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Abstract

We study contextual dynamic pricing when a target market can leverage K auxiliary
markets—offline logs or concurrent streams—whose mean utilities differ by a
structured preference shift. We propose Cross-Market Transfer Dynamic Pricing
(CM-TDP), the first algorithm that provably handles such model-shift transfer and
delivers minimax-optimal regret for both linear and nonparametric utility models.
For linear utilities of dimension d, where the difference between source- and target-
task coefficients is sg-sparse, CM-TDP attains regret O((dK 1+ 50) log T). For
nonlinear demand residing in a reproducing kernel Hilbert space with effective
dimension «, complexity 5 and task-similarity parameter H, the regret becomes
6(K‘2‘15/(2“5+1)Tl/(%B*l) + H* 2471/ (2041 " matching information-
theoretic lower bounds up to logarithmic factors. The RKHS bound is the first of
its kind for transfer pricing and is of independent interest.

Extensive simulations show up to 50% lower cumulative regret and 5x faster
learning relative to single-market pricing baselines. By bridging transfer learning,
robust aggregation, and revenue optimization, CM-TDP moves toward pricing
systems that transfer faster, price smarter.

1 Introduction

Dynamic pricing is now a core operational tool for ride-sharing platforms, airlines, and large e-
commerce retailers. State-of-the-art single-market algorithms learn a demand model from scratch
and achieve minimax regret when sufficient data accumulate [19, 28, 9]. In practice, however, many
markets launch with only dozens of transactions per day, while mature markets of the same firm
collect data at orders-of-magnitude higher rates. Transferring information from data-rich to data-poor
markets is therefore essential for fast revenue convergence and early-stage pricing accuracy.

Industry practice gives rise to two distinct transfer regimes. First, in the Offline-to-Online (020 )
setting, the firm holds a fixed log of source-market data gathered before the target market opens, and
this static information is used once the target goes live. Second, in the Online-to-Online (020,,,)
setting, the source and target markets operate concurrently; streaming data from large markets must
be incorporated into the pricing decisions of small markets in real time.
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Existing transfer approaches do not fully address these settings. Meta-dynamic pricing [4] learns a
shared Bayesian prior but requires directly observed linear demands and only exploits offline data.
TLDP [30] handles covariate (domain) shift from a single offline source but assumes that the reward
model is identical across markets. Bandit-transfer methods focus on either covariate shift [5] or sparse
parameter heterogeneity [32, 18], yet they do not incorporate revenue-maximising price choice.

This paper. We propose CM-TDP (Cross-Market Transfer Dynamic Pricing), a unified framework
that (i) operates in both O20,¢ and 020, regimes, (ii) accommodates linear and RKHS-smooth
nonparametric utilities, and (iii) allows multiple source markets whose mean utilities differ from the
target by a structured utility model shift. CM-TDP alternates a bias-corrected aggregation step with an
optimistic pricing rule, thereby transferring knowledge while balancing exploration and exploitation.

To the best of our knowledge, this work establishes the first rigorous regret analysis for transfer
learning under general utility discrepancies between markets. A primary difficulty that arose during
our analysis was maintaining tight control of error propagation: conventional techniques would
accumulate slack and inflate constant-order terms into non-negligible O(7T) factors, rendering the
bounds both theoretically and practically uninformative. Our main contributions are as follows:

(C1) Unified transfer pricing framework under utility shifts. CM-TDP is the first dynamic pricing
framework that allows multiple source markets whose utilities differ from the target by a structured
shift, working in both 020, and 020, regimes.

(C2) Minimax-optimal guarantees for two utility classes. We prove (i) 6(% logT + sglog T)
regret under linear mean utilities and (ii) the first transfer-pricing bound 5([( R +
Harr Tﬁ) for RKHS-smooth utilities—matching known lower bounds.

(C3) Bias-corrected aggregation architecture. Our two-step aggregate — debias pipeline cleanly
connects meta-learning (prior pooling), robust statistics (trimmed debiasing), and exploration-driven
bandits, and can plug in MLE, Lasso, or kernel ridge as well as black boxes.

(C4) Large empirical gains. Simulations show up to 50 % lower cumulative regret, 28 % lower
standard error and 5 faster learning relative to single-market pricing [19], with the largest gains in
data-scarce targets under O20,, transfer.

Organization. Section 3 introduces the multi-market dynamic pricing problem with transfer learning
under random utility models. Sections 4—0 present CM-TDP and its theoretical analysis. Section
reports empirical results, and Section & outlines future work.

2 Related Work

Single-market contextual pricing. Early algorithms assume a deterministic valuation map, typically
linear, and achieve sub-linear regret [2, 13, 20], with nonparametric variants studied in [22]. The
modern benchmark is the random utility model in which valuation equals a covariate-dependent
mean plus i.i.d. noise. When the noise distribution is known, [19] establish the first regret bounds;
subsequent work removes that knowledge via doubly robust or moment-matching estimators while
retaining linearity [31, 21, 16, 33]. [28] close the gap to the information-theoretic optimum for
linear utilities and extend the analysis to Holder-smooth demand curves, whereas [9] give fully
nonparametric guarantees. All of these methods relearn from scratch in every market, degrading
performance when target data are limited.

Transfer and meta-learning for pricing. Meta Dynamic Pricing pools directly observed linear
demands across products and learns a shared Gaussian prior [4]. TLDP transfers under pure covariate
(domain) shift but only from a single offline source [30]. Our Cross-Market Transfer Dynamic Pricing
(CM-TDP) differs by coping with utility-model shift, supporting multiple online/offline sources, and
providing guarantees for both linear and RKHS utilities.

Multitask contextual bandits and reinforcement learning. Domain-shift transfer for bandits is
analysed in [5], whereas sparse heterogeneity is addressed via trimmed-mean/LASSO debiasing [32]
or weighted-median MOLAR [18]. Causal-transport ideas reveal negative-transfer risks [15]. Reward-
and transition-level transfer and meta learning in RL is explored by [12, 10, 7, 8, 34]. We adapt these
bias-correction techniques to revenue maximisation under shifting utilities.



Fully online meta-learning without task boundaries. FOML [23] and Online-within-Online meta-
learning [14] operate on a single stream of data without explicit task resets. CM-TDP follows the
same streaming paradigm but must balance exploration and exploitation through posted prices rather
than prediction losses.

Positioning of this work. CM-TDP is the first dynamic pricing framework that (i) transfers across
multiple auxiliary markets under utility-model shift, (ii) achieves minimax regret for both linear and
RKHS utilities, and (iii) unifies bias-corrected aggregation with revenue-maximising price selection,
thereby bridging single-market pricing [28], offline meta-priors [4, | 1], and multitask bandits [18].

Key distinctions from prior work. Unlike Meta-DP [4] and TLDP [30], CM-TDP (i) handles
concurrent source streams, (ii) tolerates utility shift rather than merely covariate shift, and (iii)
supplies the first nonparametric (RKHS) transfer-pricing regret bound. Multitask-bandit methods
such as MOLAR [ 18] focus on prediction error and linear bandits, do not optimize posted prices,
and therefore cannot exploit revenue structure. Consequently, existing approaches cannot deliver the
minimax-optimal guarantees or empirical gains demonstrated by CM-TDP.

3 Problem Formulation

We consider a pricing model for the target market where products are sold one at a time, and only a
binary response indicating success or failure of a sale is observed. For each decision point ¢ € [T,
the market value of the product at time ¢ depends on the observed contextual information w§°). A
general random utility model for the market value of the product is given by

0 = §O @) + e, (1)

where é(o)(~) € G is the unknown function of the mean utility in the target market, and ; are
i.i.d. noises following an known distribution F'(-) with E[e;] = 0 and support S, := [—Be, Be].

Given a posted price of pt for the product at time ¢, we observe y( ) (vt(o) > p;) that indicates

whether a sale occurs (yt = 1) or not (yt = 0). The model is equlvalent to the probabilistic model:

2
! 1, with probability 1 — F(p; — §(* (:cgo))). @

Therefore, given a posted price py, the expected revenue from the target market at time ¢ conditioned
0) 5

on x,

© _ {0, with probability F(p, — §© (z\?)),

revi” (pe) == ps - (1 — F(pr — g (mgo)))) :

The oracle optimal offered price p; is defined by
pi? = argmax py[1 — F(p; — 5O (")), (3)

pt=>0

and hence, under Assumption |, we have
1—F(u)

pi ¥ =hog®(x,), where h(u)=u+¢7'(~u) and é(u) = F'(u)

“4)

Assumption 1 (Regularity condition). There exists positive constants Ly and By, such that ¢’ > L
forallw € [-By, B,], and inf|, <p, ¢'(u) > 1.

Assumption | guarantees the uniqueness of the optimal solution of (3). The restriction of Ly > 11is
commonly used in dynamic pricing study [19].

Optimal policy and regret. For a policy 7 that sets price p; at t, its regret over the time horizon of
T is defined as

Regret(T; ) ZE i L(vy > py) — pel(ve > py)] = Z revy(py) — revi(pe)] .
t=1

The goal of a decision maker is to design a pricing policy that minimizes Regret(7T’; 7), or equivalently,
maximize the collected expected revenue 23:1 reve(pe).



Cross-Market Transfer Learning. In the context of cross-market transfer learning, we observe
additional samples from K sources markets indexed by superscript () for k € [K]. The observed
market covariates and response, latent utility and the unknown mean utility functions for each source

market are denoted as mgk), y,gk) and vﬁk), respectively.

Assumption 2 (Homogeneous Covariates with Bounded Spectrum). For each market k € {0} U [K],

covariates {ajgk) Yi>1 are drawn i.i.d. from a fixed, but a priori unknown, distribution P, supported
on a bounded set X C R%. Let Y = E[z,x, | denote the second moment matrix of P,. We assume:

(1) Eigenvalue boundedness: The minimum and maximum eigenvalues of ., denoted Cyiy, and Ciyax,
satisfy 0 < Chpin < Cax < 00.

(2) Non-degeneracy: The distribution P, has a density bounded away from zero in a neighborhood
of the origin, ensuring 3. is positive definite.

Remark 1. Assumption 2 isolates market differences to utility model shifts, which is reasonable
when source and target markets have similar populations but differ in preferences. The key conditions
ensure: (i) Stability: bounded eigenvalues and support guarantee well-behaved estimators. (ii)
Identifiability: a density bounded away from zero near the origin ensures X is positive definite. These
hold in many practical settings e.g., truncated uniform or Gaussian distributions.

We will study the estimation and decision for the target model () leveraging the data from the target
markets as well as the data from K auxiliary source markets.

Similarity Characterization. Transfer is effective only when source and target markets are suffi-
ciently alike; we formalize this by assuming their mean-utility functions lie in a common hypothesis
class G and differ only through a structured utility shift. For any candidate mean-utility function
g € G we distinguish two notions of similarity, corresponding to (i) linear (parametric) and (ii) RKHS
(nonparametric) utility models:

o Parametric classes. When every g is indexed by a finite-dimensional parameter vector, similarity
is expressed as a bound on the parameter gap between source and target.

o Nonparametric classes. For infinite-dimensional G we impose a bound on the functional discrep-
ancy between source and target under a suitable function-space metric.

Later assumptions specialize these high-level conditions (e.g. sparse parameter differences in Assump-
tion 4 for linear utilities and smooth residuals for RKHS utilities in Assumption & for nonparametric
utilities). This formulation places every source task in a recoverable neighbourhood of the target,
ensuring its data are informative for transfer across both linear and non-linear utility models.

4 Cross-Market Transfer Dynamic Pricing Algorithms

We address both practical data scenarios introduced in Section |. For O20,¢ (Offline-to-Online),
a large, static source log is available prior to launch. The algorithm transfers that log during the
early episodes—those for which the cumulative target sample size is below a theory-driven threshold
7. Once |T,,| > 7 (source data no longer dominate the information budget) the procedure switches
automatically to pure single-market learning. Hence transfer is phased, not one-shot: it is used exactly
while it provably reduces estimation error and is dropped thereafter. Full details and guarantees are
given in Appendix

For 020,,, (Online-to-Online), source and target markets operate concurrently; transfer is repeated at
the start of every episode, ensuring that incoming source data continuously guide the target-market

prices. Let the time horizon be partitioned into episodes m = 1,2, ..., M with lengths £, = 2™!
(so that Zf\le Ly, = T and M = [log, T']). At the start of each episode the algorithm (i) fits or

debiases a demand estimator using all data collected in the preceding episode, and (ii) fixes the
resulting pricing rule for the next ¢,,, periods. Because episode length doubles, parameter updates
occur only O(log T') times, yet the cumulative sample size entering each update grows geometrically,
guaranteeing progressively tighter confidence bounds and the desired O(polylog T') regret.

Both algorithms share a common two-step bias-corrected aggregation pipeline and are instantiated
for (i) linear utilities, with maximume-likelihood estimation (MLE), and (ii) RKHS utilities, with



D=

kernel logistic regression (KLR). Pseudocode is given in Algorithms 4 (O20.) and | (O20,);
estimation details appear in Algorithms 2 and

Comparison between 020, and 020,,. When source streams remain active, each episode m
. ~(ag) . . , . .
recomputes an aggregate estimate g,, from the preceding episode’s source data and debiases it

using the matching target observations to form éig). This persistent adaptation leads to provably faster
regret decay compared to O2Q0. In contrast, 020, employs phased transfer only during initial
episodes, resulting in asymptotic regret growth rates that eventually match single-market learning,
though with improved constants during the transfer period.

Empirically, O20,, achieves flatter regret trajectories with consistently lower cumulative regret
(Figures | and 2). 020, shows parallel regret growth to single-market baseline in later stages
(Figures 3 and 4), confirming our theoretical analysis. However, we still observe a jump-start benefit
in 020, during early stages, ultimately translating to significantly lower overall regret compared to
the single-market baseline.

Algorithm 1: CM-TDP-020,,

Input: Streaming source data{(pgk)7 wi’“), y§ k))}t21 for k € [K]; streaming target contexts

{221
+0)

Initialisation: ¢, <1, 71 ={1}, g, =0.

form=1,2,... do // episodes
Compute £,, =21, Too={lm, ..., b1 — 1}

// (i) aggregate previous episode’s source data

~(ag) k k) (k
G MLE_or KRR({(p{"), (", i) }rer,, . wem))-
// (ii) debias with previous episode’s target data

> . o(ag) 0 0) (0
Om <_Debla-s(gm 7{(pg ),513,5 )’ytg ))}tGTm—l)'

// For functions MLE_or_KRR and Debias, call Algorithm 2 for linear utility (or
Algorithm 3 for nonparametric utility)

(0 (a —~
Set g 3" 45

fort € 7,, do // pricing

~(0
L Post price 5. = h(g?fn) (wgo))); observe y\*) and store data.

5 Parametric Utility Models: Similarity, Transfer, and Guarantee
We start with the linear setting that allows us to isolate and rigorously characterize the transfer
mechanism itself, before introducing the additional complexity of nonlinear effects.

Linear Utility Models. Consider a linear model for the mean utility:
v == 8O +e, 5)

where B(¥) € R denotes the coefficient vector. For source market data, we have for k € K],
vgk) = :cgk) . ,B(k) + €;. To simplify the presentation, we impose the following assumption on
parameter space.

Assumption 3 (Parameter Boundedness). We assume that ||z4||so < 1,Vz, € X, and ||3|, < W
for a known constant W > 1,Yk € 0 U [K]. We denote by S the set of feasible parameters, i.e.,

Q={BeR™ B <w}, B¥eqVkeoUlK]

We formalize the notion of similarity between source and target markets using the sparsity of the
difference between coefficients.



Assumption 4 (Task Similarity in Linear Model). The maximum ly-norm of the difference between
target and source coefficients is bounded.:

O _ gk <
glg%l\ﬂ B0 < so.

While our linear utility model itself is not necessarily sparse, Assumption 4 specifically constrains the
cross-market parameter differences to be sparse, implying that at most s covariates have significantly
different effects across markets, mirroring the economic intuition that only certain latent features
drive market variations.

Bias-corrected Aggregation for Linear Utility. Algorithm 2 serves as the dual-mode estimator
in Algorithms | and 4, switching between: (i) source data aggregation (no prior input), or (ii)
{1 -regularized debiasing (given aggregate estimate).

Algorithm 2: Maximum Likelihood Estimation for Linear Utility Model
)

Input: Data {(p;, ¢, ys) }te[n]- aggregate estimate B(ag

iff"}(ag) is None then // compute aggregate term
~ 1<

= i - L b7 ) ) }
B = argmin {n ;:1 (b pt, e, Yr))

else // compute debiasing term

~

ol ~(ag)
ﬁ:argmm{fZL(b+ﬁ ;ptamtvyt))Jr)\tbeHl}
b i3

wIlere the function
L(bip, ) = —{ 1y = Dlog(1 — F(p—b-2)) + 1y = 0) log(F(p~b-x)) }.  (©)

Output: @

In Algorithm 2, the aggregation step employs unregularized MLE. This choice is motivated by
the fact that source market data are typically abundant, so the aggregate estimate can be reliably
learned without imposing sparsity or other high-dimensional penalties. By contrast, the debiasing step
operates on target market samples, which are relatively scarce. Here, we incorporate regularization to
stabilize estimation and exploit structured similarities across markets.

5.1 Theoretical Guarantee for CM-TDP-020,,, under Linear Utility

The following theorem bounds the regret of our 020, Policy under linear utility model.

Theorem 5 (Regret Upper Bound for O20,,, under Linear Utility). Consider linear utility model (5)
with Assumptions | (revenue regularity), 2 (covariate property), 3 (parameter space), and < (market
similarity) holding true, the cumulative regret of Algorithm | admits the following bound:

d
Regret(T;m) = (’)(E log dlog T' + solog dlogT). @)
where K and T denote the number of source markets and time horizon, respectively.

We defer the complete proof to Appendix E. Theorem 5 reveals crucial insights about the role of
source market quantity / in two distinct operational regimes. First, in the source-constrained regime
(K < d/sp), the first term dominates, showing that each additional source market provides linear
reduction in regret. Notably, the logarithmic dependence on 7' is consistent with classical linear
bandit results [1], though our bound strictly improves their O(dlog T') through transfer. Second, in
the source-saturation regime (K > d/sg), the second term becomes pivotal, quantifying the price
for cross-market heterogeneity.

As illustrated in Figure |, the empirical scaling behavior of regret w.r.t. both the number of source
markets K and time horizon T precisely matches the theoretical predictions derived from Theorem 5.



While our theoretical guarantee is established in asymptotic regimes, the finite-horizon empirical
performance robustly validates the practical effectiveness. This alignment between theory and
practice confirms that our asymptotic analysis yields operationally meaningful insights for real-world
applications.

Theorem 6 (Regret Lower Bound under Linear Utility). Consider the linear utility model in (5), for
any pricing policy T, the worst-case target-market regret over horizon T satisfies

d d
inf sup Regret(T;7) > ¢ 74 log T + c5 splog— log T (8)
e SO

where the two constants c1, co depends only on noise distribution F, second moment matrix ¥, and
parameter space W.

In particular, (8) matches the upper bound (7) up to polylogarithmic factors in d, hence CM-TDP is
minimax-type optimal in its 7'- and K -scaling.

6 Nonparametric Utility Models: Similarity, Transfer, and Guarantee

In this section, we model market utilities in an RKHS [3], leveraging (i) the kernel trick for efficient
nonlinear computation [24], and (ii) its universal approximation power to capture rich market
responses [26].

Nonparametric Utility Models. Let #;, be an RKHS induced by a symmetric, positive and semi-
definite kernel function K : X x X — R, and we define its equipped norm as || - |% = (-, ) x with
the endowed inner product (-, -) . We also define K, := K(x,-) € Hi. An important property
in M, is called the reproducing property, stating that (g, K,)x = g(z). The utility function now

foll : )
OHOWS vt(k) = g(k)(wgk)) + &4, g(k) € Hy, k€ 0U[K], 9)

where g(*) is the unknown target function and {aﬁ’“) }i>1 are i.i.d. noise with known distribution F'.
To start with, we place the following regularity assumptions on Hj, which requires the model to be
well-specified, and the kernel to be bounded.

Assumption 7 (Regularity Condition). Assume that ||g(?||3, < R, for some R > 0, and there exists
a positive constant £, such that the feature map ¢(x) = K (x, -) satisfies ||¢p(x)||n, < K,V € X.

Assumption 8 (Task Similarity in RKHS). For all k € [K], the discrepancy between the target task
g9 and the k-th source task ¢*) in the RKHS norm is uniformly bounded as

0) _ (k) < H.
?é[aéﬁ”g 9"k <

Remark 2. Assumption & characterizes the similarity between the target and source tasks through
the bound H. A smaller value of H indicates that the source tasks are more similar to the target task,
which enables more effective knowledge transfer and potentially improves the estimation accuracy by
leveraging information from related sources.

Assumption 9 (Complexity). Define the effective dimension as N'(\) := Tr[S(X+\I)~Y), a variant
of what is typically used to characterize the complexity of RKHS [6]. We assume:

(i) There exist some constants o > 1/2 such that N (\) = Tr(X(Z + ) ™) < A1/ o),

(ii) There exist some constants 3 € (0, 1] such that for each k € 0 U [K, there holds g'*) = %8 p(¥),
for some p*) € Lo(X,P,), where ¥, P, are defined in Assumption °.

Remark 3. (i) controls the complexity of the considered 7. Smaller & means slower eigenvalue
decay and higher intrinsic dimensionality. (ii) is a regularity condition on the source and target
functions, and is also commonly assumed in literature[6, 25, 17]. Here 3 > 0 controls the degree of
smoothness, and larger S means ¢ is smoother and easier to estimate.

Bias-corrected Aggregation for Nonparametric Utility. Algorithm 3 presents the aggregation and
debiasing operations using regularized kernel regression.

6.1 Theoretical Guarantee for CM-TDP-020,, under Nonparametric Utility

The following theorem bounds the regret of our O20,,, Policy under RKHS utility model.



Algorithm 3: Kernel Regression for RKHS Utility Model
Input: Data {(p;, ¢, yt) }repn). Kernel K(x,x') = (¢(x), p(x')), Aggregated estimator

g(ag) € Hy.
if @\(ag) is None then // compute aggregation term
. I 2
g =argming = ) L(gipe e v1) + Aagll9ll7,
S _
else Im =t // cofipute debiasing term
n
L g = argmin ZL(9+§(a9);pt,$t7yt) + A llgll,
9EHE =1

where the function
L(g;p, x,y) :== *{l(y =1)log(l — F(p—g(z))) + L(y = 0) log(F'(p — g(w)))}~

Output: g

Theorem 10 (Regret Upper Bound for O20,, under RKHS Utility). Consider RKHS utility model (9)
with Assumptions | (revenue regularity), 2 (covariate property), 7 (parameter space), S (market
similarity), and 9 (complexity) holding true, the cumulative regret of Algorithm | admits the following

bound: 2a8 1 2 1
Regret(T;7) = O (K—WTW + HTTT) (10)

where K and T denote the number of source markets and time horizon, respectively.

Theorem 10 again highlights the benefit of transfer learning, and finds clear empirical support in
the experiments shown in Figure 2. The first term reflects the learning complexity of the target
function, where 3 quantifies its intrinsic complexity with larger 3 indicating simpler functions and
enabling faster transfer. The o parameter, as the kernel’s effective dimension, modulates how 3
impacts the exponent. The second term encodes cross-market disparity through H, which directly
measures the worst-case RKHS distance between source and target markets. The a-dependence
shows that high-dimensional RKHS amplify heterogeneity costs. Compared to Theorem 5, we
observe polynomial rather than logarithmic 7-dependence, reflecting the fundamental difficulty shift
from parametric to nonparametric estimation.

Special Cases. The following boundary cases demonstrate the degradation properties of our theoreti-
cal results, showing how the general bound naturally adapts to different simpler scenarios.

Perfect Task Similarity. When source and target domains are identical (H = 0), the bound becomes:
Regret(T;m) = O (K‘%T%>

The regret depends on the total sample size from all sources. The rate improves with number of
source market K.

No Transfer Learning (K. = 1, H = 0) In the absence of transfer learning, i.e., when no source
domain data is available (X' = 0, H = 0), we evaluate the bound (10) with K¢ = max{K,1} =1
(equivalently, a “self-aggregation” that ignores external sources). Our general framework reduces to
conventional dynamic pricing with RKHS utility functions. The regret bound simplifies to:

Regret(T;m) = O (Tﬁ) .

While existing literature has not explicitly analyzed regret bounds for dynamic pricing with RKHS
utility functions, we can establish an important connection to the well-studied linear case. By
setting « — 1/27 and 3 = 1, which corresponds to linear utility functions, the general bound (10)
reduces to O(\/T ), matching the often-seen regret for online decision-making problems with linear
structures [1, 19].

This O(v/T) rate should be contrasted with the O(log T') regret we established for the linear transfer
setting in (7). The difference stems from the underlying estimation complexity: in the parametric
case, the generalized linear model is finite-dimensional, and abundant source data together with
MLE-based updates enable nearly logarithmic regret growth. In contrast, the RKHS formulation



must estimate an infinite-dimensional function under binary feedback, where nonparametric learning
is intrinsically harder. Thus, the gap reflects fundamental differences between parametric and
nonparametric estimation, rather than looseness in the analysis.

Theorem 11 (Regret Lower Bound under RKHS Utility). Consider the RKHS utility model in (9).
For any pricing policy m, then there exists a constant ¢ > 0 depending only on (F, P, K) via
(Myev, My, k) and the Bernoulli KL smoothness constant (defined in Lemma 28) such that for all
horizons T > 1,

inf sup Regret(T;m) > C{K_Qfgil Trre1 4+ Hrar Tﬁ}. (11

In particular, (1 1) matches the upper bound (10) up to polylogarithmic factors, hence CM-TDP is
minimax-type optimal in its 7- and K -scaling.

7 Numerical Experiments

We evaluate CM-TDP through extensive simulations covering multiple market scenarios and dimen-
sionalities:

(1) Identical Markets: an ideal baseline where 3©) = 8% or ¢(© = ¢(® for all source markets;

(2) Sparse difference Markets: for linear utility, we implement Assumption 4 with ||3® — 8 ||, <
0.3 % d; for RKHS utility, we implement Assumption & with ||g(®) — g(¥)||5, < 0.3.

(3) Dense difference Markets: for linear utility, we implement Assumption 4 with || B0 — gk llo <
0.5 * d; for RKHS utility, we implement Assumption 8 with [|g(® — g(®) |4, < 0.5.

In each market scenario, we test T = 2000 periods with dimensions d € {10, 15,20, 100} and
K €{1,3,5,10} source markets. RKHS function (RBF kernel with v = 0.5) and kernel parameters
(k = 0.5, R = 1.0) remain consistent across all experiments. We evaluate O20,,, Policy against
no transfer baseline [19], a standard dynamic pricing using only target market data. Market noise
follows logistic distribution on R. For numerical stability, we clip simulated valuations to [— B, B.]
with B. = 1. The code is available at https://github.com/CS-SAIL/transfer_pricing_neurips2025.

Simulation Results. Figures | and 2 present the empirical cumulative regret for linear and RKHS
utility models with d = 10 and 100, respectively, demonstrating three key findings (For conciseness,
results for d = 15, 20 are deferred to Appendix D.1).

(1) Universal effectiveness over non-transfer scheme. CM-TDP-020,, consistently outperforms
single-market baseline in all scenarios. Significant improvements emerge even with minimal source
markets (K = 1), with larger K values enhance robustness in divergent market conditions. Against
single-market learning, CM-TDP reduces cumulative regret by roughly 43-55% on average (peaking
at 75%), reduces standard error by about 24-31% (up to 39 %), and attains the same estimation error
level as much as 9 x sooner (Table 2 in Appendix ).

(2) Adaptivity. The transfer mechanism automatically handles both identical markets and sparse-
difference markets, without requiring manual adjustments, with identical market condition achieving
faster convergence than sparse difference cases and dense difference cases.

(3) Scalability: Higher dimensions maintain stable performance, confirming the method’s scalability.

These results collectively validate our framework as a versatile solution for real-world dynamic
pricing, particularly in environments with varying market similarities.

8 Conclusion and Future Work

We introduce Cross-Market Transfer Dynamic Pricing (CM-TDP), the first framework that provably
accelerates revenue learning by pooling information from multiple auxiliary markets in both Offline-
to-Online and Online-to-Online regimes. CM-TDP achieves minimax-optimal regret for both linear
and RKHS utilities, matching information-theoretic lower bounds, and delivers up to an average
of 50% lower cumulative regret and 5x faster learning in extensive simulations. These results
bridge single-market pricing, meta-learning, and multitask bandits, laying the groundwork for pricing
systems that “transfer faster, price smarter”.
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Figure 1: Cumulative regret across experimental conditions in O20,, with linear utility model.

,,,,, > R —

k=5

] 500 1000 1500 2000 1000 150 1000
rrrrrrrr tod Time period Time Period

(a) Identical, d = 10 (b) Sparse, d = 10 (¢) Dense, d = 10

200 < k=1
k=3

2%

k=3
k=%

] 500 1000 1500 2000 [ 500 1000 1500 2000 ] 500 1000 1500 2000
rrrrrrrr iod Time Period Time Period

(d) Identical, d = 100 (e) Sparse, d = 100 (f) Dense, d = 100

Figure 2: Cumulative regret across experimental conditions in O20,, with RKHS utility model.

Several extensions of CM-TDP provide fertile ground for future research. First, relaxing the assump-
tion of homogeneous covariate distributions would allow the framework to handle domain shift, e.g.,
via reweighting, importance sampling, or domain-invariant representation learning. Second, while
we focus on £y-sparsity for interpretability, the aggregation framework naturally extends to richer
similarity notions such as £,-sparsity (¢ € [0, 1]), smoothness metrics, or distributional divergences.
Third, CM-TDP currently lacks mechanisms to down-weight or exclude adversarial source markets
with large parameter gaps, and developing robust similarity detection and market-selection strategies
remains an important direction.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly outline the paper’s key contributions,
including the development of a novel transfer learning algorithm for dynamic pricing,
theoretical analysis of the algorithm, and experimental validations. The claims are supported
by the theoretical framework presented in Section 3 and the experimental results detailed in
Section 7, aligning with the guidelines.

Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

o The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

o The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

e It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer:[Yes]

Justification: Although not labeled under a "Limitations" section, limitations are implicitly
discussed in the assumptions underlying the theoretical results, such as paramter space in in
Assumption 3, homogeneity in design matrices in Assumption 2, known noise distributions,
and sparsity constraints on parameters in Assumption 4. These limit generalizability and are
explicitly stated.

Guidelines:

e The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

e The authors are encouraged to create a separate "Limitations" section in their paper.

o The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

e The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

o The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

e The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

e If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

e While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
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judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: The paper provide the full set of assumptions and a complete (and correct)
proof for both online to online and offline to online transfer learning setting, with an outline
for the proof following the statement of Theorem 5 and 12, and complete versions in
Appendix E and

Guidelines:

e The answer NA means that the paper does not include theoretical results.

o All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

o All assumptions should be clearly stated or referenced in the statement of any theorems.

e The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

e Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

e Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Although the paper is primarily theoretical, focusing on algorithm design,
regret analysis, and proofs under well-defined assumptions, we still include empirical
experiments accompanied with open soirce code and data for validation.

Guidelines:

The answer NA means that the paper does not include experiments.

If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.
e While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.
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(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Our implementation is available at https://github.com/CS-SAIL/
transfer_pricing_neurips2025, including a README with setup instructions, us-
age examples, and reproduction steps.

Guidelines:

e The answer NA means that paper does not include experiments requiring code.

e Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

e While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

o The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

e The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

e The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

e At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

e Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: The paper specifies all the necessary experiment setup in Section
Guidelines:

e The answer NA means that the paper does not include experiments.

e The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

e The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
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Answer: [Yes]

Justification: The paper reports confidence intervals in numerical experiments, as demon-
strated in Figures |, 2, 3 and

Guidelines:

e The answer NA means that the paper does not include experiments.

o The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

e The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

e The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

e The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

e For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

e If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Information on the computer resources is specified in Appendix
Guidelines:

e The answer NA means that the paper does not include experiments.

e The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

o The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

e The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conform with the NeurIPS Code of Ethics
in every respect.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

o If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

o The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
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10.

11.

12.

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The paper includes a discussion in Section & that clearly outlines potential
positive and negative societal impacts, such as improving pricing efficiency, supporting
small businesses, and enhancing customer satisfaction through adaptive pricing.

Guidelines:

e The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

e Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

e The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

o The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

o If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

e The answer NA means that the paper poses no such risks.

e Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

e Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

e We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]
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13.

14.

Justification: All assets used in the paper, including code and models, are our own work.
Therefore, no external creators or original owners need to be credited; licenses and terms of
use for external assets are not applicable.

Guidelines:

e The answer NA means that the paper does not use existing assets.

e The authors should cite the original paper that produced the code package or dataset.

e The authors should state which version of the asset is used and, if possible, include a
URL.

e The name of the license (e.g., CC-BY 4.0) should be included for each asset.

e For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

e If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

e For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

o If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The paper mentions a new asset in the form of Python code, which is available
at https://github.com/CS-SAIL/transfer_pricing_neurips2025. Detailed user
guide, API reference, and installation instructions are provided alongside the asset in the
README.md file.

Guidelines:

e The answer NA means that the paper does not release new assets.

e Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

o The paper should discuss whether and how consent was obtained from people whose
asset is used.

e At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.
The paper appears to focus entirely on theoretical modeling, algorithm development, and
regret analysis within simulated or synthetic environments.

Guidelines:
o The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

e Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

e According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.
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15.

16.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.
The paper appears to focus entirely on theoretical modeling, algorithm development, and
regret analysis within simulated or synthetic environments. There is no mention of human
subject experiments, surveys, or deployment in real-world platforms that would necessitate
IRB review.

Guidelines:
e The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

e Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

e We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

e For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The paper doesn’t use LLMs for any important, original, or non-standard
component of the core methods in this research.

Guidelines:

e The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

e Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

19


https://neurips.cc/Conferences/2025/LLM

A Notation

Let lowercase letter x, boldface letter @, boldface capital letter X, and blackboard-bold letter
X represent scalar, vector, matrix, and tensor, respectively. The calligraphy letter X' represents
operator. We use the notation [N] to refer to the positive integer set {1,..., N} for N € Z,. Let
C,c,Cy,cg, ... denote generic constants, where the uppercase and lowercase letters represent large
and small constants, respectively. The actual values of these generic constants may vary from time to
time.

All vectors are column vectors and row vectors are written as | for any vector . For any vector
= (1,...,2p) ", let || := ||z|2 = (3F_, 2?)/2 be the f2-norm, and let ||z, = >7_, |z
be the /1-norm.

For any matrix X, we use x;., x;, and x;; to refer to its i-th row, j-th column, and 7j-th entry,
respectively. For two matrices X; € R"™*" and X, € RP¥?, X; ® X5 € RP™ X" ig the
Kronecker product. When X is a square matrix, we denote by Tr (X)), Anaz (X), and A (X)
the trace, maximum and minimum singular value of X, respectively. For two matrices of the same
dimension, define the inner product (X 1, X3) = Tr(X | X»).

We use Lo(X,Py) = {[f: [ [*(z)dP, < o0} to denote the space of square -integrable functions

with respect to ’PI, equlpped W1th the inner product {f, g =[.f Py x)dP, and squared norm
115, = Jx £2(x
Notation Definition
t Time index (period).
T Time horizon (total number of periods).
m Episode index (algorithmic episode).
b Length of episode m, £, = 2m~1.
T Set of time indices in episode m.
K Number of source markets.
k Source market index, k € [K].
no Number of target samples.
nK Total number of offline source samples (used in O20,¢ analysis).
(0), p,EO), yt(o), v,SO) Observed contextual covariates, posted price, observed binary sale
indicator, latent market utility, for the target market at time ¢.
(k), pg ), ygk) (k) Observed contextual covariates, posted price, observed binary sale
indicator, latent market utility, for source market k at time ¢.
d9) General unknown mean-utility function for target market.
g® () General unknown mean-utility function for source market k.
£t i.i.d. noise at time ¢ with distribution F(-).
F() Cumulative distribution function of the noise &;.
)y Covariance matrix for source and target features, which is equivalent
to X(9), (%) in homogeneous covariate setting.
Chuin, Crax Minimum and maximum eigenvalues of second-moment matrix 3.
ES) Debiased estimator for the target after aggregation+debias at episode
m.
5 True (population) debiasing correction in RKHS.
gm Debiasing correction term computed at episode m.
Aty Regularization parameter used for the debiasing step.
Aag Regularization parameter used in aggregation.

Continued on next page
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Notation Definition

BO Coefficient vector for the linear mean utility in the target market.
Bk Coefficient vector for the linear utility in source market k.
3 Estimated coefficient for target market.

S0 Task-similarity magnitude in linear utility case.

g RKHS mean-utility function of the target market.

g RKHS mean-utility function of source market k.

H Task-similarity magnitude in RKHS case.

Hr RKHS associated with kernel K.

K(-,) Positive semi-definite kernel function inducing Hy.

N(X) Effective dimension.

o Parameter controlling eigenvalue decay.

I} Smoothness parameter for RKHS function.

B 020,4: Offline-to-Online Cross-Market Transfer Pricing

In this section, we present our algorithmic framework, theoretical results and empirical experiments
for 020, (Offline-to-Online) scenario.

B.1 Offline-to-Online (O20¢) Algorithm

. . ~>(ag
Prior to deployment we form an aggregate estimator g( ) from all source data. At the start of

episode m = 1 this estimator is debiased with the first batch of target observations to obtain ﬁ]io);
subsequent episodes rely exclusively on target data. Hence O20,¢ yields a one-shot reduction of
cold-start regret, but its asymptotic rate in 7' matches that of single-market learning. The complete
procedure is summarize in Algorithm 4.

B.2 Theoretical Guarantee for CM-TDP-O20 under Linear Utility

The following theorem bounds the regret of our 020 Policy under linear utility model.

Theorem 12 (Regret Upper Bound for O20,¢ under Linear Utility). Consider linear utility model (5)
with Assumptions | (revenue regularity), 2 (covariate property), 3 (parameter space), and < (market
similarity) holding true, the cumulative regret of Algorithm 4 admits the following bound:

Regret(T;7) = O (dlogdlogT + (so — d) log dlogng) . (12)
where nic and T denote the number of source data and time horizon, respectively.

Theorem 12 reveals fundamental differences in how static source data influences regret compared to
Online-to-Online transfer. The bound in (12) decomposes into two interpretable components: the first
term captures the intrinsic complexity of learning the d-dimensional target market parameters in the
total T' periods, while the second term quantifies the net effect during transfer learning phase. Given
that so < d by problem construction, the second term always provides a regret reduction proportional
to (d — sp) log n. This reduction grows logarithmically with the total source sample size ny, which
is consistent with our numerical experiments in Figure

B.3 Theoretical Guarantee for CM-TDP-O20,¢ under Nonparametric Utility

The following theorem bounds the regret of our O20, Policy under RKHS utility model.
Theorem 13 (Regret Upper Bound for O20,¢ under RKHS Utility). Consider RKHS utility model (9)

with Assumptions | (revenue regularity), 2 (covariate property), 7/ (parameter space), S (market
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Algorithm 4: CM-TDP-020,¢

Input: Offline source market data {(pgk)7 (k) 0k Yy )}'tGH(k) for k € [K]; feature matrix {wgo)}teN
for the target market
/* *kxx*xx*x Phase 1: Update with transfer learning xkkxkxx */

Call Algorithm 2 or to calculate the initial aggregated estimate /g?\(ag) using entire source market
data {(p{®, XMy "N}, e for k € [K]

Apply the price p ’{ ) h(g(dg)(mgo)))
for each episode m =2,...,mgdo
Set the length of the m-th episode: £,,, := 2m~1

Call Algorithm 2 or 3 to calculate the debiasing estimate J,,, using target market data

{(PEO) (0)7 yt(o))}te[%-?,zm—l,l] and aggregated estimate E(ag).
Set

and collect data (ﬁﬁo), a:ﬁo), y(o))

~(0 ~
éfn) = g(ag) +0m

~(0
| For each time ¢, apply price ;bfo) = h(éfn) (a:go))) and collect data (A(O) §°), y§0)).
/* ***x*x* Phase 2: Update without transfer learning *¥kk*** */
for each m > mgy + 1 do

Set the length of the m-th episode: ¢,,, := 2™~}

~(0
Call Algorithm 2 or 3 to calculate f)fn) using target market data
{0, 2" 5V }ielzm-2om-s-.
For each time ¢, apply price and collect data.
Ot >1

Output Offered price p

similarity), and 9 (complexity) holding true, the cumulative regret of Algorithm 4 admits the following
bound:

1 1
Regret(T;7w) = O (Enfca‘“l + H%7 (Gnyg) T 4 T2aret — (En;g)z‘aéﬂ> (13)

where ni denotes the number of source data, B characterizes the smoothness of the aggregated
utility function ¢(*9) = ¥8 g with B € (0,1], and a > 1/2 controls the effective dimension via the

eigenvalue decay N (\) < X~/ (o),

The derived result reveals an important trade-off in the regret decomposition. The first component
@ (Enfg“lm + Hear (cnk) 2a1+1> captures regret resulting from the transfer learning phase. This
component grows with ¢nx because more source data leads to a longer transfer phase duration,
which consequently increases the accumulated regret during this phase. However, this initial cost is
offset by a more significant benefit in the second component: O (T?aﬁé+1 — (enk) Wlﬂ), which

demonstrates that the extended transfer phase enables substantially more effective single-market
learning, and thus reduces the overall regret.

We defer the complete technical proof of Theorems |2 and |3 to Appendix I and I, respectively.

B.4 Numerical Experiments

The experimental setup for O20,¢ maintains the same core structure as the O20,, setting, except
for data collection protocol. Rather than observing synchronized data streams from K active source
markets, we begin with a fixed historical dataset of size nx € {50,100,200,500}. All other
experimental parameters, including demand model specification, evaluation metrics, and comparison
baselines, remain consistent with the O20,,, described in Section 7.
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All experiments were conducted on an Ubuntu 20.04 server equipped with an AMD Ryzen 9 5950X
CPU (16 cores, 32 threads), 125 GiB RAM, and an NVIDIA RTX 3090 GPU (24 GiB VRAM). The
primary storage was a 1.8 TB NVMe SSD.

Simulation Results Figures 3 and 4 present the empirical cumulative regret for linear and RKHS
utility models, respectively. As is consistent with our theoretical analysis in Theorems |2 and 13, we
observe a jump-start benefit in the early stage, and a significantly lower overall regret compared to
the single-market baseline.

The results again demonstrate that all transfer learning variants consistently outperform the no-transfer
baseline across all tested conditions, with larger nx values showing faster regret reduction, validating
the effectiveness of knowledge transfer from source markets.
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Figure 3: Cumulative regret across experimental conditions in O20, with linear utility model.
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Figure 4: Cumulative regret across experimental conditions in O20 transfer with RKHS utility
model.

C Computational Complexity Analysis
In this section, we summarize the computational costs of CM-TDP across different settings.

Linear Utility Model. In O20,,, each episode consists of two stages. In the aggregation stage,
unregularized maximum likelihood estimation on the aggregated source data has a complexity of
O(d?*(,,_1K - N), where d is the feature dimension, £,,,_ is the number of past samples, K is the
number of source markets, and NV is the number of optimization iterations. In the debiasing stage,
Lasso regression on the target data requires O(d?/,,_1 - N). Over T episodes, the cumulative regret
analysis involves O(d*TK - N) operations.

For 020, Phase 1 (transfer) requires O(d?n - N) for MLE on the aggregated source market data,
plus O(d?¢,,,_1 - N) per episode for bias correction. Phase 2 (no transfer) reduces to standard linear
MLE with complexity O(d?¢,,_1 - N). The resulting cumulative complexity across T episodes is

24



O(d*(nx +T) - N). The dependence on d depends on the optimization method: Newton’s method
(used in our implementation) achieves faster convergence (smaller N) but maintains d? dependence,
whereas gradient descent reduces the per-iteration cost to O(d) at the expense of a larger iteration
count V.

RKHS Utility Model. Exact kernel methods scale as O(n?) in the number of aggregated samples
n. In O20,, episode m uses n,, ~ K - 2m=1 source samples and om—1 target samples, so a naive
solver scales as O(n3,). In practice, Nystrom or sketching reduces runtime to near-linear in the
effective dimension A/ ().

D Additional Experimental Results

D.1 Extended Regret Plots for 020,,

In the main text, we reported regret trajectories for O20,, with dimensions d = 10, 100. Here,
we provide additional results for intermediate-dimensional settings (d = 15, 20)in Figures 5 and
As shown in the plots, CM-TDP consistently outperforms the no-transfer baseline across different
dimensionalities, maintaining lower cumulative regret and faster convergence. These results confirm
that the effectiveness of CM-TDP is not restricted to specific dimensions.

500 1000 1500 2000

] 500 1000 1500 2000 3 500 1000 1500 2000
‘‘‘‘‘‘‘‘‘‘‘‘ Pe Time Period
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(d) Identical, d = 20 (e) Sparse, d = 20 (f) Dense, d = 20

Figure 5: Cumulative regret across experimental conditions in O20,, with linear utility model.

D.2 In-depth Analysis of Sparse-difference Markets

While our regret evaluation covers identical, sparse-difference, and dense-difference market scenarios,
this part focus on the sparse-difference case. This choice reflects the primary target of our algorithm
design: markets that differ sparsely in latent preferences, where transfer is both practically relevant
and theoretically most distinctive. At the same time, our earlier regret plots already demonstrate
that CM-TDP yields consistent improvements across identical and dense-difference settings as well,
confirming that the additional deep-dive into sparse-difference scenarios is representative rather than
restrictive.

D.2.1 Benchmarking Transfer Gains

Table 2 compares CM-TDP against the canonical single-market learner in the sparse-difference
setting, where only a small subset of coefficients differs between the target and each source market.
We report three metrics averaged over dimensions d € {10,15,20}: reg (percentage reduction in
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Figure 6: Cumulative regret across experimental conditions in O20,, with RKHS utility model.

cumulative regret, i.e., revenue lift), std (percentage reduction in standard error across 10 Monte-
Carlo runs), and speed (multiplicative acceleration in reaching the single-market learner’s final
estimation error, i.e., |3 — 30|, for linear utility, and ||§(® — g(®|| x for RKHS utility). For
020, transfer, performance is indexed by the number of live source streams K, whereas for 020
transfer it is indexed by the historical log size nx. Across both linear and RKHS utilities, gains
grow monotonically with K (or nx): a single auxiliary market already cuts regret by 15-20%,
while ten live sources slash regret by more than half and deliver up to a 9x jump-start in learning
speed. These results confirm that CM-TDP translates theoretical advantages into substantial empirical
improvements even when source-target differences are sparse and high-dimensional.

Table 2: Comparison with single-market learning baseline in sparse-difference market scenario
averaging over different dimensions. In the metric column, reg, std and speed means cumulative
regret, standard error, and learning speed, respectively. /K and nx apply to O20,, and O20 policies,
respectively.

Model Metric K=1 K=3 K=5 K =10 Avg
reg | 15% 61% 67% 71% 54%
020,-Linear std | 9% 36% 38% 39% 31%
speed T 1.2x 5.9% 8.1x 9.0x 6.0x
reg 17% 62% 68% 73% 55%
0200,-RKHS std 11% 33% 36% 36% 29%
speed 1.3x 6.7x 8.1x 8.9x 6.2x

nkg =50 nx =100 nxg =200 nc =500
reg 20% 48% 54% 56% 45%
020,¢-Linear std 5% 22% 34% 35% 24%
speed 1.5% 3.0x 4.9x 6.2% 3.9%x
reg 15% 47% 53% 56% 43%
020,-RKHS std 7% 21% 35% 38% 25%
speed 1.8x 3.1x 4.4x 5.9x 3.8x
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D.2.2 Running Time Evaluation

Table 3 reports the total running time (in seconds) of CM-TDP under sparse-difference markets with
horizon T' = 2000. For O20,,,, runtime increases moderately with the number of source markets K
and remains manageable even at K = 10. Linear models are consistently faster than RKHS models,
but both scale sublinearly with the dimension d. For O20, runtime is primarily affected by the
size of the offline source dataset ny, showing only gradual increases as nx grows from 50 to 500.
Overall, these results confirm that both 020, and O20, policies are computationally efficient, with
the added flexibility of RKHS utilities incurring only a modest overhead compared to linear models.

Table 3: Total Running time (in seconds) in sparse-difference market scenario across different
dimensions in T = 2000 periods. K and nx apply to O20,, and O20 policies, respectively.

Model d No transfer K=1 K=3 K=5 K =10

10 31 55 63 71 77

. 15 42 80 85 93 101
0200n-Linear 5, 48 101 109 121 138
100 386 794 814 866 972

10 43 77 84 99 112

15 57 08 106 121 140

0200-RKHS o 71 114 123 134 159
100 438 832 927 1018 1156

ng =950 nx =100 nx =200 nxg =>500

10 31 43 53 58 64
. 15 42 58 64 70 77
020,-Linear 20 48 69 74 ]2 89
100 386 563 597 642 663

10 43 47 55 65 71

15 57 66 76 87 08

020.RKHS o 71 30 92 101 123
100 438 602 694 758 872
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E Proof of Theorem

Define H; = {acgo), xgo), e ,xio), e§°>, 550), e ,5,(50)} the history set up to time . We also define

H,=H,U {xi?r)l} as the set obtained after augmenting a new feature a:ii)l, we write

E(reg,|Hi—1) = E(p; V1(0)” > p})|Hi1) — E(p{ V10" > pi”)|H,—1)

=5 0= P = B =" - F @ 2 ).
*#(0) (0) 1o (0)y .
Note that p, ' € argmaxrev; ' (p) and thus r;(p, ) = 0. By Taylor expansion,
* 1 *
revi” (p1”) = reve ;™) + 5 ) (01" — 9 7)?, (15)

2

for some p between pgo) and p; ©,

Lemma 14 (Upper bound for price). The price given by policy m is upper bounded by

R ~(0)
7 =n@E"-B )< P

Lemma 15 (1-Lipschitz property of h). Suppose Assumption | holds and, in addition, ¢' is bounded

on [—By, By):
0< L¢U < qS’(u) < U(bo < 00.
Then
1
sup |h(u)] = sup 1*‘ < Ly < o0,
i, W= s 1P o)
hence

|h(u) — h(v)| < Lylu—v| forall |u],|v] < B,.
The price function h satisfies h' (u) < 1, for all values of u € R.
Therefore we obtain
) = 12f(p — 2 - BO) +pf'(p— 2! - BO)| < 2B + PB,

with B = max, f(v), and B’ = max, f'(v), where we use the fact that pgo)’p:(o) < P and
consequently p < P.

Then, combining Equations 14, 15, Lemmas 14, 15 gives

E(reg,|H;—1) < (2B + PB")(p;” — pi)? < C(p;® - p{V)>?

~(0) ~(0)
=Ch(BO ) —n@B " -2 <l (B - B

~ 89,23 - g0y,

)I?
(@~
< C(ﬁ( )

where (a) results from that zgo) is independent of H; 1, and ¥ = E(x,z]).

Since the maximum eigenvalue of ¥ is bounded by Cy,,x, We obtain

E(reg,) = E(E(reg,|Hy 1)) < COmax LZE(|B" — BO|12), (16)

which brings the problem down to bounding the estimation error of the proposed estimator.

Proposition 16. Consider linear utility model with Assumptions 1, 2, 3 and 4 holding true. Then,
there exist positive constants ¢y, c{, ¢1, ca such that, for ng > cosologd vV 06%, the following holds

with probability at least 1 — 2/d — 2e~"™0/(c0%0) ;

~(0)
187 - B2 <

dlog d log d
o 2084 |, 50088 (17)
ni

no
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Corollary 17. Under conditions of Proposition 106, the following holds true:

~(0 dlogd log d 2 —ng
E(IB - BOIB) < e =55 4 ¢ " B 4wy ( + %Wg) .
nK ng d
Proposition 18. Consider linear utility model with Assumptions /, 2, 5 and 4 holding true.There

exist constants cs, cy, c5 > 0, such that for ng > csd, the following holds true:

dlogd 1)logd
Cy4 o8 + cs5 (SO + ) o8
ni no

E(IB” - 83) < J—

Now, since the length of episodes grows exponentially, the number of episodes by period T is
logarithmic in T'. Specifically, T belongs to episode M = [log T']. Hence,

M
Regret(T; ) = Z Reg(mth Episode) .

m=1

We bound the total regret over each episode by considering three separate cases:

1. 2m72 < ¢psglogd Vv cpd: Here, cg, ¢, are the constants in Proposition 16. In this case,
episodes are not large enough to estimate the parameters accurately enough, and thus we use
a naive bound. Clearly, by Lemma 14, we have E(reg,) < p; < P. Hence the total regret
over such episodes is at most 4Pcgsg logd V 4Pcjd.

2. cosologd < 2™~2 < c3d: Applying Corollary |7 to Equation 16,

Imy1—1 Imy1—1

. ~(0)
Reg(mth Episode) = Z E(reg;) < CCax Z E(8,, —BY13)

t=lm t=lm

dlogd log d I “lmoa
< CCrax 3 C1lm o8 + el 50708 +8W2 [ 4 1,.e Zos0
Kl Im—1 d

*lm—l
< 2CChax {Edlogd + ¢950 log d + 8W? (03 + ly_1€ c0%0 > } ,

where in the last step we used l,,, = 2l,,,—1 and [,,,_1 < c3d. Therefore, in this case

d
Reg(mth Episode) < C] % logd + Chsglogd,

where C1, C} hides various constants in the right-hand side of the above equation.
3. c3d < 2™~2: Applying Proposition |8 to Equation 16,

lm+1—1 Imt1—1

. ~(0)
Reg(mth Episode) = »  E(reg,) < CCmax »_ E(IB, —BII3)

t=lm t=lm

1 1 1 —lm—1
S CCII]aX {C4ll,n d Ogd C5lm (SO + ) Ogd }

2 cad
Kl ooy W ke

d i
< CChax {C4K logd + c5(so + 1) logd + 8W?1,, 1 esd : } .

Therefore, in this case
Reg(mth Episode) < C’{’% logd + CY s log d.
Combining the above three cases, we get
Regret(T; ) < Cydlogd -logT + Cysglogd -lognxg = O (Id( log dlogT + sg log dlog T) ,

which concludes the proof.

29



F Proof of Theorem

In offline-to-online transfer setting, we obtain the same regret inequality as in Theorem 5:
~(0)
E(reg,) = E(E(reg;|Hi—1)) < CCumaxE(IB = B73). (18)
Similar to Propositions 16 and 18, we state the following two propositions on the estimation error

regarding the transfer-learning phase.

Proposition 19. Consider linear utility model with Assumptions 1, 2, 3 and 4 holding true. Then,
there exist positive constants cg, c1,Co such that, for ng > cosglogd, the following holds with
probability at least 1 — 2/d — 2e~"™0/(c0%0) ;

so logd

~(0) dlogd
1B —BOI3 < e 2% v ey
nic o

Corollary 20. Under conditions of Proposition 19, the following holds true:

~(0 dlogd logd 2 —n
BB — BN < 1 S + e, 1w <d+2€“'°°‘3>'
K

o

The following proposition gives a tighter bound for the estimation error as ng gets larger.

Proposition 21. Consider linear utility model with Assumptions |, 2, 5 and 4 holding true.There
exist constants cs3, cq, cs5 > 0, such that for ng > csd, the following holds true:

dlogd 1)logd
e og +05(SO+ ) log
nic no

~(0
B(8" - 8UI3) < AW,
The next proposition states the estimation error in the without-transfer-learning phase of Algorithm 4.

Proposition 22. Consider linear utility model with Assumptions I, 2, 5 and 4 holding true. Then,
there exist a positive constant ¢y such that, for ng > ¢ny, the following holds with probability at
least1 —1/d:

~(0) dlogd
1B~ B3 < er =27,

where ¢ = (cyd — ca8p)/c1d.

The adaptation parameter ¢ is dynamically determined through a comparative analysis of the estima-
tion error bounds in Propositions 2| (transfer-enabled) and 22 (target-only), where we strategically
disable transfer learning updates when the volume of target data is large enough to ensure statistically
optimal estimation performance.

Corollary 23. Under assumptions of Proposition 22, the following holds true:
dlogd = 4W?
+ —.
no d

S0
E(I8 —BO3) <

We bound the total regret over each episode by considering four separate cases:

1. 2m2 < ¢ysglog d: Here, cy is the constant in the statement of Proposition 19. In this case,
episodes are not large enough to estimate the parameters accurately enough, and thus we use
a naive bound. Again, by Lemma 14, we have E(reg,) < p; < P. Hence the total regret
over such episodes is at most 4 Pcysg log d.

2. cosplogd < 2m72 < cgd: Here, cg is the constant in the statement of Proposition
Applying Corollary 20 to Equation |8 in episode m,

lmy1—1 lm+1—1

. ~(0)
Reg(mth Episode) = Z E(reg;) < CCax Z E(8,, —BY13)

t=lm t=lm
< CChax {cldlog A + 2¢550log d + 16W? (203 + lp_1e 2% ) } ,
nK

where in the last step we used [,, = 2l,,_1 and [,,, = 2™~ < 2¢3d.
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3. czdlogd < 2™~2 < ¢ny: Applying Corollary 20 to Equation 18,

Imt1—1 Im1—1

. ~(0)
Reg(mthEPISOde): Z ]E(regt)gccmax Z ]E(Hﬁm _ﬁ(O)H%)

t=lm t=lm

l e — Ly —
S CCmax {Cld10g dnﬂ + 20280 logd + 16W2 (CZIC + lm_le C0501 ) } ,
K

Combing case 2 and 3, sum over c¢;d log d% over l,, € [2¢cosg logd, 2¢nx] and ignore the
constant term, we obtain

1
Regret(cosologd — ni;m) < ¢rdlogd— Z 2m=1 4 s logdlog ng
nr oy

— coSologd

= c1dlog a<K + Chsglogdlogny

ni
~ C4sglog dlogny

4. 2m=2 > Cng: applying Proposition 22 to episode k, we obtain

Imy1—1 Imy1—1

Reg(mth Episode) = Z E(reg,) < CCnax Z E(18,, - B813)

t=lm t=lm

dlogd I [
< OC L e 8 g2 L9l e
1 d

- L
< CChax {204dlogd + 8W? <CTCLZIC + 2[m_1653dl) } 7

and thus
Reg(mth Episode) < Cjdlogd.

Combining the above four cases, we get

Regret(T;w) < Cidlogd - (log T — logni) + Casglogd - log ng
= O (dlogd-logT + (so — d) logd - logny) .

which concludes the proof.

G Proof of Theorem

Define the instance class Z(F, X, W, sq, K) as above and, w.l.o.g., restrict prices to [0, p(F, W)]
where p(F, W) := supy,,|<w h(u). Let

2" (u) == ¢_1(—u), B, := sup |z"(u)|,
ful<W

®in := inf ¢ (2*(uv)), fmin := inf  f(2), Fnax 1= sup f(2),
lu|<W (z7(w) |z|<B- (2) z€[-W, p(F\W)+W] *
min{F(z),1 — F(2)},

€:= inf
2E[-W, p(F,W)+W]

1
‘= Jmin q)mina h = inf 1— ——).
s = ok (- )

For Logistic and Gaussian F' these constants are explicit; see Corollary 24 below.

We proceed in three steps: (i) curvature of the revenue around the oracle price; (ii) a single-sample
KL upper bound that is uniform over the allowed price interval; (iii) a Fano packing argument for two
hard sub-families whose risks add up.
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(i) Revenue curvature and price sensitivity. Fix u = ' 3. Let r(p;u) := p[l — F(p — u)].
The first-order condition gives the oracle price p*(u) = h(u) = u + z*(u), where z*(u) solves
1 — F(z*) = p* f(2*), equivalently ¢(z*) = —u. A direct calculation shows
82 * * * * *
gpr P (W) = — f("(w) ¢ (2"(w) = —r(w),  Kw):=f="(W)¢'(z"(w). 19
Hence r(-;u) is uniformly strongly concave around p*(u) with curvature at least k :=
inf\u|§W R(U) = fmin@min > 0.
Next, differentiate h(u) = u + ¢~ (—u) to get
1
Mu) =1 - —— = mp = inf A'(u) = 1-—
©W = Sew) S =g D

By strong concavity, for any Au small enough (chosen below) and Ap := h(u + Au) — h(u),

> 0. (20)

(Au)?. 1)

2
r(h(w);u) —r(h(u+ Au);u) > g Ap? > m;h
We ensure the uniform validity of (2 1) by choosing the pack radii (below) so that |Ap| stays within a

fixed neighborhood where (19) and the lower bounds defining x and my, apply; this is straightforward
since b’ is bounded on [—W, W].

(ii) A uniform single-sample KL bound. Fix any market %k, round ¢, context x, and price p €
[0, p(F, W)]. Under parameter 3, the success probability is

9(f) = L= F(p—=z'p).
For any 3, 3, Taylor’s theorem for the Bernoulli KL yields
2

(a(8) —a(8")

2¢(1—¢)
because both ¢(/3) and ¢(5’) lie in [e, 1 — €] by the price truncation and the bounded ranges of p and
u.” Using the mean-value bound |F(z) — F(2')| < fmax|z — 2’| on the same interval gives

KL (Bern(4(5) | B < 535

KL (Bern(q(3)) || Bern(q(8"))) < (22)

2
(z"(8=5")" (23)
Taking expectation over = ~ P, and using E[(z" A)?] < Cax||Al|3 yields

2
CInaX max . (24)
2¢(l—¢)

Summing over markets gives a factor K when all markets differ (family A below), and a factor 1
when only the target differs (family B).

E[KL([)] < Cu(BEW)[B8-F13,  Cxu(F,Z,W):=

(iii) Packing and per-round error. We use two hard sub-families and calibrate their radii so that
the cumulative KL up to time ¢ — 1 is a small fraction of the packing entropy. All estimates below
hold conditionally on the realized (possibly adaptive) prices because (24) is uniform in p € [0, p].

(A) Aggregation. Let V. C {—1,+1}¢ be a Varshamov—Gilbert set with [V/| > 2¢/8 and Hamming
distance at least d/8. For v € V define the instance by %) = 0, := pv forall k € {0} U [K]. Then
16511 = nd < W provided p < W/d. For any distinct v, v/,
d

) P2 < 00 = 0ull5 < 4dp®.
Up to time ¢ — 1, the pathwise KL between the two induced joint laws (over all K markets) is bounded
by

KLis 1 < K(t—1)Cky, -4d p?.

'Since ¢’ > Lg, > 0on [~ By, By] and |2*(u)| < B, for [u| < W, ®min > Lg,. Moreover, fumin > 0 on
[—B., B.] for Logistic/Gaussian F.
Onz=p—z'B€[-W,p(F,W)+ W] wehave F(z) € [e,1 —¢],s0q=1— F(z) € [,1 — €.
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Choose

9 log |V| log 2
W= < ;
64K(t — 1) Ckr,d — 512K(t — ].) Ck1,
and also p < W/d (which is automatic for all ¢ large enough; for small ¢ it only improves the bound).
Then Fano’s inequality gives a constant probability (say > 1/2) of misidentifying the pack element,
hence
1

E[[|6:—1 — 03] > g kd

By E[(z7¢€)?] > Cuin Elle||3, (i), and (21), the target-market instant regret at time ¢ is

Km? T, Km? u’d Cmin km2  d
E > hE (0) 0, —0 21 > h i - > min h . .
reg] > R E[(e,7 (61 - 0)%] 2 =2 C 8 = 128Cks Kt
Summing t = 2,...,T yields
T
Cin km? d
E > Zmm A 2 o0 T
tzzl [regt] = 1280KL K 0og

(B) Debiasing. Let S C [d] with |S| = s¢ and let W C {—1,+1,0}% be a Varshamov—Gilbert
family of sg-sparse sign vectors with pairwise Hamming distance at least so/8 and cardinality

Wi > (i)l/s 2°0/8 50 that log || > %2 log <. Let f. € R” be any fixed vector with [[0[|, < W/2
and define for each w € W:

R =0, (ke[K]), BO=0.+A, A,:=uw,
with ||0c|l1 + [|Aw |1 < W ensured by taking 1/ < W/(2sg). Then for w # w’,
%0 W< Ay = A3 < dsop.
Only the target market carries information about w, hence up to time ¢t — 1
KLi:4—1 < (t—1)Cxkr - 4s0 e

Choose

o logW) logs
64 (t - 1) Ck1,so — 512 (t - 1) CKL.

Fano again yields EHﬁt,l —Al2 > % 1'% 50, hence the target instant regret obeys

ed
Blreg,) > JunfTh 2 0,
128 CkL t
Summing ¢ gives the second term in (8).

Combining (A) and (B) gives the stated result.

Corollary 24 (Explicit constants for Logistic and Gaussian). Let B, = sup,<w |2"(u)| with
2*(u) = ¢~ (—u) and p(F, W) = supy,, <y h(w).

Logistic noise
F(z)= H%’ f(z) = F(2)(1 — F(2)). We have

1 1

¢'(2) = ) h(u) = 1_M =1-F("(v)), &(u) = f(z"(u))¢'(z"(v)) = 1-F (2" (u)).
Hence
Qi = 1 mp = inf K(u)=1- F(B,), k= inf k(u)=1- F(B,).

F(B.)’ [u|<W |ul<W
Moreover, fiax = i and

min{F(z),1 - F(z)} = 1-F(W +p(F,W)) > 1—F(2W + B.).

€ = min
z2€[=W, p(F,W)+W]
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Therefore,
Cmax Cmin K m}QL 32 Cmin

3
Ciw(F, %, W) = > 1—e)(1-F(B.))®.
KL( » & ) 32 6(1 — 6)7 CkL = Conx 6( 6) ( ( ))
Gaussian noise )
F(z) =®(2), f(z) = ¢(z) = \/%76_2 /2. Let R(z) := 1;((1)2()2) be Mills’ ratio. Then
¢ (2) =2—2R(z2), D in = | |11<1fB (2—2R(2)) > 2— B. R(B.).
Z|ISD2
Using the inequality R(z) < zil for z > 0 gives B,R(B,) < B]f—_%l, hence
1 1 1
émin Z 1 5 1-— Z .
T BT "Mh Bpn — BZ+2
 p2
Also fmin = p(B,) = \/%e B2 frax = ©(0) = \/% and
€ = min min{®(2),1 —®(2)} = 1 -S(W +p(F,W)) > 1—-0(2W + B,).
L min{B().1-8(2) = 1— B(W +p(EIV) (2w + B.)
Therefore
1 2 1 C,
= foin®min > _Bz/2(1 ) Cwi (F-2. W) = ——max__
= - \/27re +B§+1 ’ k(5,2 W) dme(l —e)’
and )
Crin KM, 27 Cii 1 _pe 1 1
min > min 1 . z/2 (1 ) . )
C'KL o Cmax 6( 6) 271'6 * Bg +1 (Bg + 2)2

In both cases B, and p(F, W) are finite since ¢ is strictly increasing and |u| < W, they are explicit
functions of (F, W) via z*(u) = ¢~ (—u) and h(u) = u + z* (u).

H Proof of Theorem
Following the same analysis in Theorem 12, we have

* * 2
E(reg, | Hi—1) = revi” (") — revi” (0i”) + Lot/ (p) (pi* — ;)
* 2 ~(m 2
<C ;=) = € (h(g@ ")) — h@G@™ (7))
~(m 2
< C L2 (¢9(”) — g (2”))*,

where C' absorbs the bound on |r}(p)| over [0, P] and L; is the Lipschitz constant of h on the
working interval (by Lemma |5 and the price truncation).

Using Lemma 15 gives

E(reg,) = E(E(reg, | Hi-1)) < CE[(9© (") - 57 (2{”))?]
2 2 (25)

:Cﬂym_ym’

< Ok? ]EHg(O) —gm H

b
L2 (Pyr) Hi

where « is the kernel bound in Assumption 7.

_ 2a
Proposition 25 (Aggregation Error). Under Assumptions 2 and 7, choosing Aqg < ny """, the
aggregation estimation error of Algorithm 5 satisfies

__2apB
E(Hg(ag) _/g\(ag)”%lk) < O (RQ +02) n’CTaﬁ+T) (26)

where R is the constant in Assumption 7 and o is the standard deviation of the market noise in (/).
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Proof. Let ¥ := Ex[K(z,-) ® K(x,-)] denote the kernel integral operator and N (A) := Tr(2(X +
A )_1) the effective dimension. Consider the regularized empirical risk
~ 1 &K

‘C)\(g) Z‘g 9; pwmwyl) + A”QH’Hkv
i=1

with the Bernoulli log-loss £(g; p, z,y) := —[1(y = 1) log(1 — F(p— g(z))) + 1(y = 0) log(F(p —
g(z)))] used throughout Algorithm 3. Let

(ag) — : EZ
9x arg min A(9)

be the population minimizer. A standard RERM decomposition for smooth, strongly convex losses
yields

N

nK

El[5? = o8 |1y p,) S

(Pz) ~

» . N(A
= E[g? - o\|I;, < %

using || f ||%2( Py < %2 fII,, . For the approximation error, under the source condition gl®9) ¢
Range(X?) (Assumption 9(ii)) we have

1937 — g3, < APR2.

Assumption 9(i) gives N(A) < A~1/(2%)_ Balancing N(X)/nic and A2 gives Agy =< ny />0

and the stated rate. O
Proposition 26 (Bias Correction Error). Under Assumptions 2, 7 and &, choosing A\iy <
(ngH?)~2/ R+ the debiasing error of Algorithm 3 satisfies
0 12 —2a/(2a+1) 2/(2a+1
E([6@ =37, p,) < Com H?/CotD) @7)

where H is the task-similarity parameter in Assumption &.

Proof. According to Chai et al. [7], the regularized estimator can be written as
5O = (SO 42, 1) NGO 4 A 5R).
Hence
30 — 50 — (SO 4 )\tff)*l(g(O) — SO50) 45, (5@ 4+ Atff)*l(g(k) —5©).

Variance Bias

For the variance term, writing Ay := 21/2(§(0) + AI)~ ! implies

. 2 N0(>\t ) «@
EHVarlanceHLz(Pﬁ) < nof ,  where Npo(A) <\~ 1/(2a)

For the bias term, by spectral calculus,

A 2 < 2l
INE@ + D}, ) = me,w < 7 llullz

so Assumption & gives IEHBiaSHZLz(PI) < M\iyH?. Balancing No(\)/ng with AH? yields A,y =<
(ngH?)~2%/(22+1) and the stated bound. O

We now bound the total regret over each episode. Using Equation (25), we obtain

lm+1 1 l7”+1 1

Reg(mth Episode) = Z E(reg,) < C Z E(|[Gm —90)||L2(P )

t=lp, t= lm

gOmel{(fmm w4 (m - Hﬁ}
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Summing over M = [log T'] episodes gives

M
Regret(T;m) < €y 2m~! {(K 9m=2)=M 4 (M2) 71 faarT }
m=1
where v, = 25%‘% and 7o = 5227 Let
M M
Term 1 = K" Z 27r1,—1(27n—2)—'yl — K—712271—1 Z (21_7l)m S ClK—qlTl—fn’
m=1 m=1
M M
Term 2 = Hzart Z 9m—1(gm=2)=1 — a1l Z (212" < CoHTFT ",
m=1 m=1

Combining both terms gives the overall regret bound:

Regret(T; ) = O(K’ﬁiﬁl Tzém 4 Her TT) .

I Proof of Theorem

Similar to our analysis in Section K, Algorithm 4 enters Phase 2 when the volume of target-market
data is large enough to provide a more accurate estimate than transfer learning. The boundary

condition can be written as

2041
2ap

02 __2a(8-1 9
ne < no 1— 7n(§20+1)(20[§+1) Hzar ,
Cq
which, for simplicity, we denote as
ng > cng.

We bound the total regret over each episode by considering two cases. Throughout, we use the
per-round conversion

E(reg,) < CEHQ(O) _A(m)Hig(Pz)

from (25), so that episode m contributes a factor 2~ in front of the corresponding Lo (P,) error
bound.

e Case 1: 2™~ 2 < Cng. In this transfer-active regime, we directly apply Theorem
Combining Propositions 25 and 26 and then using (25) yields

lny1—1 lny1—1
Reg(mth Episode) = Z E(reg,) < C1 Z ]E(H/g\m_g(())H%z(Px))
tzfyn tzénz

_ _2a8 N
S Cl 2m—1{n’C20ﬁ+1 + (2771—2)7%Jrl H2a2+1} .

Summing over M’ = |log(2¢nk )] episodes,
log(2¢nk)] _ 2ap ) )
Regret(cni;m) < C) Z 2m_1{ I A T H2a+1}
m=1

e Case 2: 2™~ 2 > Cny. In this target-only regime (Phase 2), we obtain

Lny1—1 Lpy1—1
Reg(mth Episode) = 3" Elre) < Co > E(lfn— 9l 0)
t=~Cp, t=Cp,

< 02 27"_1 {(27'”_2)_25;5—1 }

Summing from m = [log(2¢nx )] to m = [logT'| episodes gives
[log T']
Regret(cnge — Tim) < Cy Z gm—1 (27"’2)_%,
m=[log(2¢ni)]
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Combining the above two cases, the total regret is bounded by

|log(2¢nk)] 208
— 5317 2a 2
Regret(T;7) < Z 27”_1{7%2“”“ + (2m72) " zatT HM}

m=1
[log T'] (28)
2a
+ O Y 2ml(eme?)md

m=[log(2¢nk)]|
We now decompose the first sum into two parts.
Part 1. Using Z%/:l om=1 — oM’ _ 1 < 9¢n,

 sap llog(2¢nik)] .

Part | = Cyn ™™ Y~ 2™l < 0y 280
m=1
Part 2. Since 2~ 1(2m=2)" %1 = 23211 . 2537, we have
) [log(2¢nk)] )
Part2 = Cy H2+1 Z 27n—1(27n—2)—T‘L
m=1
) pu_, Hog(Zenc)] ) )
= (O H7T - 22a71 Z 2%+ < Oy Heawt - (28ni)%art,
m=1
For the second sum in (28), note that
2’”’1(2’”’2)*% — 9(m=D=(m=2) 5285 _ 938571  (constant),
so the summation behaves like a geometric series with ratio 2'/(2*5+1) > 1 Therefore
[log T']
2a3 1 ~ 1
> om=l(gm=H)Teaprr < TEapFl — (En)ZaAI, (29)

m=[log(2¢ni)]
Combining Part 1, Part 2, and (29), we obtain

1 1 1
Regret(Tsm) S Eng” ™ + Hm=e (Eng) ™7 4 T5070 — (Enc) ™7,

which concludes the proof.

J Proof of Theorem

We convert regret to an L?(P,,) estimation error, upper bound the total information (KL) any adaptive
policy can extract under binary feedback, and then invoke Fano with a tensor-product packing built
from (i) a transferable common block and (ii) a non-transferable residual block.

Lemma 27 (Local quadratic revenue drop). Under Assumption | and the local regularity above,
there exists ¢, > 0 such that for any x € X and any estimate g with g(x), g(z) € Uy,

2
Myrev My,

rev(h(g(x) ); g(2)) — rev(h(§(2) ) 9(2)) = . (G(@) - g(@))", o= =

Consequently,
E[Reg(T; 7r)] > C*T'E[Hg\_9||2L2(Pz)]7 (30)

where § is the utility function implicitly induced by the policy m through its posted prices p; =
h@(zio))) during the episode.
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Proof. By strong concavity at p ( ) h(uw), for any u € Uy and p close enough to p*(u) we have

rev(p*(u);u) — rev(p7 ) > Mrev (u)) Set u = g(z) and p = h(g(x)). By bi-Lipschitzness
of h on Uy, |p — p*( |h(?g h(g(z))| > mplg(z) — g(x)|, which yields the pointwise
inequality with ¢, = % Summlng over ¢ and taking expectations gives (30). O

Lemma 28 (Bernoulli KL smoothness). Ler ¢(p,u) := 1 — F(p — u) and consider Bernoulli
distributions with means q(p,u) and q(p,u’). Assume F has a continuous density f on [—Be, B¢]
and extends smoothly to the boundary with f(£B.) = 0 (or take any log-concave F on R and
restrict to a compact interval of utilities). Then there exists a finite constant

f(6)?

o = R o)

such that forallp € R, x € X and u,v’ € R,

KL(Bern(q(p, u)) || Bern(q(p, u’))) < Ckr, (u — u’)Q. 31

Consequently, for any (possibly adaptive) policy T interacting with the target and K source markets
over T rounds,

KL(Pyo. g5 | Pyror . gxc) < CKLT(Hg 0 _g 0>\|L2(P)+Z||g "3, )) 32)

Proof. By the mean value theorem, |¢(p,u) — ¢(p,u')] = |F(p — ) — F(p — u)| <
sup; f(9) Ju — u'|. For Bernoulli variables with means a,b € (0, 1) we have the standard bound
a— 2 .« . . . 2 . .
KL(Bern(a)HBern(b)) < % Con.lbgung yields (31) with Ckp, = supg W‘?q(m, WhI.Ch is
finite under the stated regularity (continuity plus compactness ensures the supremum is attained;

typical families such as probit/logistic also satisfy Cky, < 1/4). Summing the one-step inequality
over time and markets and applying the chain rule for KL under adaptivity gives (32). O

Proposition 29 (Packing for the aggregation block). Define Ga(R) := {g = X%p: ||pllz: < R},
where ¥ is the kernel integral operator with eigensystem (15, p;);>1 and 8 € (0, 1] (Assumption 9).
There exists c4 > 0 such that for all 0 < § < R,

g M (5 GaR), - lirce) = e (£)7.

Proposition 30 (Packing for the debiasing block). Let Gg(H) := {g € H : < H} witha
bounded kernel (Assumption 7). There exists cg > 0 such that for all 0 < § < H,

1
o

log M (8 Gu(), |- lza(ry) > e ()

Proof. Let (1, ¢;) be the eigensystem of . Assumption 9 (i) states N (\) = Tr(3(Z + AI)7!) <
A~1/(22) Working on a spectral slice {j : p; € (\/2,\]}, the number of coordinates in the slice
satisfies m(\) < N(\/2) — N(X) > A~1/(2) for sufficiently small \ (selecting a subclass saturating

the effective-dimension rate is admissible for minimax lower bounds).
(A) Aggregation block G4 (R). Fix aslice J4(X\) := {j : ; € (A/2, A]} with cardinality ma(\) 2
A" (29 Forf € {jzl}mA define

Po = \/— Z 3 Pis gae = 2P pe = F Z “J 0i ;s

JE€JaA jE€JA

with amplitude a < R/2 to ensure ||pg|/2 < a < R/2. By the Varshamov—Gilbert bound there

exists C4 C {£1}™4 with |C4| > 2™4/% and Hamming distances at least m 4 /8. Hence, for 6 # ¢’
in CA,

lgae — gaelli: = — Z (0, — 0))? (mT) A28 = g2 228,
A jeia ma
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Thus the L2-separation is at least 204()\) with 64(\) < a\?, while the packing size obeys
log Ms(\) > ¢ma()\) 2 A~1/(2%) Feasibility in RKHS is also satisfied:

M _
lgaoli, = — Z < @ N
JGJA Hi

Choosing A small enough and a < min{R/2, co A1~ < R/2. Therefore,

log M (2045 Ga(R), || - |lz2) 2 A7) with 64 < aN’, a < R/2.
Eliminating \ gives log M (64) = (a/54)"/(*#), and taking a = R/2 yields the stated bound.

(B) Debiasing block Gz (H ). Choose a slice Jp()\) disjoint from J4(\) with mp(X) > A~1/(22),
For ¢ € {£1}™5 define

9B.¢ = \/— Z Vi G e

j€JB

Then ||gB.cll3,, = iZjEJB 1 = b2, so choosing b < H/2 ensures ||gp,c|ln, < H/2. By

mp = s >~
Varshamov—Gilbert, there exists Cp with [C| > 2#/% and Hamming distances at least m /8. For
¢ #("inCp,
2 b2 )
_ m N3
lgB.c — 9.0lI72 = — Z wi(G =GP 2 ()X = 82
JEJB

Thus the separation is at least 26 3(\) with 65 ()\) =< bA'Y/2 and log Mp(A\) > A~1/(2%)_ Eliminating
\yields log M(65) = (b/6p)"/*; setting b = H /2 gives the claim.

Pointwise control. Because || K. |#, < x (Assumption 7), we have |g(x)| < k||g||7 - Scaling the
amplitudes above by a universal constant (absorbed into c4, cg) ensures ga(z), gp(x) € Uy for all
2, which is used in Lemma

We now build rwo packing families on disjoint eigenspaces:
Fa CGa(R), Fp C Gp(H),

so that for any g4, ¢y € Fa and g, g € Fp,

Iga +95) = (g + gB)lIZ> = llga — gaullZ> + llgs — gl12,
and the KL bound (32) splits additively as well. We also restrict amplitudes so that g4 (), g (x) € Uy
for all z, by the remark above.
Lemma 31 (Fano for the aggregation block). Let F4 C Ga(R) be a 26 s-packing with cardinality
M 4. For any policy m that observes the target and K source streams over T rounds,
5% 1 4CKLKT§124+10g2

log MA '

inf sup E[|g—gll3.] > °
g gEF A

Lemma 32 (Fano for the debiasing block). Let 5 C Gg(H) be a 20 g-packing with cardinality
Mp. For any policy m (only the target data contribute here),
@ 1_4CKLT52B+10g2

log MB '

inf sup E[Ilﬁ—glliz} 2 )
9 geFp

Proof. Apply the standard multi-hypothesis Fano inequality [27] to the packing families F4 and Fp.
The average pairwise KL over each family is bounded using (32): for the aggregation block all KT’
Bernoulli observations contribute, yielding the factor K'T'; for the debiasing block only the T target
observations contribute.
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Combining Lemmas 3 1-32 with Propositions 29-30, the calibration

4Cky, KT 6%

~ ~ 5

1 1
< log My > CA(%)”, ACkLT 6% < logMp > CB(%)(ﬁ

gives (after eliminating § 4, )

2 2af 2ap 2 2
5?4 = R2ap+1 K~ 2aB+1 T~ 2aB+T 5% = Hza+1 T™ 2o¢11_ (33)

Finally, define the product packing F = {g, = ga9 + gB,c : gae € Fa, gp,c € Fp} so that
log | F| = log M 4 + log M p and pairwise L? distances add in quadrature. The total KL between any
two elements of F is the sum of the block-wise KLs by (32). Applying Fano on F yields

infsup E[|[g —gl7:] 2 4 + 33,
9 geF

and combining with Lemma 27 via (30) completes the proof of the lower bound in the main text.

K Proof of Propositions 16 and

We first provide a detailed proof for Proposition 16, which follows by combining Proposition 33 and
Proposition 34 using triangle inequality.

E(ag) is realized using all the source samples. It’s probablistic limit is ,6'(“9). The corresponding
estimation error can be bounded by the following proposition.

Proposition 33 (Aggregation Error). Consider linear utility model with Assumptions [, 2, 3 and
holding true. Then, there exist positive constants ¢y, ¢y, ca such that, for nx > c¢jd, the following
holds with probability at least 1 — 1/d:
~(ag) dlogd
189 = B} < er 2=
ni

Moreover, the probabilistic limit ,8(“9) is biased from ﬁ(o) #* ﬂ(k) in general. We then correct its
bias using the primary data in target market. The estimation error of the debias term can be bounded
as follows.

Proposition 34 (Bias Correction Error). Under conditions of Proposition 33, there exist positive
constants cg, c1, o such that, for ng > cosglogd, the following holds with probability at least
1—1/d — 2¢mo/(cos0);

~ so logd
16 — 813 < e, 027,
ng

The key distinction between the Proposition |6 and Proposition 19 lies in their sample size re-
quirements: while both require the target sample size ng > cyso logd for valid estimation, the
online-to-online setting imposes an additional constraint ng > ¢, % to account for the simultaneous
learning from initially limited source data across K markets. This reflects the fundamental opera-
tional difference that online-to-online must handle concurrent data scarcity in both domains, whereas
offline-to-online leverages pre-collected source data (implicitly assuming ny is sufficiently large).

K.1 Proof of Propositions 22 and

Let (X, Y*) denote the design matrix and the response vector by row-stacking of all source data
{2 5 }ierw fork € [K].

By the second-order Taylor expansion around the true parameter 3 (@9) we have

~(ag) a ag)y 5(29) a 1 ~(ag) a =\ 5a9) a
LB"") ~ (B = (VL) B = ) + (8" — 0 W L(B) (B —p“))
for some B on the line segment between ﬁ(ag ) and B(ag). Invoking Equation 6, we have

1 1
VL) == 3 &Bw, VELEB) = - > m(B)u (34)
T, EXK TreXK
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where V and V? represents the gradient and the hessian w.z.¢ 3. Further,
ICAT)] fw(B)

“ = e T~ Fu ()
= —log' F(ur(8)I(y: = ~1) — log'(1 — F(ur(8)I(ye = +1).
_ (f(B)?  f(w(B)) _ f(ui(B))? f'(ui(B)) _

w8 = (g ~ @) "= 0+ (T R * 75 Fntay) =+
= —log" F(ur(B))L(ys = ~1) —log" (1 — F(ur(B8))I(ye = +1),

where u(8) = p: — (¢, 3). By lemma 14, we have

(ye =—1)+ I(y: = +1)

[ut(B)] < Ipe| + |7e]l 1Bl < P+ W (35)
Let
up = sup {max {log' F(z),—log' (1 - F(z))}}
|z|<P+W
bp = |x\§iI113f+W {min {—log" F(z),—log"(1— F(z))}}.

Next,we bound the gradient and hessian.

Lemma 35. Let
Tog d
F= {||VL([-)(“9))||OO < Qupy |28 } .
ng

we have P(F) > 1 —1/d.
To bound the gradient, as |u; (E)| < P + W, cf. Equation 35. Therefore, by definition of ¢z, we
have 7;(3) > ¢r. Recalling Equation 34, we get V2L(3) = (p(X T X).

By the optimality condition of ,@(ag), we write

(ag)

L(B™") < L(B“).

Rearranging the terms and using the bound on hessian, we arrive at
lF a ~(ag) " ~(ag) u
D IXEE7 =B < VLB 187 = Bl

Choosing A > 4up 54 we have on set F

20 ag) 509 ~(ag) a
F\\X“(ﬁ”) BP <AB — B9, (36)

Define the event B3,, as follows:

B, = {X eR"™*: g (X T X /ng) > Cmin/2}.

Using concentration bounds on the spectrum of random matrices with subgaussian rows ([29],
. . 2
Equation 5.26), there exist constants ¢, ¢; > 0 such that for n > ¢;d, we have P(B,,) > 1 — e~ "k,

By assumption 3, the LA.s of Equation 36 can be bounded by the minimum eigenvalue of its second

moment matrix
20 F ~(ag)

a a a A(a ) a ’\(a«) a
(5o |89 — B2 < ||X’<< 98|12 < AIB "B, < \Wa|B T -p9|.

and therefore,
(‘19) 2 dAQ
H — 62 02

min

18 -
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K.2 Proof of Proposition

By the second-order Taylor expansion, expanding around & we have
—~ ~(a ~(a ~(a ~ 1 ~ ~ ~(a ~
L@ +8") - 1@ +5") = (VL6 + 5.5 - 8) + 55— 6, VLG + B")(E - 8))

for some & on the line segment between ¢ and 5. Again we have
~(ag aq)
VL6 + B = th 6+8Na, VLG + == Zm NesaT |
0 0

where V and V? represents the gradient and the hessian w.x.z. 8.

Next,we bound the gradient and hessian. According to Lemma 35, define

log d
= {||VL(6 +B99)|| o < 2up (f } .
0

we have P(F) > 1 — 1/d, n,(6 + g(ag)) > (p, and V2L(6 + g(ag)) = p(XTX).
By the optimality condition of 3, we write
< lag) ~ ~(ag)
LE+B"")+ M3l < LG +B"") + A8l (37)

Using the bound on hessian and gradient, choosing A > 4up £ d, we have on set F

20
X = B)IF + 2718 < A5~ 8l1 + 2[4 %)

By Assumption 4 is sparse. Let S = supp((s(“g )). On the Lh.s. using triangle inequality, we have

~(ag)
|| H1 =|[dg

On the r.h.s., we have

~(ag) ~(ag) ~(ag) a ~(ag)
I+ 185 1l > 18s " 1 — 18g " — 059l + [85e Il -
~(ag) a (ag)
167 = 89|y = |18

Using these two equations in Equation , we get
2p

a ’\(‘19)
SNy + 118ge |l -

“ (ag) (ag) a
X P4+ G 1 < 3A[8s ) — 8, (39)

‘We next write
2

a b) ~(a
Ll — s, € anym|ae? — s,
(©) 4X\/2sg (ag)
< DAV x©F ) ey,

\/n()len
()ﬁ ~(a o 8\2
Lix0e P _ sz 4 2250
gFCmin

where (a) follows from Equation 39; (b) holds for Cauchy-Schwarz inequality; and (c) by RE condition
([191, Proposition 23), which holds for £(©) = ((X©)T X)) /ng with £(2(?), 50,3) > /Chuin/2:
and (d) follows from the inequality 2|ab| < ca® + ?

Rearranging the terms, we obtain

lp o) (ag) ~a9) (g
L xO 50 — 52 A5 - 50 < 2
no
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Applying the RE condition again to the Lh.s, we get

880 )\2
chmin

Lr | oa ~(ag) Lr a ~(ag)
Conn L1509 57 3 < 70 g0 50 <

and therefore,

~ 1680)\2
16 — oI5 <
? T B2

min

L Proof of Propositions 15 and

Proposition 36 gives a tighter bound for the estimation error of the debias term 5 as ng gets larger.

Proposition 36 (Bias Correction Error). Consider linear utility model with Assumptions [, 2, 5 and
holding true. There exist positive constants cy, cs, ¢4 such that, for ng > cod, the following holds:

<e (so+1)logd
no

E(||3 — &2) + 4W2e—eams,

The proof follows Proposition 12 from Javanmard and Nazerzadeh [19]. Combining Propositions
and 36 using triangle inequality gives the stated result.

M Proof of Lemmas
M.1 Proof of Lemma

~(0 ~(0
By Assumption 3 we have ||,6'( )||1 < W and \x§0) . B( )| < W for all ¢, k. The lemma holds
beacause h is a continuous function and continuous functions on a closed interval are bounded.

M.2 Proof of Lemma

Recalling the definition h(u) = u + ¢~ (—u), we have h'(u) = 1 — 1/¢/(¢~(—u)). Since ¢ is
strictly increasing by Assumption |, we have A/ (u) < 1.

M.3 Proof of Lemma

According to the definition of up, we have |§t(6(ag ))| < wup. Further, recall that the sequences

{p+}7-; and {z;}7_, are independent of {e;}}" ;. Therefore, {u; (,8(0))}th1 and {e; (ﬁ(o))}th1 are

independent and by Equation 2, we have E[£,(8(9)] = E[E[¢,(8'"))|u,(8'“9)]] = 0, which gives

E[VL(B“))] = 0.

By applying Azuma-Hoeffding inequality to one of d coordinates of feature vectors,
2

IVL(“) ~E[VL(B“)] > of = [VLE) > ol < exp{ gswi—s)
i=1"1

1
S*dQ
where o = 2vp+/nx logd,

d 1
LB =P | 4] <Y P4) ==
IVL(B)]| (U Z>_Z (As) = -

i=1

0;| < vp. Following a union bounding over d coordinates,

The result follows.

M.4 Proof of Corollary 17, and

Here we provide the detailed proof for Corollary |7, which also works for Corollary 20 and
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We let G be the event that Equation holds true. Then by Proposition we have P(G) <
1 —2/d — 2e~m0/(c0s0),

E(|18 - B873) = E[(I8 - BV13) - L] + E[(|I8 — B|3) - Ige]
< Clcllogd te sojzogd n 4W2IP’(QC)
0

ni
dlogd log d
< 0g T e S0 10g

9 (2 —ng
+4W= | = + 2ecos0 | .
ni no d
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