n_{\text{test}} = 10,000$):

1152

1153

1154

1155

1156

1157

3. **MNIST** ($n_{\text{train}} = 30,000$, $n_{\text{test}} = 30,000$):

1158

1159

1160

1161

1162

1163

1164

1165

4. **MIMIC-IV** (Johnson et al., 2023) ($n_{\text{train}} = 5,000$, $n_{\text{test}} = 10,000$):

1166

1167

1168

1169

1170

1171

1172

1173

1174

Preprocessing We define three binary classification tasks on **MIMIC-IV**. For each unique patient, we retain a single admission and set the prediction time to 48 hours after admission. Patients with an admission shorter than 48 hours are excluded. For each feature, we use the most recent measurement recorded before the prediction time; if no measurement is available from admission up to prediction time, the feature is treated as missing. To ensure that all ground-truth measurements are available for evaluation, we also exclude patients with missing values in any of the selected features in X_m . The tasks are defined as follows:

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

- **Length of stay (LOS):** whether the hospital stay extends at least 7 days beyond the prediction time.
- **Mortality:** whether the patient dies during the same hospital admission.
- **Readmission:** whether the patient is readmitted to the hospital within 30 days of discharge.

The tasks are generated using MEDS to facilitate reproducibility (Arnrich et al., 2024).

Dataset	% Positive
MiniBooNE	72.16
MIMIC-LOS	44.90
MIMIC-Readmission	16.52
MIMIC-Mortality	8.67

1188 Table 2: Experimental setup across datasets. Each training step samples sequences of length N from
 1189 the pretraining pool. Feature values are normalized within each sequence.
 1190

1191 Dataset	1192 Sequence length N	1193 Missingness	1194 Task
GP	500	MCAR	Regression
MiniBooNE	1000	MCAR	Binary Classification
MNIST	1000	MCAR	Binary Classification
Metabric	500	MCAR	Multi-class Classification
MIMIC-IV	1000	MAR	Binary Classification

1198
 1199 **A.6.2 PRETRAINING TASK PRIOR**
 1200

1201 Here we describe the synthetic task prior used for pretraining our **L2M** models.
 1202

1203 **GP.** We define a Gaussian process task prior with an RBF kernel to generate synthetic regression
 1204 tasks. For each sampled task, we randomly select a subset of the input dimensions to be infor-
 1205 mative, while the remaining dimensions are treated as noise features. The kernel is parameterized
 1206 with batch-specific lengthscales and output scales: lengthscales are drawn uniformly from the
 1207 interval $[0.1, 5.0]$ for each dimension, and output scales are drawn uniformly from $[0.5, 2.0]$. Non-
 1208 informative features are assigned a large lengthscale, effectively removing their contribution. An
 1209 observation noise term $\sigma_\epsilon^2 I$ with $\sigma_\epsilon = 2 \times 10^{-2}$ is added for numerical stability.
 1210

1211 **BNN.** We define a Bayesian neural network (BNN) task prior for classification tasks that generates
 1212 synthetic labeling functions over feature inputs. For each sampled task, we proceed as follows:
 1213

- 1214 **1. Selection of informative features.** For each batch, we randomly select a subset of features
 1215 between $[\text{min_feats}, \text{max_feats}]$. Data points are grouped into 1–3 clusters by generating
 1216 cluster centers sampled from a Gaussian distribution. Each datapoint $x \in \mathbb{R}^d$ is assigned
 1217 a cluster label via its closest cluster center according to Euclidean distance. Then each
 1218 cluster is assigned its own subset of informative features. Features not selected are masked
 1219 out and do not influence the label.
 1220
- 1221 **2. Random BNN weights.** A two-layer feedforward neural network with hidden dimension
 1222 $H = 8$ and \tanh nonlinearity is constructed. Weights and biases are drawn from Gaus-
 1223 sian distributions and scaled by random importance weights and scale factors sampled
 1224 uniformly from given ranges. The masked input features are passed through the random
 1225 network, producing output logits.
 1226
- 1227 **3. Task-specific adjustments.** Logits are rescaled by a random temperature parameter sam-
 1228 pled from a uniform range. For binary tasks, a random bias shift is applied to match a target
 1229 label prevalence $p \in [0.05, 0.95]$.
 1230
- 1231 **4. Label generation.** The final logits are passed through a sigmoid to produce probabilities,
 1232 from which labels Y are sampled as Bernoulli (for binary classification) or categorical (for
 1233 multi-class) random variables.
 1234

1235 This procedure defines a flexible family of tasks where both the informative feature subsets and the
 1236 underlying labeling functions vary across tasks, simulating heterogeneity in feature importance for
 1237 AFA.
 1238

1239 **A.6.3 ADDITIONAL TRAINING DETAILS**
 1240

1241 At each training step, we sample sequences of length N from the pretraining pool. Feature values
 1242 are normalized using the mean and variance of each feature within the task sequence. Missing-
 1243 ness is introduced either by randomly dropping features (MCAR) or by sampling feature-specific
 1244 missingness mechanisms from the BNN prior (MAR) that depend only on the baseline covariates
 1245 X_0 . The missingness rates vary by feature, and we set the maximum probability of missingness
 $p(R_j = 0 | X_0) \leq 0.5$. A summary of the experimental design is provided in Table 2.

1242 A.6.4 COMPUTE DETAILS
12431244 All experiments were run on a server with 4 NVIDIA H100 NVL GPUs, 2 Intel(R) Xeon(R) Plat-
1245 inum 8480+ CPUs (56 cores each) with 2Tb of memory.
12461247 A.6.5 RUNTIMES
12481249 The pretraining procedure for both the predictor and policy using the GP prior (sequence length of
1250 500, 10 features, 100000 training steps) takes approximately 10 hours total on a single GPU.
12511252 A.6.6 HYPERPARAMETERS
12531254 For our **L2M** model, we use the same hyperparameter configurations for all our experiments as
1255 shown in 3. For pretraining the predictor, all models are trained for 100000 steps with a batch size
1256 of 8 tasks (with the exception of **MNIST**, which was trained for 50000 steps). The predictor is
1257 trained with the Adam optimizer with the default optimizer parameters and with linear decay. We
1258 checkpoint the model at every 500 steps and save the model with the best validation loss.
12591260 For the policy, we use a fixed temperature of 0.1 and a batch size of 8 for a total of 50000 training
1261 steps, with no learning rate decay. The transformer backbone and predictor weights are also jointly
1262 updated, with a lower learning rate of 1×10^{-5} .
1263

Hyperparameter	Value
Hidden Layer Size	512
Model Dimension	256
Number of Layers	6
Attention Heads	4
Embedding Depth	4
Dropout	0
Predictor Learning Rate	1×10^{-4}
Policy Learning Rate	1×10^{-4}
Warmup steps	500

1272 Table 3: Transformer Model Hyperparameters
12731274 A.6.7 BASELINES
12751276 We describe the baselines used in our experiments, noting several modifications made to improve
1277 computational tractability when evaluating across a large number of tasks.
12781279 **MLP (Random).** For each evaluation task, we train a two-layer multilayer perceptron (MLP) with
1280 hidden dimension 128. The model is trained on randomly selected feature subsets to predict the
1281 target label, using a batch size of 64 for 300 epochs. At test time, acquisition actions are chosen
1282 uniformly at random, and the MLP is used to make predictions. This task-specific MLP serves as
1283 the predictor model for the remaining baselines.
12841285 **GDFS** (Covert et al., 2023). The policy network is also a two-layer MLP with hidden dimension
1286 128. In contrast to the original paper, which trains the selector policy using Gumbel-softmax with
1287 a temperature decay schedule, we train using the straight-through Gumbel-softmax estimator with a
1288 fixed temperature of 0.5.
12891290 **DIME** (Gadgil et al., 2023). The reward predictor is also a two-layer MLP with hidden dimension
1291 128. We train the reward predictor using random acquisitions, rather than the ϵ -greedy acquisition
1292 strategy with decay as described in the original paper.
12931294 **DQN** (Janisch et al., 2019) We adopt the Q-learning framework, where the action-value function
1295 $Q(s_t, a)$ estimates the expected return from state s_t after taking action a . The optimal acquisition
1296 actions are selected by taking the action with the largest Q-value estimate $Q(s_t, a)$.
12971298 We consider a dueling network architecture (Wang et al., 2016). The dueling network consists of
1299 two MLPs with two hidden layers of dimension 128: one head outputs $V(s_t)$, and the other outputs
1300

1296 $A(s_t, a)$ for all actions a . The final Q-value estimate is computed as
 1297

$$1298 \quad Q(s_t, a) = V(s_t) + \left(A(s_t, a) - \frac{1}{|\mathcal{A}|} \sum_{a'} A(s_t, a') \right), \\ 1299$$

1300 Because the final log likelihood is identical across complete trajectories, we apply a strong discount
 1301 factor to prioritize early acquisitions that reduce predictive loss. The one-step temporal-difference
 1302 (TD) target is defined as
 1303

$$1304 \quad y_t = r_t + \gamma \max_{a'} Q_{\theta^-}(s_{t+1}, a'),$$

1305 where r_t is the immediate reward, Q_{θ^-} denotes the target Q-network, and $\gamma = 0.9$ is the discount
 1306 factor. We train for 200 episodes using an experience buffer of size 10,000, with samples col-
 1307 lected via an ϵ -greedy strategy. Training updates use mini-batches of 128 samples, and the target
 1308 Q-network is synchronized every 4 episodes.

1309 **A.6.8 SOURCE CODE**

1311 <https://anonymous.4open.science/r/Learning-To-Measure-5635>

1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349

1350 A.7 ADDITIONAL RESULTS
13511352 A.7.1 UNCERTAINTY QUANTIFICATION
1353

1354 We perform analogous evaluations as in Figure 3 for the classification tasks. We first evaluate
1355 the ability for **L2M** to recover the ground true probabilities in a set of evaluation tasks randomly
1356 sampled from the same semi-synthetic BNN task prior used during training. To evaluate uncertainty
1357 quantification for classification, we compute the KL divergence and brier score (MSE) between the
1358 predicted probabilities and ground truth probabilities. We also additionally show the AUROC to
1359 assess the ability for the model to rank samples.

1387 Figure 7: We identify a similar pattern where the quality of uncertainty quantification is better than
1388 the task-specific MLP, and the gains are larger as we acquire more features.
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

1404
 1405 Next, we evaluate **L2M** on classification using semi-synthetic tasks built from real labels that were
 1406 unseen during training. Because these tasks provide hard (binary) labels rather than ground-truth
 1407 probabilities, we report negative log-likelihood (binary cross-entropy) and Brier score to assess un-
 1408 certainty. Accordingly, we do not use KL divergence in this setting.
 1409

1436 Figure 8: The performance on real tasks is mixed, and dependent on various factors such as whether
 1437 the pretraining BNN tasks are closely aligned to the real unseen tasks.
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457

1458 A.7.2 AFA POLICY EVALUATION
14591460 **Performance** We provide additional metrics for quantifying AFA performance.
14611462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
Figure 9: Using the same evaluation tasks and samples, we plot the MSE for the regression tasks
1478 and AUROC for the classification tasks1479
1480 **Policy Visualization** We demonstrate how our sequence modeling approach is able to learn task-
1481 specific policies. We visualize the selected actions by the greedy policy in example evaluation tasks.
14821483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
Figure 10: MIMIC-IV Dataset: Example feature acquisition for a set of semi-synthetic evaluation
1494 tasks constructed using the BNN prior. Each task contains 500 query samples.1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
Figure 11: MIMIC-IV Dataset: Example feature acquisition for a set of 500 query samples on the
1509 semi-synthetic tasks with real labels.

Acquisition on simulated tasks We evaluate our model using tasks sampled from our synthetic pretraining prior where underlying feature informativeness is known apriori. We plot the precision and recall achieved by the acquisition method at each budget k , as well as the log loss metrics. We use the **MIMIC-IV** test distribution for the covariates X , and sample synthetic labels Y using the synthetic prior. We sample 50 test tasks and evaluate with different context lengths.

Figure 12: While the meta-learning approach demonstrates stronger uncertainty quantification (log loss) and discrimination (AUROC) performance at each decision budget, the task-specific approach is slightly more precise when identifying informative features. The task-specific model may be learning a sharper ranking over the features, while the meta-learning approach maintains uncertainty over the optimal acquisition actions.

Fully synthetic variant We also train a fully synthetic variant of **L2M**, where each task is defined by covariates sampled from multivariate Gaussian distributions with randomly sampled means and covariances. Across tasks, we allow the feature dimensionality to vary. For evaluation, we sample only simulated tasks with at least 10 features available for acquisition, while leaving the total number of features per task flexible. We note that this setting is particularly challenging for meta-learning, as the task prior must encompass heterogeneous feature distributions with varying dimensionalities. We sample 50 test tasks and evaluate with different context lengths.

Figure 13: **L2M** is able to match the performance of the task-specific baseline even in this challenging scenario. However, we find similarly that the task-specific approach is slightly more precise when identifying informative features.

We also evaluate the fully synthetic **L2M** model on real-world tasks. This is a particularly challenging setup, since the model never observes the test task's covariate distribution during pretraining. We denote this baseline as **L2M-Zero**, as the model is applied in a zero-shot fashion to an out-of-distribution setting. We find that **L2M-Zero** acquires features that outperform random selection on the real-world tasks, but its performance degrades substantially compared to an **L2M** model trained directly on the real-world covariate distributions.

Figure 14: The fully synthetic variant is less effective on real-world tasks, largely because the covariate distribution it was trained on differs substantially from the real-world data.

Benefit of Adaptivity Tasks such as LOS and mortality prediction are heterogeneous and may depend on different mechanisms across patients. We provide an ablation where we use the same **L2M** model but instead of the per-instance optimal action predicted by the model, we take the most frequently selected action across the entire test set at each step (majority vote). We find that the instance-wise adaptive feature selection is beneficial for some tasks, but other simpler tasks do not require granular acquisition.

Figure 15: Simpler tasks such as Miniboone do not benefit from instance-wise adaptive selection. We also note that it is difficult to demonstrate the benefit of per-instance adaptivity in small-scale MIMIC experiments.

Real missingness patterns We evaluate **L2M** when the context set exhibits real-world missingness patterns not seen during pretraining. These results should be interpreted with caution. The model was pretrained only on complete cases with synthetically injected missingness, so the evaluation introduces a distribution shift in both patient characteristics and missingness mechanisms. In addition, the query patients are complete cases while the context patients may be partially observed, creating a context–query shift. We therefore present these results as a stress test, not a definitive measure of deployment performance.

Figure 16: LTM is able to learn policies that improve on random acquisition on unseen natural missingness patterns in real-world data.

A.8 META-LEARNING ABLATIONS

We provide additional results investigating alternative meta-learning strategies. One common method uses a conditional neural process (CNP) -like (Garnelo et al., 2018) approach to learn compact task representations of variable length context, and use these embeddings for downstream decision-making (Rakelly et al., 2019; Wang et al., 2024). To investigate whether this is an effective approach, we use our same transformer architecture, but perform multihead-attention pooling to learn a task-level embedding instead of full context attention. We use the same pretraining priors, and greedy differentiable policy learning. Additionally, we perform MAML-like (Finn et al., 2017) inner gradient updates for the policy and predictor head for each unseen task encountered during inference, based on the learned CNP task representation.

The results in 17 show that a CNP-like approach leads to degradation in the quality and stability of uncertainty estimates. However, when pretraining on a small, fixed task family (**MNIST**) the task embedding leads to slightly improved performance and data efficiency during earlier acquisition steps. We hypothesize that this is due to the compact representation acting as an information bottleneck and regularizing the model, simplifying greedy policy learning.

We find that gradient-based adaptation at inference offers only modest improvements and rapidly overfits, indicating that the compact task representation acts as a bottleneck that the test-time adaptation cannot overcome. The main exception is the **MIMIC-IV** mortality task, where we see consistent gains. We hypothesize this is because very low positive prevalence is underrepresented in the pretraining prior, so adaptation corrects this mismatch.

Figure 17: A CNP-like approach that learns a compact task representation via attention pooling leads to less stable uncertainty estimates, especially when pretrained on a diverse task prior.

1674
1675

A.9 LLM USAGE

1676 LLMs were used to assist in code generation, specifically computing evaluation metrics and code
1677 for generating result figures. All AI-assisted code was checked for accuracy. LLMs were also used
1678 for checking grammar and formatting assistance.

1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727