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Abstract

Graph Contrastive Learning (GCL) improves
Graph Neural Network (GNN)-based protein rep-
resentation learning by enhancing its generaliza-
tion and robustness. Existing GCL approaches
for protein representation learning rely on 2D
topology, where graph augmentation is solely
based on topological features, ignoring the in-
trinsic biological properties of proteins. Besides,
3D structure-based protein graph augmentation
remains unexplored, despite proteins inherently
exhibiting 3D structures. To bridge this gap, we
propose novel biology-aware graph augmentation
strategies from the perspective of invariance and
integrate them into the protein GCL framework.
Specifically, we introduce Functional Commu-
nity Invariance (FCI)-based graph augmentation,
which employs spectral constraints to preserve
topology-driven community structures while in-
corporating residue-level chemical similarity as
edge weights to guide edge sampling and main-
tain functional communities. Furthermore, we
propose 3D Protein Structure Invariance (3-PSI)-
based graph augmentation, leveraging dihedral
angle perturbations and secondary structure rota-
tions to retain critical 3D structural information
of proteins while diversifying graph views. Exten-
sive experiments on four different protein-related
tasks demonstrate the superiority of our proposed
GCL protein representation learning framework.
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Figure 1. Visualization of limitations in existing graph augmen-
tation approaches for protein representation learning. Figure (a)
shows a functional domain where nodes and edges are erroneously
removed during graph augmentation. Figure (b) depicts how tradi-
tional 3D augmentation with coordinate pernturbation distorts the
peptide plane and critical bond relationships. Figure (c) compares
the original protein structure (left) and its augmented views (right)
generated by SWISS-MODEL, a protein homology modeling tool.
High similarity limits diversity.

1. Introduction
Graph Neural Networks (GNNs) (Scarselli et al., 2009)
enable efficient protein representation learning by model-
ing proteins as graphs, where residues represent nodes and
bonds represent edges. GNN encoders map each protein into
a vector representation, which is then processed by a pre-
diction module to predict specific properties (Zhang et al.,
2023; Wang et al., 2023b). Graph Contrastive Learning
(GCL) enhances GNN-based protein representation learn-
ing in two ways: first, it improves the generalization and
robustness of GNNs through diverse protein graph augmen-
tation strategies; second, GCL effectively captures structural
patterns across different protein conformations, leading to
more discriminative protein representations (Li et al., 2022;
Wang et al., 2022a; Tan et al., 2024).

Current GCL approaches for protein representation learning
focus on 2D topology-based graph augmentation (Suresh
et al., 2021). They seek to minimize redundant infor-
mation while preserving essential information across aug-
mented views, assuming critical protein structures remain
unchanged (Suresh et al., 2021). For instance, Wei et al.
(2023) identify important edges between residues in a graph
by measuring their semantic impacts based on the gradients
of mutual information. Liu et al. (2022a) explores graph
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augmentation in the spectral space to preserve 2D protein
topology through eigen-value-based transformations. How-
ever, only focusing on topological structures tends to neglect
the inherent biological significance of proteins, which di-
lutes or even discards structural-functional associations tied
to protein functionality. As Figure 1 (a) shows, such graph
augmentation disrupts a functional domain which is essen-
tial for protein function (Heinemann et al., 2021).

Furthermore, while integrating 3D structural information
can enhance protein representation learning (Liu et al.,
2022b), 3D structure-based graph augmentation remains
unexplored. Although several 3D augmentation strategies
exist, they face challenges when applied to GCL for protein
representation learning: (1) applying traditional 3D augmen-
tation (e.g., random coordinate perturbations, anisotropic
scaling) (Hermosilla et al., 2021; Wang et al., 2023b) risks
protein structure disruption. As Figure 1 (b) shows, the pep-
tide plane is distorted by random coordinate perturbations,
affecting protein representation learning. (2) using protein
homology modeling tools like MODELLER (Eswar et al.,
2006) and SWISS-MODEL (Waterhouse et al., 2018) to
generate conformations (Li et al., 2022; Gao et al., 2023)
reduces structural diversity. As Figure 1 (c) shows, gener-
ated structures are nearly identical to original structures. It
could also introduce inaccurate protein structure (see Ap-
pendix A). Applying GCL with these compromised aug-
mentation graphs can result in learning representations of
biologically irrelevant proteins, undermining the model’s
performance on downstream tasks.

To address aforementioned issues, we incorporate biolog-
ical properties of proteins to guide graph augmentations,
thereby helping the GCL model learn accurate protein rep-
resentations. Specifically, we propose two biology-aware
graph augmentation strategies from the perspective of (i)
2D topology-based Functional Community Invariance (FCI)
and (ii) 3D Protein Structure Invariance (3-PSI) and inte-
grate them into a unified GCL framework for protein repre-
sentation learning. FCI ensures that functional communities,
i.e., clusters of spatially and chemically similar residues col-
laborating to enable specific functions, remain intact. It con-
siders both topological structures and chemical properties,
ensuring the preservation of proteins’ functional commu-
nities during graph augmentation. To generate augmented
graphs while preserving 3D-related information of protein,
3-PSI uses two distinct coordinate perturbation strategies:
(1) rotations of backbone dihedral angles, and (2) rotations
of secondary structures (α-helices and β-sheets), preventing
the disruption of peptide planes and secondary structures
during graph augmentation.

Main contributions of this research are summarized as:

• Based on the perspective of invariance, we propose two
novel biology-aware graph augmentation strategies to

preserve biological integrity within proteins.

• We develop a unified protein GCL framework that inte-
grates both graph augmentation strategies to facilitate
protein representation learning.

• Experimental results on four downstream protein-
related tasks highlight the superior performance of our
proposed GCL framework, demonstrating its effective-
ness in learning protein representations.

2. Related Work
Protein representation learning. Protein representation
learning methods can be broadly divided into two categories:
sequence-based and structure-based approaches (Quan et al.,
2024). Sequence-based methods primarily utilize word em-
bedding techniques to capture the semantic relationships be-
tween residues (Asgari & Mofrad, 2015; Yang et al., 2018;
Zhuo et al., 2024) and one-dimensional convolutional neu-
ral networks to extract local sequence patterns and motifs
(Hou et al., 2017; Tsubaki et al., 2018; Kulmanov & Hoehn-
dorf, 2019). For example, ProtBERT-BFD (Elnaggar et al.,
2020a) trained a BERT model on a large corpus of pro-
tein sequences and demonstrated superior performance by
capturing sequential dependencies and evolutionary rela-
tionships between residues. Structure-based approaches,
predominantly based on GNN, are more effectively lever-
age structural information, such as spatial relationships,
than sequence-based methods, enabling a more compre-
hensive understanding of protein structures (Zhang et al.,
2023; Wang et al., 2023b; Jamasb et al., 2024). For in-
stance, GraphTrans (Liu et al., 2022b) developed a graph
transformer architecture that processes protein structures
as spatial graphs to achieve state-of-the-art (SOTA) perfor-
mance in protein property prediction tasks. Our research
focuses on the latter.

Graph Contrastive Learning. GCL has been widely
adopted for enhancing GNN-based protein representation
learning (Li et al., 2022; Tan et al., 2024; Wang et al., 2025).
Current approaches focus on 2D topology-based graph aug-
mentations, altering graph structures through node and edge
modifications. Early methods, such as random node/edge
dropping (Zhu et al., 2020; You et al., 2020; 2021) of-
ten disrupted semantic integrity of proteins by removing
key residues and bonds. Recent methods enhance protein
semantic preservation via learnable distributions, mutual-
information gradients, adversarial training, and spectral con-
straints (Yin et al., 2021; Wei et al., 2023; Suresh et al.,
2021; Liu et al., 2022a; Lin et al., 2023a). However, their
focus on topology overlooks the biological significance of
functional communities, missing key protein features.

Despite proteins’ inherent 3D nature, 3D structure-based
protein graph augmentations remain unexplored. Existing
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3D augmentation strategies face challenges when applied
to GCL for protein representation learning: traditional 3D
augmentation methods, such as coordinate perturbations
and anisotropic scaling (Hermosilla et al., 2021; Wang et al.,
2023b; Feng et al., 2024), often disrupt peptide planes and
protein hierarchical structures, yielding biologically im-
plausible proteins; protein homology modeling tools (e.g.,
MODELLER (Eswar et al., 2006) and SWISS-MODEL
(Waterhouse et al., 2018)) generate structural variants as
augmented views (Li et al., 2022) with limited diversity or
inaccuracies, undermining the model’s performance.

In this work, we incorporate inherently invariant properties
of proteins into the augmented graphs and propose two
graph augmentation strategies: FCI and 3-PSI, improving
protein representation learning.

3. Preliminary
We employ GNN for its flexibility in integrating protein
topology and geometry.

Notations. Let G = (V, E ,P) be a protein graph with
n nodes (residues, each represented by its central carbon
atom Cα) and m edges, where V = {vi}ni=1 denotes
the set of nodes, and E = {eij} represents the set of
edges. P = {Pi}i=1,...,n denotes the set of position ma-
trices, where each Pi ∈ Rki×3 represents the position
matrix for node i. The protein graph construction, in-
cluding node features, edge features and rotational invari-
ance, are detailed in Appendix C.1. The graph can be
represented as adjacency matrix A ∈ {0, 1}n×n, where
Ai,j = 1 if an edge exists between node i and j, otherwise
Ai,j = 0. The normalized Laplacian matrix is defined as
Lnorm = Lap(A) = In −D−1/2AD−1/2, where In is an
identity matrix, D is a degree matrix, Di,i represents the
degree of node i, and Di,j = 0 if i ̸= j. The complement of
adjacency matrix is represented as Ac. Ac

i,j = 1 if an edge
does not exist between node i and j, otherwise Ac

i,j = 0.

Problem definition. A protein is represented as a quadru-
plet G = (V, E ,P,Y). Y is the set of labels. The
objective of protein classification is to learn a mapping
f : (V, E ,P) → Y .

Graph Contrastive Learning. GCL trains an encoder to
maximize the mutual information between an original graph
and its augmented view generated through graph augmen-
tation. Specifically, given an encoder Enc(·), a readout
function Readout(·) and an augmentation function t(G),
the training objective of GCL is expressed as:

min
Enc

LGCL (t (G) , G,Enc,Readout) (1)

= − 1

|G|

|G|∑
n=1

(
log

exp(sim(ẑn, zn))∑
n′ ̸=n exp(sim(ẑn, ẑn′))

)
,

where |G| is the number of samples, z is the graph embed-
ding after encoder and readout functions, ẑ is the embedding
of augmented graph, and sim(·, ·) is the similarity function
of two embeddings. LGCL quantifies the disagreement be-
tween graphs.

Graph Spectrum. The spectral decomposition of Lnorm is
defined as Lnorm = Lap(A) = UΛU⊤, where the diagonal
matrix Λ = eig (Lap (A)) = diag (λ1, . . . , λn) consists of
real eigenvalues {λi|i = 1, . . . , n}, known as the graph
spectrum. And U = [u1, . . . ,un] ∈ Rn×n are the corre-
sponding orthonormal eigenvectors known as the spectral
bases (Gene et al., 2013).

Key Protein-Related Terms. The hierarchical organization
of protein structure emerges from the interplay of several
fundamental elements. At its core, amino acid residues
serve as the basic building blocks, with their variable side
chains determining the chemical properties. These residues
are connected by peptide bonds, forming rigid peptide
planes that include the C − N bond and adjacent atoms
(Cα, C, N, and O). The spatial arrangement of these planes
is governed by dihedral angles (ϕ and ψ), which define the
backbone’s main conformation and give rise to distinct local
conformations along the polypeptide chain. These local
conformations are stabilized by hydrogen bonds leading
to the formation of common secondary structures such
as α-helices and β-sheets. The combination of these ele-
ments determines the overall protein conformation, the
three-dimensional shape that is essential for protein folding
and function, thus influencing classification. The details are
presented at Appendix B.

4. Methodology
In this section, we introduce two novel graph augmentation
methods based on 2D topology-based Functional Commu-
nity Invariance (FCI) in Sec 4.1 and 3D Protein Structure
Invariance (3-PSI) in Sec 4.2. The overview of both aug-
mentation methods is illustrated in Figure 2. Subsequently,
we integrate both proposed augmentation methods into a
unified GCL framework for protein representation learning
in Sec 4.3. The overall architecture is illustrated in Figure 3.

4.1. Functional Community Invariance

Within proteins, there are specific regions where residues
cluster together to form communities. These clustered
residues have similar chemical properties, collaborating to
enable specific functions, such as residues clustered around
active sites catalyzing enzymatic reactions (Mehta & Beck,
2014). Breaking such clusters during graph augmentation
fails to preserve proteins’ functionality and thus loses the
key information for protein prediction. To address this,
we introduce 2D topology-based Functional Community
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Protein 3D conformation

(a) Functional Community Invariance (FCI) (b) 3D Protein Structure Invariance (3-PSI)

Functional
Community

(2) α-helices and β-sheets rotation

(1) Dihedral angle rotation

GNN-constructed
edges

Backbone
edges

Ori. view

FCI view 3-PSI view

Figure 2. This is the overview of our proposed two invariance-based augmentation strategies. (a): FCI takes the adjacency matrix and
side-chain similarity as input, optimizing the probability matrix in the spectral space to generate augmentations that preserve functional
communities. (b): 3-PSI has two structure-invariance augmentation strategies: (1) Dihedral angle rotation that adjusts ϕ and ψ angles to
perturb residue coordinates while preserving peptide plane, and (2) α-helices and β-sheets rotation that maintains secondary structures.
Middle: The original protein structure with backbone edges and GNN-constructed edges.

Invariance (FCI) to graph augmentation in GCL, which con-
siders both topological structures and chemical properties
(Figure 2 (a)), ensuring the preservation of proteins’ func-
tional communities during augmentation. In the following
paragraphs, we formalize the FCI augmentation as an opti-
mization problem.

Augmentation Process. We first formulate the graph aug-
mentation process as sampling from a probability matrix
according to a Bernoulli distribution, t(G) = Bern(∆, ϵ),
where Bern(·) ∈ {0, 1}n×n is the sampling function from
Bernoulli distribution, ∆ ∈ [0, 1]n×n is the probability ma-
trix that represents the edge perturbation rates, and ϵ controls
the augmentation strength (the sampled number is less than
ϵ · m). By designing a proper probability matrix ∆, we
can ensure that key components of the graph are preserved
during the augmentation process.

CI-based Augmentation. To ensure the preservation of
community structure, we introduce Community Invariance
(CI)-based augmentation by controlling the spectral changes.
According to the upper and lower bounds of spectral changes
(Theorem 4.1), maximizing spectral changes involves max-
imizing their upper bound, which is achieved by flipping
edges with largest distance in spectral space. And nodes
with larger spectral distances typically belong to different
communities (proven in Appendix E.6).

Theorem 4.1. (Bounds of Spectral changes) For a single
edge perturbation Aij , it induces absolute spectral changes
given by

∑n
y=1 |∆λy| =

∑n
y=1 |(Uiy − Ujy)

2 + (λy −
1)(U2

iy + U2
jy)|. It is upper bounded by ∥Ui· −Uj·∥22 +∑n

y=1 |λy − 1| and lower bounded by ∥Ui· −Uj·∥22 −

∑n
y=1 |λy − 1|, respectively. Here, Ui· represents the i-

th row vector of U, denoting the i-th node embedding in the
spectral space.

Therefore, to preserve communities, we drop edges that
cause large spectral changes and add edges that cause small
spectral changes, i.e., dropping edges between communities
and adding edges within communities. The loss function of
Community Invariance is:

max
∆ED,∆EA

LCI(∆
ED,∆EA) = LED(∆

ED) − LEA(∆
EA), (2)

LED(∆
ED) = ∥eig(Lap(A−A ◦∆ED))− eig(Lap(A))∥22, (3)

LEA(∆
EA) = ∥eig(Lap(A+Ac ◦∆EA))− eig(Lap(A))∥22, (4)

where ◦ denotes element-wise product and Ac is to guide
edge addition operations. To achieve CI, we split the prob-
ability matrix ∆ to ∆ED and ∆EA for edge dropping and
edge adding, respectively.

FCI-based Augmentation. However, simply preserving
communities without considering chemical properties may
lead to incorrect assignment of residues with similar func-
tional roles to different communities. To address this issue,
we incorporate side-chains into CI-based augmentation, as
they reflect the chemical properties of residues (Guy, 1985;
Yan & Jernigan, 2005). Specifically, we calculate the simi-
larity between the side-chains of two residues to measure
their chemical similarities and use it as the edge weight. We
refer to this similarity as chemical similarity, which is com-
puted using side-chain embeddings vsc. These embeddings
use the sine and cosine values of the first four torsion angles
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χi as elements, following Wang et al. (2023b):

wij =
vsc,i · vsc,j

∥vsc,i∥∥vsc,j∥
, vsc = [sin(χi), cos(χi)]

4
i=1, (5)

where χi,1 and χi,2 denote the i-th torsion angles of residues
ri and rj , respectively.

Lemma 4.2. For weighted graphs, the absolute spec-
tral changes

∑n
y=1 |∆λy| during edge dropping are up-

per bounded by |wij | ·
(
∥Ui· −Uj·∥2 +

∑n
y=1 |λy − 1|

)
.

Here, wij is the weight of the dropped edge eij .

By introducing chemical similarity (weights) for edges, clus-
tering communities can better group residues that share
similar chemical properties, leading to more biologically
meaningful functional communities. According to Lemma
4.2, maximizing the spectral change during edge dropping
results in the removal of edges with large edge weights.
To ensure that edges with high chemical similarity are pre-
served while edges crossing functional communities are
removed, Function Community Invariance (FCI) is com-
puted as:

max
∆ED,∆EA

LFCI(∆
ED,∆EA) = L′

ED(∆
ED) − LEA(∆

EA), (6)

L′
ED(∆

ED) =
∥∥∥∆ED/W

∥∥∥2 · (7)∥∥eig(Lap(W −W ◦A ◦∆ED))− eig(Lap(W))
∥∥2
2
,

where the element of W is chemical similarity defined in
Eq. 5, the first term of L′

ED is for preservation of high
chemical similarity and the second term is for removal of
cross-community edges. LEA remains the same as in CI
since chemical similarity cannot affect edge adding. After
solving Eq. 6, the augmented view is sampled by: t(G) =
A−A ◦Bern(∆ED, ϵ) +Ac ◦Bern(∆EA, ϵ).

4.2. 3D Protein Structure Invariance

Exploring diverse 3D protein structures benefits models
in understanding protein conformations and enhances the
learning of protein representation. However, existing 3D
augmentation methods applied for protein graph augmenta-
tion, such as ordinate perturbations and anisotropic scaling,
disrupt essential structural features, including peptide planes
and key secondary structures like α-helices and β-sheets.
Consequently, these disruptions in protein structures lead the
model to learn inaccurate 3D spatial relationships between
residues, degrading its performance on downstream tasks.
To alleviate this problem, we propose 3-PSI, a novel graph
augmentation method that incorporates two types of 3D
protein structure invariance. As illustrated in Figure 2 (b),
3-PSI includes Dihedral Angle Rotation (3-PSIDiag) and
α-helices and β-sheets Rotation (3-PSIAlpha). These strate-
gies make use of the flexible and dynamic nature of proteins

in native states (Mishra & Jha, 2022), and reduce disrup-
tions to the primary and secondary structures of proteins,
preserving the integrity of proteins as much as possible.

Dihedral Angle Rotation. The protein backbone consists
of repeating N−Cα −C units, with its folding largely gov-
erned by the backbone dihedral angles ϕ and ψ (Jha et al.,
2005). Directly perturbing absolute atomic coordinates dis-
rupts the integrity of peptide planes and eventually disrupts
hydrogen bond networks (Liwo et al., 1993; Nisius & Grze-
siek, 2012). To mitigate this issue, we propose 3-PSIDiag,
which applies guided and constrained rotations to dihedral
angles, preserving the relative integrity of peptide planes.
Specifically, we introduce small perturbations ∆ϕ and ∆ψ:

ϕ(new) = ϕ(old) +∆ϕ, ψ(new) = ψ(old) +∆ψ (8)

while ensuring that
(
ϕ(new), ψ(new)

)
remains within the al-

lowed Ramachandran region (Ramachandran et al., 1963),
thereby maintaining the energetic feasibility of the perturbed
protein structure. After perturbing the dihedral angles, the
coordinates of residues are adjusted correspondingly. It min-
imizes disruption to hydrogen bonds and secondary structure
interfaces, avoiding generating unrealistic protein structures.

α-helices and β-sheets Rotation. Proteins have well-
defined secondary structures, primarily α-helices and β-
sheets, which maintain protein stability and facilitate es-
sential functions (Stanger et al., 2001). Existing 3D aug-
mentation methods often disrupt the integrity of secondary
structures, resulting in the learning of biologically irrelevant
protein representations. To address this issue, we introduce
3-PSIAlpha, a controlled rotation method for α-helices and
β-sheets to preserve essential secondary structures through-
out the augmentation process. Specifically, we first identify
the secondary structures in a protein (i.e., α-helices and β-
sheets) using the DSSP algorithm (Kabsch & Sander, 1983).
Each secondary structure is approximated as a planar region,
with its corresponding normal vector denoted as ni. We
define the rotation axis of two adjacent secondary structures
as the cross product of their normal vectors:

a = ni × nj (9)

where × denotes the cross product operation, ensuring that
a is perpendicular to both planes. A small random rotation
angle θ is then sampled from a uniform distribution to de-
termine the extent of the opening or closing motion around
a: θ ∼ U(−θmax, θmax). This controlled rotation ensures
that secondary structures remain intact while introducing
realistic conformational variations. A 3D rotation about
the axis a by the angle θ can be described by the standard
Rodrigues rotation matrix Ra,θ. For a unit axis â = a

||a|| ,
Ra,θ is given by:

Râ,θ = I cos θ + (1− cos θ) â âT + [â]× sin θ, (10)
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where [â]× denotes the skew-symmetric matrix, as given in
Appendix C.3. Next, we randomly select n secondary struc-
tures and rotate them around a by the angle θ. This ensures
that the secondary structure is preserved while still keep
meaningful 3D structure perturbations for augmentation.

Pooling

Ori. view

FCI view

3-PSI view

4×

FC

C
lassification

C
ontrastive
learning

G
N
N

encoder

ℒCE
Protein 3D

conformation ℒGCL

Figure 3. The architecture begins with three views of input graphs:
the original view and two augmented views (FCI and 3-PSI).

4.3. Optimization

We follow the GCL framework introduced in Sec 3, where
the original view and augmentation views (FCI and 3-PSI)
are passed through the GNN encoder, as illustrated in Fig-
ure 3. Following Fan et al. (2023)’s work, each view un-
dergoes four hierarchical pooling operations, with all views
sharing the same GNN encoder at each hierarchical level.
The output from the final GNN encoder represents each
view and is used for contrastive learning. The original view
also serves as input for downstream tasks. The GNN en-
coders are optimized using a combination of GCL loss and
classification loss, defined as follows:

LALL = LCLS + λ(L(FCI)
GCL + L(3-PSI)

GCL ), (11)

where LCLS is the classification loss1, L(·)
GCL is the GCL

loss based on different augmentation methods, and λ is the
weight to balance the GCL and classification loss. 3-PSI
augmentation is selected either by 3-PSIDiag or 3-PSIAlpha.
Details of the GNN encoder can be found in Appendix C.4.

5. Experiments
5.1. Experimental Settings

Tasks. Building upon the evaluation protocols of Fan
et al. (2023), we assess the effectiveness of our approach
across four protein-related tasks: Protein Fold Classification
(FOLD), Enzyme Reaction Classification (Reaction), Gene
Ontology Term Prediction (GO), and Enzyme Commission
(EC) number prediction. For FOLD, we evaluate perfor-
mance under three scenarios: fold, superfamily, and family
classification. For GO, we assess performance across three
sub-tasks: biological process (BP), molecular function (MF),

1Following (Fan et al., 2023), we use NLL loss for single-label
protein classification tasks (RC and FOLD) and BCE loss for
multi-label protein classification tasks (GO and EC).

and cellular component (CC) ontology term prediction. De-
tails of tasks and datasets are provided in Appendix D.1.

Evaluation Metrics. FOLD and Reaction are single-label
classification tasks, where accuracy serves as the evaluation
metric. GO and EC are multi-label classification tasks,
evaluated using the protein-centric maximum F-score Fmax,
as detailed in Appendix D.2.

Comparison Methods. We evaluate different combinations
of all the proposed augmentation strategies and conduct ab-
lation studies on each strategy to validate their effectiveness.
For a comprehensive comparison, we select various SOTA
methods from different categories as baselines. Protein-
specific methods: GVP (Jing et al., 2021), GraphQA (Bal-
dassarre et al., 2020), 3DCNN (Derevyanko et al., 2018),
IEConv (Hermosilla & Ropinski, 2022), GearNet (Zhang
et al., 2023), ProNet (Wang et al., 2023b), CDConv (Fan
et al., 2023); 2D topology-based GCL: GraphCL (You
et al., 2020), Auto-GCL (Yin et al., 2021), MolCLR (Wang
et al., 2022b), T-MGCL (Guan & Zhang, 2023) GCL-Span
(Lin et al., 2023a), GCS (Wei et al., 2023), CI-GCL (Tan
et al., 2024); 3D structure-based GCL: protein homology
modeling tool-based augmentation (Model. Tool) (Water-
house et al., 2018), and traditional 3D augmentation (Trad.
3D) (Wang et al., 2023b). To our best knowledge, few GCL
methods have been specifically designed for proteins. There-
fore, we have additionally included two GCL approaches
designed for molecules and leveraged their methodological
concepts. We adopt a hierarchical Graph Convolutional
Network (GCN) serving as the backbone (encoder) for all
implemented GCL methods. Details of the baselines and
training setup are in Appendix D.3 and C.2, respectively.

5.2. Quantitative Results

We summarize the performance comparison of different
combinations of FCI and 3-PSI augmentations2 across four
tasks in Table 9. Extra quantitative results are provided
in Appendix F. “Backbone” is learning without any graph
augmentation and only supervised by classification loss.

Compared to 2D topology-based GCL approaches, our pro-
posed FCI consistently enhances performance across all
tasks. Notably, it surpasses the best 2D topology-based
GCL method, achieving a 4.4% relative gain in GOCC.
These results suggest that relying solely on 2D topological
information may be insufficient for comprehensive protein
representation learning. By preserving functional commu-
nity information in augmented graphs, FCI enhances protein
representation learning, leading to improved performance.

Compared to 3D graph augmentation methods, our proposed
3-PSIDiag and 3-PSIalpha yield consistent improvements

2Since combining both 3-PSIDiag and 3-PSIAlpha would dis-
rupt the protein structure, we use them separately.
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Table 1. This table shows the comparison of protein-specific methods, graph contrastive learning approaches (both 2D topology-based and
3D structure-based) and our proposed GCL approach on various protein-related tasks. We report the maximum of F1 score (Fmax) for
Enzyme Classification (EC) and Gene Ontology (GO) prediction tasks; and Top-1 accuracy (%) for Fold and Reaction classification tasks.
The performance of CDConv is from our reproduction, while other baseline results are from Fan et al. (2023).

Method EC GO FOLD ReactionBP MF CC Fold Super. Fam. Avg.

Pr
ot

ei
n-

sp
ec

ifi
c

GVP 0.489 0.326 0.426 0.420 16.0 22.5 82.8 40.4 65.5
3DCNN 0.077 0.240 0.147 0.305 31.6 45.4 92.5 56.5 72.2
GraphQA 0.509 0.308 0.329 0.413 23.7 32.5 84.4 46.9 60.8
IEConv - 0.421 0.624 0.431 47.6 70.2 99.2 72.3 87.2
GearNet-Edge-IEConv 0.810 0.400 0.581 0.430 48.3 70.3 99.5 72.7 85.3
ProNet - - - - 52.7 70.3 99.3 74.1 86.4
CDConv 0.870 0.450 0.652 0.475 56.9 76.7 99.5 77.0 88.6

2D
To

po
.G

C
L GraphCL 0.860 0.432 0.644 0.432 56.9 77.8 99.2 77.9 86.7

Auto-GCL 0.852 0.436 0.641 0.417 53.6 72.1 99.1 74.9 86.1
MolCLR 0.869 0.443 0.623 0.455 54.0 77.9 99.5 77.1 87.7
T-MGCL 0.843 0.422 0.628 0.468 55.0 77.6 99.5 77.3 85.3
GCL-Span 0.859 0.434 0.650 0.419 58.2 79.1 99.4 78.9 86.1
GCS 0.864 0.440 0.645 0.437 54.7 75.8 99.2 76.5 87.1
CI-GCL 0.870 0.440 0.651 0.453 57.5 79.2 99.5 78.7 86.6

3D

Trad. 3D Aug. 0.870 0.432 0.645 0.420 56.6 78.5 99.4 78.1 86.5
Auto. Tool Aug. 0.863 0.439 0.643 0.435 56.1 77.7 99.4 77.4 86.3

O
ur

s
(A

bl
at

io
n) Backbone 0.853 0.437 0.642 0.432 56.5 76.9 99.3 77.8 86.3

+ FCI 0.878 0.446 0.656 0.473 58.7 79.4 99.5 79.2 87.2
+ 3-PSIDiag 0.873 0.449 0.654 0.468 58.1 78.6 99.5 78.7 86.9
+ 3-PSIAlpha 0.874 0.444 0.652 0.453 56.7 80.4 99.5 78.8 88.3
+ 3-PSIDiag + FCI 0.883 0.461 0.662 0.484 58.9 81.3 99.7 80.0 87.8
+ 3-PSIAlpha + FCI 0.885 0.454 0.659 0.477 59.8 80.8 99.5 80.0 89.0

across all tasks. In particular, 3-PSIDiag achieves relative
improvements of 11.4% in GOCC while 3-PSIalpha shows
relative improvements of 2.1% in Reaction compared with
best-performing baselines. These improvements stem from
the ability of 3-PSIDiag and 3-PSIAlpha to preserve es-
sential protein structural information in augmented graphs,
unlike traditional 3D augmentation methods that risk struc-
tural disruption or lack conformational diversity.

Our combined graph augmentation approaches (3-PSIDiag
+ FCI and 3-PSIAlpha + FCI) achieves substantial improve-
ments over all three categories of baselines. These com-
prehensive results highlight the synergistic effect of inte-
grating both augmentation strategies, as they complement
each other in preserving biological properties of proteins.
By maintaining both functional communities and protein
3D structural integrity, our approach generates graphs with
enriched protein properties, enabling models to learn better
protein representations and enhancing the performance.

5.3. Effect of Augmentation Strength

In this section, we evaluate the effect of augmentation
strength of our framework in 2D topology-based and 3D

structure-based graph augmentations, using the optimal
framework setting for each task (e.g., 3-PSIAlpha + FCI
for EC, 3-PSIDiag + FCI for GO). The complete results are
provided in Appendix F.6.

2D Augmentation Strength Analysis. For 2D augmenta-
tion comparison, we select GraphCL as the baseline, which
randomly drops and adds edges during augmentation. As
illustrated in Figure 4, we vary the augmentation strength
ϵ from 0.1 to 0.4, as performance degradation becomes
significant beyond this range. Our approach consistently
outperforms random augmentation, showing superior perfor-
mance and stability across different strengths. Furthermore,
the results suggest that an optimal ϵ is critical for generating
effective graph views in GCL, as it balances augmentation
diversity with the preservation of essential graph properties.
The default ϵ for different tasks is provided in Appendix C.2.

3D Rotation Strength Analysis. While our proposed α-
helices and β-sheets rotation preserves protein secondary
structures, we vary the number of rotation operations from
1 to 5 across different tasks, as the number of rotations
directly influences augmentation strength. As illustrated
in Figure 5, we observe that FOLD and GOBP achieve
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Figure 4. Performance comparison between GraphCL and our
approach under different graph augmentation strengths ϵ (0.1-0.4).

optimal performance with 2 rotations; Reaction and GOCC
perform best with 3 rotations. These findings highlight that
optimal augmentation strength (2-3 rotations) provides a
balance between diversity and fidelity of protein structure.
Additionally, the augmentation strength should be selected
based on the specific requirements of each task, as too few
rotations may not provide sufficient diversity, while rotating
excessively can potentially distort the protein structure. The
default number of rotations for different tasks is provided in
Appendix C.2.
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Figure 5. Performance analysis under varying rotational strengths
of α-helices and β-sheets across protein-related tasks.

5.4. Qualitative Evaluation

In this section, we analyze the robustness of our proposed
method, the sensitivity of parameter, and the visualization
of representation.

Robustness Analysis. In practical application, the pro-
tein structures of test data may undergo structural changes
in response to environmental factors such as pH, temper-
ature, or the presence of specific ions (Wang et al., 2008).
This variability poses a challenge to the model’s robustness
against structural fluctuations during testing. To system-
atically evaluate such robustness of our proposed method,
we randomly select a proportion (10% to 50%) of residues
within each protein sample in the test set and apply rota-
tional transformations to these residues along with their
connected segments, mimicking intrinsic structural fluc-
tuations in proteins. Higher proportion of transformed
residues represents more significant structural deviations
from the initial structure. We compare our method with
three strong baselines: Trad. 3D Aug., CDConv and CI-

GCL. As presented in Figure 6, our method consistently
outperforms baseline methods across all tasks, particularly
at higher proportions, demonstrating strong robustness un-
der high-noise conditions. While all methods experience
performance degradation as the proportion increases, our
approach exhibits less decline, maintaining ∼ 5% better
performance—particularly in the Reaction task—compared
to the strongest baseline, Trad. 3D Aug.

0.1 0.2 0.3 0.4 0.5
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F m
ax
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Trad3D 3DCov CI-GCL Ours

Figure 6. Robustness analysis of models under varying proportion
(0.1-0.5) of residues within protein structure. (a) EC, (b) RC.

Recognizing that the resolution of protein data can present
a challenge and affect precision, it is crucial to validate
the robustness of our approach. Therefore, we provide a
specific robustness test designed to evaluate the performance
of our method confronted with input protein data of varying
resolutions. We follow the resolution classification proposed
by Rupp (2009) and divide the test set into low-resolution
(≥3 Å) and high-resolution (<3 Å) structures for three tasks
(we cannot retrieve resolution of data in Fold task). Results
are displayed in Table 2. The superior performance of our
proposed method on low-resolution structures indicates that
the model does not overfit to fine-grained coordinate noise
but instead learns invariant features critical for function
prediction. This behavior demonstrates strong robustness
and generalization across inputs of varying quality.

Table 2. Evaluation of robustness to input resolution across various
protein function prediction tasks.

Resolution EC GO-BP GO-MF GO-CC Reaction

Low 0.903 0.485 0.648 0.504 0.921
High 0.888 0.465 0.687 0.463 0.894

Sensitivity Study. To evaluate the influence of weighting
parameter λ on model performance, we conducted a sensi-
tivity analysis, the results of which are presented in Table 3.
The results demonstrate that model performance exhibits
only slight fluctuations across different λ values, with λ=1
generally yielding superior performance on the majority of
metrics. This low sensitivity to λ indicates that the model
is relatively robust to this hyperparameter, suggesting a
straightforward optimization process. The complete results
are presented in Table 10.

Visualization of Representation Learning. We use UMAP

8
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Table 3. Performance of the proposed method using various values
for the hyperparameter λ in the loss function. Optimal scores are
highlighted in bold.

λ EC GO-BP GO-MF GO-CC

V
al

ue

0.2 0.882 0.451 0.656 0.467
0.6 0.879 0.443 0.658 0.479
1.0 0.885 0.461 0.662 0.484
1.4 0.880 0.457 0.649 0.489
1.8 0.877 0.448 0.653 0.475

projection (McInnes et al., 2018) to visualize learned rep-
resentations for the Reaction task, comparing our method
with the best-performing baseline (Trad.3D Aug.) to assess
representation quality. To demonstrate results clearly, we
randomly select 6 classes from Reaction task, each contain-
ing more than 20 samples. As visualized in Figure 7, 3-
PSIAlpha+FCI exhibits more distinct and compact clusters,
with clearer boundaries. In contrast, Trad.3D Aug. shows
more scattered distribution patterns with noticeable overlap
between classes. Quantitatively, 3-PSIAlpha+FCI achieves
both tighter intra-class clustering (distance: 19.90 vs 25.21)
and better inter-class separation (distance: 43.33 vs 42.11),
indicating its superior protein representation learning.

Average Intra-class Distance: 25.21
Average Inter-class Distance: 42.11

Average Intra-class Distance: 19.90
Average Inter-class Distance: 43.33

Trad. 3D Aug. 3-PSIAlpha + FCI

Figure 7. UMAP projection of learned protein representations
with quantified intra-class and inter-class distances, comparing
3-PSIAlpha+FCI and Trad.3D Aug. approaches.

5.5. Analysis on Complexity

Here we provide the scalability and complexity analysis
of our proposed approach. For FCI, preprocessing centers
requires computing a probability matrix once, which guides
edge perturbations during training. This involves spectral de-
composition using the Lanczos algorithm, which efficiently
reduces the complexity from O(N3

r ) to O(NrK), where
Nr is the average number of residues per graph andK is the
number of selected eigenvalues. With this matrix precom-
puted, FCI’s augmentation during training (which samples
edges based on this matrix) can achieve a highly efficient
O(1) time complexity. The augmentation operations are
accelerated by NumPy’s SIMD vectorization. Given that

most of the training time is typically consumed by the GNN
encoder, FCI demonstrates good scalability. For 3-PSI, its
preprocessing is performed once per protein structure to de-
termine dihedral angles and secondary structures with a time
complexity of O(Nr), where Nr is the number of residues.
During training, 3-PSI’s 3D augmentation perturbs residues,
also incurring an O(Nr) time complexity. The memory
footprint for this augmentation scales as O(B · Nr), with
B denoting the batch size. Despite the linear time complex-
ity for augmentation, these operations benefit significantly
from NumPy’s SIMD vectorization, leading to fast practi-
cal runtime. The resulting performance improvements are
considered a justifiable trade-off for additional training time.

5.6. Exploration on Ligand Binding Affinity

Since protein structure and functionality are preserved, this
motivates an assessment of the model’s performance on
ligand binding affinity datasets. Here, we briefly explore
our best setting model on ligand binding affinity task on
PDBbind dataset (Liu et al., 2014). We select a representa-
tive baseline Holoprot-Superpixel (Somnath et al., 2021) for
comparison and results are represented at Table 4. Results
demonstrate that our 3-PSIAlpha + FCI model achieves
competitive performance. This superiority underscores the
robustness and effectiveness of our approach in learning
meaningful protein representations that can be successfully
applied to predict complex biomolecular interactions.

Table 4. Model performance comparison on ligand binding affinity
task. Model performance comparison. Metrics are abbreviated as
follows: R. (RMSE: lower is better), P. (Pearson: higher is better),
and S. (Spearman: higher is better). The first three metrics are
evaluated at 30% sequence identity, while the last three are at 60%.

Method R.↓ P.↑ S.↑ R.↓ P.↑ S.↑

Holoprot-Superpixel 1.491 0.491 0.482 1.416 0.724 0.715
3-PSIAlpha + FCI 1.462 0.515 0.510 1.383 0.753 0.749

6. Conclusion
In this work, we address two key limitations in current GCL
approaches for protein representation learning: the lack of
biologically meaningful 2D topology-based augmentation
and the lack of exploring in 3D protein structural graph
augmentation. Specifically, we propose two biology-aware
graph augmentation strategies from an invariance perspec-
tive: 2D topology-based Functional Community Invariance
(FCI) and 3D Protein Structure Invariance (3-PSI), integrat-
ing them into a unified GCL framework for protein represen-
tation learning. Extensive experiments on four widely used
protein benchmarks demonstrate that these biology-aware
graph augmentation strategies consistently enhance perfor-
mance across multiple protein prediction tasks, validating
their effectiveness in protein representation learning.
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Impact Statement
This work advances protein representation learning by intro-
ducing biologically-aware graph augmentation methods that
preserve important structural and functional properties of
proteins. We elaborate on the broader impacts of our work
from the following two aspects: (1) Better preservation of
protein integrity during graph augmentation, reducing the
risk of learning biologically implausible representations;
(2) A framework that bridges topology-based and structure-
based protein analysis, potentially enabling new insights
into protein related tasks. This paper presents work whose
goal is to advance the field of Machine Learning. There
are many potential societal consequences of our work, none
which we feel must be specifically highlighted here.
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A. Augmentation with Homology Modeling
Homology modeling is a computational technique that predicts protein 3D structures by identifying and leveraging structural
templates from homologous proteins with known conformations (Chothia & Lesk, 1986). For our implementation, we
employ SWISS-MODEL (Waterhouse et al., 2018) for homology modeling and visualize the results using ChimeraX (Meng
et al., 2023). The effectiveness of homology modeling varies significantly with template availability. In the upper panel of
Figure 8 (’Matched’ case), we demonstrate cases where high-identity templates exist (demonstrated with Protein IDs: 1AD6
and 9PCY). Here, we can compare multiple predicted structures against their known original structures, revealing high
structural similarity regardless of which template is used. This consistency, while validating the prediction accuracy, also
indicates limited structural diversity in the augmented outcomes. The lower panel illustrates a more challenging scenario
(’Unmatched’ case) using artificially constructed protein sequences that simulate novel proteins without known structures.
For each sequence, we designate the prediction from the highest-identity template as a reference structure for comparison.
Due to the lack of high-identity templates, these predictions, even when compared to their respective references, exhibit
substantial variations in both local secondary structures and global folds, demonstrating the inherent uncertainty in structure
prediction when suitable templates are scarce. It also raises concerns about whether such structural uncertainty would impact
the reliability and effectiveness of graph augmentation.

Original (1AD6) Predicted (2r7g.1.A) Predicted (3pom.1.A) Predicted (P06400.1.A)

Original (9PCY) Predicted (P00292.1.A) Predicted (1ag6.1.A) Predicted (1byp.1.A)

Reference (7rgs.1.A) Predicted (2dlx.1.A) Predicted (3m1c.1.B) Predicted (1jj7.1.A)

Reference (5ell.1.A) Predicted (2ag8.1.B) Predicted (3hrk.1.B) Predicted (7pli.2.C)

M
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U
nm
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Figure 8. Structural variations in SWISS-MODEL predictions. Upper panel: Known proteins (1AD6 and 9PCY) serve as references to
evaluate multiple predictions using different templates (template IDs in parentheses), showing high consistency across predictions. Lower
panel: For each artificial sequence, the prediction using the highest-identity template is labeled as a reference, with subsequent predictions
demonstrating structural diversity arising from template scarcity.
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B. Key Terms Related to Protein
Amino Acid Residue: An amino acid residue refers to a single amino acid unit within a polypeptide chain, formed after the
loss of water during peptide bond formation. Residues are the basic units of protein sequences and structures, playing a key
role in all four tasks: FOLD, Reaction, GO, and EC, as their properties and arrangements determine protein function and
classification (Glaser et al., 2001; Doncheva et al., 2011).

Dihedral Angle: A dihedral angle (or torsion angle) describes the rotation around a bond in a protein backbone, such as the
phi (ϕ) and psi (ψ) angles. These angles define the spatial arrangement of the polypeptide chain. Dihedral angles determine
protein folding patterns and are crucial for predicting protein structure in tasks like FOLD and GO (Betancourt & Skolnick,
2004; Wood & Hirst, 2005).

Hydrogen Bond: A hydrogen bond is a weak electrostatic interaction between a hydrogen atom (bound to an electronegative
atom like nitrogen or oxygen) and another electronegative atom. In proteins, hydrogen bonds stabilize secondary structures
like α-helices and β-sheets. Hydrogen bonds are essential for maintaining protein structure and function, directly impacting
tasks like FOLD and Reaction (Sticke et al., 1992; Derewenda et al., 1995).

Peptide Plane: The peptide plane refers to the rigid, planar structure formed by the peptide bond (C-N) and its adjacent
atoms (Cα, C, N, and O) in a protein backbone. This planar structure is a fundamental unit of protein conformation. The
peptide plane’s rigidity influences protein folding and secondary structure formation, which are critical for tasks like FOLD
and GO (Roterman, 1995; Hus et al., 2008).

Protein Conformation: Protein conformation refers to the three-dimensional shape or spatial arrangement of a protein,
determined by the rotation of bonds and interactions between amino acids. Protein conformation is critical for all four tasks
(FOLD, Reaction, GO, and EC) as it determines structural, functional, and interaction properties of proteins (Goh et al.,
2004; Berkholz et al., 2009).

Secondary Structure: The secondary structure of a protein refers to local, repetitive conformations of the polypeptide chain,
primarily α-helices and β-sheets, stabilized by hydrogen bonds. Secondary structures are the building blocks of protein
folds and are directly relevant to tasks like FOLD and EC, as they influence enzyme active sites and catalytic mechanisms
(Jones, 1999; Rost, 2001).

Side Chain: The side chain (or R-group) is the variable part of an amino acid that extends from the backbone. Side chains
determine the chemical properties and interactions of amino acids. Side chains are critical for protein function, including
enzyme catalysis and binding, making them essential for tasks like Reaction and EC (Janin et al., 1978; Maier et al., 2015).

C. Details of Implementation
C.1. Graph Construction

The node feature is derived from the Torch Embedding function 3 of residue types. Additionally, we incorporate the side
chain embeddings vsc for each residue to enrich biological information in GNN representations. To achieve rotational
invariance, we adopt the relative spatial encoding scheme from Fan et al. (2023) to construct edge features. For edge
features between nodes i and j, we combine sequence information from the original dataset with three spatial components:
the normalized relative position vector, its projection in the local coordinate system, and the pairwise distance, ensuring
protein structure representation remains invariant under global rotations.

C.2. Details of Training Setup

Our approach is implemented using the PyTorch framework 2.1.0 and the PyTorch-Geometric library 2.6.0. The CUDA
version is 12.4. It is trained on RTX 3090 GPUs. We utilize the SGD optimizer with a momentum of 0.9, a learning rate of
1e-2, and a weight decay of 5e-4. The initial graph construction radius is set to 4. All results are averaged over 5 runs with
different random seeds. The training batch sizes for each task are as follows: FOLD (16), Reaction (32), GOCC (32), GOMF
(24), GOBP (24), and EC (32). We simply set the weight of GCL loss to lambda=1 in our objective function throughout
our experiments. For the augmentation strength of FCI, we set ϵ = 0.2 for GO, EC, and Reaction, and ϵ = 0.3 for FOLD.
For the augmentation strength of 3-PSIAlpha, we set 2 rotations for EC, GOBP, and FOLD, and 3 rotations for GOCC and

3https://pytorch.org/docs/stable/generated/torch.nn.Embedding.html
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Reaction. For 3-PSIDiag, we perturb all dihedral angles.

C.3. Details of Skew-symmetric Matrix

Here is the detail of the skew-symmetric matrix [â]× in Sec 4.2:

[â]× =

 0 −nz ny
nz 0 −nx
−ny nx 0

 .
C.4. Details of The Backbone

We implement an Edge-aware Graph Convolutional Network (EdgeGCN) as our GNN encoder. It incorporates edge features
into the message-passing framework. The encoder consists of L stacked EdgeGCN layers, where each layer performs the
following operations:

h
(l+1)
i =

∑
j∈N (i)

h
(l)
j ⊙Weeij (12)

where h(l)
i denotes the node features of node i at layer l, N (i) represents the neighborhood of node i, eij is the edge feature

vector between nodes i and j, and We is a learnable edge transformation matrix. The operator ⊙ denotes element-wise
multiplication.

We introduce a structure-aware graph pooling mechanism from (Fan et al., 2023) that hierarchically reduces graph resolution
while preserving critical structural information in protein graphs. The pooling operation is guided by sequence indices to
ensure biologically meaningful node clustering. The pooling process first establishes clustering assignments by halving
sequence indices, effectively grouping adjacent nodes in the protein chain. Within each formed cluster, the pooling
mechanism aggregates different node attributes through specialized operations: node features and 3D coordinates are
averaged to maintain spatial information, orientation vectors are averaged and re-normalized to preserve valid directional
information, and sequence information is preserved through maximum pooling. This pooling strategy reduces the graph
resolution by approximately half at each level while preserving the essential structural relationships, enabling the network to
build hierarchical representations at multiple scales.

D. Details of Datasets, Evaluation, and Baselines
D.1. Details of Tasks and Datasets

We use the same dataset settings as the previous work (Fan et al., 2023), and the details are shown as follows:

Protein Fold Classification. Protein fold classification is crucial for understanding the relationship between protein structure
and evolution. Fold classes capture secondary structure compositions, orientations, and connection orders. Following
Hermosilla et al. (2021), we conduct fold classification using the SCOPe 1.75 dataset (Hou et al., 2018), comprising
16,712 proteins across 1,195 fold classes. The 3D coordinates are derived from the SCOPe 1.75 database (Murzin et al.,
1995). The dataset provides three evaluation scenarios: Fold: Excludes proteins from the same superfamily during training;
Superfamily: Excludes proteins from the same family during training; Family: Includes proteins from the same family
during training. Mean accuracy is used as the evaluation metric.

Enzyme Reaction Classification. This task involves classifying enzyme-catalyzed reactions based on all four levels
of the Enzyme Commission (EC) number (Webb, 1992), representing a protein function classification problem. We
utilize the dataset by Hermosilla et al. (2021), which includes 384 four-level Enzyme Commission classes and comprises
29,215/2,562/5,651 proteins for training/validation/test, respectively. Mean accuracy is the evaluation metric.

Gene Ontology Term Prediction. This multi-label classification task predicts protein functions through Gene Ontology
terms, organized into three hierarchical ontologies: biological process (BP, 1,943 classes), molecular function (MF, 489
classes), and cellular component (CC, 320 classes). Using the dataset from (Gligorijević et al., 2021), we train/validate/test
on 29,898/3,322/3,415 proteins, respectively. The Fmax metric (Fan et al., 2023) is used for evaluation.

18



Invariance-Enhanced Protein GCL

Enzyme Commission Number Prediction. This multi-label task predicts three-level and four-level EC numbers across 538
classes. Using the dataset from Gligorijević et al. (2021), we train/validate/test on 15,550/1,729/1,919 proteins, respectively.
The Fmax metric is applied for evaluation. For GO term and EC number prediction, we adhere to the multi-cutoff splits from
Gligorijević et al. (2021), ensuring the test set only includes PDB chains with a sequence identity ≤ 95% to the training set,
consistent with Zhang et al. (2023); Fan et al. (2023).

D.2. Details of Evaluation Matrix Fmax

Multi-label classification can be interpreted as a set of binary classification tasks. The protein-centric maximum F-Score
(Fmax), as defined by Gligorijević et al. (2021), is used to evaluate the accuracy of multi-label classification. Given a
decision threshold λ ∈ [0, 1], let pji denote the predicted probability for the j-th class of the i-th protein, bji ∈ {0, 1} be
the corresponding binary class label, and J be the total number of classes. The precision and recall for the i-th protein are
calculated as follows, following the approach described in (Fan et al., 2023):

precisioni(λ) =

∑J
j=1(p

j
i ≥ λ) ∩ bji∑J

j=1(p
j
i ≥ λ)

, recalli(λ) =

∑J
j=1(p

j
i ≥ λ)∑J

j=1 b
j
i

.

The average precision and recall across all proteins are then defined as:

precision(λ) =
∑N

i=1 precisioni(λ)∑N
i=1

(
(
∑J

j=1(p
j
i ≥ λ)) ≥ 1

) , recall(λ) =
∑N

i=1 recalli(λ)
N

.

Finally, Fmax is calculated as the maximum F-Score across all thresholds λ ∈ [0, 1]:

Fmax = max
λ∈[0,1]

{
2× precision(λ)× recall(λ)

precision(λ) + recall(λ)

}
.

D.3. Details of Baselines

For a comprehensive performance evaluation, we compare our approach with the following SOTA baselines, categorized
into protein-specific methods, 2D topology-based GCL methods and 3D structure-based GCL:

Protein-specific methods:

GVP (Jing et al., 2021) specifically handles scalar and geometric vector features in protein structures, incorporating
geometric relationships between amino acids. The method introduces a novel neural network layer that maintains rotational
and translational equivariance through specialized vector operations.

GraphQA (Baldassarre et al., 2020) focuses on protein structure quality assessment using graph-based representations of
proteins. It uniquely integrates both local and global structural features through a hierarchical graph representation.

3DCNN (Derevyanko et al., 2018) uses 3D convolutional neural networks to analyze protein structures directly in their
three-dimensional form. The method employs a voxelization strategy to convert continuous protein structures into discrete
3D grids.

IEConv (Hermosilla & Ropinski, 2022) uses contrastive learning with a specific focus on maintaining geometric invariance
and equivariance in protein structure analysis. It introduces specialized convolution operations that preserve geometric
symmetries while processing protein structures.

GearNet (Zhang et al., 2023) is specifically designed for protein structure analysis incorporating geometric information. It
features a multi-scale message-passing mechanism that captures both short-range and long-range protein interactions.

ProNet (Wang et al., 2023b) is a specialized protein structure learning framework. The framework stands out for its
multi-view representation learning approach that jointly considers backbone geometry, side-chain orientations, and residue
interactions.
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CDConv (Fan et al., 2023) bridges continuous and discrete representations in protein structure analysis. It features an
adaptive sampling strategy that efficiently processes both continuous sequences and discrete atom coordinates.

2D topology-based GCL methods:

GraphCL (You et al., 2020) is a graph contrastive learning framework that applies various augmentation techniques including
node dropping, edge perturbation, attribute masking, and subgraph sampling.

Auto-GCL (Yin et al., 2021) automatically learns optimal augmentation strategies for graph contrastive learning through a
bi-level optimization framework.

GCL-Span (Lin et al., 2023a) uses spectral analysis for graph contrastive learning, leveraging graph spectral filtering to
create diverse views.

GCS (Wei et al., 2023) focuses on effective sampling strategies with an adaptive mechanism for informative negative
samples.

CI-GCL (Tan et al., 2024) incorporates causal inference principles, employing intervention mechanisms to generate
counterfactual graph views.

3D structure-based GCL methods:,

Traditional 3D augmentation (Wang et al., 2023b), which employs traditional transformations like random coordinate
perturbations.

Protein homology modeling tool (Waterhouse et al., 2018) leverages established protein modeling algorithms to generate
physically plausible structural variants.

E. Proofs
E.1. The Proof of Theorem 4.1 in the Draft

Definition E.1. (Eigenvalue Perturbation) Assume matrix A′, the altered portion is represented by ∆A = A′ −A, and the
changed degree is denoted as ∆D. According to matrix perturbation theory (Hogben, 2013), the change in amplitude for the
y-th eigenvalue can be represented as:

∆λy = λ′y − λy = u⊤
y ∆Auy − λyu

⊤
y ∆Duy +O(∥∆A∥). (13)

Lemma E.2. If we only flip one edge (i, j) on adjacency matrix A, the change of y-th eigenvalue can be write as

∆λy = ∆cij
(
2uyi · uyj − λy

(
u2yi + u2yj

))
, (14)

where uyi is the i-th entry of y-th eigenvector uy , and ∆cij = (1− 2Aij) indicates the edge flip, i.e ±1.

Proof. Let ∆A be a matrix with only 2 non-zero elements, namely ∆Aij = ∆Aji = 1− 2Aij corresponding to a single
edge flip (i, j), and ∆D the respective change in the degree matrix, i.e. A′ = A+∆A and D′ = D+∆D.

Denote with ei the vector of all zeros and a single one at position i. Then, we have ∆A = ∆cij(eie
⊤
j + eje

⊤
i ) and

∆D = ∆cij(eie
⊤
i + eje

⊤
j ).

Based on eigenvalue perturbation formula (13) by removing the high-order term O(∥∆A∥), we have:

∆λy ≈ u⊤
y (∆A− λy∆D)uy (15)

Substituting ∆A and ∆D, we conclude Eq. 14.

Theorem E.3. For unweighted graph, the constraint on the lowest k eigenvalues of the normalized Laplacian matrix Lnorm

ensures the preservation of the community structure of nodes.

Proof. Firstly, we separate ∆A = ∆A+ − ∆A− , where ∆A+ and ∆A− indicate which edge is added and deleted,
respectively. To analyze the change of eigenvalues in spectral space corresponding to the perturbation of edges in spatial
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space, we first consider the situation that only augments one edge for both edge-dropping (∆cij = −1) and edge-adding
(∆cij = 1):

1⃝ In the case of edge dropping (∆cij = −1 in Lemma E.2), we have

∆λy = −2uyi · uyj + λy
(
u2yi + u2yj

)
(16)

= (uyi − uyj)
2
+ (λy − 1)

(
u2yi + u2yj

)
(17)

If we only drop the edge (i, j) that makes a large change in the eigenvalues. We have the objective function as

argmax
{i,j|∆cij=−1}

n∑
y=1

|∆λy| = | (uyi − uyj)
2
+ (λy − 1)

(
u2yi + u2yj

)
| (18)

≤
n∑

y=1

| (uyi − uyj)
2 |+

n∑
y=1

|λy − 1|
(
u2yi + u2yj

)
(19)

= ∥Ui· −Uj·∥2 +
n∑

y=1

|λy − 1|
(
u2yi + u2yj

)
(20)

≤ ∥Ui· −Uj·∥2 +
n∑

y=1

|λy − 1|
(
u2y1 + u2y2 + · · ·+ u2yn

)
(21)

= ∥Ui· −Uj·∥2 +
n∑

y=1

|λy − 1| (22)

Notice that uy is the y-th column of U, so uyi = Uiy and Ui,· = [u0i, u1i, . . . , uni]. From the first item in Eq. 35, we
prefer to select the nodes with larger distances in the eigenvector spaces, i.e. two nodes belonging to different communities
(The relationship between eigenvector and community structure is proved in Theorem E.6).

2⃝ In the case of edge adding (∆cij = 1 in Lemma E.2), we have

∆λy = 2uyi · uyj − λy
(
u2yi + u2yj

)
(23)

= − (uyi − uyj)
2 − (λy − 1)

(
u2yi + u2yj

)
(24)

If we only add the edge (i, j) that makes a small change in the eigenvalues. We have the objective function as

argmin
{i,j|∆cij=+1}

n∑
y=1

|∆λy| = | (uyi − uyj)
2
+ (λy − 1)

(
u2yi + u2yj

)
| (25)

≥
n∑

y=1

| (uyi − uyj)
2 | −

n∑
y=1

|1− (λy)|
(
u2yi + u2yj

)
(26)

≥ ∥Ui· −Uj·∥2 −
n∑

y=1

|(1− λy)|
(
u2y1 + u2y2 + · · ·+ u2yn

)
(27)

= ∥Ui· −Uj·∥2 −
n∑

y=1

|(1− λy)| (28)

From the first item in Eq. 28, we prefer to select nodes with smaller distances in the eigenvector spaces, i.e. nodes belonging
to one community (Theorem E.6).

Previously, we have proven that the constraint on the lowest k eigenvalues of L ensures the preservation of community
structure when we only augment one edge. Next, we will demonstrate that the perturbation of more than one edge still aligns
with this theory.
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Suppose we augment m edges, similar to Lemma 14, we replace ∆A =
∑

(i,j)∈{m edges}
∆cij(eie

⊤
j + eje

⊤
i ), and ∆D =∑

(i,j)∈{m edges}
∆cij(eie

⊤
i + eje

⊤
j ), we Substituting ∆A and ∆D of Eq. (31), we get:

∆λy =
∑

(i,j)∈{m edges}

∆cij
(
2uyi · uyj − λy

(
u2yi + u2yj

))
, (29)

By replacing ∆cij
(
2uyi · uyj − λy

(
u2yi + u2yj

))
with Eqs. (35, 28), we could easily see that the community preserving

theory is satisfied.

E.2. The Proof of Lemma 4.2 in the Draft

Lemma E.4. If we only flip one edge (i, j) on adjacency matrix A with edge weight W, the change of y-th eigenvalue can
be write as

∆λy =

{
−Wij

(
2uyi · uyj − λy

(
u2yi + u2yj

))
, if edge dropping

2uyi · uyj − λy
(
u2yi + u2yj

)
, if edge adding

(30)

where uyi is the i-th entry of y-th eigenvector uy .

Proof. Let ∆A be a matrix with only 2 non-zero elements, namely ∆Aij = ∆Aji = −Wij corresponding to a single edge
dropping (i, j), and ∆Aij = ∆Aji = 1 corresponding to a single edge adding (i, j). ∆D is the respective change in the
degree matrix, i.e. A′ = A+∆A and D′ = D+∆D.

Denote with ei the vector of all zeros and a single one at position i. For edge dropping, we have ∆A− = −Wij(eie
⊤
j +eje

⊤
i )

and ∆D− = −Wij(eie
⊤
i + eje

⊤
j ). For edge adding, we have ∆A+ = (eie

⊤
j + eje

⊤
i ) and ∆D+ = (eie

⊤
i + eje

⊤
j ).

Based on eigenvalue perturbation formula (13) by removing the high-order term O(∥∆A∥), we have:

∆λy ≈ u⊤
y (∆A− λy∆D)uy (31)

Substituting ∆A and ∆D, for edge dropping and edge adding respectively, we conclude:

∆λy =

{
−Wij

(
2uyi · uyj − λy

(
u2yi + u2yj

))
, if edge dropping

2uyi · uyj − λy
(
u2yi + u2yj

)
, if edge adding

(32)

Lemma E.5. For weighted graphs, maximizing the spectral change during edge dropping ensures that edges between
communities and those with large edge weights are more likely to be removed.

Proof. For weighted graph (Lemma E.4), we have

∆λy =Wij (uyi − uyj)
2
+Wij(λy − 1)

(
u2yi + u2yj

)
(33)

If we only drop the edge (i, j) that makes a large change in the eigenvalues. We have the objective function (similar to the
proof in Theorem E.3) as:

argmax
{i,j}

n∑
y=1

|∆λy| = |Wij | · | (uyi − uyj)
2
+ (λy − 1)

(
u2yi + u2yj

)
| (34)

≤ |Wij | ·

(
∥Ui· −Uj·∥2 +

n∑
y=1

|λy − 1|

)
, (35)

In this case, edge (i, j) across different communities (∥Ui· −Uj·∥2 is large) and with large |Wij | are more likely to be
removed.
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E.3. The relation between community and spectrum

Theorem E.6. The spectral decomposition can indicate a relaxed solution of graph vertex partition. Given a graph G with
a Laplacian matrix L, and the spectral decomposition is indicated as D− 1

2LD− 1
2 = UΛU⊤, where D is the degree matrix

and U, Λ are eigenvectors, eigenvalues correspondingly. The second smallest eigenvalue and its corresponding eigenvector
indicate a bipartition of the graph.

Proof. Given a partition of nodes of a graph (split V into two disjoint sets SA and SB), let x be an indicator vector for the
partition, xi = 1 if node i is in SA, and −1, otherwise. Let di be the degree of node i, and wij is the weight of edge (i, j).
Based on (Shi & Malik, 1997), a normalized cut could be write as

Ncut(SA, SB) =

∑
xi>0,xj<0 −wijxixj∑

xi>0 di
+

∑
xi<0,xj>0 −wijxixj∑

xi>0 di
. (36)

The optimal partition is computed by minimizing the normalized cut: minxNcut(x). By setting y = (1 + x)− b(1− x),

k =
∑

xi>0 di∑
i di

and b = k
1−k , we could rewrite it as

min
x
Ncut(x) = min

y

y⊤Ly

y⊤Dy
. (37)

with the condition yi ∈ 1,−b, and y⊤D1 = 0.

According to the Rayleigh quotient (Gene et al., 2013), we can minimize Eq. 37 by solving the generalized eigenvalue
system, if y is relaxed to take on real values.

Ly = λDy (38)

By writing z = D
1
2y, we could transform the Eq. 38 to a standard eigensystem:

D− 1
2LD− 1

2 z = λz (39)

Because the Laplacian matrix is positive semidefinite (Pothen et al., 1990), we can easily verify that z0 = D
1
21 is the

smallest eigenvector of Eq. 39 with eigenvalue 0. And correspondingly, y0 = 1 is the smallest eigenvector with an
eigenvalue of 0 in the general eigensystem 38, but do not satisfy the condition y⊤D1 = 0. According to the Lemma E.7,
we could know that the second smallest eigenvector z1 is the solution of Eq. 37, because z⊤1 z0 = y⊤

1 D1 = 0 satisfy the
condition in Eq. 37.

Therefore, the second smallest eigenvalue and its corresponding eigenvector indicate a bipartition of the graph. While the
next cut must be perpendicular to others, which is the third smallest eigenvalue corresponding eigenvector z⊤2 z1 = z⊤2 z0.
Recursively, the k-dimensional eigenvectors can represent the community structure of a graph to some extent.

Lemma E.7. A simple fact about the Rayleigh quotient (Gene et al., 2013): Let A be a real symmetric matrix. Under the
constraint that x is orthogonal to the j − 1 smallest eigenvectors x1,x2, ...,xj−1, the quotient x⊤Ax

x⊤x
is minimized by the

next smallest eigenvector xj and its minimum value is the corresponding eigenvalue λj .

F. More Detailed Experiments
F.1. Go and EC Prediction under Different Sequence Cutoffs

For GO and EC, we follow the evaluation protocol established by (Gligorijević et al., 2021), where proteins in the test set
are divided based on their sequence similarity to the training set, using cutoffs of 30%, 40%, 50%, 70%, and 95%. This
systematic evaluation across different similarity thresholds helps assess model generalization ability and robustness. Table E.3
presents comprehensive results comparing our methods with existing approaches. Our complete framework demonstrates
consistent improvements across all four protein-related tasks compared to existing methods. For instance, compared to the
top-performing method CDConv, the combination of 3-PSIAlpha and FCI demonstrates superior performance, achieving a
0.0185 improvement at the 95% similarity cutoff in EC. The ablation studies further validate the effectiveness of our design
choices, showing that each component contributes to the overall performance improvement. Notably, the performance
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Table 5. This table shows the comparison of general protein approaches, graph contrastive learning approaches (both 2D topology-based
and 3D structure-based) and our proposed GCL approach on Go and EC under different sequence cutoffs. We report the maximum F1
score (Fmax) for Enzyme Classification (EC) and Gene Ontology (GO) prediction tasks; and Top-1 accuracy (%) for Fold and Reaction
classification tasks. The performance of CDConv is from our reproduction, while other baseline results are from (Fan et al., 2023).

GO-CC GO-MF

Cutoff 30% 40% 50% 70% 95% 30% 40% 50% 70% 95%

Pr
ot

ei
n-

sp
ec

ifi
c

CNN 0.258 0.257 0.260 0.263 0.387 0.238 0.243 0.256 0.292 0.354
ResNet 0.277 0.273 0.280 0.278 0.304 0.282 0.288 0.308 0.347 0.405
LSTM 0.263 0.264 0.269 0.270 0.283 0.223 0.229 0.245 0.276 0.321
Transformer 0.378 0.382 0.388 0.395 0.405 0.184 0.187 0.195 0.204 0.211
GearNet 0.381 0.385 0.393 0.398 0.414 0.382 0.397 0.425 0.474 0.503
GearNet-Edge 0.394 0.394 0.401 0.408 0.450 0.444 0.461 0.490 0.537 0.580
CDConv 0.429 0.433 0.442 0.447 0.475 0.535 0.551 0.573 0.620 0.652

2D
To

po
.G

C
L GraphCL 0.393 0.378 0.400 0.405 0.432 0.516 0.530 0.544 0.610 0.644

Auto-GCL 0.373 0.374 0.399 0.394 0.417 0.510 0.531 0.556 0.604 0.641
GCL-Span 0.381 0.383 0.394 0.400 0.419 0.515 0.527 0.551 0.620 0.650
GCS 0.389 0.382 0.395 0.404 0.437 0.518 0.536 0.566 0.613 0.645
CI-GCL 0.357 0.373 0.391 0.410 0.453 0.519 0.533 0.561 0.614 0.651

3D

Trad. 3D Aug. 0.385 0.384 0.387 0.394 0.420 0.521 0.543 0.547 0.615 0.645
Auto. Tool Aug. 0.367 0.376 0.380 0.405 0.435 0.515 0.540 0.535 0.612 0.643

O
ur

s
(A

bl
at

io
n) Backbone 0.391 0.397 0.404 0.428 0.432 0.509 0.531 0.558 0.604 0.642

+ FCI 0.439 0.441 0.456 0.454 0.473 0.532 0.549 0.575 0.625 0.656
+ 3-PSIDiag 0.438 0.437 0.445 0.456 0.468 0.532 0.552 0.578 0.620 0.654
+ 3-PSIAlpha 0.425 0.429 0.431 0.437 0.453 0.525 0.544 0.572 0.618 0.652
+ 3-PSIDiag + FCI 0.459 0.462 0.467 0.468 0.484 0.542 0.559 0.585 0.629 0.662
+ 3-PSIAlpha + FCI 0.442 0.450 0.475 0.455 0.477 0.533 0.551 0.578 0.622 0.659

GO-BP EC

Cutoff 30% 40% 50% 70% 95% 30% 40% 50% 70% 95%

Pr
ot

ei
n-

sp
ec

ifi
c

CNN 0.197 0.195 0.197 0.211 0.244 0.366 0.361 0.372 0.429 0.545
ResNet 0.230 0.230 0.234 0.249 0.280 0.409 0.412 0.450 0.526 0.605
LSTM 0.194 0.192 0.195 0.205 0.225 0.247 0.249 0.270 0.333 0.425
Transformer 0.267 0.265 0.262 0.262 0.264 0.167 0.173 0.175 0.197 0.238
GearNet 0.309 0.309 0.315 0.336 0.356 0.557 0.570 0.615 0.693 0.730
GearNet-Edge 0.345 0.347 0.354 0.378 0.403 0.625 0.646 0.694 0.757 0.810
CDConv 0.380 0.387 0.402 0.431 0.450 0.721 0.748 0.782 0.825 0.870

2D
To

po
.G

C
L GraphCL 0.382 0.386 0.410 0.411 0.432 0.724 0.743 0.771 0.829 0.860

Auto-GCL 0.365 0.373 0.385 0.408 0.436 0.714 0.746 0.783 0.834 0.852
GCL-Span 0.387 0.395 0.404 0.408 0.434 0.739 0.774 0.804 0.847 0.859
GCS 0.387 0.386 0.407 0.414 0.440 0.724 0.756 0.792 0.832 0.864
CI-GCL 0.392 0.391 0.411 0.420 0.440 0.749 0.783 0.810 0.844 0.870

3D

Trad. 3D Aug. 0.378 0.389 0.388 0.405 0.432 0.747 0.760 0.796 0.843 0.870
Auto. Tool Aug. 0.368 0.375 0.383 0.397 0.439 0.729 0.761 0.788 0.839 0.863

O
ur

s
(A

bl
at

io
n) Backbone 0.351 0.371 0.385 0.408 0.437 0.710 0.737 0.768 0.818 0.853

+ FCI 0.385 0.380 0.398 0.415 0.446 0.743 0.771 0.807 0.850 0.878
+ 3-PSIDiag 0.377 0.385 0.394 0.412 0.449 0.744 0.769 0.806 0.852 0.873
+ 3-PSIAlpha 0.381 0.380 0.390 0.413 0.444 0.738 0.765 0.803 0.848 0.874
+ 3-PSIDiag + FCI 0.391 0.399 0.410 0.436 0.461 0.745 0.783 0.815 0.858 0.883
+ 3-PSIAlpha + FCI 0.378 0.388 0.399 0.425 0.454 0.749 0.773 0.808 0.859 0.885
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advantage of our methods is more pronounced at lower sequence similarity cutoffs (30-50%), which represents a more
challenging and realistic scenario in protein function prediction, demonstrating remarkable robustness. This suggests that
our supervised graph contrastive learning framework better captures fundamental protein structural features, leading to more
robust and generalizable predictions.

F.2. Compare with Protein Language Models

In recent years, protein representation learning has witnessed significant advances through the development of large-scale
protein language models and self-supervised learning approaches (Hermosilla & Ropinski, 2022; Zhang et al., 2023). These
methods typically rely on extensive pre-training with massive datasets to learn protein representations. For example, ESM-1b
(Rives et al., 2019) utilizes UniRef50 (24M sequences), while ProtBERT-BFD (Elnaggar et al., 2020a) leverages the even
larger BFD dataset (2.1B sequences). The underlying assumption is that utilizing large-scale protein data during pre-training
enables these models to capture fundamental protein properties and patterns. A parallel line of research has explored
self-supervised learning specifically for 3D protein structures. These approaches aim to learn effective representations by
designing various pretext tasks. For instance, Hermosilla & Ropinski (2022) proposed a contrastive learning framework that
maximizes similarity between sub-structures from the same protein while minimizing similarity between sub-structures
from different proteins. Zhang et al. (2023) extended this idea by incorporating multiple self-supervised tasks, including:
maximizing agreement between different augmented views of the same protein, predicting residue types, and learning to
estimate geometric properties.

However, some fundamental questions remain: (1) how can we select self-supervised tasks, which is sufficient to learn truly
effective protein representations? (2) these methods typically require extensive computational resources for training on large-
scale datasets with data cleaning, preprocessing, and significant effort in designing and validating multiple self-supervised
tasks. Different from these works, our work concentrates on designing an effective supervised graph contrastive learning
paradigm that enables graph neural networks to better capture protein structural information. Also, this invariant paradigm
may improve the baseline for the pre-training or self-supervised learning works. Here, we compare our approach with various
SOTA methods including protein language models and self-supervised learning approaches: DeepFRI (Gligorijević et al.,
2021), ESM-1b (Rives et al., 2019), ProtBERT-BFD (Elnaggar et al., 2020b), LM-GVP (Wang et al., 2021), residue-level
IEConv (Hermosilla & Ropinski, 2022), and GearNet-based methods (Zhang et al., 2023). As demonstrated in Table F.2 and
Table F.2, our invariance-based supervised GCL framework achieves comparable or superior performance across multiple
tasks, notably outperforming these methods on fold classification and enzyme reaction prediction, despite not using any
pre-training or self-supervised learning strategies.

Table 6. Accuracy of protein fold classification between different protein language models and our proposed GCL approach. Baseline
results are from (Fan et al., 2023).

Method Pre-training Dataset Fold Classification
(Size) Fold Superfamily Family

DeepFRI Pfam (10M) 15.3 20.6 73.2
ESM-1b UniRef50 (24M) 26.8 60.1 97.8
ProtBERT-BFD BFD (2.1B) 26.6 55.8 97.6
IEConv (residue level) PDB (476K) 50.3 80.6 99.7
GearNet-Edge-IEConv with Multiview Contrast AlphaFoldDB (805K) 54.1 80.5 99.9
GearNet-Edge-IEConv with Residue Type Prediction AlphaFoldDB (805K) 48.8 71.0 99.4
GearNet-Edge-IEConv with Distance Prediction AlphaFoldDB (805K) 50.9 73.5 99.4
GearNet-Edge-IEConv with Angle Prediction AlphaFoldDB (805K) 56.5 76.3 99.6
GearNet-Edge-IEConv with Dihedral Prediction AlphaFoldDB (805K) 51.8 77.8 99.6

3-PSIDiag + FCI - 58.9 81.3 99.7
3-PSIAlpha + FCI - 59.8 80.8 99.5

F.3. Functional Community Preservation Analysis

In this section, we evaluate how well different 2D topology-based graph augmentation strategies preserve functional
communities within protein graphs. Specifically, we focus on protein pockets (i.e., spatially contiguous sets of residues),
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Table 7. Accuracy of enzyme catalytic reaction classification and Fmax of gene ontology term prediction and enzyme commission number
prediction between different protein language models and our proposed GCL approach. Baseline results are from (Fan et al., 2023).

Method Pre-training Dataset Enzyme Gene Ontology Enzyme
(Size) BP MF CC Commission

DeepFRI∗ Pfam (10M) 63.3 0.399 0.46 0.460 0.631
ESM-1b† UniRef50 (24M) 83.1 0.476 0.657 0.498 0.864
ProtBERT-BFD BFD (2.1B) 72.2 0.279 0.456 0.408 0.838
LM-GVP UniRef100 (216M) - 0.417 0.545 0.527 0.664
IEConv (residue level) PDB (476K) 88.1 0.468 0.661 0.516 -
GearNet-Edge with Multiview Contrast AlphaFoldDB (805K) 87.5 0.490 0.654 0.488 0.874
GearNet-Edge with Residue Type Prediction AlphaFoldDB (805K) 86.6 0.430 0.604 0.465 0.843
GearNet-Edge with Distance Prediction AlphaFoldDB (805K) 87.5 0.448 0.616 0.464 0.839
GearNet-Edge with Angle Prediction AlphaFoldDB (805K) 86.8 0.458 0.625 0.473 0.853
GearNet-Edge with Dihedral Prediction AlphaFoldDB (805K) 87.0 0.458 0.626 0.465 0.859

3-PSIDiag + FCI - 87.8 0.461 0.662 0.484 0.883
3-PSIAlpha + FCI - 89.0 0.452 0.659 0.477 0.885

which naturally align with the radius-based graph construction used in GNNs. Protein pockets directly govern essential
protein functions, such as substrate binding, catalysis, and allosteric regulation (Schulze et al., 2016). Although various
functional annotation methods exist (such as domain partitioning or coevolutionary residue coupling), these approaches do
not necessarily translate into local adjacency in a graph neural network. By contrast, pockets exhibit a spatially contiguous
arrangement of residues that naturally aligns with the radius-based graph construction employed by GNNs to some extent.
Thus, pockets offer a practical evaluation, unlike other globally defined or purely evolutionary methods that are not readily
translated into graph-level representations.

For quantitative evaluation, we first identify functional edges by detecting residues in pockets using fpocket 4. These edges
connecting residues within pockets are considered critical and should be preserved during augmentation. Then we evaluate
how well our augmented graphs maintain these essential functional connections by calculating the preservation rate:

Let Efunc be the set of functional edges (connections between residues within identified pockets) in the original graph, and
Eaug be the edges in the augmented graph. The preservation rate η is calculated as:

η =
|Efunc ∩ Eaug|

|Efunc|
× 100% (40)

where |Efunc ∩ Eaug| represents the number of functional edges preserved after augmentation, and |Efunc| is the total number
of functional edges in the original graph.

As shown in Table 8, our FCI method achieves higher preservation rates across all tasks compared to other methods,
demonstrating its effectiveness in maintaining the integrity of functional communities during graph augmentation.

Table 8. Preservation rates (%) of functional communities across three graph augmentation methods (Auto-GCL, CI-GCL, and FCI) on
four protein-related tasks: GO, EC, FOLD, and Reaction.

Method GO EC FOLD Reaction

Auto-GCL 75.29 78.93 70.88 73.43
CI-GCL 91.87 94.21 76.88 88.05
FCI 96.69 98.02 90.87 97.45

4https://fpocket.sourceforge.net
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F.4. Compare with Protein Learning Methods

In this section, we further compare with our proposed method with protein structure learning models (PSL): Uni-mol (Zhou
et al., 2023), P3G (Huang et al., 2023), ESM-2 (Lin et al., 2023b), S-PLM (Wang et al., 2023a); equivariant graph neural
networks (EG) EquiformerV2 (Liao et al., 2024); and structure retrieval approaches (SR) Foldseek (van Kempen et al.,
2022). We report results of S-PLM and P3G from their original papers, and ESM-2 from [1]. Uni-mol and EquiformerV2
are reproduced. For the GO task, we evaluated Foldseek on a subset of 150 samples as exploration. Despite this, our method
achieves comparable performance, even though Foldseek relies on a larger external protein database (e.g., RCSB and PDB)
for retrieval-based prediction. While our GO-BP result is lower, we outperform Foldseek on GO-MF and GO-CC. Trained
from scratch on a smaller dataset, our model shows strong generalization and effective representation learning. Uni-mol and
EquiformerV2 underperform due to their models being tailored to molecules rather than proteins. Compared to S-PLM, our
method achieves competitive results on the EC and GO datasets, while consistently outperforming S-PLM on FOLD and
Reaction.

Table 9. Evaluation of our proposed method against several categories of protein learning models: protein structure learning (PSL),
structure retrieval (SR), and equivariant graph networks (EG). Best scores are highlighted in bold.

Method EC GO FOLD ReactionBP MF CC Fold Super. Fam. Avg.

PS
L

Uni-mol 0.721 0.347 0.441 0.397 31.4 61.0 90.5 60.9 74.2
P3G 0.784 0.379 0.548 0.448 - - - - -
ESM-2 0.861 0.460 0.663 0.427 38.5 81.5 99.2 73.0 -
S-PLM 0.888 0.495 0.685 0.484 37.7 78.0 98.8 71.5 86.71

SR Foldseek - 0.582 0.570 0.472 - - - - 90.60

E
G EquiformerV2 0.751 0.351 0.480 0.375 29.9 65.2 88.0 61.0 76.42

Ours 0.885 0.461 0.662 0.484 59.8 81.3 99.7 80.3 89.00

F.5. Sensitive Study of λ

Complete results of sensitive study are presented at Table 10.

Table 10. Performance of the proposed method using various values for the hyperparameter λ in the loss function. Optimal scores are
highlighted in bold.

λ EC GO FOLD ReactionBP MF CC Fold Super. Fam. Avg.

V
al

ue

0.2 0.882 0.451 0.656 0.467 56.5 80.2 99.8 78.8 86.2
0.6 0.879 0.443 0.658 0.479 58.2 80.7 99.6 79.5 87.5
1.0 0.885 0.461 0.662 0.484 58.9 81.3 99.7 79.9 89.0
1.4 0.880 0.457 0.649 0.489 59.1 80.6 99.7 79.8 87.8
1.8 0.877 0.448 0.653 0.475 58.5 80.2 99.8 79.5 88.3

F.6. Complete Results in the Draft

Figure 9 shows results of 2D augmentation strength analysis on all protein-related tasks. For both FOLD and GO, we report
the mean performance of their subtasks.

Figure 10 shows results of robustness analysis on GOMF, EC, FOLD and Reaction.

Figure 11 shows results of 3D augmentation strength analysis on all tasks.
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Figure 9. Performance comparison between GraphCL and our method under different graph augmentation strengths ϵ (0.1-0.4). For the
GO, we report the average performance of three subtasks.
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Figure 10. Robustness analysis of models under varying perturbation ratios for protein structure. This figure shows model performance
(Fmax for GOMF and EC tasks; accuracy for FOLD and RC tasks) across different noise ratios (0.1-0.5) on four distinct prediction tasks:
(a) GOMF, (b) EC, (c) FOLD, and (d) RC.
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Figure 11. Performance analysis of the model under varying α-helices and β-sheets rotational fold strengths across all tasks.
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