Under review as a conference paper at ICLR 2026

ACHIEVING LOW-BIT MUON THROUGH SUBSPACE
PRESERVATION AND GRID QUANTIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Training Large Language Models (LLMs) faces severe memory constraints due
to the increasing size of model parameters and optimizer states. The Muon op-
timizer, which is based on matrix orthogonalization, has recently demonstrated
significant potential and offers considerable memory advantages over AdamW by
utilizing only the first moment. However, how to apply memory-reduction tech-
niques to further compress the optimizer states of Muon remains underexplored.
Directly applying existing methods may encounter significant difficulties due to
the orthogonalization process. In this work, we investigate the low-bit compres-
sion of Muon and systematically analyze the quantization error exacerbated by
orthogonalization. We identify that the error primarily originates from the top sin-
gular subspace and the outlier patterns of moment matrix appearing across both
dimensions. To address this, we propose 4-bit-Muon-GRASP (GRid And Sub-
space Preserving), which compresses the Muon optimizer states to 4 bits using
grid quantization, while preserving the top singular subspace with minimal over-
head. We evaluate 4-bit-Muon-GRASP through pre-training on LLaMA-130M,
350M, and 1.1B architectures and fine-tuning on 7B models for various reasoning
tasks. Extensive experiment results show that our 4-bit-Muon-GRASP achieves
accuracy comparable to full-precision counterparts while reducing training mem-
ory consumption by up to 28%. Code will be made public upon acceptance.

1 INTRODUCTION

Large Language Models (LLMs) have shown impressive performance across multiple domains, in-
cluding language translation and math reasoning. The growing size of deep learning models has led
to significant challenges in terms of memory consumption and computational efficiency, particularly
during training (Chowdhery et al., 2023; Rajbhandari et al., 2021). For instance, pre-training a 5B
model from scratch using AdamW with only one sequence of length 1024 exceeds the memory ca-
pacity of an NVIDIA A100, with the full-precision (fp32) optimizer state alone surpassing 40GB,
due to the need for a buffer of 2x the model size to track both the first and second moments.

Existing efforts including GPU sharding (Rajbhandari et al., 2020; Zhao et al., 2023) and CPU
offloading (Ren et al., 2021) have focused on reducing the memory consumption of optimizer states
at the hardware level. On the other hand, there are two main approaches in the algorithmic domain:
factorization uses low-rank approximation to optimize states (Shazeer & Stern, 2018; Zhao et al.,
2024), while quantizing the optimizer to lower precision is particularly attractive due to its simplicity
and broad applicability. Existing works have successfully compressed the optimizer state to low-bit
(8-bit,4-bit), primarily focusing on AdamW and SGD (Wang et al., 2024; Dettmers et al., 2021; Li
et al., 2023). As a result, optimizing the memory usage of the optimizer allows the saved memory
to be reallocated for a larger model or an increased batch size.

Recently, Jordan et al. (2024) introduced the Muon optimizer, which incorporates orthonormalized
update rules and has demonstrated substantial advantages. Large-scale studies (Liu et al., 2025) re-
port that Muon nearly doubles the efficiency of AdamW, and Muon has been successfully deployed
in foundational models such as Kimi-K2 (Team et al., 2025). From the perspective of memory-
efficient training, Muon can reduce optimizer state memory usage by approximately 50% compared
to the widely-used AdamW in LLM training, as it only requires storage of the first moment. There-
fore, further compressing the Muon optimizer state holds significant potential.

Under review as a conference paper at ICLR 2026

However, the application of memory-reduction techniques to Muon remains an open question. Di-
rectly applying low-bit compression techniques, such as those used in AdamW (Dettmers et al.,
2021; Li et al., 2023), may encounter great challenges due to the orthonormalization process. In
this paper, we explore the low-bit compression of Muon optimizer, a problem that, to the best of our
knowledge, has not been attempted before. Our contributions are as follows:

1) We conduct a systematic analysis of the 4-bit compression error in Muon and find that the Newton-
Schulz iteration exacerbates the quantization error, primarily due to the top singular subspace. In
light of this, we divide the moment matrix into two parts: the top singular subspace and the residual
singular subspace, and compress them separately.

2) We propose 4-bit-Muon-GRASP (GRid And Subspace Preserving) with two key techniques: sub-
space preservation and grid quantization. Specifically, we suggest using a relatively mild compres-
sion (8-bit) to preserve the top singular subspace, with the memory overhead being negligible, while
compressing the residual singular subspace to 4-bit. Moreover, given that the outlier pattern of
moments appears across both dimensions, we introduce grid quantization to provide more accurate
bounds via normalizing both row and column directions.

3) We evaluate our 4-bit-Muon-GRASP through both pre-training and fine-tuning. Specifically,
we pre-train on LLaMA-130M, 350M, and 1B architectures with up to 31.5B tokens and fine-tune
on 7B models for either general or specific reasoning tasks. The performance of our compressed
optimizers is assessed through training curves and downstream tasks. Across all tasks, our 4-bit
optimizers achieve accuracy comparable to their full-precision counterparts, while reducing total
training memory consumption by up to 28%. To the best of our knowledge, it is the most memory-
efficient optimizer among all low-bit optimization methods.

2 PRELIMINARIES

2.1 MUON OPTIMIZER

The Muon optimizer (Jordan et al., 2024) is a recently proposed novel optimization method, specif-
ically designed for neural network weights representable as matrices. Unlike traditional optimizers,
Muon introduces a key innovation by integrating orthogonalization into the moment update process.
Atiteration ¢, given the current weight W,_; € R™*"™ learning rate 7,, momentum u, and objective
L, the update rule for the Muon optimizer can be formulated as follows:

M; = pM;_1 + VL (Wi_1),
O; = Newton-Schulz,, (M, T),
W, =W;_; — 0Oy,

where M, represents the moment buffer at step ¢, initialized as a zero matrix, p is the degree of
the Newton-Schulz (NS) iteration polynomial, and 7" is the number of iteration steps. The NS
iteration aims to approximately orthogonalize the update matrix, which is equivalent to replacing
the update with UV ", where UXV' = M, is the singular value decomposition (SVD) of M.
The NS iteration approximation avoids the high computational cost of SVD while still achieving the
orthogonalization of the moment matrix, leading to an isomorphic parameter update.

For the NS iteration, we set Xy = Hl\l,\[/[ﬁ Following Jordan et al. (2024); Team et al. (2025), where

both p and 7" are set to 5, we denoted this setting as official choice. then the update X, from X1
at each step k is as follows:

Xy, = aXpo1 b (X1 X[_y) Xioy + ¢ (X1 X)X ()

where a, b, and c are the coefficients. To ensure proper convergence, we tune the coefficients so that
the polynomial f(x) = az + bz + ca® has a fixed point near 1. In this paper, we follow the official
design, using a = 3.4445, b = —4.7750, and ¢ = 2.0315 for LLM training.

Remark. A recent work (Liu et al., 2025) has extended Muon from classic models to LLM-scale
training by incorporating weight decay and carefully adjusting the per-parameter update scale. As
our goal is also for LLM, we adopt these techniques and follow their setting in the training of LLMs.

Under review as a conference paper at ICLR 2026

distribution distribution singular value distribution singular value distribution
0]+

|

i

)
&

ity
@ & @
g & 8
Z
&
N
9
*
Singular Value
S 5 =
Singular Value
2 3

10 — NS(real)

——————— real i 5| — NS(real)
——- NS(quant) ;
ok

,,,,,, quant i - NS(quant)

— real
——- quant

)
&

—0.005 0.000 0.005 —0.05 0.00 0.05 0 500 1000 1500 2000 0 500 1000 1500 2000
value value Index Index

(a) (b) (©) (d)

Figure 1: Visualization of momentum in transformer.layers.7.attn.o_proj in a LLaMA model.

(a) The distribution of matrix (real) and their 4-bit compressions (quant). (b) Distribution of the
matrix after NS iteration (NS(real)) and its 4-bit compressions after NS iterations (NS(quant)). (c)
and (d): Distribution of singular values of the matrices in (a) and (b), displayed on a log, scale.

2.2 QUANTIZATION AND DEQUANTIZATION

Quantizing the optimizer states to lower precision is an effective method to compress optimizer
states for memory savings. Specifically, the optimizer states M; are compressed to M7 using a
quantizer at step ¢ and then decompressed with a dequantizer for use at step ¢ + 1.

Quantization. Quantization is the process of converting full-precision tensors into low-precision
formats. Let X € RP represent a full-precision tensor, and let QUANT}, be a b-bit quantizer that
reduces X to a discrete value chosen from a set of 2° possible values. The quantization process
involves two operations: normalization A/(-) and mapping M(-), which are applied sequentially
and element-wise. Specifically, for each element z; € X, the quantized value is given by

i = QUANT, (z;) = M o N(z;).)

Taking signed values as an example, the normalization operator transforms elements of X into the
range [—1, 1] according to the following formula:

T
N(wi) = ——————, 3)
max <;<p |25
The scaling factors involved in normalization are referred to as quantization scales, and they are
stored along with the quantized tensor for dequantization. The normalization range determines the
granularity of quantization, with common granularities including per-tensor, per-token, per-channel,

group-wise, and block-wise.

The mapping operator M for € R in a b-bit quantizer is defined as follows:
M(z) = arg min [z — R(j)|)]
JET,

where R is the quantization mapping function. The set T, = {0, 1,. .., 271} represents the discrete
set of possible values, and the mapping R is an element-wise function that maps each element of T,
into the normalized range [—1, 1]. Different quantization mappings can be employed, such as linear
mapping and dynamic exponent mapping.

Dequantization. The dequantizer, denoted as DEQUANT, performs the inverse operation of the
quantizer, recovering the approximate original value. This process is defined as follows:

& = DEQUANT(g;) = N'" o R(q;) (5)

3 METHODOLOGY

In this section, we first present the challenge of quantizing the Muon optimizer states to 4 bits and
analyze the associated quantization error. We then describe the design of our proposed 4-bit-Muon-
GRASP, highlighting two key techniques: top singular subspace preservation and grid quantization.

3.1 CHALLENGES

A straightforward way to implement 4-bit Muon is to directly apply group quantization to the mo-
ment matrix My, as in Dettmers et al. (2021); Li et al. (2023). In this paper, we refer to this naive
method as 4-bit-Muon-base.

Under review as a conference paper at ICLR 2026

To assess the quantization errors of matrices, we first define the relative error between matrix A and
matrix B as follows:
_[A-BJr

RE(A.B) = 5[,

(6)

NS iterations amplify quantization error. Unlike optimizers such as SGDM (Qian, 1999),
Adam (Kinga et al., 2015), and AdamW (Loshchilov & Hutter, 2017), which compute updates in an
element-wise fashion, the moment matrix in Muon undergoes an orthogonalization step, achieved
through Newton-Schulz (NS) iterations. This process may introduce significant quantization errors.
To assess whether this process amplifies the quantization error, we visualize the real matrices and
their 4-bit compressions. Fig. 1(a) and (b) demonstrate that the distributions of M; and its 4-bit
compressions are nearly identical (RE=0.07), while a significant difference emerges between their
distributions after NS iterations (RE=1.78). In other words, the disturbances and errors introduced
by quantization become much more pronounced after matrix orthogonalization.

Error Not Caused by Insufficient Iterations. To
study how NS iterations amplify quantization error,
we investigate how quantization errors change with
the arguments in NS iterations, including the degree
of the polynomial and the number of steps. Fig. 2
shows that as the number iterations and/or the degree
of the polynomial increases, although the accuracy
of the NS iteration improves, the quantization error
even becomes higher. On the other hand, we ana-
lyze the singular values of the moment matrix. From
Fig. 1(c) and (d), it is evident that the quantization
operation consistently increases the singular values
before and after NS iterations. Instead, this suggests
that the quantized matrix requires fewer N.S iFera- Figure 2: Comparison of quantization error
tons to converge. Together, the ev1d§:nces 111d10a}e with different arguments in NS iteration.
that quantization errors are not due to insufficient iterations.

—— NS degree 3
—=— NS degree 5
without NS
official choice

*

0.5

Quantization Error RE(real,quant)

0.2
0.066

1 2 4 5 6

3
NS step

Top singular subspace suffers large quantization error.
To further investigate the source of error amplification in the
NS iteration, we analyze the moment matrix by dividing it
into the top singular space and the residual singular space.
Formally, suppose USV T = M is the SVD of the moment
matrix M € R™*", Then, we define:

Table 1: Quantization error before
and after NS iterations. The results
represent the average values obtained
across all parameters during the first
100 training iterations of the 1.1B
LLaMA model.

Mp := My, = UpE, V], Mpes =M — Myop, (7
op = M = UiV oo D T RE (M) RE (M)
where Uy, € R™*k V. € R™** are top-k singular vectors g4 0.08 — 331 0.09 —s 0.47
and Xj, € R*** contains top-k singular values. We choose 128 0.08 —2.42 0.09 — 0.63
different ranks k to construct Mo, and M., and compress 256 0.08 — 1.76 0.09 — 0.35
them to 4-bit, resulting in Mo, and M, and compute the 512 0.08 —1.26 0.09 — 0.42

quantization error before and after NS iterations.

As shown in Tab. 1, we find that the quantization errors of the top singular spaces and residual
singular spaces are comparable before NS iteration. However, after NS iteration, the difference
between the two becomes significant. Specifically, when setting k£ = 64 for all parameter tensors in
the model, NS iteration amplifies the quantization error of M, by 40, while increasing it only 5x
for the residual matrix M. This indicates that NS iteration primarily amplifies quantization errors
in the top singular subspaces, suggesting that quantization methods can be designed separately for
different subspaces.

3.2 SUBSPACE PRESERVING

Given that the top singular subspace incurs significant quantization error in Muon, we propose using
relatively mild compression to better preserve the information contained in the top singular subspace.
Additionally, the NS iteration amplifies all singular values, leading to the magnification of even
originally small values to an extent that cannot be overlooked. As a result, relying solely on the top

Under review as a conference paper at ICLR 2026

Algorithm 1 4bit-Muon-GRASP

Require: Weight W, objective £, learning rate 7, momentum u, weight decay A, rank k, quantizer
QUANT and dequantizer DEQUANT.

1: repeat

2 if ¢ is O then

3 Randomly initialize right factor Qg ,Mp+0

4 else

5: Mies i1 DEQUANT(M?CSJ_I)

6 P, , « DEQUANT(P?_,) ,R,_1 + DEQUANT(R/_,)

7 Mtfl — Mres,t—l + PtflR;rfl

8: Q: + ColumnNormalize(R,;)

9: end if
10: Mt — /.LMt—l + VEt(Wt_l)
11: P, R; + Powerlter(_lr\/lt, Qi) B> get top singular vectors
12: Mes: +— M — P:R, > get residual subspace of M
13: M, QUANT, (M) > 4-bit quantization
14: P} + QUANT(P;_4) , R} <+ QUANT(R;) > 8-bit quantization
15: O, + Orthogonalize(M,) > using newton-schulz iterations

16: W, W1 —1:(0; + AW, _,)
17: until convergence criteria met

1: function POWERITER(B, Q) > single power iteration (from Q)
2 P+ BQ

3 P «+ Orthogonalize(P) > using QR decomposition
4: R+~ B'P

5 return P, R > P is orthonormal
6: end function

singular subspace fails to capture all the information in the moment matrix, leading to accuracy loss.
To address this, we retain the residual subspace of the matrix and apply 4-bit quantization to it.

Regarding how to obtain the top singular space of the moment matrix, using Eq. 7 via SVD is
computationally expensive. In this work, we employ a numerical iterative approximation method
known as Power Iteration to get the top singular vectors, which has also been utilized in Vogels
etal. (2019); Ahn et al. (2025). Following them, we warm-start the power iteration using the results
from the previous optimizer, so that a single iteration is sufficient to accurately capture the top
singular subspace of M. Specifically, at each step, we first compute the moment M, = pM,_; +
VL:(W;_1), and then use Power Iteration to compute the top singular vectors P, R; with rank %:

PtR;r ~ My, where P; € Rka,Rt c R<k. ®

It should be noticed that we perform column normalization on R;_; to obtain Q;, and use Q; to
perform a single step of power iteration. Since M; and M, _; exhibit a certain degree of similarity,
we can benefit from reusing R;_; as the starting point.

We then get the residual singular subspace of M as described in Eq. 7 and apply 4-bit quantization
to it. To preserve more information of the top singular subspace, we utilize a relatively mild com-
pression (8-bit) to Py, R;. We store 8-bit P,, R;, and the 4-bit M, in the optimizer buffer. Since
the rank k * n + k * m < m * n, the memory overhead of storing P, R; is relatively small.

3.3 GRID QUANTIZATION

Fig. 3 (a) shows moment tensors in Muon, and we observe that the outlier pattern appears across
both dimensions. As a result, neither per-channel group nor per-token group quantization can fully
capture such outliers. To achieve higher precision, we propose grid quantization, which performs
normalization in both row and column directions to obtain a more precise bound for each entry.

Specifically, for matrix X, we divide it into several blocks of size s x s (s is the group size), and
the element within the block are denoted as {z; j|r1 < i < 73,¢1 < j < co}. Then, the row and

Under review as a conference paper at ICLR 2026

' S p==_J
1 [|
! I
- H B 1
: - :
i H X[:s,:s] -
i =
i X E 1 scalecoumn]
Figure 3: Left: Outlier patterns of moment tensor. Right: Illustration of grid quantization.
column quantization scales of this block are formulated as follows:
scaler, = max z;;, scale., = max T;;. 9
T r1<j<ra »I? © c1<i<ca I ©)
Then the normalization of grid quantization x; ; can be formulated as:
T
Noria(wi ;) = - (10)

min(scale,,, scale,)

Grid quantization utilizes information in a more fine-grained manner and provides element-wise
unique quantization scales, effectively addressing the outliers that appear across both dimensions.
Although grid quantization requires storing twice the number of quantization scales compared to
group-wise quantization, the resulting memory overhead is negligible.

3.4 OVERALL ALGORITHM

distribution singular value distribution
By employing the techniques of top 50 N\
subspace preserving and grid quan- 40 /N P
tization, we achieve a lower quan- Z30 2
tization error for the Muon opti- £ / \ w-0.1s %,
mizer (NE=1.78 — NE=0.14). The 10{ — NS(real) 2 os| NS(real)
comparison between NS(real) and po T NS@uant | N~ | NS(quant) 1
NS(quant) is presented in Fig. 4, w00 o 0 0 500 1000 1500 2000
where the rank of the top subspace is (a) (b)

set to 1/16 of the original matrix rank.
Algo. 1 outlines the overall procedure
of 4-bit-Muon-GRASP, including the detailed steps of Power Iteration.

Figure 4: The comparision of NS(real) and NS(quant).

4 EXPERIMENTS

We evaluate 4-bit-muon-base and 4-bit-muon-GRASP on both pre-training and fine-tuning of LLMs.
We compare our 4-bit muon optimizers with their full-precision counterparts, namely fp32-muon.
Here we further include 8-bit-Muon as a baseline, which is implemented through group quantization.
All experiments run on NVIDIA A100 GPUs.

Following Liu et al. (2025), we employ the Muon optimizer for updating matrix parameters, while
RMSNorm, the LM head, and embedding parameters remain optimized using AdamW. Except for
the ablation study, the rank of the top singular subspace is set to 1/16 of the original, and we use the
widely adopted INT4 and INT8 format for simplicity and efficiency. We implement the quantization-
related code using OpenAl Triton kernel to enhance efficiency and achieve real memory reduction.
Both the group size and grid size of quantization are set to 128.

4.1 PRETRAINING

Datasets, architecture and hyperparameters. Following Zhang et al. (2024), we utilize Slimpa-
jama (Soboleva et al., 2023) as the pre-training dataset and adopt a LLaMA-based architecture with
RMSNorm (Zhang & Sennrich, 2019) and SwiGLU activations (Shazeer, 2020). We evaluate three
model sizes: 130M, 350M, and 1.1B, and all experiments are conducted with BF16 mixed-precision
training to enhance training efficiency. For each model size, we first tune the learning rate for the
fp32-Muon from the set {2¢ — 3, 1le — 3, 6e — 4, 3¢ — 4}, selecting the best learning rate based on

Under review as a conference paper at ICLR 2026

Model Size 350M Model Size 1.1B

Model Size 130M

as fp32-Muon a2 \ fp32-muon \ fp32-Muon
' 8-bit-Muon ’ \ 8-bit-Muon 29 8-bit-Muon
34 4-bit-Muon-base 31 4-bit-Muon-base 2.8 \ 4-bit-Muon-base
Y I 4-bit-Muon-GRASP [I 4-bit-Muon-GRASP @ | N 4-bit-Muon-GRASP
: . 2.7
3 S 3
3.2 2.9
2.6
3.1 2.8
- 2.5
3.0 = 2.7 = .
0.0 2.5 5.0 7.5 10.0 10 15 20 24 10 15 20 25 30
Tokens (B) Tokens (B) Tokens (B)
(a) (b) ©

Figure 5: Validation loss comparison of pretraining with different optimizers on Slimpajama.

Table 2: Evaluation of models pre-trained with three optimizers, across downstream tasks for differ-
ent model sizes. The results are the average of multiple random seeds.

Model Optimizer HellaSwag ARC-¢c ARC-e boolQ OBQA PIQA SciQ Avg
fp32-Muon 28.4 21.8 343 62.1 25.8 58.3 622 41.8

130M 8bit-Muon 28.4 21.6 34.1 62.2 26.9 58.5 61.7 41.6
4bit-Muon-base 28.2 20.8 34.0 62.2 27.8 58.8 59.6 41.9
4bit-Muon-GRASP 28.7 21.6 342 62.1 28.0 58.1 60.4 419
fp32-Muon 324 23.5 38.3 59.4 28.8 62.0 68.0 44.6

350M 8bit-Muon 32.5 22.3 38.1 61.3 28.4 61.8 66.5 44.5
4bit-Muon-base 31.6 22.4 37.7 61.9 26.2 61.8 64.4 437
4bit-Muon-GRASP 324 23.0 38.5 61.2 28.2 614 66.6 445
fp32-Muon 40.6 25.4 42.8 60.4 30.2 66.5 69.5 48.0

L1B 8bit-Muon 40.5 25.2 42,5 60.4 30.2 66.8 714 482
: 4bit-Muon-base 39.8 24.2 41.5 61.0 304 66.6 69.7 47.6
4bit-Muon-GRASP 40.4 24.8 423 60.5 30.6 674 713 4382

Table 3: Statistics of different optimizers: the step time (s), total memory usage (GB), and validation
perplexity () after training for 10K steps.

130M 350M 1.1B
time mem PPL time mem PPL time mem PPL
fp32-Muon 31.8 1.76 19.21 458 4.04 1557 61.3 13.22 1248
8-bit-Muon 319 147 19.29 457 335 15.65 61.5 13.22 12.46
4-bit-Muon-base 319 142 19.73 458 323 1596 61.5 10.54 12.76
4-bit-Muon-GRASP 320 143 19.35 46.0 3.26 15.67 61.9 10.14 1248

the validation perplexity, respectively. We then apply the same learning rate to the 4-bit-Muon-base
and 4-bit-Muon-GRASP models to ensure a fair comparison. See Appendix A for more detailed
hyperparameter settings.

Training Curve. Fig. 5 illustrates the training curves of different optimizers across three model
sizes. The results show that even the 4-bit-Muon-base optimizer does not significantly affect training
convergence, with an accuracy loss of 1%. Our proposed 4-bit-Muon-GRASP reduces the training
gap with fp32-Muon to less than 0.2%, and on the 1.1B model, 4-bit-Muon-GRASP even achieves
no loss in training accuracy.

Accuracy of 4-bit Optimizers. To assess whether our memory efficient 4-bit optimizers could
maintain accuracy on downstream tasks, we evaluate zero-shot performance using the Im-evaluation-
harness (Gao et al., 2021) codebase on standard benchmarks, including HellaSwag (Zellers et al.,
2019), ARC (Yadav et al., 2019), BoolQ (Clark et al., 2019), OpenbookQA (Mihaylov et al., 2018),
SciQ (Johannes Welbl, 2017), PIQA (Bisk et al., 2020), Winogrande (Sakaguchi et al., 2021). The
corresponding results are shown in Tab. 2. For the 350MB model, 4-bit-Muon-base and 4-bit-Muon-
GRASP achieve an average accuracy of 44.6 and 44.5, respectively, while the baseline performs at
43.7. A similar trend is observed with the 130M and 1.1B models. These results show that 8-bit-
Muon and our 4-bit-Muon-GRASP could match or exceed fp32-Muon performance across all tasks,
while 4-bit-Muon-base shows a slight accuracy loss.

Under review as a conference paper at ICLR 2026

Memory Usage of Different Optimizers

807 == fp32-AdamW
704 3 fp32-Muon
[8bit-Muon
607 — 4bit-Adamw o
501 EIN 4bit-Muon-base
g XY 4bit-Muon-GRASP I EEH i
N
[} 40 34.53
2l 30 s
245524%
20 Y \
B2 074 1071 10.04 1014
10
498 404 3.86 3.35 3.23 3.26
0 \
350M 1.1B 3B 5B
Model Size

Figure 6: Total training memory usage across different optimizers and model sizes, evaluated with
one sequence of length 1024 on a single device.

Table 4: Comparison of three optimizers applied to the SFT of the Qwen2.5-7B and Qwen2.5-7B-
Math pretrained models. The results are the average of multiple random seeds.

Benchmark (Metric) # Shots Origin SFT(fp32) SFT(4bit-base) SFT(4bit-GRASP)
Pretrained model: Qwen2.5-7B
MMLU(EM) 0-shot(CoT) 71.9 72.0 72.1 72.0
HumanEval (Pass@1) 0-shot 56.1 76.2 76.6 76.7
MBPP (Pass@1) 0-shot 64.4 71.4 70.3 70.9
GSMSK (EM) 5-shot 80.3 85.4 84.8 85.2
Pretrained model: Qwen2.5-7B-Math
MATH (Pass@1) 0-shot 65.4 70.5 69.8 70.8
Minerva Math (Pass@1) 0-shot 12.1 26.8 27.9 29.0
Olympiad Bench (Pass@1) 0-shot 27.3 36.0 359 354
Average - 539 62.6 62.5 62.8

Memory and Computing Efficiency. The training statistics are presented in Tab. 3, where the
4-bit-Muon-base shows degradation in training accuracy, whereas our 4-bit-Muon-GRASP demon-
strates negligible accuracy loss, particularly with the 1.1B model size. Moreover, we find that the
training time overhead introduced by quantization is minimal and a detailed breakdown of the cost
of power iteration and other optimzier logics are shown in Appendix B.2. Fig. 6 provides a further
total memory usage comparison with the full-precision AdamW, 4-bit AdamW, and 8-bit Muon op-
timizers, with model sizes scaled up to 3B and 5B. We observe that the 4-bit Muon optimizer is the
most memory-efficient among all, achieving memory reductions of up to 48% and 28% compared to
fp32-AdamW and fp32-Muon, respectively. However, for smaller model sizes, the memory reduc-
tion is not substantial, and the memory savings plateau as the bitwidth decreases. This is because we
report total memory consumption, encompassing data, activations, weight gradients, and memory
fragments, rather than isolating the optimizer’s memory consumption alone. We also compare our
low-bit compression optimizer with cpu-offloading optimizer, see Appendix B.1 for details.

4.2 FINE-TUNING

Experimental Setup. We select two pretrained models: the general model Qwen2.5-7B (Yang et al.,
2025) and the domain-specific model Qwen2.5-7B-math (Yang et al., 2024), to evaluate the effects
of different optimizers on both general capabilities and advanced mathematical reasoning.

Our implementation builds upon the verl framework (Sheng et al., 2025). Since Muon requires the
full gradient matrix to calculate the updates, and PyTorch Fully Sharded Data Parallel is not directly
applicable to Muon, we refer to the public implementation of distributed Muon (hor, 2025; Ahn
et al., 2025). We further implement the distributed 4-bit-Muon-base and distributed 4-bit-Muon-
GRASP, where the quantization and dequantization are performed in a partitioned shape, and the
subspace preservation of momentum is carried out globally. See Appendix A for training details.

Performance on Downstream Tasks. For general model, we use Im-eval-harness (Gao et al., 2021)
to evaluate on benchmarks including MMLU (Hendrycks et al., 2020), HumanEval (Chen et al.,

Under review as a conference paper at ICLR 2026

82 Model Size 350M 282 Model Size 350M 200 Model Size 350M
—--- baseline(fp32)
2811 —=2 baseline(fp32) 281 e 2.95 only subspace (rank-1/16)
2.80 2.80 > only subspace (rank-1/8)
rank-1/2 S
) » Sso o 2.90 only subspace (rank-1/2)
8279 rank-1/4 8279 T g
= —— rank-1/8 N — R ~ 25
2.78 rank-1/16 \\\\\ 2781 —-- baseline(fp32) \‘~\\ .
277 rank-1/32 Se~a] 2971~ group quant TS~o_ 280F==
—— rank-1/64 ’ —— grid quant e
27875 00 27%5 10.0 7.5 10.0
Tokens (B) Tokens (B) Tokens (B)
(@) (b (c)

Figure 7: Ablation studies on pretraining: (a) Selection of different top singular space ranks, (b)
Comparison of group and grid quantization, (c) Preservation of only the top singular space.

2021), MBPP (Austin et al., 2021) and GSM8K (Cobbe et al., 2021). For high-level mathematical
reasoning model, we evaluate on established benchmarks including Math (Hendrycks et al., 2021),
Minerva Math (Lewkowycz et al., 2022), and Olympiad Bench (olympiad problems 2024, 2024).
The evaluation metric and results are shown in Tab. 4, where we compare the performance of fine-
tuned models with different optimizers. The results demonstrate that our 4-bit-Muon optimizers will
not destroy the capabilities of pretrained models, and the 4-bit-Muon-GRASP achieves performance
comparable to that of the 32-bit Muon across all tasks.

4.3 ABLATION STUDIES

How does the rank of the top singular space affect convergence, memory, and computing ef-
ficiency? We preserve the top singular space with different ranks, ranging from 1/64 to 1/2, and
perform pre-training on LLaMA-350M. Fig. 7 (a) illustrates that the gap of the training curve be-
tween our method and fp32 baseline widens as the rank decreases. Notably, when the rank of the
top singular space is set to half of the rank of the matrix M, the training loss shows no difference
from the baseline. Here, we also provide the memory usage and time of different rank chosen, and
the results are shown in Tab. 5 and Tab. 6. To highlight the contrast more clearly, here we focus only
on the optimizer itself.

These results reveal a trade-off: as the rank increases, model performance improves, but this comes
at the cost of increased time consumption and memory usage. Consequently, in practical training, we
propose selecting the highest possible rank that remains within the acceptable limits of memory and
time usage to achieve a good performance. Furthermore, we have included additional visualizations
of the singular value distributions in Appendix B.4, which reveal that the distributions exhibit similar
patterns across different model sizes. Therefore, the rank selected for smaller models can also be
transferred to larger models.

Table 5: The optimizer memory usage (GB) of different ranks.

Model Size 130M 350M 1.1B 3B 5B

4-bit-Muon-GRASP (rank 1/4) 0.11 025 1.06 3.03 542
4-bit-Muon-GRASP (rank 1/8) 0.08 023 092 257 462
4-bit-Muon-GRASP (rank 1/16) 0.06 0.19 081 2.07 3.79
4-bit-Muon-GRASP (rank 1/32) 0.05 0.17 078 199 3.32
4-bit-Muon-GRASP (rank 1/64) 0.05 0.16 074 192 286

What happens if we preserve only the top singular space while discarding the residual singular
space? Fig. 7 (c) shows the results when only the full-precision top singular space is preserved,
with the rank ranging from 1/2 to 1/16. The results demonstrate that discarding the residual singular
space leads to a significant degradation in training accuracy. Even with a 1/2 rank approximation, the
training accuracy loss exceeds 2%. This underscores the importance of the residual singular space
and suggests that the orthogonalization of Muon prevents a straightforward low-rank approximation.

Comparison between grid quantization and group quantization. We compare the effects of grid
quantization and group quantization on training performance. To provide a clearer comparison, we

Under review as a conference paper at ICLR 2026

Table 6: The optimizer updating time(s) of different ranks.

Model Size 130M 350M 1.1B 3B 5B

4-bit-Muon-GRASP (rank 1/4) 0.55 0.91 1.82 2.85 421
4-bit-Muon-GRASP (rank 1/8) 0.46 072 130 194 272
4-bit-Muon-GRASP (rank 1/16) 0.41 0.61 09 121 193
4-bit-Muon-GRASP (rank 1/32) 0.40 0.56 083 1.04 1.60
4-bit-Muon-GRASP (rank 1/64) 0.39 054 076 0.88 143

directly compress the moment matrix without preserving the top singular space. As shown in Fig. 7
(b), grid quantization reduces the accuracy loss of group quantization by half. See Appendix B.3 for
more ablation studies.

Comparison of different number of Power Itera-
tion steps. To evaluate the approximation accuracy
of Power Iteration with different step, Fig. 8 report
the relative error during training, with 1-step, 2-step,
and 3-step power iterations, respectively. The rel-
ative error here defined as RE(U,X, V] ,PRT),
where Uy, zkv,j represents the accurate top singu-
lar space, and PR.T is the approximation obtained
through power iteration. The results demonstrate 000
that the error gap between the 1-step and multi-step 00 25 50 75 100

. . . T . . . Training Steps (107°2)
iterations is minimal. In fact, the approximation er- g, gure 8: Approximation error during train-
ror of the 1-step power method already reaches as ing.

low as 0.01, indicating that a single iteration is suffi-

cient for the algorithm to accurately identify the top singular vector.

Approximation error of Power Iterations

1 —— 1 step Powerlter
2 step Powerlter

e
o
o

e
=]
o

—— 3 step Powerlter

e
o
>

Relative Error
o
1=
2

e
o
N}

12.5 15.0

5 RELATED WORKS

Quantization-based memory efficient optimizers. Dettmers et al. (2021) propose block-wise
dynamic quantization, allowing first-order optimizers to operate with 8-bit states, while Li et al.
(2023) further compresses the Adam/AdamW optimizer states to 4 bits by applying finer-grained
quantization and removing zero points from the second moment. Moreover, Wang et al. (2024)
introduces 4-bit second-order optimizers and exemplifies by 4-bit Shampoo.

Other memory efficient techniques. Several works have explored approximating gradient statistics
with sublinear memory cost relative to the number of parameters. For instance, Adafactor (Shazeer
& Stern, 2018) uses the outer product of two vectors to approximate Adam’s second moment.
SM3 (Anil et al., 2019) approximates the second moment in Adam using the statistics of its covers.
LoRA (Hu et al., 2022) freezes the pretrained weights and tunes only the newly initialized low-rank
parameters. Additionally, some approaches focus on reducing the memory consumption of activa-
tions, such as activation-compressed training and gradient checkpointing, which can be integrated
with our optimizer to achieve further memory savings.

6 CONCLUSION AND OUTLOOK

In this paper, we introduce 4-bit-Muon-GRASP, a method for compressing the Muon optimizer
to improve memory efficiency. By dividing the moment matrix into two parts and applying grid
quantization, we are able to reduce memory usage by up to 28% while maintaining performance
comparable to full-precision optimizers.

Limitations and Future Works. The optimal quantization settings are likely dependent on the task,
datasets, and training details, but the exploration in this paper is relatively limited to common LLM
training scenarios. Due to resource limitations, our evaluation is currently limited to pretraining on
1.1B models. We identify several open problems for 4-bit-Muon-GRASP, which include: 1) pro-
viding strategies or guidelines for automatic rank selection; 2) further enhancing memory efficiency
by employing activation reduction methods; and 3) optimizing the efficiency and communication of
low-bit optimizer algorithms in distributed scenarios.

10

Under review as a conference paper at ICLR 2026

DECLARATION OF AI USE

We used Gemini/ChatGPT to assist in writing:
1) Correcting grammar, improving clarity, and refining the flow of sentences.

The LLMs do not contribute to research ideation, methodology, experimental design, data analysis,
interpretation of results, or the creation of substantive academic content or references. We carefully
review and approve all suggestions from the models, and we take full responsibility for the final
manuscript.

11

Under review as a conference paper at ICLR 2026

REFERENCES

Various approaches to parallelizing muon, 2025. URL https://main-horse.github.io/
posts/parallelizing—muon/.

Kwangjun Ahn, Byron Xu, Natalie Abreu, and John Langford. Dion: Distributed orthonormalized
updates. arXiv preprint arXiv:2504.05295, 2025.

Rohan Anil, Vineet Gupta, Tomer Koren, and Yoram Singer. Memory efficient adaptive optimiza-
tion. Advances in Neural Information Processing Systems, 32, 2019.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732, 2021.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about physical
commonsense in natural language. In AAAI, volume 34, pp. 7432-7439, 2020.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. Journal of Machine Learning Research, 24(240):
1-113, 2023.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions. arXiv preprint
arXiv:1905.10044, 2019.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

Tim Dettmers, Mike Lewis, Sam Shleifer, and Luke Zettlemoyer. 8-bit optimizers via block-wise
quantization. arXiv preprint arXiv:2110.02861, 2021.

Leo Gao, Jonathan Tow, Stella Biderman, Shawn Black, Anthony DiPofi, Charles Foster, Laurence
Golding, Jasmine Hsu, Kyle McDonell, Niklas Muennighoff, et al. A framework for few-shot
language model evaluation. Version v0. 0.1. Sept, 10:8-9, 2021.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. ICLR, 1(2):3, 2022.

Matt Gardner Johannes Welbl, Nelson F. Liu. Crowdsourcing multiple choice science questions.
arXiv:1707.06209v1, 2017.

Keller Jordan, Yuchen Jin, Vlado Boza, You Jiacheng, Franz Cecista, Laker Newhouse, and
Jeremy Bernstein. Muon: An optimizer for hidden layers in neural networks, 2024. URL
https://kellerjordan. github. io/posts/muon, 6, 2024.

Diederik Kinga, Jimmy Ba Adam, et al. A method for stochastic optimization. In International
conference on learning representations (ICLR), volume 5. California;, 2015.

12

https://main-horse.github.io/posts/parallelizing-muon/
https://main-horse.github.io/posts/parallelizing-muon/

Under review as a conference paper at ICLR 2026

Nathan Lambert, Jacob Morrison, Valentina Pyatkin, Shengyi Huang, Hamish Ivison, Faeze Brah-
man, Lester James V Miranda, Alisa Liu, Nouha Dziri, Shane Lyu, et al. Tulu 3: Pushing frontiers
in open language model post-training. arXiv preprint arXiv:2411.15124,2024.

Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay Ra-
masesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, et al. Solving quantitative
reasoning problems with language models. Advances in neural information processing systems,
35:3843-3857, 2022.

Bingrui Li, Jianfei Chen, and Jun Zhu. Memory efficient optimizers with 4-bit states. Advances in
Neural Information Processing Systems, 36:15136-15171, 2023.

Jia Li, Edward Beeching, Lewis Tunstall, Ben Lipkin, Roman Soletskyi, Shengyi Huang, Kashif
Rasul, Longhui Yu, Albert Q Jiang, Ziju Shen, et al. Numinamath: The largest public dataset in
ai4maths with 860k pairs of competition math problems and solutions. Hugging Face repository,
13(9):9, 2024.

Jingyuan Liu, Jianlin Su, Xingcheng Yao, Zhejun Jiang, Guokun Lai, Yulun Du, Yidao Qin,
Weixin Xu, Enzhe Lu, Junjie Yan, et al. Muon is scalable for llm training. arXiv preprint
arXiv:2502.16982, 2025.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering. In EMNLP, 2018.

Mathematical olympiad problems 2024. International mathematical olympiad, 2024. URL https:
//www.imo-official.org.

Ning Qian. On the momentum term in gradient descent learning algorithms. Neural networks, 12
(1):145-151, 1999.

Chongli Qin and Jost Tobias Springenberg. Supervised fine tuning on curated data is reinforcement
learning (and can be improved). arXiv preprint arXiv:2507.12856, 2025.

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. Zero: Memory optimizations
toward training trillion parameter models. In SC20: International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis, pp. 1-16. IEEE, 2020.

Samyam Rajbhandari, Olatunji Ruwase, Jeff Rasley, Shaden Smith, and Yuxiong He. Zero-infinity:
Breaking the gpu memory wall for extreme scale deep learning. In Proceedings of the interna-
tional conference for high performance computing, networking, storage and analysis, pp. 1-14,
2021.

Jie Ren, Samyam Rajbhandari, Reza Yazdani Aminabadi, Olatunji Ruwase, Shuangyan Yang, Min-
jia Zhang, Dong Li, and Yuxiong He. {Zero-offload}: Democratizing {billion-scale} model
training. In 2021 USENIX Annual Technical Conference (USENIX ATC 21), pp. 551-564, 2021.

Bita Darvish Rouhani, Ritchie Zhao, Ankit More, Mathew Hall, Alireza Khodamoradi, Summer
Deng, Dhruv Choudhary, Marius Cornea, Eric Dellinger, Kristof Denolf, et al. Microscaling data
formats for deep learning. arXiv preprint arXiv:2310.10537, 2023.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adver-
sarial winograd schema challenge at scale. Communications of the ACM, 64(9):99-106, 2021.

Noam Shazeer. Glu variants improve transformer. arXiv preprint arXiv:2002.05202, 2020.

Noam Shazeer and Mitchell Stern. Adafactor: Adaptive learning rates with sublinear memory cost.
In International Conference on Machine Learning, pp. 4596—4604. PMLR, 2018.

Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,

Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. In Proceedings
of the Twentieth European Conference on Computer Systems, pp. 1279-1297, 2025.

13

https://www.imo-official.org
https://www.imo-official.org

Under review as a conference paper at ICLR 2026

Daria Soboleva, Faisal Al-Khateeb, Robert Myers, Jacob R Steeves, Joel Hes-
tness, and Nolan Dey. SlimPajama: A 627B token cleaned and dedu-
plicated version of RedPajama. https://www.cerebras.net/blog/
slimpajama—-a-627b-token-cleaned-and-deduplicated-version-of-redpajama,
2023. URL https://huggingface.co/datasets/cerebras/SlimPajama-627B.

Kimi Team, Yifan Bai, Yiping Bao, Guanduo Chen, Jiahao Chen, Ningxin Chen, Ruijue Chen,
Yanru Chen, Yuankun Chen, Yutian Chen, et al. Kimi k2: Open agentic intelligence. arXiv
preprint arXiv:2507.20534, 2025.

Thijs Vogels, Sai Praneeth Karimireddy, and Martin Jaggi. Powersgd: Practical low-rank gradient
compression for distributed optimization. Advances in Neural Information Processing Systems,
32,2019.

Ruizhe Wang, Yeyun Gong, Xiao Liu, Guoshuai Zhao, Ziyue Yang, Baining Guo, Zhengjun Zha,
and Peng Cheng. Optimizing large language model training using fp4 quantization. arXiv preprint
arXiv:2501.17116, 2025.

Sike Wang, Pan Zhou, Jia Li, and Hua Huang. 4-bit shampoo for memory-efficient network training.
Advances in Neural Information Processing Systems, 37:126997-127029, 2024.

Kaiyue Wen, Zhiyuan Li, Jason Wang, David Hall, Percy Liang, and Tengyu Ma. Understanding
warmup-stable-decay learning rates: A river valley loss landscape perspective. arXiv preprint
arXiv:2410.05192, 2024.

Yongliang Wu, Yizhou Zhou, Zhou Ziheng, Yingzhe Peng, Xinyu Ye, Xinting Hu, Wenbo Zhu,
Lu Qi, Ming-Hsuan Yang, and Xu Yang. On the generalization of sft: A reinforcement learning
perspective with reward rectification. arXiv preprint arXiv:2508.05629, 2025.

Vikas Yadav, Steven Bethard, and Mihai Surdeanu. Quick and (not so) dirty: Unsupervised selection
of justification sentences for multi-hop question answering. arXiv preprint arXiv:1911.07176,
2019.

An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao, Bowen Yu, Chengpeng Li, Dayiheng Liu, Jian-
hong Tu, Jingren Zhou, Junyang Lin, et al. Qwen2. 5-math technical report: Toward mathematical
expert model via self-improvement. arXiv preprint arXiv:2409.12122, 2024.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen2.5 technical report. arXiv preprint
arXiv:2505.09388, 2025.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-
chine really finish your sentence? arXiv preprint arXiv:1905.07830, 2019.

Biao Zhang and Rico Sennrich. Root mean square layer normalization. Advances in neural infor-
mation processing systems, 32, 2019.

Peiyuan Zhang, Guangtao Zeng, Tianduo Wang, and Wei Lu. Tinyllama: An open-source small
language model. arXiv preprint arXiv:2401.02385, 2024.

Jiawei Zhao, Zhenyu Zhang, Beidi Chen, Zhangyang Wang, Anima Anandkumar, and Yuandong
Tian. Galore: Memory-efficient llm training by gradient low-rank projection. arXiv preprint
arXiv:2403.03507, 2024.

Yanli Zhao, Andrew Gu, Rohan Varma, Liang Luo, Chien-Chin Huang, Min Xu, Less Wright,
Hamid Shojanazeri, Myle Ott, Sam Shleifer, et al. Pytorch fsdp: experiences on scaling fully
sharded data parallel. arXiv preprint arXiv:2304.11277, 2023.

14

https://www.cerebras.net/blog/slimpajama-a-627b-token-cleaned-and-deduplicated-version-of-redpajama
https://www.cerebras.net/blog/slimpajama-a-627b-token-cleaned-and-deduplicated-version-of-redpajama
https://huggingface.co/datasets/cerebras/SlimPajama-627B

Under review as a conference paper at ICLR 2026

A DETAILS OF PRE-TRAINING SETTING

Table 7: Hyperparameters for LLaMA model pretraining.

Parameters 130M 350M 1.1B
Ir-schedule WSD (Wen et al., 2024) WSD WSD
max, min Ir (le-3, le-4) (6e-4, 6e-5) (6e-4, 6e-5)
warmup-ratio 0.1 0.1 0.1
Training decay-ratio 0.99 0.99 0.99
AdamW-3 (0.95,0.9) (0.95,0.9) (0.95,0.9)
weight-decay 0.1 0.1 0.1
grad_clip 1.0 1.0 1.0
hidden dim. 768 1024 2048
#layers 12 22 22
#q heads 12 16 32
Model iy heads 4 4 4
context-length 1024 1024 1024
FFN size 1024 2560 5632
tokenzier LLaMA-2 LLaMA-2 LLaMA-2
Data #steps(B) 10K 20K 30K
#Tokens(B) 10.5 21.0 314
Batch size 1024 1024 1024

Pre-training. We provide details of the LLaMA architecture and the hyperparameters used for pre-
training. Tab. 7 presents the key hyperparameters for LLaMA models across different sizes. In all
experiments, we use a WSD (warmup-stable-decay) learning rate schedule. The learning rate is
warmed up for the first 10% of the training steps and then decays to 10% of the initial value during
the final 1% of the training steps.

Fine-tuning. For Qwen2.5-7B, we fine-tune the model using the open-source tulu-3-sft-mixture
dataset (Lambert et al., 2024). Following Liu et al. (2025), the dataset is packed with a sequence
length of 8k tokens, and the learning rate follows a cosine decay schedule, starting from 5 x 10~° and
gradually decaying to 2 x 10~5. For Qwen2.5-7B-Math, we adopt the NuminaMath CoT dataset (Li
et al., 2024) for fine-tuning, which consists of approximately 860,000 mathematical problems paired
with their corresponding solutions. In accordance with Qin & Springenberg (2025); Wu et al. (2025),
we randomly sample 100K instances from the dataset for training, and the dataset is packed with a
sequence length of 2k tokens.

B MORE EXPERIMENT RESULTS
B.1 COMPARISON WITH CPU-OFFLOADING OPTIMIZERS

Table 8: The optimizer updating time(s) of different methods.

Model Size 130M 350M 1.1B 3B 5B

fp32-Muon 0.18 025 039 055 075
fp32-Muon-CPU 0.73 099 389 1132 17.93
4-bit-Muon-GRASP (rank 1/4) 0.55 0.91 1.82 285 421
4-bit-Muon-GRASP (rank 1/16) 0.41 061 09 1.21 1.93
4-bit-Muon-GRASP (rank 1/64) 0.39 054 0.76 0.88 1.43

Tab. 8 and Tab. 9 shows the optimizer updating times (s) and optimizer memory usage (GB) of dif-
ferent methods, which demonstrate that the optimizer step time for CPU-offloaded Muon increases
significantly, especially as the model size grows. For a 5B model, the optimizer time becomes
20 times longer, introducing a substantial overhead. In contrast, our proposed 4-bit compression
method, with a rank selection of 1/16, only doubles the time, while simultaneously reducing mem-
ory usage to approximately 1/7 of the original. This highlights that, compared to CPU-offloading
methods, low-bit compression offers a more favorable balance between memory usage and time
consumption.

15

Under review as a conference paper at ICLR 2026

Table 9: The optimizer memory usage (GB) of different methods.

Model Size 130M 350M 1.1B 3B 5B
fp32-Muon 0.41 094 388 11.81 19.97
fp32-Muon-CPU 0 0 0 0 0

4-bit-Muon-GRASP (rank 1/4) 0.11 025 1.06 3.03 542
4-bit-Muon-GRASP (rank 1/16) 0.06 0.19 081 207 3.79
4-bit-Muon-GRASP (rank 1/64) 0.05 0.16 074 192 286

B.2 DETAILED BREAKDOWN OF OPTIMIZER TIME USAGE

Table 10: Time (ms) of different optimizer logic.

Model size (rank) 130M(1/4) 130M(1/16) 130M(1/64) 350M(1/4) 350M(1/16) 350M(1/64) 1.1B(1/4) 1.1B(1/16) 1.1B(1/64)

Power iteration 134 46 32 410 129 58 1010 242 94
NS iteration 98 98 98 224 224 224 378 378 378
param update 12 12 12 22 22 22 35 35 35

Here, we provide a detailed breakdown of the cost of power iteration versus the rest of the optimizer
logic and the results are shown in Tab 10. We find that when the rank is selected as 1/16, the time
required for Power Iteration is less than that of the NS iteration. However, when the rank is larger
(1/4), the QR decomposition in Power Iteration becomes relatively time-consuming and exceeds the
time required for the NS iteration. This pattern holds across different model sizes. In the overall
training steps, the forward and backward processes account for the majority of the time, with the
increase in optimizer time (0.2-0.6 seconds) considered a minimal overhead.

B.3 DATA FORMATS AND LEARNING RATES

0 INT4 vs FP4 (E2M1) 10 Model Size 1.1B

38 int4-1.1B 38 Ir6e-4

26 \ fp4-1.1B a6 Irle-3

‘ \ —— int4-350M ' \ —— 1r2e-3
2 3.4 \ fp4-350M @ 3.4 \ Ir3e-4
S 3.2 N 3 3.2
\

3.0 S~ 3.0 \

2.8 T 2.8

2.6 2.6

5 10 5 10
Tokens (B) Tokens (B)

Figure 9: Left: Comparision of INT4 and FP4 data format. Right: Different learning rate.

Here, we compare the impact of FP4 and INT4 data formats on quantization. The implementation
of INT4 is straightforward: after dividing by the normalization scale, we apply the round() function.
For FP4 representation, we adopt the E2ZM1 format as defined in prior studies (Rouhani et al., 2023),
which includes the following values:

{—6,-4,-3,—2,—1.5,—1,-0.5,0,0.5,1,1.5,2,3,4,6} (11

Following Wang et al. (2025), we implement a look-up table for FP4 quantization within a Triton
kernel. Quantization functions typically involve element-wise operations on large datasets, which
can be parallelized to leverage the highly parallel computing power of GPUs. Fig. 10 (left) shows
that the training curves for both data formats are nearly identical, but the look-up process in FP4
introduces a slight efficiency overhead.

We also compare the effect of different learning rates on the convergence of training with 4-bit-
Muon-GRASP optimizer. We select learning rates from the set {3e-4, 6e-4, 1e-3, 3e-3}. Figure 10
(right) shows that 4-bit-Muon-GRASP converges to similar levels across different learning rates.

16

Under review as a conference paper at ICLR 2026

B.4
DIFFERENT SIZES.

singular value distribution

Singular Value

singular value distribution

Singular Value
JoN
<

10-3) e NS(real) ‘
,,,,,,, NS(quant) ;
0 200 400 600 800
Index
(a) 130M

Figure 10: Visualization
LLaMA model.

-
o
b

Singular Value
—
o
IS

-
o
&

Singular Value
-
o
b

singular value distribution

1

real ‘

0 200 400 600
Index

800 1000

singular value distribution

NS(real)
NS(quant)

0 200 400 600 800 1000
Index

(b) 350M

Singular Value

108

Singular Value
-
(=}
&

-
(=4
1
5

SINGULAR VALUE DISTRIBUTION OF THE MOMENT MATRICES FOR MODELS OF

singular value distribution

quant

1000 1500 2000
Index

singular value distribution

NS(real)
NS(quant)

0 500 1000 1500 2000

Index

(c) L.IB

of momentum in transformer.layers.7.attn.o_proj in different size of

17

	Introduction
	Preliminaries
	Muon Optimizer
	Quantization and Dequantization

	Methodology
	Challenges
	Subspace Preserving
	Grid Quantization
	Overall Algorithm

	Experiments
	Pretraining
	Fine-tuning
	Ablation Studies

	Related Works
	Conclusion and Outlook
	Details of Pre-Training Setting
	More Experiment results
	Comparison with CPU-Offloading optimizers
	Detailed breakdown of optimizer time usage
	Data formats and learning rates
	Singular value distribution of the moment matrices for models of different sizes.

