# Transfer Faster, Price Smarter: Minimax Dynamic Pricing under Cross-Market Preference Shift

#### Yi Zhang

Columbia University New York, NY 10027 yz5195@columbia.edu

#### **Elynn Chen**

New York University New York, NY 10003 elynn.chen@nyu.edu

#### Yujun Yan

Dartmouth College Hanover, NH 03755 yujun.yan@dartmouth.edu

#### **Abstract**

We study contextual dynamic pricing when a target market can leverage K auxiliary markets—offline logs or concurrent streams—whose  $mean\ utilities\ differ\ by\ a\ structured\ preference\ shift.$  We propose  $Cross-Market\ Transfer\ Dynamic\ Pricing\ (CM-TDP)$ , the first algorithm that provably handles such model-shift transfer and delivers minimax-optimal regret for both linear and nonparametric utility models. For linear utilities of dimension d, where the difference between source- and target-task coefficients is  $s_0$ -sparse, CM-TDP attains regret  $\widetilde{\mathcal{O}}((dK^{-1}+s_0)\log T)$ . For nonlinear demand residing in a reproducing kernel Hilbert space with effective dimension  $\alpha$ , complexity  $\beta$  and task-similarity parameter H, the regret becomes  $\widetilde{\mathcal{O}}(K^{-2\alpha\beta/(2\alpha\beta+1)}T^{1/(2\alpha\beta+1)}+H^{2/(2\alpha+1)}T^{1/(2\alpha+1)})$ , matching information-theoretic lower bounds up to logarithmic factors. The RKHS bound is the first of its kind for transfer pricing and is of independent interest.

Extensive simulations show up to 50% lower cumulative regret and  $5\times$  faster learning relative to single-market pricing baselines. By bridging transfer learning, robust aggregation, and revenue optimization, CM-TDP moves toward pricing systems that *transfer faster*, *price smarter*.

#### 1 Introduction

Dynamic pricing is now a core operational tool for ride-sharing platforms, airlines, and large e-commerce retailers. State-of-the-art single-market algorithms learn a demand model from scratch and achieve minimax regret when sufficient data accumulate [19, 28, 9]. In practice, however, many markets launch with only dozens of transactions per day, while mature markets of the same firm collect data at orders-of-magnitude higher rates. Transferring information from *data-rich* to *data-poor* markets is therefore essential for fast revenue convergence and early-stage pricing accuracy.

Industry practice gives rise to two distinct transfer regimes. First, in the Offline-to-Online  $(O2O_{off})$  setting, the firm holds a fixed log of source-market data gathered before the target market opens, and this static information is used once the target goes live. Second, in the Online-to-Online  $(O2O_{on})$  setting, the source and target markets operate concurrently; streaming data from large markets must be incorporated into the pricing decisions of small markets in real time.

Existing transfer approaches do not fully address these settings. Meta-dynamic pricing [4] learns a shared Bayesian prior but requires directly observed linear demands and only exploits offline data. TLDP [30] handles covariate (domain) shift from a single offline source but assumes that the reward model is identical across markets. Bandit-transfer methods focus on either covariate shift [5] or sparse parameter heterogeneity [32, 18], yet they do not incorporate revenue-maximising price choice.

**This paper.** We propose CM-TDP (Cross-Market Transfer Dynamic Pricing), a unified framework that (i) operates in both O2O<sub>off</sub> and O2O<sub>on</sub> regimes, (ii) accommodates linear *and* RKHS-smooth nonparametric utilities, and (iii) allows multiple source markets whose mean utilities differ from the target by a structured *utility model shift*. CM-TDP alternates a bias-corrected aggregation step with an optimistic pricing rule, thereby transferring knowledge while balancing exploration and exploitation.

To the best of our knowledge, this work establishes the first rigorous regret analysis for transfer learning under general utility discrepancies between markets. A primary difficulty that arose during our analysis was maintaining tight control of error propagation: conventional techniques would accumulate slack and inflate constant-order terms into non-negligible  $O(T^c)$  factors, rendering the bounds both theoretically and practically uninformative. Our **main contributions** are as follows:

- (C1) Unified transfer pricing framework under utility shifts. CM-TDP is *the first* dynamic pricing framework that allows *multiple* source markets whose utilities differ from the target by a structured shift, working in both O2O<sub>off</sub> and O2O<sub>on</sub> regimes.
- (C2) Minimax-optimal guarantees for two utility classes. We prove (i)  $\widetilde{O}(\frac{d}{K}\log T + s_0\log T)$  regret under linear mean utilities and (ii) the first transfer-pricing bound  $\widetilde{O}(K^{-\frac{2\alpha\beta}{2\alpha\beta+1}}T^{\frac{1}{2\alpha\beta+1}} + H^{\frac{2}{2\alpha+1}}T^{\frac{1}{2\alpha+1}})$  for RKHS-smooth utilities—matching known lower bounds.
- (C3) Bias-corrected aggregation architecture. Our two-step  $aggregate \rightarrow debias$  pipeline cleanly connects meta-learning (prior pooling), robust statistics (trimmed debiasing), and exploration-driven bandits, and can plug in MLE, Lasso, or kernel ridge as well as black boxes.
- (C4) Large empirical gains. Simulations show up to 50% lower cumulative regret, 28% lower standard error and  $5\times$  faster learning relative to single-market pricing [19], with the largest gains in data-scarce targets under O2O<sub>on</sub> transfer.

**Organization.** Section 3 introduces the multi-market dynamic pricing problem with transfer learning under random utility models. Sections 4–6 present CM-TDP and its theoretical analysis. Section 7 reports empirical results, and Section 8 outlines future work.

#### 2 Related Work

**Single-market contextual pricing.** Early algorithms assume a *deterministic* valuation map, typically linear, and achieve sub-linear regret [2, 13, 20], with nonparametric variants studied in [22]. The modern benchmark is the *random utility* model in which valuation equals a covariate-dependent mean plus i.i.d. noise. When the noise distribution is known, [19] establish the first regret bounds; subsequent work removes that knowledge via doubly robust or moment-matching estimators while retaining linearity [31, 21, 16, 33]. [28] close the gap to the information-theoretic optimum for linear utilities and extend the analysis to Hölder-smooth demand curves, whereas [9] give fully nonparametric guarantees. All of these methods relearn from scratch in every market, degrading performance when target data are limited.

**Transfer and meta-learning for pricing.** Meta Dynamic Pricing pools directly observed linear demands across products and learns a shared Gaussian prior [4]. TLDP transfers under pure *covariate* (domain) shift but only from a single offline source [30]. Our Cross-Market Transfer Dynamic Pricing (CM-TDP) differs by coping with utility-model shift, supporting multiple online/offline sources, and providing guarantees for both linear and RKHS utilities.

**Multitask contextual bandits and reinforcement learning.** Domain-shift transfer for bandits is analysed in [5], whereas sparse heterogeneity is addressed via trimmed-mean/LASSO debiasing [32] or weighted-median MOLAR [18]. Causal-transport ideas reveal negative-transfer risks [15]. Reward-and transition-level transfer and meta learning in RL is explored by [12, 10, 7, 8, 34]. We adapt these bias-correction techniques to revenue maximisation under shifting utilities.

**Fully online meta-learning without task boundaries.** FOML [23] and Online-within-Online meta-learning [14] operate on a single stream of data without explicit task resets. CM-TDP follows the same streaming paradigm but must balance exploration and exploitation through posted prices rather than prediction losses.

**Positioning of this work.** CM-TDP is the first dynamic pricing framework that (i) transfers across *multiple* auxiliary markets under *utility-model shift*, (ii) achieves minimax regret for both linear and RKHS utilities, and (iii) unifies bias-corrected aggregation with revenue-maximising price selection, thereby bridging single-market pricing [28], offline meta-priors [4, 11], and multitask bandits [18].

**Key distinctions from prior work.** Unlike Meta-DP [4] and TLDP [30], CM-TDP (i) handles *concurrent* source streams, (ii) tolerates *utility shift* rather than merely covariate shift, and (iii) supplies the *first* nonparametric (RKHS) transfer-pricing regret bound. Multitask-bandit methods such as MOLAR [18] focus on prediction error and linear bandits, do not optimize posted prices, and therefore cannot exploit revenue structure. Consequently, existing approaches cannot deliver the minimax-optimal guarantees or empirical gains demonstrated by CM-TDP.

# 3 Problem Formulation

We consider a pricing model for the target market where products are sold one at a time, and only a binary response indicating success or failure of a sale is observed. For each decision point  $t \in [T]$ , the market value of the product at time t depends on the observed contextual information  $\boldsymbol{x}_t^{(0)}$ . A general random utility model for the market value of the product is given by

$$v_t^{(0)} = \mathring{g}^{(0)}(\mathbf{x}_t^{(0)}) + \varepsilon_t, \tag{1}$$

where  $\mathring{g}^{(0)}(\cdot) \in \mathcal{G}$  is the *unknown function* of the mean utility in the target market, and  $\varepsilon_t$  are i.i.d. noises following an *known distribution*  $F(\cdot)$  with  $\mathbb{E}[\varepsilon_t] = 0$  and support  $\mathcal{S}_\varepsilon := [-B_\varepsilon, B_\varepsilon]$ . Given a posted price of  $p_t$  for the product at time t, we observe  $y_t^{(0)} := \mathbb{I}(v_t^{(0)} \ge p_t)$  that indicates whether a sale occurs  $(y_t^{(0)} = 1)$  or not  $(y_t^{(0)} = 0)$ . The model is equivalent to the probabilistic model:

$$y_t^{(0)} = \begin{cases} 0, & \text{with probability} \quad F(p_t - \mathring{g}^{(0)}(\boldsymbol{x}_t^{(0)})), \\ 1, & \text{with probability} \quad 1 - F(p_t - \mathring{g}^{(0)}(\boldsymbol{x}_t^{(0)})). \end{cases}$$
(2)

Therefore, given a posted price  $p_t$ , the expected revenue from the target market at time t conditioned on  $x_t^{(0)}$  is

$$\operatorname{rev}_{t}^{(0)}(p_{t}) := p_{t} \cdot \left(1 - F(p_{t} - \mathring{g}^{(0)}(\boldsymbol{x}_{t}^{(0)}))\right).$$

The oracle optimal offered price  $p_t^*$  is defined by

$$p_t^{*(0)} = \underset{p_t \ge 0}{\arg\max} \ p_t [1 - F(p_t - \mathring{g}^{(0)}(\boldsymbol{x}_t^{(0)}))], \tag{3}$$

and hence, under Assumption 1, we have

$$p_t^{*(0)} = h \circ \mathring{g}^{(0)}(\boldsymbol{x}_t), \quad \text{where} \quad h(u) = u + \phi^{-1}(-u) \quad \text{and} \quad \phi(u) = u - \frac{1 - F(u)}{F'(u)}.$$
 (4)

**Assumption 1** (Regularity condition). There exists positive constants  $L_{\phi'}$  and  $B_u$  such that  $\phi' \geq L_{\phi'}$  for all  $u \in [-B_u, B_u]$ , and  $\inf_{|u| \leq B_u} \phi'(u) \geq 1$ .

Assumption 1 guarantees the uniqueness of the optimal solution of (3). The restriction of  $L_{\phi'} \ge 1$  is commonly used in dynamic pricing study [19].

**Optimal policy and regret.** For a policy  $\pi$  that sets price  $p_t$  at t, its regret over the time horizon of T is defined as

Regret
$$(T; \pi) = \sum_{t=1}^{T} \mathbb{E} [p_t^* \mathbb{1}(v_t \ge p_t^*) - p_t \mathbb{1}(v_t \ge p_t)] \equiv \sum_{t=1}^{T} [\text{rev}_t(p_t^*) - \text{rev}_t(p_t)].$$

The goal of a decision maker is to design a pricing policy that minimizes  $\operatorname{Regret}(T;\pi)$ , or equivalently, maximize the collected expected revenue  $\sum_{t=1}^{T}\operatorname{rev}_{t}(p_{t})$ .

**Cross-Market Transfer Learning.** In the context of cross-market transfer learning, we observe additional samples from K sources markets indexed by superscript  $^{(k)}$  for  $k \in [K]$ . The observed market covariates and response, latent utility and the unknown mean utility functions for each source market are denoted as  $\boldsymbol{x}_t^{(k)}$ ,  $\boldsymbol{y}_t^{(k)}$  and  $\boldsymbol{v}_t^{(k)}$ , respectively.

**Assumption 2** (Homogeneous Covariates with Bounded Spectrum). For each market  $k \in \{0\} \cup [K]$ , covariates  $\{\boldsymbol{x}_t^{(k)}\}_{t\geq 1}$  are drawn i.i.d. from a fixed, but a priori unknown, distribution  $\mathcal{P}_x$ , supported on a bounded set  $\mathcal{X} \subset \mathbb{R}^d$ . Let  $\Sigma = \mathbb{E}[\boldsymbol{x}_t \boldsymbol{x}_t^{\top}]$  denote the second moment matrix of  $\mathcal{P}_x$ . We assume:

- (1) Eigenvalue boundedness: The minimum and maximum eigenvalues of  $\Sigma$ , denoted  $C_{\min}$  and  $C_{\max}$ , satisfy  $0 < C_{\min} \le C_{\max} < \infty$ .
- (2) Non-degeneracy: The distribution  $\mathcal{P}_x$  has a density bounded away from zero in a neighborhood of the origin, ensuring  $\Sigma$  is positive definite.

**Remark 1.** Assumption 2 isolates market differences to *utility model shifts*, which is reasonable when source and target markets have similar populations but differ in preferences. The key conditions ensure: (i) *Stability*: bounded eigenvalues and support guarantee well-behaved estimators. (ii) *Identifiability*: a density bounded away from zero near the origin ensures  $\Sigma$  is positive definite. These hold in many practical settings e.g., truncated uniform or Gaussian distributions.

We will study the estimation and decision for the target model (1) leveraging the data from the target markets as well as the data from K auxiliary source markets.

**Similarity Characterization.** Transfer is effective only when source and target markets are sufficiently alike; we formalize this by assuming their mean-utility functions lie in a common hypothesis class  $\mathcal{G}$  and differ only through a structured *utility shift*. For any candidate mean-utility function  $\mathring{g} \in \mathcal{G}$  we distinguish two notions of similarity, corresponding to (i) linear (parametric) and (ii) RKHS (nonparametric) utility models:

- Parametric classes. When every  $\mathring{g}$  is indexed by a finite-dimensional parameter vector, similarity is expressed as a bound on the parameter gap between source and target.
- $\bullet$  **Nonparametric classes.** For infinite-dimensional  $\mathcal{G}$  we impose a bound on the functional discrepancy between source and target under a suitable function-space metric.

Later assumptions specialize these high-level conditions (e.g. sparse parameter differences in Assumption 4 for linear utilities and smooth residuals for RKHS utilities in Assumption 8 for nonparametric utilities). This formulation places every source task in a *recoverable neighbourhood* of the target, ensuring its data are informative for transfer across both linear and non-linear utility models.

# 4 Cross-Market Transfer Dynamic Pricing Algorithms

We address both practical data scenarios introduced in Section 1. For O2O<sub>off</sub> (Offline-to-Online), a large, *static* source log is available prior to launch. The algorithm transfers that log during the early episodes—those for which the cumulative target sample size is below a theory-driven threshold  $\tau$ . Once  $|\mathcal{T}_m| \geq \tau$  (source data no longer dominate the information budget) the procedure switches automatically to pure single-market learning. Hence transfer is *phased*, not one-shot: it is used exactly while it provably reduces estimation error and is dropped thereafter. Full details and guarantees are given in Appendix B.

For  $O2O_{on}$  (Online-to-Online), source and target markets operate concurrently; transfer is repeated at the *start of every episode*, ensuring that incoming source data continuously guide the target-market prices. Let the time horizon be partitioned into episodes  $m=1,2,\ldots,M$  with lengths  $\ell_m=2^{m-1}$  (so that  $\sum_{m=1}^M \ell_m \approx T$  and  $M=\lceil \log_2 T \rceil$ ). At the *start* of each episode the algorithm (i) fits or debiases a demand estimator using all data collected in the *preceding* episode, and (ii) fixes the resulting pricing rule for the next  $\ell_m$  periods. Because episode length doubles, parameter updates occur only  $\mathcal{O}(\log T)$  times, yet the cumulative sample size entering each update grows geometrically, guaranteeing progressively tighter confidence bounds and the desired  $O(\operatorname{polylog} T)$  regret.

Both algorithms share a common two-step *bias-corrected aggregation* pipeline and are instantiated for (i) linear utilities, with maximum-likelihood estimation (MLE), and (ii) RKHS utilities, with

kernel logistic regression (KLR). Pseudocode is given in Algorithms 4 (O2O<sub>off</sub>) and 1 (O2O<sub>on</sub>); estimation details appear in Algorithms 2 and 3.

Comparison between  $O2O_{off}$  and  $O2O_{on}$ . When source streams remain active, each episode m recomputes an aggregate estimate  $\hat{g}_m^{(ag)}$  from the *preceding* episode's source data and debiases it using the matching target observations to form  $\hat{g}_m^{(0)}$ . This persistent adaptation leads to provably faster regret decay compared to  $O2O_{off}$ . In contrast,  $O2O_{off}$  employs phased transfer only during initial episodes, resulting in asymptotic regret growth rates that eventually match single-market learning, though with improved constants during the transfer period.

Empirically,  $O2O_{on}$  achieves flatter regret trajectories with consistently lower cumulative regret (Figures 1 and 2).  $O2O_{off}$  shows parallel regret growth to single-market baseline in later stages (Figures 3 and 4), confirming our theoretical analysis. However, we still observe a *jump-start* benefit in  $O2O_{off}$  during early stages, ultimately translating to significantly lower overall regret compared to the single-market baseline.

# Algorithm 1: CM-TDP-O2O<sub>on</sub>

```
Input: Streaming source data \{(p_t^{(k)}, x_t^{(k)}, y_t^{(k)})\}_{t\geq 1} for k\in [K]; streaming target contexts \{x_t^{(0)}\}_{t\geq 1}

I Initialisation: \ell_1\leftarrow 1, \mathcal{T}_1=\{1\}, \hat{g}_0^{(0)}=0.

2 for m=1,2,\ldots do // episodes

Compute \ell_m=2^{m-1}, \mathcal{T}_m=\{\ell_m,\ldots,\ell_{m+1}-1\}.

// (i) aggregate previous episode's source data

4 \hat{g}_m^{(ag)}\leftarrow \text{MLE\_or\_KRR}(\{(p_t^{(k)},x_t^{(k)},y_t^{(k)})\}_{t\in \mathcal{T}_{m-1},k\in [K]}).

// (ii) debias with previous episode's target data

5 \hat{\delta}_m\leftarrow \text{Debias}(\hat{g}_m^{(ag)},\{(p_t^{(0)},x_t^{(0)},y_t^{(0)})\}_{t\in \mathcal{T}_{m-1}}).

// For functions MLE\_or_KRR and Debias, call Algorithm 2 for linear utility (or Algorithm 3 for nonparametric utility)

6 \text{Set } \hat{g}_m^{(0)}\leftarrow \hat{g}_m^{(ag)}+\hat{\delta}_m.

7 for t\in \mathcal{T}_m do // pricing

8 Post price \hat{p}_t^{(0)}=h(\hat{g}_m^{(0)}(x_t^{(0)})); observe y_t^{(0)} and store data.
```

# 5 Parametric Utility Models: Similarity, Transfer, and Guarantee

We start with the linear setting that allows us to isolate and rigorously characterize the *transfer mechanism* itself, before introducing the additional complexity of nonlinear effects.

**Linear Utility Models.** Consider a linear model for the mean utility:

$$v_t^{(0)} = \boldsymbol{x}_t^{(0)} \cdot \boldsymbol{\beta}^{(0)} + \varepsilon_t, \tag{5}$$

where  $\boldsymbol{\beta}^{(0)} \in \mathbb{R}^d$  denotes the coefficient vector. For source market data, we have for  $k \in [K]$ ,  $v_t^{(k)} = \boldsymbol{x}_t^{(k)} \cdot \boldsymbol{\beta}^{(k)} + \varepsilon_t$ . To simplify the presentation, we impose the following assumption on parameter space.

**Assumption 3** (Parameter Boundedness). We assume that  $||x_t||_{\infty} \le 1, \forall x_t \in \mathcal{X}$ , and  $||\beta^{(k)}||_1 \le W$  for a known constant  $W \ge 1, \forall k \in 0 \cup [K]$ . We denote by  $\Omega$  the set of feasible parameters, i.e.,

$$\Omega = \left\{ \boldsymbol{\beta} \in \mathbb{R}^{d+1} : ||\boldsymbol{\beta}||_1 \leq W \right\}, \quad \boldsymbol{\beta}^{(k)} \in \Omega, \forall k \in 0 \cup [K].$$

We formalize the notion of similarity between source and target markets using the sparsity of the difference between coefficients.

**Assumption 4** (Task Similarity in Linear Model). *The maximum*  $l_0$ -norm of the difference between target and source coefficients is bounded:

$$\max_{k \in [K]} \|\boldsymbol{\beta}^{(0)} - \boldsymbol{\beta}^{(k)}\|_0 \le s_0.$$

While our linear utility model itself is not necessarily sparse, Assumption 4 specifically constrains the cross-market parameter differences to be sparse, implying that at most  $s_0$  covariates have significantly different effects across markets, mirroring the economic intuition that only certain latent features drive market variations.

**Bias-corrected Aggregation for Linear Utility.** Algorithm 2 serves as the dual-mode estimator in Algorithms 1 and 4, switching between: (i) source data aggregation (no prior input), or (ii)  $\ell_1$ -regularized debiasing (given aggregate estimate).

# Algorithm 2: Maximum Likelihood Estimation for Linear Utility Model

Input: Data 
$$\{(p_t, \boldsymbol{x}_t, y_t)\}_{t \in [n]}$$
, aggregate estimate  $\widehat{\boldsymbol{\beta}}^{(ag)}$ 

if  $\widehat{\boldsymbol{\beta}}^{(ag)}$  is None then
$$\widehat{\boldsymbol{\beta}} = \underset{\mathbf{b}}{\operatorname{argmin}} \left\{ \frac{1}{n} \sum_{t=1}^{n} L(\mathbf{b}; p_t, \boldsymbol{x}_t, y_t)) \right\}$$

3 else
$$\widehat{\boldsymbol{\beta}} = \underset{\mathbf{b}}{\operatorname{argmin}} \left\{ \frac{1}{n} \sum_{t=1}^{n} L(\mathbf{b} + \widehat{\boldsymbol{\beta}}^{(ag)}; p_t, \boldsymbol{x}_t, y_t)) + \lambda_{tf} \|\mathbf{b}\|_1 \right\}$$

5 where the function
$$L(\mathbf{b}; p, \boldsymbol{x}, y) := -\left\{ \mathbb{1}(y = 1) \log(1 - F(p - \mathbf{b} \cdot \boldsymbol{x})) + \mathbb{1}(y = 0) \log(F(p - \mathbf{b} \cdot \boldsymbol{x})) \right\}. \tag{6}$$

Output:  $\widehat{\boldsymbol{\beta}}$ 

In Algorithm 2, the aggregation step employs unregularized MLE. This choice is motivated by the fact that source market data are typically abundant, so the aggregate estimate can be reliably learned without imposing sparsity or other high-dimensional penalties. By contrast, the debiasing step operates on target market samples, which are relatively scarce. Here, we incorporate regularization to stabilize estimation and exploit structured similarities across markets.

# 5.1 Theoretical Guarantee for CM-TDP-O2O<sub>on</sub> under Linear Utility

The following theorem bounds the regret of our O2O<sub>on</sub> Policy under linear utility model.

**Theorem 5** (Regret Upper Bound for O2O<sub>on</sub> under Linear Utility). *Consider linear utility model (5) with Assumptions 1 (revenue regularity)*, 2 (covariate property), 3 (parameter space), and 4 (market similarity) holding true, the cumulative regret of Algorithm 1 admits the following bound:

$$\operatorname{Regret}(T; \pi) = \mathcal{O}\left(\frac{d}{K}\log d\log T + s_0\log d\log T\right). \tag{7}$$

where K and T denote the number of source markets and time horizon, respectively.

We defer the complete proof to Appendix E. Theorem 5 reveals crucial insights about the role of source market quantity K in two distinct operational regimes. First, in the *source-constrained regime*  $(K \ll d/s_0)$ , the first term dominates, showing that each additional source market provides linear reduction in regret. Notably, the logarithmic dependence on T is consistent with classical linear bandit results [1], though our bound strictly improves their  $\mathcal{O}(d \log T)$  through transfer. Second, in the *source-saturation regime*  $(K \gg d/s_0)$ , the second term becomes pivotal, quantifying the price for cross-market heterogeneity.

As illustrated in Figure 1, the empirical scaling behavior of regret w.r.t. both the number of source markets K and time horizon T precisely matches the theoretical predictions derived from Theorem 5.

While our theoretical guarantee is established in asymptotic regimes, the finite-horizon empirical performance robustly validates the practical effectiveness. This alignment between theory and practice confirms that our asymptotic analysis yields operationally meaningful insights for real-world applications.

**Theorem 6** (Regret Lower Bound under Linear Utility). Consider the linear utility model in (5), for any pricing policy  $\pi$ , the worst-case target-market regret over horizon T satisfies

$$\inf_{\pi} \sup \operatorname{Regret}(T; \pi) \geq c_1 \frac{d}{K} \log T + c_2 s_0 \log \frac{d}{s_0} \log T, \tag{8}$$

where the two constants  $c_1, c_2$  depends only on noise distribution F, second moment matrix  $\Sigma$ , and parameter space W.

In particular, (8) matches the upper bound (7) up to polylogarithmic factors in d, hence CM-TDP is minimax-type optimal in its T- and K-scaling.

# 6 Nonparametric Utility Models: Similarity, Transfer, and Guarantee

In this section, we model market utilities in an RKHS [3], leveraging (i) the kernel trick for efficient nonlinear computation [24], and (ii) its universal approximation power to capture rich market responses [26].

**Nonparametric Utility Models.** Let  $\mathcal{H}_k$  be an RKHS induced by a symmetric, positive and semidefinite kernel function  $K: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ , and we define its equipped norm as  $\|\cdot\|_K^2 = \langle \cdot, \cdot \rangle_K$  with the endowed inner product  $\langle \cdot, \cdot \rangle_K$ . We also define  $K_x := K(x, \cdot) \in \mathcal{H}_k$ . An important property in  $\mathcal{H}_k$  is called the reproducing property, stating that  $\langle g, K_x \rangle_K = g(x)$ . The utility function now follows:

 $v_t^{(k)} = g^{(k)}(\mathbf{x}_t^{(k)}) + \varepsilon_t, \quad g^{(k)} \in \mathcal{H}_k, \ k \in 0 \cup [K],$  (9)

where  $g^{(k)}$  is the unknown target function and  $\{\varepsilon_t^{(k)}\}_{t\geq 1}$  are i.i.d. noise with known distribution F. To start with, we place the following regularity assumptions on  $\mathcal{H}_k$ , which requires the model to be well-specified, and the kernel to be bounded.

**Assumption 7** (Regularity Condition). Assume that  $\|g^{(0)}\|_{\mathcal{H}_k} \leq R$ , for some R > 0, and there exists a positive constant  $\kappa$ , such that the feature map  $\phi(\mathbf{x}) = K(\mathbf{x}, \cdot)$  satisfies  $\|\phi(\mathbf{x})\|_{\mathcal{H}_k} \leq \kappa, \forall \mathbf{x} \in \mathcal{X}$ .

**Assumption 8** (Task Similarity in RKHS). For all  $k \in [K]$ , the discrepancy between the target task  $g^{(0)}$  and the k-th source task  $g^{(k)}$  in the RKHS norm is uniformly bounded as

$$\max_{k \in [K]} \|g^{(0)} - g^{(k)}\|_{K} \le H.$$

**Remark 2.** Assumption 8 characterizes the similarity between the target and source tasks through the bound H. A smaller value of H indicates that the source tasks are more similar to the target task, which enables more effective knowledge transfer and potentially improves the estimation accuracy by leveraging information from related sources.

**Assumption 9** (Complexity). Define the effective dimension as  $\mathcal{N}(\lambda) := Tr[\Sigma(\Sigma + \lambda I)^{-1}]$ , a variant of what is typically used to characterize the complexity of RKHS [6]. We assume: (i) There exist some constants  $\alpha > 1/2$  such that  $\mathcal{N}(\lambda) = Tr(\Sigma(\Sigma + \lambda I)^{-1}) \lesssim \lambda^{-1/(2\alpha)}$ .

(ii) There exist some constants  $\beta \in (0,1]$  such that for each  $k \in 0 \cup [K]$ , there holds  $g^{(k)} = \Sigma^{\beta} \rho^{(k)}$ , for some  $\rho^{(k)} \in \mathcal{L}_2(\mathcal{X}, \mathcal{P}_x)$ , where  $\Sigma, \mathcal{P}_x$  are defined in Assumption 2.

**Remark 3.** (i) controls the complexity of the considered  $\mathcal{H}_k$ . Smaller  $\alpha$  means slower eigenvalue decay and higher intrinsic dimensionality. (ii) is a regularity condition on the source and target functions, and is also commonly assumed in literature[6, 25, 17]. Here  $\beta > 0$  controls the degree of smoothness, and larger  $\beta$  means  $g^{(k)}$  is smoother and easier to estimate.

**Bias-corrected Aggregation for Nonparametric Utility.** Algorithm 3 presents the aggregation and debiasing operations using regularized kernel regression.

#### 6.1 Theoretical Guarantee for CM-TDP-O2O<sub>on</sub> under Nonparametric Utility

The following theorem bounds the regret of our O2Oon Policy under RKHS utility model.

# Algorithm 3: Kernel Regression for RKHS Utility Model

Input: Data 
$$\{(p_t, \boldsymbol{x}_t, y_t)\}_{t \in [n]}$$
, Kernel  $K(\boldsymbol{x}, \boldsymbol{x}') = \langle \phi(\boldsymbol{x}), \phi(\boldsymbol{x}') \rangle$ , Aggregated estimator  $\widehat{g}^{(ag)} \in \mathcal{H}_k$ .

1 if  $\widehat{g}^{(ag)}$  is None then

$$\widehat{g} = \underset{g \in \mathcal{H}_k}{\operatorname{argmin}} \left\{ \frac{1}{n} \sum_{t=1}^n L(g; p_t, \boldsymbol{x}_t, y_t) + \lambda_{ag} \|g\|_{\mathcal{H}_k}^2 \right\}$$
2 else

$$\widehat{g} = \underset{g \in \mathcal{H}_k}{\operatorname{argmin}} \left\{ \sum_{t=1}^n L(g + \widehat{g}^{(ag)}; p_t, \boldsymbol{x}_t, y_t) + \lambda_{tf} \|g\|_{\mathcal{H}_k}^2 \right\}$$
5 where the function
$$L(g; p, \boldsymbol{x}, y) := -\Big\{ \mathbb{1}(y = 1) \log(1 - F(p - g(\boldsymbol{x}))) + \mathbb{1}(y = 0) \log(F(p - g(\boldsymbol{x}))) \Big\}.$$
Output:  $\widehat{q}$ 

**Theorem 10** (Regret Upper Bound for O2O<sub>on</sub> under RKHS Utility). *Consider RKHS utility model* (9) with Assumptions 1 (revenue regularity), 2 (covariate property), 7 (parameter space), 8 (market similarity), and 9 (complexity) holding true, the cumulative regret of Algorithm 1 admits the following

 $\operatorname{Regret}(T;\pi) = \mathcal{O}\left(K^{-\frac{2\alpha\beta}{2\alpha\beta+1}}T^{\frac{1}{2\alpha\beta+1}} + H^{\frac{2}{2\alpha+1}}T^{\frac{1}{2\alpha+1}}\right)$ (10)

where K and T denote the number of source markets and time horizon, respectively.

Theorem 10 again highlights the benefit of transfer learning, and finds clear empirical support in the experiments shown in Figure 2. The first term reflects the learning complexity of the target function, where  $\beta$  quantifies its intrinsic complexity with larger  $\beta$  indicating simpler functions and enabling faster transfer. The  $\alpha$  parameter, as the kernel's effective dimension, modulates how  $\beta$ impacts the exponent. The second term encodes cross-market disparity through H, which directly measures the worst-case RKHS distance between source and target markets. The  $\alpha$ -dependence shows that high-dimensional RKHS amplify heterogeneity costs. Compared to Theorem 5, we observe polynomial rather than logarithmic T-dependence, reflecting the fundamental difficulty shift from parametric to nonparametric estimation.

**Special Cases.** The following boundary cases demonstrate the degradation properties of our theoretical results, showing how the general bound naturally adapts to different simpler scenarios.

**Perfect Task Similarity.** When source and target domains are identical (H = 0), the bound becomes:

$$\operatorname{Regret}(T;\pi) = \mathcal{O}\left(K^{-\frac{2\alpha\beta}{2\alpha\beta+1}}T^{\frac{1}{2\alpha\beta+1}}\right)$$

The regret depends on the total sample size from all sources. The rate improves with number of source market K.

No Transfer Learning ( $K_{\text{eff}} = 1, H = 0$ ) In the absence of transfer learning, i.e., when no source domain data is available (K=0, H=0), we evaluate the bound (10) with  $K_{\text{eff}} = \max\{K, 1\} = 1$ (equivalently, a "self-aggregation" that ignores external sources). Our general framework reduces to conventional dynamic pricing with RKHS utility functions. The regret bound simplifies to:

$$\operatorname{Regret}(T;\pi) = \mathcal{O}\left(T^{\frac{1}{2\alpha\beta+1}}\right).$$

While existing literature has not explicitly analyzed regret bounds for dynamic pricing with RKHS utility functions, we can establish an important connection to the well-studied linear case. By setting  $\alpha \to 1/2^+$  and  $\beta = 1$ , which corresponds to linear utility functions, the general bound (10) reduces to  $\mathcal{O}(\sqrt{T})$ , matching the often-seen regret for online decision-making problems with linear

This  $\mathcal{O}(\sqrt{T})$  rate should be contrasted with the  $\mathcal{O}(\log T)$  regret we established for the linear transfer setting in (7). The difference stems from the underlying estimation complexity: in the parametric case, the generalized linear model is finite-dimensional, and abundant source data together with MLE-based updates enable nearly logarithmic regret growth. In contrast, the RKHS formulation

must estimate an infinite-dimensional function under binary feedback, where nonparametric learning is intrinsically harder. Thus, the gap reflects fundamental differences between parametric and nonparametric estimation, rather than looseness in the analysis.

**Theorem 11** (Regret Lower Bound under RKHS Utility). Consider the RKHS utility model in (9). For any pricing policy  $\pi$ , then there exists a constant c > 0 depending only on  $(F, P_x, K)$  via  $(m_{rev}, m_h, \kappa)$  and the Bernoulli KL smoothness constant (defined in Lemma 28) such that for all horizons  $T \geq 1$ ,

$$\inf_{\pi} \sup \operatorname{Regret}(T; \pi) \ge c \left\{ K^{-\frac{2\alpha\beta}{2\alpha\beta+1}} T^{\frac{1}{2\alpha\beta+1}} + H^{\frac{2}{2\alpha+1}} T^{\frac{1}{2\alpha+1}} \right\}. \tag{11}$$

In particular, (11) matches the upper bound (10) up to polylogarithmic factors, hence CM-TDP is minimax-type optimal in its T- and K-scaling.

# 7 Numerical Experiments

We evaluate CM-TDP through extensive simulations covering multiple market scenarios and dimensionalities:

- (1) Identical Markets: an ideal baseline where  $\beta^{(0)} \equiv \beta^{(k)}$  or  $g^{(0)} \equiv g^{(k)}$  for all source markets;
- (2) Sparse difference Markets: for linear utility, we implement Assumption 4 with  $\|\boldsymbol{\beta}^{(0)} \boldsymbol{\beta}^{(k)}\|_0 \le 0.3 * d$ ; for RKHS utility, we implement Assumption 8 with  $\|\boldsymbol{g}^{(0)} \boldsymbol{g}^{(k)}\|_{\mathcal{H}_k} \le 0.3$ .
- (3) Dense difference Markets: for linear utility, we implement Assumption 4 with  $\|\boldsymbol{\beta}^{(0)} \boldsymbol{\beta}^{(k)}\|_0 \le 0.5 * d$ ; for RKHS utility, we implement Assumption 8 with  $\|g^{(0)} g^{(k)}\|_{\mathcal{H}_k} \le 0.5$ .

In each market scenario, we test T=2000 periods with dimensions  $d\in\{10,15,20,100\}$  and  $K\in\{1,3,5,10\}$  source markets. RKHS function (RBF kernel with  $\gamma=0.5$ ) and kernel parameters ( $\kappa=0.5,\,R=1.0$ ) remain consistent across all experiments. We evaluate O2O<sub>on</sub> Policy against no transfer baseline [19], a standard dynamic pricing using only target market data. Market noise follows logistic distribution on  $\mathbb{R}$ . For numerical stability, we clip simulated valuations to  $[-B_{\varepsilon},B_{\varepsilon}]$  with  $B_{\varepsilon}=1$ . The code is available at https://github.com/CS-SAIL/transfer\_pricing\_neurips2025.

**Simulation Results.** Figures 1 and 2 present the empirical cumulative regret for linear and RKHS utility models with d=10 and 100, respectively, demonstrating three key findings (For conciseness, results for d=15,20 are deferred to Appendix D.1).

- (1) Universal effectiveness over non-transfer scheme. CM-TDP-O2O $_{on}$  consistently outperforms single-market baseline in all scenarios. Significant improvements emerge even with minimal source markets (K=1), with larger K values enhance robustness in divergent market conditions. Against single-market learning, CM-TDP reduces cumulative regret by roughly 43–55% on average (peaking at 75%), reduces standard error by about 24–31% (up to 39%), and attains the same estimation error level as much as  $9 \times \text{sooner}$  (Table 2 in Appendix D.2.1).
- (2) Adaptivity. The transfer mechanism automatically handles both identical markets and sparse-difference markets, without requiring manual adjustments, with identical market condition achieving faster convergence than sparse difference cases and dense difference cases.
- (3) Scalability: Higher dimensions maintain stable performance, confirming the method's scalability.

These results collectively validate our framework as a versatile solution for real-world dynamic pricing, particularly in environments with varying market similarities.

#### 8 Conclusion and Future Work

We introduce  $Cross-Market\ Transfer\ Dynamic\ Pricing\ (CM-TDP)$ , the first framework that provably accelerates revenue learning by pooling information from multiple auxiliary markets in both Offline-to-Online and Online-to-Online regimes. CM-TDP achieves minimax-optimal regret for both linear and RKHS utilities, matching information-theoretic lower bounds, and delivers up to an average of 50% lower cumulative regret and  $5\times$  faster learning in extensive simulations. These results bridge single-market pricing, meta-learning, and multitask bandits, laying the groundwork for pricing systems that "transfer faster, price smarter".

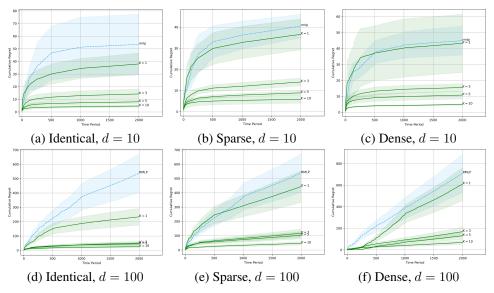


Figure 1: Cumulative regret across experimental conditions in O2Oon with linear utility model.

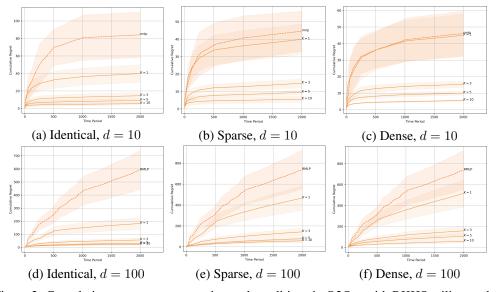


Figure 2: Cumulative regret across experimental conditions in  $O2O_{on}$  with RKHS utility model.

Several extensions of CM-TDP provide fertile ground for future research. First, relaxing the assumption of homogeneous covariate distributions would allow the framework to handle domain shift, e.g., via reweighting, importance sampling, or domain-invariant representation learning. Second, while we focus on  $\ell_0$ -sparsity for interpretability, the aggregation framework naturally extends to richer similarity notions such as  $\ell_q$ -sparsity ( $q \in [0,1]$ ), smoothness metrics, or distributional divergences. Third, CM-TDP currently lacks mechanisms to down-weight or exclude adversarial source markets with large parameter gaps, and developing robust similarity detection and market-selection strategies remains an important direction.

# **Acknowledgments and Disclosure of Funding**

We thank the NeurIPS reviewers for their helpful comments. This work was supported by NSF Award No. 2412577 and the NYU Stern Research Fund.

#### References

- [1] Yasin Abbasi-Yadkori, David Pal, and Csaba Szepesvari. Online-to-confidence-set conversions and application to sparse stochastic bandits. In Neil D. Lawrence and Mark Girolami, editors, *Proceedings of the Fifteenth International Conference on Artificial Intelligence and Statistics*, volume 22 of *Proceedings of Machine Learning Research*, pages 1–9, La Palma, Canary Islands, 21–23 Apr 2012. PMLR.
- [2] Kareem Amin, Afshin Rostamizadeh, and Umar Syed. Repeated contextual auctions with strategic buyers. *Advances in Neural Information Processing Systems*, 27, 2014.
- [3] N. Aronszajn. Theory of reproducing kernels. *Transactions of the American Mathematical Society*, 68(3):337–404, 1950.
- [4] Hamsa Bastani, David Simchi-Levi, and Ruihao Zhu. Meta dynamic pricing: Transfer learning across experiments. *Management Science*, 68(3):1865–1881, 2022.
- [5] Changxiao Cai, T Tony Cai, and Hongzhe Li. Transfer learning for contextual multi-armed bandits. *The Annals of Statistics*, 52(1):207–232, 2024.
- [6] A. Caponnetto and E. Vito. Optimal rates for the regularized least-squares algorithm. *Found. Comput. Math.*, 7(3):331–368, July 2007.
- [7] Jinhang Chai, Elynn Chen, and Jianqing Fan. Deep transfer *Q*-learning for offline non-stationary reinforcement learning. *arXiv* preprint arXiv:2501.04870, 2025.
- [8] Jinhang Chai, Elynn Chen, and Lin Yang. Transfer *Q*-learning with composite MDP structures. In *The Forty-second International Conference on Machine Learning (ICML 2025)*, 2025.
- [9] Elynn Chen, Xi Chen, Lan Gao, and Jiayu Li. Dynamic contextual pricing with doubly non-parametric random utility models. *arXiv preprint arXiv:2405.06866*, 2024.
- [10] Elynn Chen, Xi Chen, and Wenbo Jing. Data-driven knowledge transfer in batch *Q* learning. *arXiv preprint arXiv:2404.15209, 2024, 2024.*
- [11] Elynn Chen, Xi Chen, Wenbo Jing, and Yichen Zhang. Distributed tensor principal component analysis with data heterogeneity. *Journal of the American Statistical Association*, (just-accepted):1–35, 2025.
- [12] Elynn Chen, Sai Li, and Michael I Jordan. Transfer *Q*-learning for finite-horizon markov decision processes. *Electronic Journal of Statistics*, (just-accepted):1–24, 2025.
- [13] Maxime C Cohen, Ilan Lobel, and Renato Paes Leme. Feature-based dynamic pricing. Management Science, 66(11):4921–4943, 2020.
- [14] Giulia Denevi, Dimitris Stamos, Carlo Ciliberto, and Massimiliano Pontil. Online-within-online meta-learning. *Advances in Neural Information Processing Systems*, 32, 2019.
- [15] Mingwei Deng, Ville Kyrki, and Dominik Baumann. Transfer learning in latent contextual bandits with covariate shift through causal transportability. In *Causal Learning and Reasoning*, 2025.
- [16] Jianqing Fan, Yongyi Guo, and Mengxin Yu. Policy optimization using semiparametric models for dynamic pricing. *Journal of the American Statistical Association*, 119(545):552–564, 2024.
- [17] Zheng-Chu Guo, Shao-Bo Lin, and Ding-Xuan Zhou. Learning theory of distributed spectral algorithms. *Inverse Problems*, 33(7):074009, 2017.
- [18] Xinmeng Huang, Kan Xu, Donghwan Lee, Hamed Hassani, Hamsa Bastani, and Edgar Dobriban. Optimal multitask linear regression and contextual bandits under sparse heterogeneity. *Journal of the American Statistical Association*, pages 1–14, 2025.
- [19] Adel Javanmard and Hamid Nazerzadeh. Dynamic pricing in high-dimensions. *The Journal of Machine Learning Research*, 20(1):315–363, 2019.

- [20] Allen Liu, Renato Paes Leme, and Jon Schneider. Optimal contextual pricing and extensions. In *Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms (SODA)*, pages 1059–1078, SIAM, 2021.
- [21] Yiyun Luo, Will Wei Sun, and Yufeng Liu. Contextual dynamic pricing with unknown noise: Explore-then-ucb strategy and improved regrets. *Advances in Neural Information Processing Systems*, 35:37445–37457, 2022.
- [22] Jieming Mao, Renato Leme, and Jon Schneider. Contextual pricing for lipschitz buyers. *Advances in Neural Information Processing Systems*, 31, 2018.
- [23] Jathushan Rajasegaran, Chelsea Finn, and Sergey Levine. Fully online meta-learning without task boundaries. *arXiv preprint arXiv:2202.00263*, 2022.
- [24] B. Schölkopf and A. J. Smola. *Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond.* MIT Press, 2001.
- [25] Steve Smale and Ding-Xuan Zhou. Learning theory estimates via integral operators and their approximations. *Constructive approximation*, 26(2):153–172, 2007.
- [26] I. Steinwart. On the influence of the kernel on the consistency of support vector machines. Journal of Machine Learning Research, 2:67–93, 2001.
- [27] Alexandre B Tsybakov. Nonparametric estimators. In *Introduction to Nonparametric Estimation*, pages 1–76. Springer, 2008.
- [28] Matilde Tullii, Solenne Gaucher, Nadav Merlis, and Vianney Perchet. Improved algorithms for contextual dynamic pricing. Advances in Neural Information Processing Systems, 37:126088– 126117, 2024.
- [29] Roman Vershynin. Introduction to the non-asymptotic analysis of random matrices, 2011.
- [30] Fan Wang, Feiyu Jiang, Zifeng Zhao, and Yi Yu. Transfer learning for nonparametric contextual dynamic pricing. *arXiv preprint arXiv:2501.18836*, 2025.
- [31] Jianyu Xu and Yu-Xiang Wang. Towards agnostic feature-based dynamic pricing: Linear policies vs linear valuation with unknown noise. In *International Conference on Artificial Intelligence and Statistics*, pages 9643–9662. PMLR, 2022.
- [32] Kan Xu and Hamsa Bastani. Multitask learning and bandits via robust statistics. *Management Science*, 2025.
- [33] Mengqian Zhang, Yuhao Li, Xinyuan Sun, Elynn Chen, and Xi Chen. Maximal extractable value in batch auctions. In *The 26th ACM Conference on Economics and Computation (EC 2025), https://doi.org/10.1145/3736252.3742581*, pages 510–510, 2025.
- [34] Runlin Zhou, Chixiang Chen, and Elynn Chen. Prior-aligned meta-rl: Thompson sampling with learned priors and guarantees in finite-horizon mdps. *arXiv preprint arXiv:2510.05446*, 2025.

# **NeurIPS Paper Checklist**

#### 1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly outline the paper's key contributions, including the development of a novel transfer learning algorithm for dynamic pricing, theoretical analysis of the algorithm, and experimental validations. The claims are supported by the theoretical framework presented in Section 3 and the experimental results detailed in Section 7, aligning with the guidelines.

#### Guidelines:

- The answer NA means that the abstract and introduction do not include the claims made in the paper.
- The abstract and/or introduction should clearly state the claims made, including the contributions made in the paper and important assumptions and limitations. A No or NA answer to this question will not be perceived well by the reviewers.
- The claims made should match theoretical and experimental results, and reflect how much the results can be expected to generalize to other settings.
- It is fine to include aspirational goals as motivation as long as it is clear that these goals
  are not attained by the paper.

#### 2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Although not labeled under a "Limitations" section, limitations are implicitly discussed in the assumptions underlying the theoretical results, such as paramter space in in Assumption 3, homogeneity in design matrices in Assumption 2, known noise distributions, and sparsity constraints on parameters in Assumption 4. These limit generalizability and are explicitly stated.

#### Guidelines:

- The answer NA means that the paper has no limitation while the answer No means that the paper has limitations, but those are not discussed in the paper.
- The authors are encouraged to create a separate "Limitations" section in their paper.
- The paper should point out any strong assumptions and how robust the results are to violations of these assumptions (e.g., independence assumptions, noiseless settings, model well-specification, asymptotic approximations only holding locally). The authors should reflect on how these assumptions might be violated in practice and what the implications would be.
- The authors should reflect on the scope of the claims made, e.g., if the approach was only tested on a few datasets or with a few runs. In general, empirical results often depend on implicit assumptions, which should be articulated.
- The authors should reflect on the factors that influence the performance of the approach. For example, a facial recognition algorithm may perform poorly when image resolution is low or images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide closed captions for online lectures because it fails to handle technical jargon.
- The authors should discuss the computational efficiency of the proposed algorithms and how they scale with dataset size.
- If applicable, the authors should discuss possible limitations of their approach to address problems of privacy and fairness.
- While the authors might fear that complete honesty about limitations might be used by reviewers as grounds for rejection, a worse outcome might be that reviewers discover limitations that aren't acknowledged in the paper. The authors should use their best

judgment and recognize that individual actions in favor of transparency play an important role in developing norms that preserve the integrity of the community. Reviewers will be specifically instructed to not penalize honesty concerning limitations.

# 3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete (and correct) proof?

Answer: [Yes]

Justification: The paper provide the full set of assumptions and a complete (and correct) proof for both online to online and offline to online transfer learning setting, with an outline for the proof following the statement of Theorem 5 and 12, and complete versions in Appendix E and F.

#### Guidelines:

- The answer NA means that the paper does not include theoretical results.
- All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
- All assumptions should be clearly stated or referenced in the statement of any theorems.
- The proofs can either appear in the main paper or the supplemental material, but if they appear in the supplemental material, the authors are encouraged to provide a short proof sketch to provide intuition.
- Inversely, any informal proof provided in the core of the paper should be complemented by formal proofs provided in appendix or supplemental material.
- Theorems and Lemmas that the proof relies upon should be properly referenced.

#### 4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental results of the paper to the extent that it affects the main claims and/or conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Although the paper is primarily theoretical, focusing on algorithm design, regret analysis, and proofs under well-defined assumptions, we still include empirical experiments accompanied with open soirce code and data for validation.

#### Guidelines:

- The answer NA means that the paper does not include experiments.
- If the paper includes experiments, a No answer to this question will not be perceived well by the reviewers: Making the paper reproducible is important, regardless of whether the code and data are provided or not.
- If the contribution is a dataset and/or model, the authors should describe the steps taken to make their results reproducible or verifiable.
- Depending on the contribution, reproducibility can be accomplished in various ways. For example, if the contribution is a novel architecture, describing the architecture fully might suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary to either make it possible for others to replicate the model with the same dataset, or provide access to the model. In general, releasing code and data is often one good way to accomplish this, but reproducibility can also be provided via detailed instructions for how to replicate the results, access to a hosted model (e.g., in the case of a large language model), releasing of a model checkpoint, or other means that are appropriate to the research performed.
- While NeurIPS does not require releasing code, the conference does require all submissions to provide some reasonable avenue for reproducibility, which may depend on the nature of the contribution. For example
  - (a) If the contribution is primarily a new algorithm, the paper should make it clear how to reproduce that algorithm.
  - (b) If the contribution is primarily a new model architecture, the paper should describe the architecture clearly and fully.

- (c) If the contribution is a new model (e.g., a large language model), then there should either be a way to access this model for reproducing the results or a way to reproduce the model (e.g., with an open-source dataset or instructions for how to construct the dataset).
- (d) We recognize that reproducibility may be tricky in some cases, in which case authors are welcome to describe the particular way they provide for reproducibility. In the case of closed-source models, it may be that access to the model is limited in some way (e.g., to registered users), but it should be possible for other researchers to have some path to reproducing or verifying the results.

# 5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: Our implementation is available at https://github.com/CS-SAIL/transfer\_pricing\_neurips2025, including a README with setup instructions, usage examples, and reproduction steps.

#### Guidelines:

- The answer NA means that paper does not include experiments requiring code.
- Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- While we encourage the release of code and data, we understand that this might not be possible, so "No" is an acceptable answer. Papers cannot be rejected simply for not including code, unless this is central to the contribution (e.g., for a new open-source benchmark).
- The instructions should contain the exact command and environment needed to run to reproduce the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- The authors should provide instructions on data access and preparation, including how to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- The authors should provide scripts to reproduce all experimental results for the new proposed method and baselines. If only a subset of experiments are reproducible, they should state which ones are omitted from the script and why.
- At submission time, to preserve anonymity, the authors should release anonymized versions (if applicable).
- Providing as much information as possible in supplemental material (appended to the paper) is recommended, but including URLs to data and code is permitted.

#### 6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: The paper specifies all the necessary experiment setup in Section 7.

# Guidelines:

- The answer NA means that the paper does not include experiments.
- The experimental setting should be presented in the core of the paper to a level of detail that is necessary to appreciate the results and make sense of them.
- The full details can be provided either with the code, in appendix, or as supplemental material.

#### 7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The paper reports confidence intervals in numerical experiments, as demonstrated in Figures 1, 2, 3 and 4.

#### Guidelines:

- The answer NA means that the paper does not include experiments.
- The authors should answer "Yes" if the results are accompanied by error bars, confidence intervals, or statistical significance tests, at least for the experiments that support the main claims of the paper.
- The factors of variability that the error bars are capturing should be clearly stated (for example, train/test split, initialization, random drawing of some parameter, or overall run with given experimental conditions).
- The method for calculating the error bars should be explained (closed form formula, call to a library function, bootstrap, etc.)
- The assumptions made should be given (e.g., Normally distributed errors).
- It should be clear whether the error bar is the standard deviation or the standard error of the mean.
- It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is not verified.
- For asymmetric distributions, the authors should be careful not to show in tables or figures symmetric error bars that would yield results that are out of range (e.g. negative error rates).
- If error bars are reported in tables or plots, The authors should explain in the text how they were calculated and reference the corresponding figures or tables in the text.

#### 8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]

Justification: Information on the computer resources is specified in Appendix B.

# Guidelines:

- The answer NA means that the paper does not include experiments.
- The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud provider, including relevant memory and storage.
- The paper should provide the amount of compute required for each of the individual experimental runs as well as estimate the total compute.
- The paper should disclose whether the full research project required more compute than the experiments reported in the paper (e.g., preliminary or failed experiments that didn't make it into the paper).

#### 9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conform with the NeurIPS Code of Ethics in every respect.

#### Guidelines:

- The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
- If the authors answer No, they should explain the special circumstances that require a deviation from the Code of Ethics.
- The authors should make sure to preserve anonymity (e.g., if there is a special consideration due to laws or regulations in their jurisdiction).

#### 10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts of the work performed?

Answer: [Yes]

Justification: The paper includes a discussion in Section 8 that clearly outlines potential positive and negative societal impacts, such as improving pricing efficiency, supporting small businesses, and enhancing customer satisfaction through adaptive pricing.

#### Guidelines:

- The answer NA means that there is no societal impact of the work performed.
- If the authors answer NA or No, they should explain why their work has no societal impact or why the paper does not address societal impact.
- Examples of negative societal impacts include potential malicious or unintended uses (e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deployment of technologies that could make decisions that unfairly impact specific groups), privacy considerations, and security considerations.
- The conference expects that many papers will be foundational research and not tied to particular applications, let alone deployments. However, if there is a direct path to any negative applications, the authors should point it out. For example, it is legitimate to point out that an improvement in the quality of generative models could be used to generate deepfakes for disinformation. On the other hand, it is not needed to point out that a generic algorithm for optimizing neural networks could enable people to train models that generate Deepfakes faster.
- The authors should consider possible harms that could arise when the technology is being used as intended and functioning correctly, harms that could arise when the technology is being used as intended but gives incorrect results, and harms following from (intentional or unintentional) misuse of the technology.
- If there are negative societal impacts, the authors could also discuss possible mitigation strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a system learns from feedback over time, improving the efficiency and accessibility of ML).

# 11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

#### Guidelines:

- The answer NA means that the paper poses no such risks.
- Released models that have a high risk for misuse or dual-use should be released with necessary safeguards to allow for controlled use of the model, for example by requiring that users adhere to usage guidelines or restrictions to access the model or implementing safety filters.
- Datasets that have been scraped from the Internet could pose safety risks. The authors should describe how they avoided releasing unsafe images.
- We recognize that providing effective safeguards is challenging, and many papers do
  not require this, but we encourage authors to take this into account and make a best
  faith effort.

#### 12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper, properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [NA]

Justification: All assets used in the paper, including code and models, are our own work. Therefore, no external creators or original owners need to be credited; licenses and terms of use for external assets are not applicable.

#### Guidelines:

- The answer NA means that the paper does not use existing assets.
- The authors should cite the original paper that produced the code package or dataset.
- The authors should state which version of the asset is used and, if possible, include a URL.
- The name of the license (e.g., CC-BY 4.0) should be included for each asset.
- For scraped data from a particular source (e.g., website), the copyright and terms of service of that source should be provided.
- If assets are released, the license, copyright information, and terms of use in the package should be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for some datasets. Their licensing guide can help determine the license of a dataset.
- For existing datasets that are re-packaged, both the original license and the license of the derived asset (if it has changed) should be provided.
- If this information is not available online, the authors are encouraged to reach out to the asset's creators.

#### 13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided alongside the assets?

Answer: [Yes]

Justification: The paper mentions a new asset in the form of Python code, which is available at https://github.com/CS-SAIL/transfer\_pricing\_neurips2025. Detailed user guide, API reference, and installation instructions are provided alongside the asset in the README.md file.

#### Guidelines:

- The answer NA means that the paper does not release new assets.
- Researchers should communicate the details of the dataset/code/model as part of their submissions via structured templates. This includes details about training, license, limitations, etc.
- The paper should discuss whether and how consent was obtained from people whose asset is used.
- At submission time, remember to anonymize your assets (if applicable). You can either create an anonymized URL or include an anonymized zip file.

#### 14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include the full text of instructions given to participants and screenshots, if applicable, as well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects. The paper appears to focus entirely on theoretical modeling, algorithm development, and regret analysis within simulated or synthetic environments.

#### Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Including this information in the supplemental material is fine, but if the main contribution of the paper involves human subjects, then as much detail as possible should be included in the main paper.
- According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other labor should be paid at least the minimum wage in the country of the data collector.

# 15. Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects. The paper appears to focus entirely on theoretical modeling, algorithm development, and regret analysis within simulated or synthetic environments. There is no mention of human subject experiments, surveys, or deployment in real-world platforms that would necessitate IRB review.

#### Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Depending on the country in which research is conducted, IRB approval (or equivalent) may be required for any human subjects research. If you obtained IRB approval, you should clearly state this in the paper.
- We recognize that the procedures for this may vary significantly between institutions and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for their institution.
- For initial submissions, do not include any information that would break anonymity (if applicable), such as the institution conducting the review.

#### 16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard component of the core methods in this research? Note that if the LLM is used only for writing, editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The paper doesn't use LLMs for any important, original, or non-standard component of the core methods in this research.

#### Guidelines:

- The answer NA means that the core method development in this research does not involve LLMs as any important, original, or non-standard components.
- Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what should or should not be described.

# A Notation

Let lowercase letter x, boldface letter x, boldface capital letter X, and blackboard-bold letter  $\mathbb{X}$  represent scalar, vector, matrix, and tensor, respectively. The calligraphy letter  $\mathcal{X}$  represents operator. We use the notation [N] to refer to the positive integer set  $\{1,\ldots,N\}$  for  $N\in\mathbb{Z}_+$ . Let  $C,c,C_0,c_0,\ldots$  denote generic constants, where the uppercase and lowercase letters represent large and small constants, respectively. The actual values of these generic constants may vary from time to time.

All vectors are column vectors and row vectors are written as  $\boldsymbol{x}^{\top}$  for any vector  $\boldsymbol{x}$ . For any vector  $\boldsymbol{x} = (x_1, \dots, x_p)^{\top}$ , let  $\|\boldsymbol{x}\| := \|\boldsymbol{x}\|_2 = (\sum_{i=1}^p x_i^2)^{1/2}$  be the  $\ell_2$ -norm, and let  $\|\boldsymbol{x}\|_1 = \sum_{i=1}^p |x_i|$  be the  $\ell_1$ -norm.

For any matrix X, we use  $x_i$ ,  $x_j$ , and  $x_{ij}$  to refer to its i-th row, j-th column, and ij-th entry, respectively. For two matrices  $X_1 \in \mathbb{R}^{m \times n}$  and  $X_2 \in \mathbb{R}^{p \times q}$ ,  $X_1 \otimes X_2 \in \mathbb{R}^{pm \times qn}$  is the Kronecker product. When X is a square matrix, we denote by  $\operatorname{Tr}(X)$ ,  $\lambda_{max}(X)$ , and  $\lambda_{min}(X)$  the trace, maximum and minimum singular value of X, respectively. For two matrices of the same dimension, define the inner product  $\langle X_1, X_2 \rangle = \operatorname{Tr}(X_1^\top X_2)$ .

We use  $\mathcal{L}_2(\mathcal{X}, \mathcal{P}_x) = \left\{ f : \int_{\mathcal{X}} f^2(x) d\mathcal{P}_x < \infty \right\}$  to denote the space of square-integrable functions with respect to  $\mathcal{P}_x$ , equipped with the inner product  $\langle f, g \rangle_{\mathcal{P}_x} = \int_{\mathcal{X}} f(x) g(x) d\mathcal{P}_x$  and squared norm  $\|f\|_{\mathcal{P}_x}^2 = \int_{\mathcal{X}} f^2(x) d\mathcal{P}_x$ .

| Notation                                     | Definition                                                                                                                               |  |  |  |  |
|----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| t                                            | Time index (period).                                                                                                                     |  |  |  |  |
| T                                            | Time horizon (total number of periods).                                                                                                  |  |  |  |  |
| m                                            | Episode index (algorithmic episode).                                                                                                     |  |  |  |  |
| $\ell_m$                                     | Length of episode $m$ , $\ell_m = 2^{m-1}$ .                                                                                             |  |  |  |  |
| $\mathcal{T}_m$                              | Set of time indices in episode $m$ .                                                                                                     |  |  |  |  |
| K                                            | Number of source markets.                                                                                                                |  |  |  |  |
| k                                            | Source market index, $k \in [K]$ .                                                                                                       |  |  |  |  |
| $n_0$                                        | Number of target samples.                                                                                                                |  |  |  |  |
| $n_K$                                        | Total number of offline source samples (used in O2O <sub>off</sub> analysis).                                                            |  |  |  |  |
| $x_t^{(0)}, p_t^{(0)}, y_t^{(0)}, v_t^{(0)}$ | Observed contextual covariates, posted price, observed binary sale indicator, latent market utility, for the target market at time $t$ . |  |  |  |  |
| $x_t^{(k)}, p_t^{(k)}, y_t^{(k)}, v_t^{(k)}$ | Observed contextual covariates, posted price, observed binary sale indicator, latent market utility, for source market $k$ at time $t$ . |  |  |  |  |
| $\mathring{g}^{(0)}(\cdot)$                  | General unknown mean-utility function for target market.                                                                                 |  |  |  |  |
| $g^{(k)}(\cdot)$                             | General unknown mean-utility function for source market $k$ .                                                                            |  |  |  |  |
| $arepsilon_t$                                | i.i.d. noise at time $t$ with distribution $F(\cdot)$ .                                                                                  |  |  |  |  |
| $F(\cdot)$                                   | Cumulative distribution function of the noise $\varepsilon_t$ .                                                                          |  |  |  |  |
| Σ                                            | Covariance matrix for source and target features, which is equivalent to $\Sigma^{(0)}, \Sigma^{(k)}$ in homogeneous covariate setting.  |  |  |  |  |
| $C_{\min},  C_{\max}$                        | Minimum and maximum eigenvalues of second-moment matrix $\Sigma$ .                                                                       |  |  |  |  |
| $\hat{\mathring{g}}_m^{(0)}$                 | Debiased estimator for the target after aggregation+debias at episode $m$ .                                                              |  |  |  |  |
| $\delta^{(0)}$                               | True (population) debiasing correction in RKHS.                                                                                          |  |  |  |  |
| $\widehat{\delta}_m$                         | Debiasing correction term computed at episode $m$ .                                                                                      |  |  |  |  |
| $\lambda_{tf}$                               | Regularization parameter used for the debiasing step.                                                                                    |  |  |  |  |
| $\lambda_{ag}$                               | Regularization parameter used in aggregation.                                                                                            |  |  |  |  |

Continued on next page

| Notation                          | Definition                                                           |  |  |  |  |
|-----------------------------------|----------------------------------------------------------------------|--|--|--|--|
| $\beta^{(0)}$                     | Coefficient vector for the linear mean utility in the target market. |  |  |  |  |
| $\frac{eta^{(k)}}{\widehat{eta}}$ | Coefficient vector for the linear utility in source market $k$ .     |  |  |  |  |
| $\widehat{eta}$                   | Estimated coefficient for target market.                             |  |  |  |  |
| $s_0$                             | Task-similarity magnitude in linear utility case.                    |  |  |  |  |
| $g^{(0)}$                         | RKHS mean-utility function of the target market.                     |  |  |  |  |
| $g^{(k)}$                         | RKHS mean-utility function of source market $k$ .                    |  |  |  |  |
| H                                 | Task-similarity magnitude in RKHS case.                              |  |  |  |  |
| $\mathcal{H}_k$                   | RKHS associated with kernel $K$ .                                    |  |  |  |  |
| $K(\cdot,\cdot)$                  | Positive semi-definite kernel function inducing $\mathcal{H}_k$ .    |  |  |  |  |
| $N(\lambda)$                      | Effective dimension.                                                 |  |  |  |  |
| $\alpha$                          | Parameter controlling eigenvalue decay.                              |  |  |  |  |
| $\beta$                           | Smoothness parameter for RKHS function.                              |  |  |  |  |

# B O2O<sub>off</sub>: Offline-to-Online Cross-Market Transfer Pricing

In this section, we present our algorithmic framework, theoretical results and empirical experiments for O2O<sub>off</sub> (Offline-to-Online) scenario.

#### **B.1** Offline-to-Online (O2O<sub>off</sub>) Algorithm

Prior to deployment we form an aggregate estimator  $\hat{\mathring{g}}^{(ag)}$  from all source data. At the start of episode m=1 this estimator is debiased with the first batch of target observations to obtain  $\hat{\mathring{g}}_1^{(0)}$ ; subsequent episodes rely exclusively on target data. Hence O2O<sub>off</sub> yields a one-shot reduction of cold-start regret, but its asymptotic rate in T matches that of single-market learning. The complete procedure is summarize in Algorithm 4.

#### B.2 Theoretical Guarantee for CM-TDP-O2O<sub>off</sub> under Linear Utility

The following theorem bounds the regret of our O2O<sub>off</sub> Policy under linear utility model.

**Theorem 12** (Regret Upper Bound for O2O<sub>off</sub> under Linear Utility). *Consider linear utility model (5)* with Assumptions 1 (revenue regularity), 2 (covariate property), 3 (parameter space), and 4 (market similarity) holding true, the cumulative regret of Algorithm 4 admits the following bound:

$$Regret(T; \pi) = \mathcal{O}\left(d\log d\log T + (s_0 - d)\log d\log n_{\mathcal{K}}\right). \tag{12}$$

where  $n_K$  and T denote the number of source data and time horizon, respectively.

Theorem 12 reveals fundamental differences in how static source data influences regret compared to Online-to-Online transfer. The bound in (12) decomposes into two interpretable components: the first term captures the intrinsic complexity of learning the d-dimensional target market parameters in the total T periods, while the second term quantifies the net effect during transfer learning phase. Given that  $s_0 < d$  by problem construction, the second term always provides a *regret reduction* proportional to  $(d-s_0)\log n_{\mathcal{K}}$ . This reduction grows logarithmically with the total source sample size  $n_{\mathcal{K}}$ , which is consistent with our numerical experiments in Figure 3.

# B.3 Theoretical Guarantee for CM-TDP-O2O<sub>off</sub> under Nonparametric Utility

The following theorem bounds the regret of our O2O<sub>off</sub> Policy under RKHS utility model.

**Theorem 13** (Regret Upper Bound for O2O<sub>off</sub> under RKHS Utility). Consider RKHS utility model (9) with Assumptions 1 (revenue regularity), 2 (covariate property), 7 (parameter space), 8 (market

# Algorithm 4: CM-TDP-O2O<sub>off</sub>

```
Input: Offline source market data \{(p_t^{(k)}, \boldsymbol{x}_t^{(k)}, y_t^{(k)})\}_{t \in \mathcal{H}^{(k)}} for k \in [K]; feature matrix \{\boldsymbol{x}_t^{(0)}\}_{t \in \mathbb{N}}
              for the target market
   /* ***** Phase 1: Update with transfer learning ******
1 Call Algorithm 2 or 3 to calculate the initial aggregated estimate \hat{g}^{(ag)} using entire source market
     data \{({m p}_t^{(k)},{m X}_t^{(k)},{m y}_t^{(k)})\}_{t\in\mathcal{H}^{(k)}} for k\in[K]
2 Apply the price \widehat{p}_1^{(0)} := h(\widehat{g}^{(ag)}(\boldsymbol{x}_1^{(0)})) and collect data (\widehat{p}_1^{(0)}, \boldsymbol{x}_1^{(0)}, y_1^{(0)}).

3 for each episode m = 2, \ldots, m_0 do
        Set the length of the m-th episode: \ell_m := 2^{m-1}
        Call Algorithm 2 or 3 to calculate the debiasing estimate \hat{\delta}_m using target market data
5
          \{(p_t^{(0)}, \pmb{x}_t^{(0)}, y_t^{(0)})\}_{t \in [2^{m-2}, 2^{m-1}-1]} \text{ and aggregated estimate } \hat{\mathring{g}}^{(ag)}
6
                                                             \hat{\mathring{g}}_m^{(0)} := \hat{\mathring{g}}^{(ag)} + \hat{\delta}_m.
     /* ***** Phase 2: Update without transfer learning ******
8 for each \ m \ge m_0 + 1 \ do
        Set the length of the m-th episode: \ell_m := 2^{m-1}
        Call Algorithm 2 or 3 to calculate \hat{g}_{m}^{(0)} using target market data
        \{(p_t^{(0)}, \pmb{x}_t^{(0)}, y_t^{(0)})\}_{t \in [2^{m-2}, 2^{m-1}-1]}. For each time t, apply price and collect data.
   Output: Offered price \widehat{p}_t^{(0)}, t \geq 1
```

similarity), and 9 (complexity) holding true, the cumulative regret of Algorithm 4 admits the following bound:

$$Regret(T;\pi) = \mathcal{O}\left(\tilde{c}n_{\mathcal{K}}^{\frac{1}{2\alpha\beta+1}} + H^{\frac{2}{2\alpha+1}}\left(\tilde{c}n_{\mathcal{K}}\right)^{\frac{1}{2\alpha+1}} + T^{\frac{1}{2\alpha\beta+1}} - \left(\tilde{c}n_{\mathcal{K}}\right)^{\frac{1}{2\alpha\beta+1}}\right)$$
(13)

where  $n_K$  denotes the number of source data,  $\beta$  characterizes the smoothness of the aggregated utility function  $g^{(ag)} = \Sigma^{\beta} g$  with  $\beta \in (0,1]$ , and  $\alpha > 1/2$  controls the effective dimension via the eigenvalue decay  $N(\lambda) \lesssim \lambda^{-1/(2\alpha)}$ .

The derived result reveals an important trade-off in the regret decomposition. The first component  $\mathcal{O}\left(\widetilde{c}n_{\mathcal{K}}^{\frac{1}{2\alpha\beta+1}} + H^{\frac{2}{2\alpha+1}}(\widetilde{c}n_{\mathcal{K}})^{\frac{1}{2\alpha+1}}\right)$  captures regret resulting from the transfer learning phase. This component grows with  $\widetilde{c}n_{\mathcal{K}}$  because more source data leads to a longer transfer phase duration, which consequently increases the accumulated regret during this phase. However, this initial cost is offset by a more significant benefit in the second component:  $\mathcal{O}\left(T^{\frac{1}{2\alpha\beta+1}} - (\widetilde{c}n_{\mathcal{K}})^{\frac{1}{2\alpha\beta+1}}\right)$ , which demonstrates that the extended transfer phase enables substantially more effective single-market learning, and thus reduces the overall regret.

We defer the complete technical proof of Theorems 12 and 13 to Appendix F and I, respectively.

#### **B.4** Numerical Experiments

The experimental setup for  $O2O_{off}$  maintains the same core structure as the  $O2O_{on}$  setting, except for data collection protocol. Rather than observing synchronized data streams from K active source markets, we begin with a fixed historical dataset of size  $n_K \in \{50, 100, 200, 500\}$ . All other experimental parameters, including demand model specification, evaluation metrics, and comparison baselines, remain consistent with the  $O2O_{on}$  described in Section 7.

All experiments were conducted on an Ubuntu 20.04 server equipped with an AMD Ryzen 9 5950X CPU (16 cores, 32 threads), 125 GiB RAM, and an NVIDIA RTX 3090 GPU (24 GiB VRAM). The primary storage was a 1.8 TB NVMe SSD.

**Simulation Results** Figures 3 and 4 present the empirical cumulative regret for linear and RKHS utility models, respectively. As is consistent with our theoretical analysis in Theorems 12 and 13, we observe a *jump-start* benefit in the early stage, and a significantly lower overall regret compared to the single-market baseline.

The results again demonstrate that all transfer learning variants consistently outperform the no-transfer baseline across all tested conditions, with larger  $n_{\mathcal{K}}$  values showing faster regret reduction, validating the effectiveness of knowledge transfer from source markets.

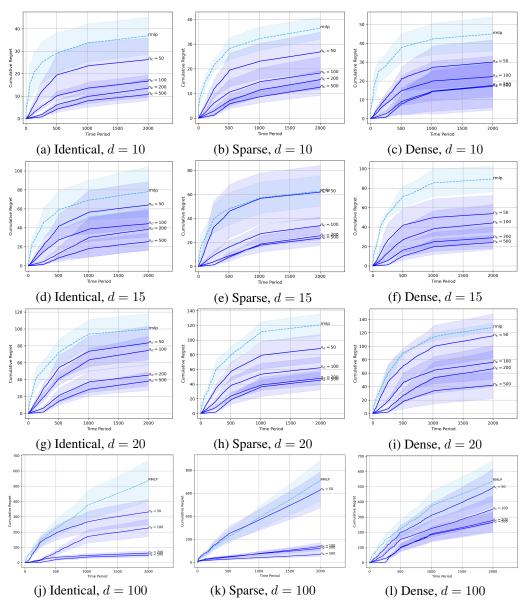


Figure 3: Cumulative regret across experimental conditions in O2O<sub>off</sub> with linear utility model.

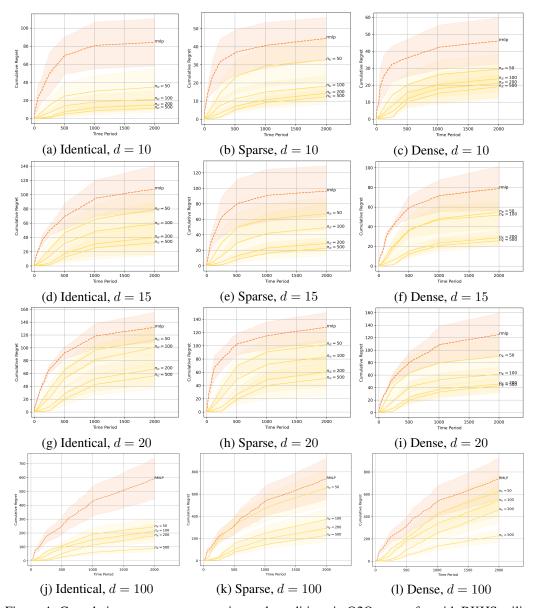


Figure 4: Cumulative regret across experimental conditions in  $O2O_{off}$  transfer with RKHS utility model.

# C Computational Complexity Analysis

In this section, we summarize the computational costs of CM-TDP across different settings.

**Linear Utility Model.** In O2O<sub>on</sub>, each episode consists of two stages. In the aggregation stage, unregularized maximum likelihood estimation on the aggregated source data has a complexity of  $\mathcal{O}(d^2\ell_{m-1}K\cdot N)$ , where d is the feature dimension,  $\ell_{m-1}$  is the number of past samples, K is the number of source markets, and N is the number of optimization iterations. In the debiasing stage, Lasso regression on the target data requires  $\mathcal{O}(d^2\ell_{m-1}\cdot N)$ . Over T episodes, the cumulative regret analysis involves  $\mathcal{O}(d^2TK\cdot N)$  operations.

For O2O<sub>off</sub>, Phase 1 (transfer) requires  $\mathcal{O}(d^2n_{\mathcal{K}}\cdot N)$  for MLE on the aggregated source market data, plus  $\mathcal{O}(d^2\ell_{m-1}\cdot N)$  per episode for bias correction. Phase 2 (no transfer) reduces to standard linear MLE with complexity  $\mathcal{O}(d^2\ell_{m-1}\cdot N)$ . The resulting cumulative complexity across T episodes is

 $\mathcal{O}(d^2(n_{\mathcal{K}}+T)\cdot N)$ . The dependence on d depends on the optimization method: Newton's method (used in our implementation) achieves faster convergence (smaller N) but maintains  $d^2$  dependence, whereas gradient descent reduces the per-iteration cost to  $\mathcal{O}(d)$  at the expense of a larger iteration count N.

**RKHS Utility Model.** Exact kernel methods scale as  $\mathcal{O}(n^3)$  in the number of aggregated samples n. In  $O2O_{on}$ , episode m uses  $n_m \simeq K \cdot 2^{m-1}$  source samples and  $2^{m-1}$  target samples, so a naive solver scales as  $\mathcal{O}(n_m^3)$ . In practice, Nyström or sketching reduces runtime to near-linear in the effective dimension  $\mathcal{N}(\lambda)$ .

# **D** Additional Experimental Results

#### D.1 Extended Regret Plots for O2Oon

In the main text, we reported regret trajectories for  $O2O_{on}$  with dimensions d=10,100. Here, we provide additional results for intermediate-dimensional settings (d=15,20)in Figures 5 and 6. As shown in the plots, CM-TDP consistently outperforms the no-transfer baseline across different dimensionalities, maintaining lower cumulative regret and faster convergence. These results confirm that the effectiveness of CM-TDP is not restricted to specific dimensions.

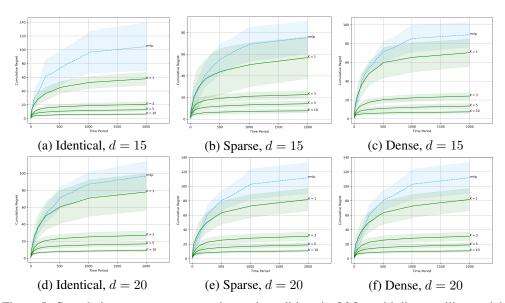


Figure 5: Cumulative regret across experimental conditions in O2O<sub>on</sub> with linear utility model.

#### D.2 In-depth Analysis of Sparse-difference Markets

While our regret evaluation covers identical, sparse-difference, and dense-difference market scenarios, this part focus on the sparse-difference case. This choice reflects the primary target of our algorithm design: markets that differ sparsely in latent preferences, where transfer is both practically relevant and theoretically most distinctive. At the same time, our earlier regret plots already demonstrate that CM-TDP yields consistent improvements across identical and dense-difference settings as well, confirming that the additional deep-dive into sparse-difference scenarios is representative rather than restrictive.

# **D.2.1** Benchmarking Transfer Gains

Table 2 compares CM-TDP against the canonical single-market learner in the *sparse-difference* setting, where only a small subset of coefficients differs between the target and each source market. We report three metrics averaged over dimensions  $d \in \{10, 15, 20\}$ : reg (percentage reduction in

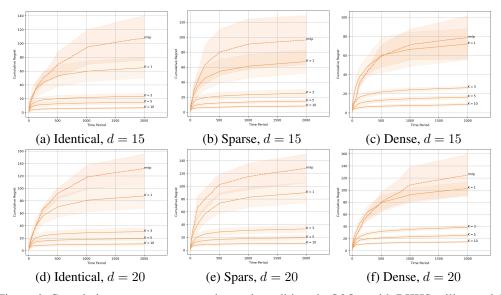


Figure 6: Cumulative regret across experimental conditions in O2O<sub>on</sub> with RKHS utility model.

cumulative regret, i.e., revenue lift), std (percentage reduction in standard error across 10 Monte-Carlo runs), and speed (multiplicative acceleration in reaching the single-market learner's final estimation error, i.e.,  $\|\widehat{\beta}^{(0)} - \beta^{(0)}\|_2$  for linear utility, and  $\|\widehat{g}^{(0)} - g^{(0)}\|_K$  for RKHS utility). For O2O<sub>on</sub> transfer, performance is indexed by the number of live source streams K, whereas for O2O<sub>off</sub> transfer it is indexed by the historical log size  $n_K$ . Across both linear and RKHS utilities, gains grow monotonically with K (or  $n_K$ ): a single auxiliary market already cuts regret by 15–20%, while ten live sources slash regret by more than half and deliver up to a  $9\times$  jump-start in learning speed. These results confirm that CM-TDP translates theoretical advantages into substantial empirical improvements even when source-target differences are sparse and high-dimensional.

Table 2: Comparison with single-market learning baseline in sparse-difference market scenario averaging over different dimensions. In the metric column, reg, std and speed means cumulative regret, standard error, and learning speed, respectively. K and  $n_K$  apply to  $O2O_{on}$  and  $O2O_{off}$  policies, respectively.

| Model                      | Metric                                                                            | K = 1                  | K = 3                   | K = 5                   | K = 10                  | Avg                |
|----------------------------|-----------------------------------------------------------------------------------|------------------------|-------------------------|-------------------------|-------------------------|--------------------|
| O2O <sub>on</sub> -Linear  | $\begin{array}{c} reg \downarrow \\ std \downarrow \\ speed \uparrow \end{array}$ | 15%<br>9%<br>1.2×      | 61%<br>36%<br>5.9×      | 67%<br>38%<br>8.1×      | 71%<br>39%<br>9.0×      | 54%<br>31%<br>6.0× |
| O2O <sub>on</sub> -RKHS    | $reg \\ std \\ speed$                                                             | 17%<br>11%<br>1.3×     | 62%<br>33%<br>6.7×      | 68%<br>36%<br>8.1×      | 73%<br>36%<br>8.9×      | 55%<br>29%<br>6.2× |
|                            |                                                                                   | $n_{\mathcal{K}} = 50$ | $n_{\mathcal{K}} = 100$ | $n_{\mathcal{K}} = 200$ | $n_{\mathcal{K}} = 500$ |                    |
| O2O <sub>off</sub> -Linear | $reg \\ std \\ speed$                                                             | 20%<br>5%<br>1.5×      | 48%<br>22%<br>3.0×      | 54%<br>34%<br>4.9×      | 56%<br>35%<br>6.2×      | 45%<br>24%<br>3.9× |
| O2O <sub>off</sub> -RKHS   | $reg \\ std \\ speed$                                                             | 15%<br>7%<br>1.8×      | 47%<br>21%<br>3.1×      | 53%<br>35%<br>4.4×      | 56%<br>38%<br>5.9×      | 43%<br>25%<br>3.8× |

#### **D.2.2** Running Time Evaluation

Table 3 reports the total running time (in seconds) of CM-TDP under sparse-difference markets with horizon T=2000. For  ${\rm O2O_{on}}$ , runtime increases moderately with the number of source markets K and remains manageable even at K=10. Linear models are consistently faster than RKHS models, but both scale sublinearly with the dimension d. For  ${\rm O2O_{off}}$ , runtime is primarily affected by the size of the offline source dataset  $n_K$ , showing only gradual increases as  $n_K$  grows from 50 to 500. Overall, these results confirm that both  ${\rm O2O_{on}}$  and  ${\rm O2O_{off}}$  policies are computationally efficient, with the added flexibility of RKHS utilities incurring only a modest overhead compared to linear models.

Table 3: Total Running time (in seconds) in sparse-difference market scenario across different dimensions in T=2000 periods. K and  $n_{\mathcal{K}}$  apply to O2O<sub>on</sub> and O2O<sub>off</sub> policies, respectively.

| Model                      | d   | No transfer | K = 1                  | K = 3                   | K = 5                   | K = 10                  |
|----------------------------|-----|-------------|------------------------|-------------------------|-------------------------|-------------------------|
| O2O <sub>on</sub> -Linear  | 10  | 31          | 55                     | 63                      | 71                      | 77                      |
|                            | 15  | 42          | 80                     | 85                      | 93                      | 101                     |
|                            | 20  | 48          | 101                    | 109                     | 121                     | 138                     |
|                            | 100 | 386         | 794                    | 814                     | 866                     | 972                     |
| O2O <sub>on</sub> -RKHS    | 10  | 43          | 77                     | 84                      | 99                      | 112                     |
|                            | 15  | 57          | 98                     | 106                     | 121                     | 140                     |
|                            | 20  | 71          | 114                    | 123                     | 134                     | 159                     |
|                            | 100 | 438         | 832                    | 927                     | 1018                    | 1156                    |
|                            |     |             | $n_{\mathcal{K}} = 50$ | $n_{\mathcal{K}} = 100$ | $n_{\mathcal{K}} = 200$ | $n_{\mathcal{K}} = 500$ |
| O2O <sub>off</sub> -Linear | 10  | 31          | 43                     | 53                      | 58                      | 64                      |
|                            | 15  | 42          | 58                     | 64                      | 70                      | 77                      |
|                            | 20  | 48          | 69                     | 74                      | 82                      | 89                      |
|                            | 100 | 386         | 563                    | 597                     | 642                     | 663                     |
| O2O <sub>off</sub> -RKHS   | 10  | 43          | 47                     | 55                      | 65                      | 71                      |
|                            | 15  | 57          | 66                     | 76                      | 87                      | 98                      |
|                            | 20  | 71          | 80                     | 92                      | 101                     | 123                     |
|                            |     |             |                        |                         |                         |                         |

#### E Proof of Theorem 5

Define  $H_t = \{x_1^{(0)}, x_2^{(0)}, \dots, x_t^{(0)}, \varepsilon_1^{(0)}, \varepsilon_2^{(0)}, \dots, \varepsilon_t^{(0)}\}$  the history set up to time t. We also define  $\overline{H}_t = H_t \cup \{x_{t+1}^{(0)}\}$  as the set obtained after augmenting a new feature  $x_{t+1}^{(0)}$ , we write

$$\mathbb{E}(\operatorname{reg}_{t}|H_{t-1}) = \mathbb{E}(p_{t}^{*(0)} \mathbb{1}(v_{t}^{(0)} \geq p_{t}^{*})|H_{t-1}) - \mathbb{E}(p_{t}^{(0)} \mathbb{1}(v_{t}^{(0)} \geq p_{t}^{(0)})|H_{t-1})$$

$$= p_{t}^{*(0)} (1 - F(p_{t}^{*(0)} - x_{t}^{(0)} \cdot \boldsymbol{\beta}^{(0)})) - p_{t}^{(0)} (1 - F(p_{t}^{(0)} - x_{t}^{(0)} \cdot \boldsymbol{\beta}^{(0)})).$$

$$(14)$$

Note that  $p_t^{*(0)} \in \arg\max \operatorname{rev}_t^{(0)}(p)$  and thus  $r_t'(p_t^{*(0)}) = 0$ . By Taylor expansion,

$$\operatorname{rev}_{t}^{(0)}(p_{t}^{(0)}) = \operatorname{rev}_{t}(p_{t}^{*(0)}) + \frac{1}{2}r_{t}''(p)(p_{t}^{(0)} - p_{t}^{*(0)})^{2}, \tag{15}$$

for some p between  $p_t^{(0)}$  and  $p_t^{*(0)}$ .

**Lemma 14** (Upper bound for price). The price given by policy  $\pi$  is upper bounded by

$$\widehat{p_t}^{(0)} = h(x_t^{(0)} \cdot \widehat{\beta}^{(0)}) \le P.$$

**Lemma 15** (1-Lipschitz property of h). Suppose Assumption 1 holds and, in addition,  $\phi'$  is bounded on  $[-B_u, B_u]$ :

$$0 < L_{\phi_0} \le \phi'(u) \le U_{\phi_0} < \infty.$$

Then

$$\sup_{|u| \le B_u} |h'(u)| = \sup_{|u| \le B_u} \left| 1 - \frac{1}{\phi'(z^*(u))} \right| \le L_h < \infty,$$

hence

$$|h(u) - h(v)| \le L_h |u - v|$$
 for all  $|u|, |v| \le B_u$ .

The price function h satisfies h'(u) < 1, for all values of  $u \in \mathbb{R}$ .

Therefore we obtain

$$|r_t''(p)| = |2f(p - x_t^{(0)} \cdot \boldsymbol{\beta}^{(0)}) + pf'(p - x_t^{(0)} \cdot \boldsymbol{\beta}^{(0)})| \le 2B + PB',$$

with  $B = \max_v f(v)$ , and  $B' = \max_v f'(v)$ , where we use the fact that  $p_t^{(0)}, p_t^{*(0)} \leq P$  and consequently  $p \leq P$ .

Then, combining Equations 14, 15, Lemmas 14, 15 gives

$$\mathbb{E}(\operatorname{reg}_{t}|H_{t-1}) \leq (2B + PB')(p_{t}^{*(0)} - p_{t}^{(0)})^{2} \leq C(p_{t}^{*(0)} - p_{t}^{(0)})^{2}$$

$$= C(h(\boldsymbol{\beta}^{(0)} \cdot x_{t}^{(0)}) - h(\widehat{\boldsymbol{\beta}}^{(0)} \cdot x_{t}^{(0)}))^{2} \leq C|x_{t}^{(0)} \cdot (\boldsymbol{\beta}^{(0)} - \widehat{\boldsymbol{\beta}}^{(0)})|^{2}$$

$$\stackrel{(a)}{\leq} C(\widehat{\boldsymbol{\beta}}^{(0)} - \boldsymbol{\beta}^{(0)}, \Sigma(\widehat{\boldsymbol{\beta}}^{(0)} - \boldsymbol{\beta}^{(0)})),$$

where (a) results from that  $x_t^{(0)}$  is independent of  $H_{t-1}$ , and  $\Sigma = \mathbb{E}(x_t x_t^T)$ .

Since the maximum eigenvalue of  $\Sigma$  is bounded by  $C_{\max}$ , we obtain

$$\mathbb{E}(\text{reg}_t) = \mathbb{E}(\mathbb{E}(\text{reg}_t | H_{t-1})) \le CC_{\max} L_h^2 \mathbb{E}(\|\widehat{\boldsymbol{\beta}}^{(0)} - \boldsymbol{\beta}^{(0)}\|_2^2),$$
(16)

which brings the problem down to bounding the estimation error of the proposed estimator.

**Proposition 16.** Consider linear utility model with Assumptions 1, 2, 3 and 4 holding true. Then, there exist positive constants  $c_0, c'_0, c_1, c_2$  such that, for  $n_0 \ge c_0 s_0 \log d \lor c'_0 \frac{d}{K}$ , the following holds with probability at least  $1 - 2/d - 2e^{-n_0/(c_0 s_0)}$ :

$$\|\widehat{\boldsymbol{\beta}}^{(0)} - \boldsymbol{\beta}^{(0)}\|_{2}^{2} \le c_{1} \frac{d \log d}{n_{\mathcal{K}}} + c_{2} \frac{s_{0} \log d}{n_{0}}.$$
(17)

**Corollary 17.** *Under conditions of Proposition 16*, *the following holds true:* 

$$\mathbb{E}(\|\widehat{\boldsymbol{\beta}}^{(0)} - {\boldsymbol{\beta}}^{(0)}\|_{2}^{2}) \le c_{1} \frac{d \log d}{n_{\mathcal{K}}} + c_{2} \frac{s_{0} \log d}{n_{0}} + 4W^{2} \left(\frac{2}{d} + 2e^{\frac{-n_{0}}{c_{0}s_{0}}}\right).$$

**Proposition 18.** Consider linear utility model with Assumptions 1, 2, 3 and 4 holding true. There exist constants  $c_3$ ,  $c_4$ ,  $c_5 > 0$ , such that for  $n_0 \ge c_3 d$ , the following holds true:

$$\mathbb{E}(\|\widehat{\boldsymbol{\beta}}^{(0)} - \boldsymbol{\beta}^{(0)}\|_{2}^{2}) \le c_{4} \frac{d \log d}{n_{K}} + c_{5} \frac{(s_{0} + 1) \log d}{n_{0}} + 4W^{2} e^{-c_{3} n_{0}^{2}}.$$

Now, since the length of episodes grows exponentially, the number of episodes by period T is logarithmic in T. Specifically, T belongs to episode  $M = \lceil \log T \rceil$ . Hence,

$$\operatorname{Regret}(T;\pi) = \sum_{m=1}^{M} \operatorname{Reg}(m\operatorname{th} \operatorname{Episode}).$$

We bound the total regret over each episode by considering three separate cases:

- 1.  $2^{m-2} \le c_0 s_0 \log d \lor c_0' d$ : Here,  $c_0, c_0'$  are the constants in Proposition 16. In this case, episodes are not large enough to estimate the parameters accurately enough, and thus we use a naive bound. Clearly, by Lemma 14, we have  $\mathbb{E}(\operatorname{reg}_t) \le p_t^* \le P$ . Hence the total regret over such episodes is at most  $4Pc_0s_0 \log d \lor 4Pc_0' d$ .
- 2.  $c_0 s_0 \log d \le 2^{m-2} < c_3 d$ : Applying Corollary 17 to Equation 16,

$$\begin{split} \operatorname{Reg}(m \operatorname{th} \operatorname{Episode}) &= \sum_{t=l_m}^{l_{m+1}-1} \mathbb{E}(\operatorname{reg}_t) \leq C C_{\max} \sum_{t=l_m}^{l_{m+1}-1} \mathbb{E}(\|\widehat{\boldsymbol{\beta}}_m^{(0)} - \boldsymbol{\beta}^{(0)}\|_2^2) \\ &\leq C C_{\max} \left\{ c_1 l_m \frac{d \log d}{K l_{m-1}} + c_2 l_m \frac{s_0 \log d}{l_{m-1}} + 8 W^2 \left( \frac{l_m}{d} + l_m e^{\frac{-l_{m-1}}{c_0 s_0}} \right) \right\} \\ &\leq 2 C C_{\max} \left\{ \frac{c_1}{K} d \log d + c_2 s_0 \log d + 8 W^2 \left( c_3 + l_{m-1} e^{\frac{-l_{m-1}}{c_0 s_0}} \right) \right\}, \end{split}$$

where in the last step we used  $l_m=2l_{m-1}$  and  $l_{m-1}\leq c_3d$ . Therefore, in this case

$$\operatorname{Reg}(m \text{th Episode}) \leq C_1' \frac{d}{K} \log d + C_2' s_0 \log d,$$

where  $C'_1, C'_2$  hides various constants in the right-hand side of the above equation.

3.  $c_3d < 2^{m-2}$ : Applying Proposition 18 to Equation 16,

$$\begin{split} \operatorname{Reg}(m \operatorname{th Episode}) &= \sum_{t=l_m}^{l_{m+1}-1} \mathbb{E}(\operatorname{reg}_t) \leq C C_{\max} \sum_{t=l_m}^{l_{m+1}-1} \mathbb{E}(\|\widehat{\boldsymbol{\beta}}_m^{(0)} - \boldsymbol{\beta}^{(0)}\|_2^2) \\ &\leq C C_{\max} \left\{ c_4 l_m \frac{d \log d}{K l_{m-1}} + c_5 l_m \frac{(s_0+1) \log d}{l_{m-1}} + 8 W^2 l_{m-1} e^{\frac{-l_{m-1}}{c_3 d}} \right\} \\ &\leq C C_{\max} \left\{ c_4 \frac{d}{K} \log d + c_5 (s_0+1) \log d + 8 W^2 l_{m-1} e^{\frac{-l_{m-1}}{c_3 d}} \right\}. \end{split}$$

Therefore, in this case

$$\operatorname{Reg}(m \operatorname{th} \operatorname{Episode}) \leq C_1'' \frac{d}{K} \log d + C_2'' s_0 \log d.$$

Combining the above three cases, we get

$$\operatorname{Regret}(T; \pi) \leq C_1 d \log d \cdot \log T + C_2 s_0 \log d \cdot \log n_{\mathcal{K}} = \mathcal{O}\left(\frac{d}{K} \log d \log T + s_0 \log d \log T\right)$$

which concludes the proof.

#### F Proof of Theorem 12

In offline-to-online transfer setting, we obtain the same regret inequality as in Theorem 5:

$$\mathbb{E}(\operatorname{reg}_t) = \mathbb{E}(\mathbb{E}(\operatorname{reg}_t|H_{t-1})) \le CC_{\max}\mathbb{E}(\|\widehat{\boldsymbol{\beta}}^{(0)} - \boldsymbol{\beta}^{(0)}\|_2^2). \tag{18}$$

Similar to Propositions 16 and 18, we state the following two propositions on the estimation error regarding the transfer-learning phase.

**Proposition 19.** Consider linear utility model with Assumptions 1, 2, 3 and 4 holding true. Then, there exist positive constants  $c_0, c_1, c_2$  such that, for  $n_0 \ge c_0 s_0 \log d$ , the following holds with probability at least  $1 - 2/d - 2e^{-n_0/(c_0 s_0)}$ :

$$\|\widehat{\boldsymbol{\beta}}^{(0)} - {\boldsymbol{\beta}}^{(0)}\|_2^2 \le c_1 \frac{d \log d}{n \kappa} + c_2 \frac{s_0 \log d}{n_0}.$$

**Corollary 20.** *Under conditions of Proposition* 19, *the following holds true:* 

$$\mathbb{E}(\|\widehat{\boldsymbol{\beta}}^{(0)} - \boldsymbol{\beta}^{(0)}\|_{2}^{2}) \le c_{1} \frac{d \log d}{n_{\mathcal{K}}} + c_{2} \frac{s_{0} \log d}{n_{0}} + 4W^{2} \left(\frac{2}{d} + 2e^{\frac{-n_{0}}{c_{0}s_{0}}}\right).$$

The following proposition gives a tighter bound for the estimation error as  $n_0$  gets larger.

**Proposition 21.** Consider linear utility model with Assumptions 1, 2, 3 and 4 holding true. There exist constants  $c_3$ ,  $c_4$ ,  $c_5 > 0$ , such that for  $n_0 \ge c_3 d$ , the following holds true:

$$\mathbb{E}(\|\widehat{\boldsymbol{\beta}}^{(0)} - \boldsymbol{\beta}^{(0)}\|_{2}^{2}) \le c_{4} \frac{d \log d}{n_{\mathcal{K}}} + c_{5} \frac{(s_{0} + 1) \log d}{n_{0}} + 4W^{2} e^{-c_{3} n_{0}^{2}}.$$

The next proposition states the estimation error in the without-transfer-learning phase of Algorithm 4.

**Proposition 22.** Consider linear utility model with Assumptions 1, 2, 3 and 4 holding true. Then, there exist a positive constant  $c_7$  such that, for  $n_0 \ge \tilde{c}n_K$ , the following holds with probability at least 1-1/d:

$$\|\widehat{\boldsymbol{\beta}}^{(0)} - {\boldsymbol{\beta}}^{(0)}\|_2^2 \le c_7 \frac{d \log d}{n_0},$$

where  $\widetilde{c} \approx (c_7 d - c_2 s_0)/c_1 d$ .

The adaptation parameter  $\widetilde{c}$  is dynamically determined through a comparative analysis of the estimation error bounds in Propositions 21 (transfer-enabled) and 22 (target-only), where we strategically disable transfer learning updates when the volume of target data is large enough to ensure statistically optimal estimation performance.

**Corollary 23.** *Under assumptions of Proposition* 22, *the following holds true:* 

$$\mathbb{E}(\|\widehat{\boldsymbol{\beta}}^{(0)} - \boldsymbol{\beta}^{(0)}\|_2^2) \le c_4 \frac{d \log d}{n_0} + \frac{4W^2}{d}.$$

We bound the total regret over each episode by considering four separate cases:

- 1.  $2^{m-2} \le c_0 s_0 \log d$ : Here,  $c_0$  is the constant in the statement of Proposition 19. In this case, episodes are not large enough to estimate the parameters accurately enough, and thus we use a naive bound. Again, by Lemma 14, we have  $\mathbb{E}(\operatorname{reg}_t) \le p_t^* \le P$ . Hence the total regret over such episodes is at most  $4Pc_0s_0 \log d$ .
- 2.  $c_0 s_0 \log d \le 2^{m-2} \le c_3 d$ : Here,  $c_0$  is the constant in the statement of Proposition 21. Applying Corollary 20 to Equation 18 in episode m,

$$\begin{split} \operatorname{Reg}(m \text{th Episode}) &= \sum_{t=l_m}^{l_{m+1}-1} \mathbb{E}(\operatorname{reg}_t) \leq C C_{\max} \sum_{t=l_m}^{l_{m+1}-1} \mathbb{E}(\|\widehat{\boldsymbol{\beta}}_m^{(0)} - \boldsymbol{\beta}^{(0)}\|_2^2) \\ &\leq C C_{\max} \left\{ c_1 d \log d \frac{l_m}{n_K} + 2 c_2 s_0 \log d + 16 W^2 \left( 2 c_3 + l_{m-1} e^{\frac{-l_{m-1}}{c_0 s_0}} \right) \right\}, \end{split}$$

where in the last step we used  $l_m = 2l_{m-1}$  and  $l_m = 2^{m-1} \le 2c_3d$ .

3.  $c_3 d \log d \le 2^{m-2} \le \widetilde{c} n_{\mathcal{K}}$ : Applying Corollary 20 to Equation 18,

$$\begin{split} \operatorname{Reg}(m \text{th Episode}) &= \sum_{t=l_m}^{l_{m+1}-1} \mathbb{E}(\operatorname{reg}_t) \leq C C_{\max} \sum_{t=l_m}^{l_{m+1}-1} \mathbb{E}(\|\widehat{\boldsymbol{\beta}}_m^{(0)} - \boldsymbol{\beta}^{(0)}\|_2^2) \\ &\leq C C_{\max} \left\{ c_1 d \log d \frac{l_m}{n_{\mathcal{K}}} + 2 c_2 s_0 \log d + 16 W^2 \left( \frac{\tilde{c} n_{\mathcal{K}}}{d} + l_{m-1} e^{\frac{-l_{m-1}}{c_0 s_0}} \right) \right\}, \end{split}$$

Combing case 2 and 3, sum over  $c_1 d \log d \frac{l_m}{n_K}$  over  $l_m \in [2c_0s_0 \log d, 2\widetilde{c}n_K]$  and ignore the constant term, we obtain

$$\begin{aligned} \operatorname{Regret}(c_0 s_0 \log d \to n_{\mathcal{K}}; \pi) &\leq c_1 d \log d \frac{1}{n_{\mathcal{K}}} \sum_{m} 2^{m-1} + C_2' s_0 \log d \log n_{\mathcal{K}} \\ &= c_1 d \log d \frac{\widetilde{c} n_{\mathcal{K}} - c_0 s_0 \log d}{n_{\mathcal{K}}} + C_2' s_0 \log d \log n_{\mathcal{K}} \\ &\approx C_2' s_0 \log d \log n_{\mathcal{K}} \end{aligned}$$

4.  $2^{m-2} > \widetilde{c}n_K$ : applying Proposition 22 to episode k, we obtain

$$\begin{split} \operatorname{Reg}(m\text{th Episode}) &= \sum_{t=l_m}^{l_{m+1}-1} \mathbb{E}(\operatorname{reg}_t) \leq CC_{\max} \sum_{t=l_m}^{l_{m+1}-1} \mathbb{E}(\|\widehat{\boldsymbol{\beta}}_m - \boldsymbol{\beta}^{(0)}\|_2^2) \\ &\leq CC_{\max} \left\{ c_4 \frac{d \log d}{l_{m-1}} l_m + 8W^2 \left( \frac{l_{m-1}}{d} + 2l_{m-1} e^{\frac{-l_{m-1}}{c_3 d}} \right) \right\} \\ &\leq CC_{\max} \left\{ 2c_4 d \log d + 8W^2 \left( \frac{\widetilde{c}n_{\mathcal{K}}}{d} + 2l_{m-1} e^{\frac{-l_{m-1}}{c_3 d}} \right) \right\}, \end{split}$$

and thus

$$Reg(mth Episode) < C_3' d \log d$$
.

Combining the above four cases, we get

Regret
$$(T; \pi) \le C_1 d \log d \cdot (\log T - \log n_{\mathcal{K}}) + C_2 s_0 \log d \cdot \log n_{\mathcal{K}}$$
  
=  $\mathcal{O}(d \log d \cdot \log T + (s_0 - d) \log d \cdot \log n_{\mathcal{K}})$ .

which concludes the proof.

#### **G** Proof of Theorem 6

Define the instance class  $\mathcal{I}(F, \Sigma, W, s_0, K)$  as above and, w.l.o.g., restrict prices to  $[0, \bar{p}(F, W)]$  where  $\bar{p}(F, W) := \sup_{|u| \le W} h(u)$ . Let

$$\begin{split} z^*(u) &:= \phi^{-1}(-u), \qquad B_z := \sup_{|u| \le W} |z^*(u)|, \\ \Phi_{\min} &:= \inf_{|u| \le W} \phi'(z^*(u)), \qquad f_{\min} := \inf_{|z| \le B_z} f(z), \qquad f_{\max} := \sup_{z \in [-W, \, \bar{p}(F,W) + W]} f(z), \\ \epsilon &:= \inf_{z \in [-W, \, \bar{p}(F,W) + W]} \min\{F(z), 1 - F(z)\}, \\ \kappa &:= f_{\min} \Phi_{\min}, \qquad m_h := \inf_{|u| \le W} \Big(1 - \frac{1}{\phi'(z^*(u))}\Big). \end{split}$$

For Logistic and Gaussian F these constants are explicit; see Corollary 24 below.

We proceed in three steps: (i) *curvature* of the revenue around the oracle price; (ii) a *single-sample KL* upper bound that is uniform over the allowed price interval; (iii) a Fano *packing* argument for two hard sub-families whose risks add up.

(i) Revenue curvature and price sensitivity. Fix  $u = x^{T}\beta$ . Let r(p; u) := p[1 - F(p - u)]. The first-order condition gives the oracle price  $p^*(u) = h(u) = u + z^*(u)$ , where  $z^*(u)$  solves  $1 - F(z^*) = p^* f(z^*)$ , equivalently  $\phi(z^*) = -u$ . A direct calculation shows

$$\frac{\partial^2}{\partial p^2} r(p^*(u); u) = -f(z^*(u)) \phi'(z^*(u)) = -\kappa(u), \qquad \kappa(u) := f(z^*(u)) \phi'(z^*(u)). \tag{19}$$

Hence  $r(\cdot;u)$  is uniformly strongly concave around  $p^*(u)$  with curvature at least  $\kappa:=$  $\inf_{|u| < W} \kappa(u) = f_{\min} \Phi_{\min} > 0.$ 

Next, differentiate  $h(u) = u + \phi^{-1}(-u)$  to get

$$h'(u) = 1 - \frac{1}{\phi'(z^*(u))}$$
  $\Rightarrow$   $m_h := \inf_{|u| \le W} h'(u) = 1 - \frac{1}{\Phi_{\min}} > 0.$  (20)

By strong concavity, for any  $\Delta u$  small enough (chosen below) and  $\Delta p := h(u + \Delta u) - h(u)$ ,

$$r(h(u); u) - r(h(u + \Delta u); u) \ge \frac{\kappa}{2} \Delta p^2 \ge \frac{\kappa m_h^2}{2} (\Delta u)^2.$$
 (21)

We ensure the uniform validity of (21) by choosing the pack radii (below) so that  $|\Delta p|$  stays within a fixed neighborhood where (19) and the lower bounds defining  $\kappa$  and  $m_h$  apply; this is straightforward since h' is bounded on [-W, W].

(ii) A uniform single-sample KL bound. Fix any market k, round t, context x, and price  $p \in \mathbb{R}$  $[0, \bar{p}(F, W)]$ . Under parameter  $\beta$ , the success probability is

$$q(\beta) = 1 - F(p - x^{\top}\beta).$$

For any  $\beta$ ,  $\beta'$ , Taylor's theorem for the Bernoulli KL yields

$$KL(Bern(q(\beta)) || Bern(q(\beta'))) \leq \frac{(q(\beta) - q(\beta'))^{2}}{2\epsilon (1 - \epsilon)},$$
(22)

because both  $q(\beta)$  and  $q(\beta')$  lie in  $[\epsilon, 1-\epsilon]$  by the price truncation and the bounded ranges of p and  $u^2$  Using the mean-value bound  $|F(z) - F(z')| \le f_{\text{max}}|z - z'|$  on the same interval gives

$$\mathrm{KL}\big(\mathrm{Bern}\big(q(\beta)\big) \, \big\| \, \mathrm{Bern}\big(q(\beta')\big)\big) \le \frac{f_{\mathrm{max}}^2}{2\,\epsilon(1-\epsilon)} \, \big(x^\top(\beta-\beta')\big)^2. \tag{23}$$

Taking expectation over  $x \sim P_x$  and using  $\mathbb{E}[(x^\top \Delta)^2] \leq C_{\max} \|\Delta\|_2^2$  yields

$$\mathbb{E}\big[\mathrm{KL}(\cdot||\cdot)\big] \leq C_{\mathrm{KL}}(F,\Sigma,W) \|\beta - \beta'\|_{2}^{2}, \qquad C_{\mathrm{KL}}(F,\Sigma,W) := \frac{C_{\mathrm{max}} f_{\mathrm{max}}^{2}}{2\epsilon(1-\epsilon)}. \tag{24}$$

Summing over markets gives a factor K when all markets differ (family A below), and a factor 1 when only the target differs (family B).

- (iii) Packing and per-round error. We use two hard sub-families and calibrate their radii so that the cumulative KL up to time t-1 is a small fraction of the packing entropy. All estimates below hold conditionally on the realized (possibly adaptive) prices because (24) is uniform in  $p \in [0, \bar{p}]$ .
- (A) Aggregation. Let  $V \subset \{-1, +1\}^d$  be a Varshamov–Gilbert set with  $|V| \ge 2^{d/8}$  and Hamming distance at least d/8. For  $v \in V$  define the instance by  $\beta^{(k)} = \theta_v := \mu v$  for all  $k \in \{0\} \cup [K]$ . Then  $\|\theta_v\|_1 = \mu d \leq W$  provided  $\mu \leq W/d$ . For any distinct v, v',

$$\frac{d}{2}\mu^2 \le \|\theta_v - \theta_{v'}\|_2^2 \le 4d\,\mu^2.$$

Up to time t-1, the pathwise KL between the two induced joint laws (over all K markets) is bounded

$$KL_{1:t-1} \leq K(t-1) C_{KL} \cdot 4d \mu^2.$$

Since  $\phi' \ge L_{\phi_0} > 0$  on  $[-B_u, B_u]$  and  $|z^*(u)| \le B_z$  for  $|u| \le W$ ,  $\Phi_{\min} \ge L_{\phi_0}$ . Moreover,  $f_{\min} > 0$  on  $[-B_z, B_z]$  for Logistic/Gaussian F.

On  $z = p - x^\top \beta \in [-W, \bar{p}(F, W) + W]$  we have  $F(z) \in [\epsilon, 1 - \epsilon]$ , so  $q = 1 - F(z) \in [\epsilon, 1 - \epsilon]$ .

Choose

$$\mu^2 = \frac{\log |V|}{64 K (t-1) C_{\text{KL}} d} \le \frac{\log 2}{512 K (t-1) C_{\text{KL}}}$$

and also  $\mu \leq W/d$  (which is automatic for all t large enough; for small t it only improves the bound). Then Fano's inequality gives a constant probability (say  $\geq 1/2$ ) of misidentifying the pack element,

$$\mathbb{E}\big[\|\widehat{\theta}_{t-1} - \theta\|_2^2\big] \geq \frac{1}{8}\mu^2 d.$$

By  $\mathbb{E}[(x^{\top}e)^2] \ge C_{\min} \mathbb{E}||e||_2^2$ , (i), and (21), the *target-market* instant regret at time t is

$$\mathbb{E}[\operatorname{reg}_t] \ \geq \ \frac{\kappa \, m_h^2}{2} \, \mathbb{E}\big[ (x_t^{(0)\top}(\widehat{\theta}_{t-1} - \theta))^2 \big] \ \geq \ \frac{\kappa \, m_h^2}{2} \, C_{\min} \cdot \frac{\mu^2 d}{8} \ \geq \ \frac{C_{\min} \, \kappa \, m_h^2}{128 \, C_{\text{KL}}} \cdot \frac{d}{K \, t}.$$

Summing t = 2, ..., T yields

$$\sum_{t=1}^{T} \mathbb{E}[\operatorname{reg}_{t}] \geq \frac{C_{\min} \kappa m_{h}^{2}}{128 C_{KL}} \cdot \frac{d}{K} \log T.$$

(B) Debiasing. Let  $S \subset [d]$  with  $|S| = s_0$  and let  $\mathcal{W} \subset \{-1, +1, 0\}^d$  be a Varshamov–Gilbert family of  $s_0$ -sparse sign vectors with pairwise Hamming distance at least  $s_0/8$  and cardinality  $|\mathcal{W}| \geq {d \choose s_0}^{1/8} 2^{s_0/8}$  so that  $\log |\mathcal{W}| \geq \frac{s_0}{8} \log \frac{ed}{s_0}$ . Let  $\theta_c \in \mathbb{R}^d$  be any fixed vector with  $\|\theta_c\|_1 \leq W/2$  and define for each  $w \in \mathcal{W}$ :

$$\beta^{(k)} = \theta_c \quad (k \in [K]), \qquad \beta^{(0)} = \theta_c + \Delta_w, \quad \Delta_w := \mu' w,$$

with  $\|\theta_c\|_1 + \|\Delta_w\|_1 \leq W$  ensured by taking  $\mu' \leq W/(2s_0)$ . Then for  $w \neq w'$ ,

$$\frac{s_0}{2} \, {\mu'}^2 \, \leq \, \|\Delta_w - \Delta_{w'}\|_2^2 \, \leq \, 4s_0 \, {\mu'}^2.$$

Only the *target* market carries information about w, hence up to time t-1

$$KL_{1:t-1} \leq (t-1) C_{KL} \cdot 4s_0 {\mu'}^2$$
.

Choose

$${\mu'}^2 = \frac{\log |\mathcal{W}|}{64(t-1) C_{\text{KL}} s_0} \le \frac{\log \frac{ed}{s_0}}{512(t-1) C_{\text{KL}}}.$$

Fano again yields  $\mathbb{E}\|\widehat{\Delta}_{t-1} - \Delta\|_2^2 \ge \frac{1}{8} {\mu'}^2 s_0$ , hence the target instant regret obeys

$$\mathbb{E}[\operatorname{reg}_t] \, \geq \, \frac{C_{\min} \, \kappa \, m_h^2}{128 \, C_{\text{KL}}} \cdot \frac{s_0 \log \frac{ed}{s_0}}{t}.$$

Summing t gives the second term in (8).

Combining (A) and (B) gives the stated result.

Corollary 24 (Explicit constants for Logistic and Gaussian). Let  $B_z = \sup_{|u| \le W} |z^*(u)|$  with  $z^*(u) = \phi^{-1}(-u) \text{ and } \bar{p}(F, W) = \sup_{|u| \le W} h(u).$ 

**Logistic noise** 
$$F(z) = \frac{1}{1+e^{-z}}$$
,  $f(z) = F(z)(1-F(z))$ . We have

$$\phi'(z) = \frac{1}{F(z)}, \quad h'(u) = 1 - \frac{1}{\phi'(z^*(u))} = 1 - F(z^*(u)), \quad \kappa(u) = f(z^*(u))\phi'(z^*(u)) = 1 - F(z^*(u)).$$

$$\Phi_{\min} = \frac{1}{F(B_z)}, \qquad m_h = \inf_{|u| \le W} h'(u) = 1 - F(B_z), \qquad \kappa = \inf_{|u| \le W} \kappa(u) = 1 - F(B_z).$$

Moreover,  $f_{\max} = \frac{1}{4}$  and

$$\epsilon = \min_{z \in [-W, \, \bar{p}(F,W) + W]} \min\{F(z), 1 - F(z)\} = 1 - F(W + \bar{p}(F,W)) \ge 1 - F(2W + B_z).$$

Therefore,

$$C_{\mathrm{KL}}(F,\Sigma,W) = \frac{C_{\mathrm{max}}}{32\,\epsilon(1-\epsilon)}, \qquad \frac{C_{\mathrm{min}}\,\kappa\,m_h^2}{C_{\mathrm{KL}}} \,\geq\, \frac{32\,C_{\mathrm{min}}}{C_{\mathrm{max}}}\,\epsilon(1-\epsilon)\left(1-F(B_z)\right)^3.$$

Gaussian noise

$$F(z) = \Phi(z), \ f(z) = \varphi(z) = \frac{1}{\sqrt{2\pi}}e^{-z^2/2}. \ Let \ R(z) := \frac{1-\Phi(z)}{\varphi(z)} \ be \ Mills' \ ratio. \ Then$$
 
$$\phi'(z) = 2 - z \ R(z), \qquad \Phi_{\min} \ = \inf_{|z| < B_z} \left( 2 - z \ R(z) \right) \ \ge \ 2 - B_z \ R(B_z).$$

Using the inequality  $R(z) \leq \frac{1}{z+\frac{1}{z}}$  for z>0 gives  $B_zR(B_z) \leq \frac{B_z^2}{B_z^2+1}$ , hence

$$\Phi_{\min} \ge 1 + \frac{1}{B_z^2 + 1}, \qquad m_h = 1 - \frac{1}{\Phi_{\min}} \ge \frac{1}{B_z^2 + 2}.$$

Also 
$$f_{\min} = \varphi(B_z) = \frac{1}{\sqrt{2\pi}} e^{-B_z^2/2}$$
,  $f_{\max} = \varphi(0) = \frac{1}{\sqrt{2\pi}}$ , and

$$\epsilon = \min_{z \in [-W, \, \bar{p}(F,W) + W]} \min \{ \Phi(z), 1 - \Phi(z) \} = 1 - \Phi(W + \bar{p}(F,W)) \ge 1 - \Phi(2W + B_z).$$

Therefore

$$\kappa = f_{\min} \Phi_{\min} \ge \frac{1}{\sqrt{2\pi}} e^{-B_z^2/2} \left( 1 + \frac{1}{B_z^2 + 1} \right), \qquad C_{\text{KL}}(F, \Sigma, W) = \frac{C_{\max}}{4\pi \, \epsilon (1 - \epsilon)},$$

and

$$\frac{C_{\min} \kappa m_h^2}{C_{\text{KL}}} \ge \frac{2\pi C_{\min}}{C_{\max}} \epsilon (1 - \epsilon) \frac{1}{\sqrt{2\pi}} e^{-B_z^2/2} \left(1 + \frac{1}{B_z^2 + 1}\right) \cdot \frac{1}{(B_z^2 + 2)^2}.$$

In both cases  $B_z$  and  $\bar{p}(F, W)$  are finite since  $\phi$  is strictly increasing and  $|u| \leq W$ ; they are explicit functions of (F, W) via  $z^*(u) = \phi^{-1}(-u)$  and  $h(u) = u + z^*(u)$ .

#### H Proof of Theorem 10

Following the same analysis in Theorem 12, we have

$$\begin{split} \mathbb{E}(\operatorname{reg}_t \mid H_{t-1}) &= \operatorname{rev}_t^{(0)}(p_t^{*(0)}) - \operatorname{rev}_t^{(0)}(p_t^{(0)}) + \frac{1}{2}r_t''(p) \left(p_t^{(0)} - p_t^{*(0)}\right)^2 \\ &\leq C \left(p_t^{*(0)} - p_t^{(0)}\right)^2 = C \left(h(g^{(0)}(x_t^{(0)})) - h(\widehat{g}^{(m)}(x_t^{(0)}))\right)^2 \\ &\leq C \, L_h^2 \left(g^{(0)}(x_t^{(0)}) - \widehat{g}^{(m)}(x_t^{(0)})\right)^2, \end{split}$$

where C absorbs the bound on  $|r''_t(p)|$  over [0, P] and  $L_h$  is the Lipschitz constant of h on the working interval (by Lemma 15 and the price truncation).

Using Lemma 15 gives

$$\mathbb{E}(\operatorname{reg}_{t}) = \mathbb{E}\left(\mathbb{E}(\operatorname{reg}_{t} \mid H_{t-1})\right) \leq C \,\mathbb{E}\left[\left(g^{(0)}(x_{t}^{(0)}) - \widehat{g}^{(m)}(x_{t}^{(0)})\right)^{2}\right]$$

$$= C \,\mathbb{E}\left\|g^{(0)} - \widehat{g}^{(m)}\right\|_{L_{2}(P_{x})}^{2} \leq C \,\kappa^{2} \,\mathbb{E}\left\|g^{(0)} - \widehat{g}^{(m)}\right\|_{\mathcal{H}_{k}}^{2},$$
(25)

where  $\kappa$  is the kernel bound in Assumption 7.

**Proposition 25** (Aggregation Error). Under Assumptions 2 and 7, choosing  $\lambda_{ag} \asymp n_{\mathcal{K}}^{-\frac{2\alpha}{2\alpha\beta+1}}$ , the aggregation estimation error of Algorithm 3 satisfies

$$\mathbb{E}\left(\|g^{(ag)} - \widehat{g}^{(ag)}\|_{\mathcal{H}_k}^2\right) \leq C_1 \left(R^2 + \sigma^2\right) n_{\mathcal{K}}^{-\frac{2\alpha\beta}{2\alpha\beta+1}},\tag{26}$$

where R is the constant in Assumption 7 and  $\sigma$  is the standard deviation of the market noise in (1).

*Proof.* Let  $\Sigma := \mathbb{E}_{\mathcal{K}}[K(x,\cdot) \otimes K(x,\cdot)]$  denote the kernel integral operator and  $N(\lambda) := \text{Tr}(\Sigma(\Sigma + \lambda I)^{-1})$  the effective dimension. Consider the regularized empirical risk

$$\widehat{\mathcal{L}}_{\lambda}(g) = \frac{1}{n_{\mathcal{K}}} \sum_{i=1}^{n_{\mathcal{K}}} \ell(g; p_i, x_i, y_i) + \lambda \|g\|_{\mathcal{H}_k}^2,$$

with the Bernoulli log-loss  $\ell(g;p,x,y) := -[1(y=1)\log(1-F(p-g(x)))+1(y=0)\log(F(p-g(x)))]$  used throughout Algorithm 3. Let

$$g_{\lambda}^{(ag)} = \arg\min_{g \in \mathcal{H}_k} \mathbb{E} \widehat{\mathcal{L}}_{\lambda}(g)$$

be the population minimizer. A standard RERM decomposition for smooth, strongly convex losses yields

$$\mathbb{E}\|\widehat{g}^{(ag)} - g_{\lambda}^{(ag)}\|_{L_2(P_x)}^2 \lesssim \frac{N(\lambda)}{n_{\mathcal{K}}} \implies \mathbb{E}\|\widehat{g}^{(ag)} - g_{\lambda}^{(ag)}\|_{\mathcal{H}_k}^2 \lesssim \frac{N(\lambda)}{n_{\mathcal{K}}},$$

using  $||f||_{L_2(P_x)}^2 \le \kappa^2 ||f||_{\mathcal{H}_k}^2$ . For the approximation error, under the source condition  $g^{(ag)} \in \operatorname{Range}(\Sigma^{\beta})$  (Assumption 9(ii)) we have

$$\|g_{\lambda}^{(ag)} - g^{(ag)}\|_{\mathcal{H}_k}^2 \lesssim \lambda^{2\beta} R^2.$$

Assumption 9(i) gives  $N(\lambda) \simeq \lambda^{-1/(2\alpha)}$ . Balancing  $N(\lambda)/n_{\mathcal{K}}$  and  $\lambda^{2\beta}$  gives  $\lambda_{ag} \simeq n_{\mathcal{K}}^{-2\alpha/(2\alpha\beta+1)}$  and the stated rate.

**Proposition 26** (Bias Correction Error). *Under Assumptions* 2, 7 and 8, choosing  $\lambda_{tf} \approx (n_0 H^2)^{-2\alpha/(2\alpha+1)}$ , the debiasing error of Algorithm 3 satisfies

$$\mathbb{E}\Big(\|\delta^{(0)} - \widehat{\delta}\|_{L_2(P_x)}^2\Big) \le C_2 \, n_0^{-2\alpha/(2\alpha+1)} \, H^{2/(2\alpha+1)},\tag{27}$$

where H is the task-similarity parameter in Assumption 8.

*Proof.* According to Chai et al. [7], the regularized estimator can be written as

$$\widehat{\delta}^{(0)} = (\widehat{\Sigma}^{(0)} + \lambda_{tf} I)^{-1} (\widehat{g}^{(0)} + \lambda_{tf} \widehat{\delta}^{(k)}).$$

Hence

$$\widehat{\delta}^{(0)} - \delta^{(0)} = \underbrace{\left(\widehat{\Sigma}^{(0)} + \lambda_{tf}I\right)^{-1} \left(\widehat{g}^{(0)} - \widehat{\Sigma}^{(0)}\delta^{(0)}\right)}_{\text{Variance}} + \underbrace{\lambda_{tf} \left(\widehat{\Sigma}^{(0)} + \lambda_{tf}I\right)^{-1} \left(\widehat{\delta}^{(k)} - \delta^{(0)}\right)}_{\text{Bias}}.$$

For the variance term, writing  $A_{\lambda} := \Sigma^{1/2} (\widehat{\Sigma}^{(0)} + \lambda I)^{-1}$  implies

$$\mathbb{E} \| \text{Variance} \|_{L_2(P_x)}^2 \lesssim \frac{N_0(\lambda_{tf})}{n_0}, \quad \text{where} \quad N_0(\lambda) \asymp \lambda^{-1/(2\alpha)}.$$

For the bias term, by spectral calculus,

$$\left\| \lambda (\widehat{\Sigma}^{(0)} + \lambda I)^{-1} u \right\|_{L_2(P_x)}^2 = \sum_{i} \frac{\lambda^2 \mu_j}{(\mu_j + \lambda)^2} \langle u, \phi_j \rangle^2 \le \frac{\lambda}{4} \|u\|_{\mathcal{H}_k}^2,$$

so Assumption 8 gives  $\mathbb{E} \big\| \mathrm{Bias} \big\|_{L_2(P_x)}^2 \lesssim \lambda_{tf} H^2$ . Balancing  $N_0(\lambda)/n_0$  with  $\lambda H^2$  yields  $\lambda_{tf} \asymp (n_0 H^2)^{-2\alpha/(2\alpha+1)}$  and the stated bound.

We now bound the total regret over each episode. Using Equation (25), we obtain

$$\begin{split} \operatorname{Reg}(m \operatorname{th} \operatorname{Episode}) &= \sum_{t=l_m}^{l_{m+1}-1} \mathbb{E}(\operatorname{reg}_t) \ \leq \ C \sum_{t=l_m}^{l_{m+1}-1} \mathbb{E}\left(\|\widehat{g}_m - g^{(0)}\|_{L_2(P_x)}^2\right) \\ &\leq C \, 2^{m-1} \Big\{ (K \, 2^{m-1})^{-\frac{2\alpha\beta}{2\alpha\beta+1}} \ + \ (2^{m-1})^{-\frac{2\alpha}{2\alpha+1}} \, H^{\frac{2}{2\alpha+1}} \Big\}. \end{split}$$

Summing over  $M = \lceil \log T \rceil$  episodes gives

$$\operatorname{Regret}(T;\pi) \ \leq \ C \sum_{m=1}^{M} 2^{m-1} \left\{ (K \, 2^{m-2})^{-\gamma_1} + (2^{m-2})^{-\gamma_2} \, H^{\frac{2}{2\alpha+1}} \right\},$$

where  $\gamma_1 = \frac{2\alpha\beta}{2\alpha\beta+1}$  and  $\gamma_2 = \frac{2\alpha}{2\alpha+1}$ . Let

$$\text{Term 1} = K^{-\gamma_1} \sum_{m=1}^M 2^{m-1} (2^{m-2})^{-\gamma_1} = K^{-\gamma_1} 2^{2\gamma_1 - 1} \sum_{m=1}^M \left( 2^{1-\gamma_1} \right)^m \ \leq \ C_1 K^{-\gamma_1} T^{1-\gamma_1},$$

$$\operatorname{Term} 2 = H^{\frac{2}{2\alpha+1}} \sum_{m=1}^{M} 2^{m-1} (2^{m-2})^{-\gamma_2} = H^{\frac{2}{2\alpha+1}} 2^{2\gamma_2-1} \sum_{m=1}^{M} \left(2^{1-\gamma_2}\right)^m \leq C_2 H^{\frac{2}{2\alpha+1}} T^{1-\gamma_2}.$$

Combining both terms gives the overall regret bound:

$$\operatorname{Regret}(T;\pi) = \mathcal{O}\Big(K^{-\frac{2\alpha\beta}{2\alpha\beta+1}} \,\, T^{\frac{1}{2\alpha\beta+1}} \,\, + \,\, H^{\frac{2}{2\alpha+1}} \, T^{\frac{1}{2\alpha+1}}\Big) \,.$$

#### I Proof of Theorem 13

Similar to our analysis in Section K, Algorithm 4 enters Phase 2 when the volume of target-market data is large enough to provide a more accurate estimate than transfer learning. The boundary condition can be written as

$$n_{\mathcal{K}} < n_0 \left( 1 - \frac{C_2}{C_1} \, n_0^{\frac{2\alpha(\beta - 1)}{(2\alpha + 1)(2\alpha\beta + 1)}} \, H^{\frac{2}{2\alpha + 1}} \right)^{-\frac{2\alpha\beta + 1}{2\alpha\beta}},$$

which, for simplicity, we denote as

$$n_0 > \tilde{c} n_{\mathcal{K}}$$

We bound the total regret over each episode by considering two cases. Throughout, we use the per-round conversion

$$\mathbb{E}(\operatorname{reg}_t) \leq C \, \mathbb{E} \|g^{(0)} - \widehat{g}^{(m)}\|_{L_2(P_x)}^2$$

from (25), so that episode m contributes a factor  $2^{m-1}$  in front of the corresponding  $L_2(P_x)$  error bound.

• Case 1:  $2^{m-2} \le \tilde{c} n_K$ . In this transfer-active regime, we directly apply Theorem 10. Combining Propositions 25 and 26 and then using (25) yields

$$\begin{split} \operatorname{Reg}(m \text{th Episode}) &= \sum_{t=\ell_m}^{\ell_{m+1}-1} \mathbb{E}(\operatorname{reg}_t) \, \leq \, C_1 \sum_{t=\ell_m}^{\ell_{m+1}-1} \mathbb{E}\big( \| \widehat{g}_m - g^{(0)} \|_{L_2(P_x)}^2 \big) \\ &\leq \, C_1 \, 2^{m-1} \bigg\{ \, n_{\mathcal{K}}^{-\frac{2\alpha\beta}{2\alpha\beta+1}} \, + \, (2^{m-2})^{-\frac{2\alpha}{2\alpha+1}} \, H^{\frac{2}{2\alpha+1}} \bigg\} \, . \end{split}$$

Summing over  $M' = \lfloor \log(2\widetilde{c} \, n_{\mathcal{K}}) \rfloor$  episodes,

$$\operatorname{Regret}(\widetilde{c}\,n_{\mathcal{K}};\pi) \; \leq \; C_1 \sum_{m=1}^{\lfloor \log(2\widetilde{c}\,n_{\mathcal{K}})\rfloor} 2^{m-1} \bigg\{ \, n_{\mathcal{K}}^{-\frac{2\alpha\beta}{2\alpha\beta+1}} \; + \; (2^{m-2})^{-\frac{2\alpha}{2\alpha+1}} \, H^{\frac{2}{2\alpha+1}} \bigg\} \, .$$

• Case 2:  $2^{m-2} > \widetilde{c} n_K$ . In this target-only regime (Phase 2), we obtain

$$\begin{split} \operatorname{Reg}(m \text{th Episode}) &= \sum_{t=\ell_m}^{\ell_{m+1}-1} \mathbb{E}(\operatorname{reg}_t) \ \leq \ C_2 \sum_{t=\ell_m}^{\ell_{m+1}-1} \mathbb{E} \big( \| \widehat{g}_m - g^{(0)} \|_{L_2(P_x)}^2 \big) \\ &\leq \ C_2 \, 2^{m-1} \, \Big\{ (2^{m-2})^{-\frac{2\alpha\beta}{2\alpha\beta+1}} \Big\}. \end{split}$$

Summing from  $m = \lceil \log(2\widetilde{c}\,n_{\mathcal{K}}) \rceil$  to  $m = \lceil \log T \rceil$  episodes gives

$$\operatorname{Regret}(\widetilde{c}\,n_{\mathcal{K}}\to T;\pi) \ \leq \ C_2 \sum_{m=\lceil \log(2\widetilde{c}\,n_{\mathcal{K}})\rceil}^{\lceil \log T\rceil} 2^{m-1} \, (2^{m-2})^{-\frac{2\alpha\beta}{2\alpha\beta+1}}.$$

Combining the above two cases, the total regret is bounded by

$$\operatorname{Regret}(T;\pi) \leq C_{1} \sum_{m=1}^{\lfloor \log(2\widetilde{c}n_{K}) \rfloor} 2^{m-1} \left\{ n_{K}^{-\frac{2\alpha\beta}{2\alpha\beta+1}} + (2^{m-2})^{-\frac{2\alpha}{2\alpha+1}} H^{\frac{2}{2\alpha+1}} \right\}$$

$$+ C_{2} \sum_{m=\lceil \log(2\widetilde{c}n_{K}) \rceil}^{\lceil \log T \rceil} 2^{m-1} (2^{m-2})^{-\frac{2\alpha\beta}{2\alpha\beta+1}}.$$
(28)

We now decompose the first sum into two parts.

Part 1. Using  $\sum_{m=1}^{M'} 2^{m-1} = 2^{M'} - 1 \lesssim 2\tilde{c} n_{K}$ ,

$$\text{Part } 1 = C_1 \, n_{\mathcal{K}}^{-\frac{2\alpha\beta}{2\alpha\beta+1}} \sum_{m=1}^{\lfloor \log(2\widetilde{c} \, n_{\mathcal{K}}) \rfloor} 2^{m-1} \, \lesssim \, C_1 \cdot 2\widetilde{c} \cdot n_{\mathcal{K}}^{\frac{1}{2\alpha\beta+1}}.$$

Part 2. Since  $2^{m-1}(2^{m-2})^{-\frac{2\alpha}{2\alpha+1}} = 2^{\frac{2\alpha-1}{2\alpha+1}} \cdot 2^{\frac{m}{2\alpha+1}}$ , we have

$$\begin{split} \text{Part 2} &= C_1 \, H^{\frac{2}{2\alpha+1}} \, \sum_{m=1}^{\lfloor \log(2\widetilde{c} \, n_{\mathcal{K}}) \rfloor} 2^{m-1} (2^{m-2})^{-\frac{2\alpha}{2\alpha+1}} \\ &= C_1 \, H^{\frac{2}{2\alpha+1}} \cdot 2^{\frac{2\alpha-1}{2\alpha+1}} \, \sum_{m=1}^{\lfloor \log(2\widetilde{c} \, n_{\mathcal{K}}) \rfloor} 2^{\frac{m}{2\alpha+1}} \, \lesssim \, C_1 \, H^{\frac{2}{2\alpha+1}} \cdot (2\widetilde{c} \, n_{\mathcal{K}})^{\frac{1}{2\alpha+1}}. \end{split}$$

For the second sum in (28), note that

$$2^{m-1}(2^{m-2})^{-\frac{2\alpha\beta}{2\alpha\beta+1}} = 2^{(m-1)-(m-2)\frac{2\alpha\beta}{2\alpha\beta+1}} = 2^{\frac{m-1}{2\alpha\beta+1}} \times (\text{constant}),$$

so the summation behaves like a geometric series with ratio  $2^{1/(2\alpha\beta+1)}>1$ . Therefore

$$\sum_{m=\lceil \log(2\widetilde{c}\,n_{\mathcal{K}})\rceil}^{\lceil \log T \rceil} 2^{m-1} (2^{m-2})^{-\frac{2\alpha\beta}{2\alpha\beta+1}} \lesssim T^{\frac{1}{2\alpha\beta+1}} - (\widetilde{c}\,n_{\mathcal{K}})^{\frac{1}{2\alpha\beta+1}}.$$
(29)

Combining Part 1, Part 2, and (29), we obtain

$$\operatorname{Regret}(T;\pi) \; \lesssim \; \widetilde{c} \, n_{\mathcal{K}}^{\frac{1}{2\alpha\beta+1}} \; + \; H^{\frac{2}{2\alpha+1}} \left(\widetilde{c} \, n_{\mathcal{K}}\right)^{\frac{1}{2\alpha+1}} \; + \; T^{\frac{1}{2\alpha\beta+1}} \; - \; \left(\widetilde{c} \, n_{\mathcal{K}}\right)^{\frac{1}{2\alpha\beta+1}},$$

which concludes the proof.

#### J Proof of Theorem 11

We convert regret to an  $L^2(P_x)$  estimation error, upper bound the total information (KL) any adaptive policy can extract under binary feedback, and then invoke Fano with a tensor-product packing built from (i) a *transferable* common block and (ii) a *non-transferable* residual block.

**Lemma 27** (Local quadratic revenue drop). *Under Assumption* 1 and the local regularity above, there exists  $c_* > 0$  such that for any  $x \in \mathcal{X}$  and any estimate  $\widehat{g}$  with  $g(x), \widehat{g}(x) \in \mathcal{U}_0$ ,

$$\operatorname{rev}(h(g(x)); g(x)) - \operatorname{rev}(h(\widehat{g}(x)); g(x)) \ge c_*(\widehat{g}(x) - g(x))^2, \qquad c_* := \frac{m_{\text{rev}} m_h^2}{2}.$$

Consequently,

$$\mathbb{E}\left[\operatorname{Reg}(T;\pi)\right] \geq c_* T \cdot \mathbb{E}\left[\|\widehat{g} - g\|_{L^2(P_x)}^2\right],\tag{30}$$

where  $\widehat{g}$  is the utility function implicitly induced by the policy  $\pi$  through its posted prices  $p_t = h(\widehat{q}(x_{\star}^{(0)}))$  during the episode.

*Proof.* By strong concavity at  $p^*(u) = h(u)$ , for any  $u \in \mathcal{U}_0$  and p close enough to  $p^*(u)$  we have  $\operatorname{rev}(p^*(u);u) - \operatorname{rev}(p;u) \geq \frac{m_{\operatorname{rev}}}{2} (p-p^*(u))^2$ . Set u = g(x) and  $p = h(\widehat{g}(x))$ . By bi-Lipschitzness of h on  $\mathcal{U}_0$ ,  $|p-p^*(u)| = |h(\widehat{g}(x)) - h(g(x))| \geq m_h|\widehat{g}(x) - g(x)|$ , which yields the pointwise inequality with  $c_* = \frac{m_{\operatorname{rev}}m_h^2}{2}$ . Summing over t and taking expectations gives (30).

**Lemma 28** (Bernoulli KL smoothness). Let q(p,u) := 1 - F(p-u) and consider Bernoulli distributions with means q(p,u) and q(p,u'). Assume F has a continuous density f on  $[-B_{\varepsilon}, B_{\varepsilon}]$  and extends smoothly to the boundary with  $f(\pm B_{\varepsilon}) = 0$  (or take any log-concave F on  $\mathbb R$  and restrict to a compact interval of utilities). Then there exists a finite constant

$$C_{\mathrm{KL}} := \sup_{\delta \in \mathbb{R}} \frac{f(\delta)^2}{q(\delta) [1 - q(\delta)]} < \infty,$$

such that for all  $p \in \mathbb{R}$ ,  $x \in \mathcal{X}$  and  $u, u' \in \mathbb{R}$ ,

$$KL\Big(Bern(q(p,u)) \| Bern(q(p,u'))\Big) \le C_{KL} (u-u')^{2}.$$
(31)

Consequently, for any (possibly adaptive) policy  $\pi$  interacting with the target and K source markets over T rounds,

$$KL\left(\mathbb{P}_{g^{(0)},\dots,g^{K}} \parallel \mathbb{P}_{g'^{(0)},\dots,g'^{K}}\right) \leq C_{KL} T\left(\|g^{(0)} - g'^{(0)}\|_{L^{2}(P_{x})}^{2} + \sum_{k=1}^{K} \|g^{K} - g'^{K}\|_{L^{2}(P_{x})}^{2}\right). \tag{32}$$

*Proof.* By the mean value theorem,  $|q(p,u)-q(p,u')|=|F(p-u')-F(p-u)|\leq \sup_{\delta} f(\delta)|u-u'|$ . For Bernoulli variables with means  $a,b\in(0,1)$  we have the standard bound  $\mathrm{KL}(\mathrm{Bern}(a)\|\mathrm{Bern}(b))\leq \frac{(a-b)^2}{b(1-b)}$ . Combining yields (31) with  $C_{\mathrm{KL}}=\sup_{\delta} \frac{f(\delta)^2}{q(\delta)(1-q(\delta))}$ , which is finite under the stated regularity (continuity plus compactness ensures the supremum is attained; typical families such as probit/logistic also satisfy  $C_{\mathrm{KL}}\leq 1/4$ ). Summing the one-step inequality over time and markets and applying the chain rule for KL under adaptivity gives (32).

**Proposition 29** (Packing for the aggregation block). Define  $\mathcal{G}_A(R) := \{g = \Sigma^{\beta} \rho : \|\rho\|_{L^2} \leq R\}$ , where  $\Sigma$  is the kernel integral operator with eigensystem  $(\mu_j, \varphi_j)_{j \geq 1}$  and  $\beta \in (0, 1]$  (Assumption 9). There exists  $c_A > 0$  such that for all  $0 < \delta < R$ ,

$$\log \mathcal{M}\left(\delta; \mathcal{G}_A(R), \|\cdot\|_{L^2(P_x)}\right) \geq c_A \left(\frac{R}{\delta}\right)^{\frac{1}{\alpha\beta}}.$$

**Proposition 30** (Packing for the debiasing block). Let  $\mathcal{G}_B(H) := \{g \in \mathcal{H}_K : \|g\|_{\mathcal{H}_K} \leq H\}$  with a bounded kernel (Assumption 7). There exists  $c_B > 0$  such that for all  $0 < \delta < H$ ,

$$\log \mathcal{M}\Big(\delta; \mathcal{G}_B(H), \|\cdot\|_{L^2(P_x)}\Big) \geq c_B\left(\frac{H}{\delta}\right)^{\frac{1}{\alpha}}.$$

*Proof.* Let  $(\mu_j, \varphi_j)$  be the eigensystem of  $\Sigma$ . Assumption 9 (i) states  $N(\lambda) = \text{Tr} \big( \Sigma (\Sigma + \lambda I)^{-1} \big) \lesssim \lambda^{-1/(2\alpha)}$ . Working on a *spectral slice*  $\{j: \mu_j \in (\lambda/2, \lambda]\}$ , the number of coordinates in the slice satisfies  $m(\lambda) \asymp N(\lambda/2) - N(\lambda) \gtrsim \lambda^{-1/(2\alpha)}$  for sufficiently small  $\lambda$  (selecting a subclass saturating the effective-dimension rate is admissible for minimax lower bounds).

(A) Aggregation block  $\mathcal{G}_A(R)$ . Fix a slice  $J_A(\lambda) := \{j : \mu_j \in (\lambda/2, \lambda]\}$  with cardinality  $m_A(\lambda) \gtrsim \lambda^{-1/(2\alpha)}$ . For  $\theta \in \{\pm 1\}^{m_A}$  define

$$\rho_{\theta} := \frac{a}{\sqrt{m_A}} \sum_{j \in J_A} \theta_j \, \varphi_j, \qquad g_{A,\theta} := \Sigma^{\beta} \rho_{\theta} = \frac{a}{\sqrt{m_A}} \sum_{j \in J_A} \mu_j^{\beta} \theta_j \, \varphi_j,$$

with amplitude  $a \leq R/2$  to ensure  $\|\rho_{\theta}\|_{L^2} \leq a \leq R/2$ . By the Varshamov–Gilbert bound there exists  $\mathcal{C}_A \subset \{\pm 1\}^{m_A}$  with  $|\mathcal{C}_A| \geq 2^{m_A/8}$  and Hamming distances at least  $m_A/8$ . Hence, for  $\theta \neq \theta'$  in  $\mathcal{C}_A$ ,

$$\|g_{A,\theta} - g_{A,\theta'}\|_{L^2}^2 = \frac{a^2}{m_A} \sum_{j \in J_A} \mu_j^{2\beta} (\theta_j - \theta_j')^2 \gtrsim \frac{a^2}{m_A} \cdot \left(\frac{m_A}{8}\right) \cdot \lambda^{2\beta} \asymp a^2 \lambda^{2\beta}.$$

Thus the  $L^2$ -separation is at least  $2\delta_A(\lambda)$  with  $\delta_A(\lambda) \approx a \lambda^{\beta}$ , while the packing size obeys  $\log M_A(\lambda) \geq c \, m_A(\lambda) \gtrsim \lambda^{-1/(2\alpha)}$ . Feasibility in RKHS is also satisfied:

$$\|g_{A,\theta}\|_{\mathcal{H}_K}^2 = \frac{a^2}{m_A} \sum_{j \in J_A} \frac{\mu_j^{2\beta}}{\mu_j} \lesssim a^2 \lambda^{2\beta - 1}.$$

Choosing  $\lambda$  small enough and  $a \leq \min\{R/2, c_0 \lambda^{(1-2\beta)/2}\}$  ensures  $\|g_{A,\theta}\|_{\mathcal{H}_K} \leq R/2$ . Therefore,

$$\log \mathcal{M}(2\delta_A; \mathcal{G}_A(R), \|\cdot\|_{L^2}) \gtrsim \lambda^{-1/(2\alpha)} \text{ with } \delta_A \asymp a \lambda^{\beta}, a \leq R/2.$$

Eliminating  $\lambda$  gives  $\log \mathcal{M}(\delta_A) \gtrsim (a/\delta_A)^{1/(\alpha\beta)}$ , and taking a = R/2 yields the stated bound.

**(B) Debiasing block**  $\mathcal{G}_B(H)$ . Choose a slice  $J_B(\lambda)$  disjoint from  $J_A(\lambda)$  with  $m_B(\lambda) \gtrsim \lambda^{-1/(2\alpha)}$ . For  $\zeta \in \{\pm 1\}^{m_B}$  define

$$g_{B,\zeta} := \frac{b}{\sqrt{m_B}} \sum_{j \in J_B} \sqrt{\mu_j} \, \zeta_j \, \varphi_j.$$

Then  $\|g_{B,\zeta}\|_{\mathcal{H}_K}^2 = \frac{b^2}{m_B} \sum_{j \in J_B} 1 = b^2$ , so choosing  $b \leq H/2$  ensures  $\|g_{B,\zeta}\|_{\mathcal{H}_K} \leq H/2$ . By Varshamov–Gilbert, there exists  $\mathcal{C}_B$  with  $|\mathcal{C}_B| \geq 2^{m_B/8}$  and Hamming distances at least  $m_B/8$ . For  $\zeta \neq \zeta'$  in  $\mathcal{C}_B$ ,

$$\|g_{B,\zeta} - g_{B,\zeta'}\|_{L^2}^2 = \frac{b^2}{m_B} \sum_{j \in J_B} \mu_j \left(\zeta_j - \zeta_j'\right)^2 \gtrsim \frac{b^2}{m_B} \cdot \left(\frac{m_B}{8}\right) \cdot \lambda \approx b^2 \lambda.$$

Thus the separation is at least  $2\delta_B(\lambda)$  with  $\delta_B(\lambda) \approx b \, \lambda^{1/2}$  and  $\log M_B(\lambda) \gtrsim \lambda^{-1/(2\alpha)}$ . Eliminating  $\lambda$  yields  $\log \mathcal{M}(\delta_B) \gtrsim (b/\delta_B)^{1/\alpha}$ ; setting b = H/2 gives the claim.

**Pointwise control.** Because  $||K_x||_{\mathcal{H}_K} \leq \kappa$  (Assumption 7), we have  $|g(x)| \leq \kappa ||g||_{\mathcal{H}_K}$ . Scaling the amplitudes above by a universal constant (absorbed into  $c_A, c_B$ ) ensures  $g_A(x), g_B(x) \in \mathcal{U}_0$  for all x, which is used in Lemma 27.

We now build two packing families on disjoint eigenspaces:

$$\mathcal{F}_A \subset \mathcal{G}_A(R), \qquad \mathcal{F}_B \subset \mathcal{G}_B(H),$$

so that for any  $g_A, g_A' \in \mathcal{F}_A$  and  $g_B, g_B' \in \mathcal{F}_B$ ,

$$\|(g_A + g_B) - (g'_A + g'_B)\|_{L^2}^2 = \|g_A - g'_A\|_{L^2}^2 + \|g_B - g'_B\|_{L^2}^2$$

and the KL bound (32) splits additively as well. We also restrict amplitudes so that  $g_A(x), g_B(x) \in \mathcal{U}_0$  for all x, by the remark above.

**Lemma 31** (Fano for the aggregation block). Let  $\mathcal{F}_A \subset \mathcal{G}_A(R)$  be a  $2\delta_A$ -packing with cardinality  $M_A$ . For any policy  $\pi$  that observes the target and K source streams over T rounds,

$$\inf_{\widehat{g}} \sup_{g \in \mathcal{F}_A} \mathbb{E} \big[ \| \widehat{g} - g \|_{L^2}^2 \big] \ \geq \ \frac{\delta_A^2}{2} \left( 1 - \frac{4 \, C_{\mathrm{KL}} \, K \, T \, \delta_A^2 + \log 2}{\log M_A} \right).$$

**Lemma 32** (Fano for the debiasing block). Let  $\mathcal{F}_B \subset \mathcal{G}_B(H)$  be a  $2\delta_B$ -packing with cardinality  $M_B$ . For any policy  $\pi$  (only the target data contribute here),

$$\inf_{\widehat{g}} \sup_{g \in \mathcal{F}_B} \, \mathbb{E} \big[ \| \widehat{g} - g \|_{L^2}^2 \big] \, \geq \, \frac{\delta_B^2}{2} \left( 1 - \frac{4 \, C_{\mathrm{KL}} \, T \, \delta_B^2 + \log 2}{\log M_B} \right).$$

*Proof.* Apply the standard multi-hypothesis Fano inequality [27] to the packing families  $\mathcal{F}_A$  and  $\mathcal{F}_B$ . The *average* pairwise KL over each family is bounded using (32): for the aggregation block all KT Bernoulli observations contribute, yielding the factor KT; for the debiasing block only the T target observations contribute.

Combining Lemmas 31–32 with Propositions 29–30, the calibration

$$4 \, C_{\mathrm{KL}} \, K \, T \, \delta_A^2 \, \lesssim \, \log M_A \, \gtrsim \, c_A \Big(\frac{R}{\delta_A}\Big)^{\frac{1}{\alpha\beta}}, \qquad 4 \, C_{\mathrm{KL}} \, T \, \delta_B^2 \, \lesssim \, \log M_B \, \gtrsim \, c_B \Big(\frac{H}{\delta_B}\Big)^{\frac{1}{\alpha}},$$

gives (after eliminating  $\delta_A, \delta_B$ )

$$\delta_A^2 \approx R^{\frac{2}{2\alpha\beta+1}} K^{-\frac{2\alpha\beta}{2\alpha\beta+1}} T^{-\frac{2\alpha\beta}{2\alpha\beta+1}}, \qquad \delta_B^2 \approx H^{\frac{2}{2\alpha+1}} T^{-\frac{2\alpha}{2\alpha+1}}. \tag{33}$$

Finally, define the product packing  $\mathcal{F}=\{g_{\nu}=g_{A,\theta}+g_{B,\zeta}:g_{A,\theta}\in\mathcal{F}_A,g_{B,\zeta}\in\mathcal{F}_B\}$  so that  $\log |\mathcal{F}|=\log M_A+\log M_B$  and pairwise  $L^2$  distances add in quadrature. The total KL between any two elements of  $\mathcal{F}$  is the sum of the block-wise KLs by (32). Applying Fano on  $\mathcal{F}$  yields

$$\inf_{\widehat{g}} \sup_{g \in \mathcal{F}} \mathbb{E} \left[ \|\widehat{g} - g\|_{L^2}^2 \right] \gtrsim \delta_A^2 + \delta_B^2,$$

and combining with Lemma 27 via (30) completes the proof of the lower bound in the main text.

# K Proof of Propositions 16 and 19

We first provide a detailed proof for Proposition 16, which follows by combining Proposition 33 and Proposition 34 using triangle inequality.

 $\widehat{\boldsymbol{\beta}}^{(ag)}$  is realized using all the source samples. It's probablistic limit is  $\boldsymbol{\beta}^{(ag)}$ . The corresponding estimation error can be bounded by the following proposition.

**Proposition 33** (Aggregation Error). Consider linear utility model with Assumptions 1, 2, 3 and 4 holding true. Then, there exist positive constants  $c'_0, c_1, c_2$  such that, for  $n_K \ge c'_0 d$ , the following holds with probability at least 1 - 1/d:

$$\|\boldsymbol{\beta}^{(ag)} - \widehat{\boldsymbol{\beta}}^{(ag)}\|_2^2 \le c_1 \frac{d \log d}{n_{\mathcal{K}}}.$$

Moreover, the probabilistic limit  $\beta^{(ag)}$  is biased from  $\beta^{(0)} \neq \beta^{(k)}$  in general. We then correct its bias using the primary data in target market. The estimation error of the debias term can be bounded as follows.

**Proposition 34** (Bias Correction Error). Under conditions of Proposition 33, there exist positive constants  $c_0, c_1, c_2$  such that, for  $n_0 \ge c_0 s_0 \log d$ , the following holds with probability at least  $1 - 1/d - 2e^{-n_0/(c_0 s_0)}$ :

$$\|\widehat{\boldsymbol{\delta}} - \boldsymbol{\delta}\|_2^2 \le c_2 \frac{s_0 \log d}{n_0}.$$

The key distinction between the Proposition 16 and Proposition 19 lies in their sample size requirements: while both require the target sample size  $n_0 \ge c_0 s_0 \log d$  for valid estimation, the online-to-online setting imposes an additional constraint  $n_0 \ge c_0' \frac{d}{K}$  to account for the simultaneous learning from initially limited source data across K markets. This reflects the fundamental operational difference that online-to-online must handle concurrent data scarcity in both domains, whereas offline-to-online leverages pre-collected source data (implicitly assuming  $n_K$  is sufficiently large).

#### K.1 Proof of Propositions 22 and 33

Let  $(X^{\mathcal{K}}, Y^{\mathcal{K}})$  denote the design matrix and the response vector by row-stacking of all source data  $\{\boldsymbol{x}_t^{(k)}, y_t^{(k)}\}_{t \in I^{(k)}}$  for  $k \in [K]$ .

By the second-order Taylor expansion around the true parameter  $\boldsymbol{\beta}^{(ag)}$  we have

$$L(\widehat{\boldsymbol{\beta}}^{(ag)}) - L(\boldsymbol{\beta}^{(ag)}) = \langle \nabla L(\boldsymbol{\beta}^{(ag)}), \widehat{\boldsymbol{\beta}}^{(ag)} - \boldsymbol{\beta}^{(ag)} \rangle + \frac{1}{2} \langle \widehat{\boldsymbol{\beta}}^{(ag)} - \boldsymbol{\beta}^{(ag)}, \nabla^2 L(\widetilde{\boldsymbol{\beta}}) (\widehat{\boldsymbol{\beta}}^{(ag)} - \boldsymbol{\beta}^{(ag)}) \rangle$$

for some  $\widetilde{\beta}$  on the line segment between  $\beta^{(ag)}$  and  $\widehat{\beta}^{(ag)}$ . Invoking Equation 6, we have

$$\nabla L(\boldsymbol{\beta}) = \frac{1}{n_{\mathcal{K}}} \sum_{x_t \in X^{\mathcal{K}}} \xi_t(\boldsymbol{\beta}) x_t, \quad \nabla^2 L(\boldsymbol{\beta}) = \frac{1}{n_{\mathcal{K}}} \sum_{x_t \in X^{\mathcal{K}}} \eta_t(\boldsymbol{\beta}) x_t x_t^{\top}, \tag{34}$$

where  $\nabla$  and  $\nabla^2$  represents the gradient and the hessian w.r.t  $\beta$ . Further,

$$\begin{aligned} \xi_{t}(\boldsymbol{\beta}) &= -\frac{f(u_{t}(\boldsymbol{\beta}))}{F(u_{t}(\boldsymbol{\beta}))} \mathbb{I}(y_{t} = -1) + \frac{f(u_{t}(\boldsymbol{\beta}))}{1 - F(u_{t}(\boldsymbol{\beta}))} \mathbb{I}(y_{t} = +1) \\ &= -\log' F(u_{t}(\boldsymbol{\beta})) \mathbb{I}(y_{t} = -1) - \log' (1 - F(u_{t}(\boldsymbol{\beta}))) \mathbb{I}(y_{t} = +1) \,. \\ \eta_{t}(\boldsymbol{\beta}) &= \left(\frac{f(u_{t}(\boldsymbol{\beta}))^{2}}{F(u_{t}(\boldsymbol{\beta}))^{2}} - \frac{f'(u_{t}(\boldsymbol{\beta}))}{F(u_{t}(\boldsymbol{\beta}))}\right) \mathbb{I}(y_{t} = -1) + \left(\frac{f(u_{t}(\boldsymbol{\beta}))^{2}}{(1 - F(u_{t}(\boldsymbol{\beta})))^{2}} + \frac{f'(u_{t}(\boldsymbol{\beta}))}{1 - F(u_{t}(\boldsymbol{\beta}))}\right) \mathbb{I}(y_{t} = +1) \\ &= -\log'' F(u_{t}(\boldsymbol{\beta})) \mathbb{I}(y_{t} = -1) - \log'' (1 - F(u_{t}(\boldsymbol{\beta}))) \mathbb{I}(y_{t} = +1) \,, \end{aligned}$$

where  $u_t(\beta) = p_t - \langle x_t, \beta \rangle$ . By lemma 14, we have

$$|u_t(\beta)| \le |p_t| + ||x_t||_{\infty} ||\beta||_1 \le P + W$$
 (35)

Let

$$u_F \equiv \sup_{|x| \le P + W} \left\{ \max \left\{ \log' F(x), -\log'(1 - F(x)) \right\} \right\}$$

$$\ell_F \equiv \inf_{|x| < P + W} \left\{ \min \left\{ -\log'' F(x), -\log''(1 - F(x)) \right\} \right\}.$$

Next, we bound the gradient and hessian.

Lemma 35. Let

$$\mathcal{F} \equiv \left\{ \|\nabla L(\boldsymbol{\beta}^{(ag)})\|_{\infty} \le 2u_F \sqrt{\frac{\log d}{n_{\mathcal{K}}}} \right\}.$$

we have  $\mathbb{P}(\mathcal{F}) \geq 1 - 1/d$ .

To bound the gradient, as  $|u_t(\widetilde{\beta})| \leq P + W$ , cf. Equation 35. Therefore, by definition of  $\ell_F$ , we have  $\eta_t(\widetilde{\beta}) \geq \ell_F$ . Recalling Equation 34, we get  $\nabla^2 L(\widetilde{\beta}) \succeq \ell_F(\widetilde{X}^\top \widetilde{X})$ .

By the optimality condition of  $\widehat{\boldsymbol{\beta}}^{(ag)}$ , we write

$$L(\widehat{\boldsymbol{\beta}}^{(ag)}) \le L(\boldsymbol{\beta}^{(ag)}).$$

Rearranging the terms and using the bound on hessian, we arrive at

$$\frac{\ell_F}{n_F} \|X^{\mathcal{K}} (\boldsymbol{\beta}^{(ag)} - \widehat{\boldsymbol{\beta}}^{(ag)})\|^2 \le \|\nabla L(\boldsymbol{\beta}^{(ag)})\|_{\infty} \|\widehat{\boldsymbol{\beta}}^{(ag)} - \boldsymbol{\beta}^{(ag)}\|_1.$$

Choosing  $\lambda \geq 4u_F \sqrt{\frac{\log d}{n_K}}$ , we have on set  $\mathcal{F}$ 

$$\frac{2\ell_F}{n_K} \|X^K (\boldsymbol{\beta}^{(ag)} - \widehat{\boldsymbol{\beta}}^{(ag)})\|^2 \le \lambda \|\widehat{\boldsymbol{\beta}}^{(ag)} - \boldsymbol{\beta}^{(ag)}\|_1.$$
 (36)

Define the event  $\mathcal{B}_n$  as follows:

$$\mathcal{B}_n \equiv \left\{ X \in \mathbb{R}^{n_{\mathcal{K}} \times d} : \sigma_{\min}(X^{\top} X / n_{\mathcal{K}}) > C_{\min}/2 \right\}.$$

Using concentration bounds on the spectrum of random matrices with subgaussian rows ([29], Equation 5.26), there exist constants  $c, c_1 > 0$  such that for  $n > c_1 d$ , we have  $\mathbb{P}(\mathcal{B}_n) \ge 1 - e^{-cn_K^2}$ .

By assumption 3, the *l.h.s* of Equation 36 can be bounded by the minimum eigenvalue of its second moment matrix

$$\ell_F C_{min} \|\boldsymbol{\beta}^{(ag)} - \widehat{\boldsymbol{\beta}}^{(ag)}\|^2 \leq \frac{2\ell_F}{n_{\mathcal{K}}} \|\boldsymbol{X}^{\mathcal{K}} (\boldsymbol{\beta}^{(ag)} - \widehat{\boldsymbol{\beta}}^{(ag)})\|^2 \leq \lambda \|\widehat{\boldsymbol{\beta}}^{(ag)} - \boldsymbol{\beta}^{(ag)}\|_1 \leq \lambda \sqrt{d} \|\widehat{\boldsymbol{\beta}}^{(ag)} - \boldsymbol{\beta}^{(ag)}\|_1$$

and therefore,

$$\|\boldsymbol{\beta}^{(ag)} - \widehat{\boldsymbol{\beta}}^{(ag)}\|^2 \le \frac{d\lambda^2}{\ell_F^2 C_{min}^2}.$$

#### **K.2** Proof of Proposition 34

By the second-order Taylor expansion, expanding around  $\delta$  we have

$$L(\widehat{\boldsymbol{\delta}}+\widehat{\boldsymbol{\beta}}^{(ag)})-L(\boldsymbol{\delta}+\widehat{\boldsymbol{\beta}}^{(ag)})=\langle\nabla L(\boldsymbol{\delta}+\widehat{\boldsymbol{\beta}}^{(ag)}),\widehat{\boldsymbol{\delta}}-\boldsymbol{\delta}\rangle+\frac{1}{2}\langle\widehat{\boldsymbol{\delta}}-\boldsymbol{\delta},\nabla^2 L(\widetilde{\boldsymbol{\delta}}+\widehat{\boldsymbol{\beta}}^{(ag)})(\widehat{\boldsymbol{\delta}}-\boldsymbol{\delta})\rangle$$

for some  $\delta$  on the line segment between  $\delta$  and  $\delta$ . Again we have

$$\nabla L(\boldsymbol{\delta} + \widehat{\boldsymbol{\beta}}^{(ag)}) = \frac{1}{n_0} \sum_{t=1}^{n_0} \xi_t(\boldsymbol{\delta} + \widehat{\boldsymbol{\beta}}^{(ag)}) x_t, \quad \nabla^2 L(\boldsymbol{\delta} + \widehat{\boldsymbol{\beta}}^{(ag)}) = \frac{1}{n_0} \sum_{t=1}^{n_0} \eta_t(\boldsymbol{\delta} + \widehat{\boldsymbol{\beta}}^{(ag)}) x_t x_t^\top,$$

where  $\nabla$  and  $\nabla^2$  represents the gradient and the hessian w.r.t.  $\delta$ .

Next, we bound the gradient and hessian. According to Lemma 35, define

$$\mathcal{F} \equiv \left\{ \|\nabla L(\boldsymbol{\delta} + \boldsymbol{\beta}^{(ag)})\|_{\infty} \le 2u_F \sqrt{\frac{\log d}{n_0}} \right\}.$$

we have  $\mathbb{P}(\mathcal{F}) \geq 1 - 1/d$ ,  $\eta_t(\widetilde{\boldsymbol{\delta}} + \widehat{\boldsymbol{\delta}}^{(ag)}) \geq \ell_F$ , and  $\nabla^2 L(\widetilde{\boldsymbol{\delta}} + \widehat{\boldsymbol{\delta}}^{(ag)}) \succeq \ell_F(\widetilde{X}^\top \widetilde{X})$ .

By the optimality condition of  $\hat{\delta}$ , we write

$$L(\widehat{\boldsymbol{\delta}} + \widehat{\boldsymbol{\beta}}^{(ag)}) + \lambda \|\widehat{\boldsymbol{\delta}}\|_{1} \le L(\boldsymbol{\delta} + \widehat{\boldsymbol{\beta}}^{(ag)}) + \lambda \|\boldsymbol{\delta}\|_{1}. \tag{37}$$

Using the bound on hessian and gradient, choosing  $\lambda \geq 4u_F\sqrt{\frac{\log d}{n_0}}$ , we have on set  $\mathcal{F}$ 

$$\frac{2\ell_F}{n_0} \|X^{(0)}(\boldsymbol{\delta} - \widehat{\boldsymbol{\delta}})\|^2 + 2\lambda \|\widehat{\boldsymbol{\delta}}\|_1 \le \lambda \|\widehat{\boldsymbol{\delta}} - \boldsymbol{\delta}\|_1 + 2\lambda \|\boldsymbol{\delta}\|_1. \tag{38}$$

By Assumption 4,  $\delta$  is sparse. Let  $S = \text{supp}(\delta^{(ag)})$ . On the l.h.s. using triangle inequality, we have

$$\|\widehat{\pmb{\delta}}^{(ag)}\|_1 = \|\widehat{\pmb{\delta}}_S^{(ag)}\|_1 + \|\widehat{\pmb{\delta}}_{S^c}^{(ag)}\|_1 \geq \|\widehat{\pmb{\delta}}_S^{(ag)}\|_1 - \|\widehat{\pmb{\delta}}_S^{(ag)} - \pmb{\delta}_S^{(ag)}\|_1 + \|\widehat{\pmb{\delta}}_{S^c}^{(ag)}\|_1.$$

On the r.h.s., we have

$$\|\widehat{\boldsymbol{\delta}}^{(ag)} - \boldsymbol{\delta}^{(ag)}\|_1 = \|\widehat{\boldsymbol{\delta}}_S^{(ag)} - \boldsymbol{\delta}_S^{(ag)}\|_1 + \|\widehat{\boldsymbol{\delta}}_{S^c}^{(ag)}\|_1.$$

Using these two equations in Equation 38, we get

$$\frac{2\ell_F}{n_0} \|X^{(0)} (\boldsymbol{\delta}^{(ag)} - \widehat{\boldsymbol{\delta}}^{(ag)})\|^2 + \lambda \|\widehat{\boldsymbol{\delta}}_{S^c}^{(ag)}\|_1 \le 3\lambda \|\widehat{\boldsymbol{\delta}}_S^{(ag)} - \boldsymbol{\delta}_S^{(ag)}\|_1.$$
 (39)

We next write

$$\begin{split} \frac{2\ell_F}{n_0} \| X^{(0)} (\pmb{\delta}^{(ag)} - \widehat{\pmb{\delta}}^{(ag)}) \|^2 + \lambda \| \widehat{\pmb{\delta}}^{(ag)} - \pmb{\delta}^{(ag)} \| &= \frac{2\ell_F}{n_0} \| X^{(0)} (\pmb{\delta}^{(ag)} - \widehat{\pmb{\delta}}^{(ag)}) \|^2 + \lambda \| \widehat{\pmb{\delta}}_S^{(ag)} - \pmb{\delta}_S^{(ag)} \| + \lambda \| \widehat{\pmb{\delta}}_{S^C}^{(ag)} \| \\ & \stackrel{(a)}{\leq} 4\lambda \| \widehat{\pmb{\delta}}_S^{(ag)} - \pmb{\delta}_S^{(ag)} \|_1 \stackrel{(b)}{\leq} 4\lambda \sqrt{s_0} \| \widehat{\pmb{\delta}}_S^{(ag)} - \pmb{\delta}_S^{(ag)} \|_2 \\ & \stackrel{(c)}{\leq} \frac{4\lambda \sqrt{2s_0}}{\sqrt{n_0 C_{\min}}} \| X^{(0)} (\widehat{\pmb{\delta}}^{(ag)} - \pmb{\delta}^{(ag)}) \|_2, \\ & \stackrel{(d)}{\leq} \frac{\ell_F}{n_0} \| X^{(0)} (\widehat{\pmb{\delta}}^{(ag)} - \pmb{\delta}^{(ag)}) \|_2^2 + \frac{8\lambda^2 s_0}{\ell_F C_{\min}}, \end{split}$$

where (a) follows from Equation 39; (b) holds for Cauchy-Schwarz inequality; and (c) by RE condition ([19], Proposition 23), which holds for  $\widehat{\Sigma}^{(0)} = ((X^{(0)})^{\top} X^{(0)})/n_0$  with  $\kappa(\widehat{\Sigma}^{(0)}, s_0, 3) \geq \sqrt{C_{\min}/2}$ ; and (d) follows from the inequality  $2|ab| \leq ca^2 + \frac{b^2}{c}$ .

Rearranging the terms, we obtain

$$\frac{\ell_F}{n_0} \|X^{(0)} (\boldsymbol{\delta}^{(ag)} - \widehat{\boldsymbol{\delta}}^{(ag)})\|^2 + \lambda \|\widehat{\boldsymbol{\delta}}^{(ag)} - \boldsymbol{\delta}^{(ag)}\| \le \frac{8s_0 \lambda^2}{\ell_F C_{\min}}.$$

Applying the RE condition again to the *l.h.s*, we get

$$C_{\min} \frac{\ell_F}{2} \| \boldsymbol{\delta}^{(ag)} - \widehat{\boldsymbol{\delta}}^{(ag)} \|_2^2 \le \frac{\ell_F}{n_0} \| X^{(0)} (\boldsymbol{\delta}^{(ag)} - \widehat{\boldsymbol{\delta}}^{(ag)}) \|^2 \le \frac{8s_0 \lambda^2}{\ell_F C_{\min}}$$

and therefore,

$$\|\boldsymbol{\delta} - \widehat{\boldsymbol{\delta}}\|_2^2 \le \frac{16s_0\lambda^2}{\ell_F^2 C_{\min}^2}.$$

# L Proof of Propositions 18 and 21

Proposition 36 gives a tighter bound for the estimation error of the debias term  $\hat{\delta}$  as  $n_0$  gets larger.

**Proposition 36** (Bias Correction Error). *Consider linear utility model with Assumptions* 1, 2, 3 and 4 holding true. There exist positive constants  $c_0$ ,  $c_3$ ,  $c_4$  such that, for  $n_0 \ge c_0 d$ , the following holds:

$$\mathbb{E}(\|\widehat{\boldsymbol{\delta}} - \boldsymbol{\delta}\|_{2}^{2}) \le c_{5} \frac{(s_{0} + 1) \log d}{n_{0}} + 4W^{2} e^{-c_{3} n_{0}^{2}}.$$

The proof follows Proposition 12 from Javanmard and Nazerzadeh [19]. Combining Propositions 33 and 36 using triangle inequality gives the stated result.

#### M Proof of Lemmas

#### M.1 Proof of Lemma 14

By Assumption 3 we have  $||\widehat{\boldsymbol{\beta}}^{(0)}||_1 \leq W$  and  $|x_t^{(0)} \cdot \widehat{\boldsymbol{\beta}}^{(0)}| \leq W$  for all t,k. The lemma holds beacause h is a continuous function and continuous functions on a closed interval are bounded.

# M.2 Proof of Lemma 15

Recalling the definition  $h(u) = u + \phi^{-1}(-u)$ , we have  $h'(u) = 1 - 1/\phi'(\phi^{-1}(-u))$ . Since  $\phi$  is strictly increasing by Assumption 1, we have h'(u) < 1.

#### M.3 Proof of Lemma 35

According to the definition of  $u_F$ , we have  $|\xi_t(\boldsymbol{\beta}^{(ag)})| \leq u_F$ . Further, recall that the sequences  $\{p_t\}_{t=1}^n$  and  $\{x_t\}_{t=1}^n$  are independent of  $\{\varepsilon_t\}_{t=1}^n$ . Therefore,  $\{u_t(\boldsymbol{\beta}^{(0)})\}_{t=1}^T$  and  $\{\varepsilon_t(\boldsymbol{\beta}^{(0)})\}_{t=1}^T$  are independent and by Equation 2, we have  $\mathbb{E}[\xi_t(\boldsymbol{\beta}^{(ag)})] = \mathbb{E}[\mathbb{E}[\xi_t(\boldsymbol{\beta}^{(ag)})|u_t(\boldsymbol{\beta}^{(ag)})]] = 0$ , which gives  $\mathbb{E}[\nabla L(\boldsymbol{\beta}^{(ag)})] = 0$ .

By applying Azuma-Hoeffding inequality to one of d coordinates of feature vectors,

$$\|\nabla L(\boldsymbol{\beta}^{(ag)}) - \mathbb{E}[\nabla L(\boldsymbol{\beta}^{(ag)})] \ge \alpha\| = \|\nabla L(\boldsymbol{\beta}^{(ag)}) \ge \alpha\| \le \exp\{\frac{-\alpha^2}{2\sum_{i=1}^{n_{\mathcal{K}}} \sigma_i^2}\} \le \frac{1}{d^2}$$

where  $\alpha = 2v_F \sqrt{n_K \log d}$ ,  $|\sigma_i| < v_F$ . Following a union bounding over d coordinates,

$$\|\nabla L(\boldsymbol{\beta}^{(ag)})\|_{\infty} = \mathbb{P}\left(\bigcup_{i=1}^{d} A_i\right) \le \sum_{i=1}^{d} \mathbb{P}(A_i) = \frac{1}{d}$$

The result follows.

# M.4 Proof of Corollary 17, 20 and 23

Here we provide the detailed proof for Corollary 17, which also works for Corollary 20 and 23.

We let  $\mathcal G$  be the event that Equation 17 holds true. Then by Proposition 16 we have  $\mathbb P(\mathcal G) \leq 1-2/d-2e^{-n_0/(c_0s_0)}$ .

$$\begin{split} \mathbb{E}(\|\widehat{\boldsymbol{\beta}} - \boldsymbol{\beta}^{(0)}\|_{2}^{2}) &= \mathbb{E}[(\|\widehat{\boldsymbol{\beta}} - \boldsymbol{\beta}^{(0)}\|_{2}^{2}) \cdot \mathbb{I}_{\mathcal{G}}] + \mathbb{E}[(\|\widehat{\boldsymbol{\beta}} - \boldsymbol{\beta}^{(0)}\|_{2}^{2}) \cdot \mathbb{I}_{\mathcal{G}^{c}}] \\ &\leq c_{1} \frac{d \log d}{n_{\mathcal{K}}} + c_{2} \frac{s_{0} \log d}{n_{0}} + 4W^{2} \mathbb{P}(\mathcal{G}^{c}) \\ &\leq c_{1} \frac{d \log d}{n_{\mathcal{K}}} + c_{2} \frac{s_{0} \log d}{n_{0}} + 4W^{2} \left(\frac{2}{d} + 2e^{\frac{-n_{0}}{c_{0}s_{0}}}\right). \end{split}$$