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Abstract

A Simple Temporal Network with Uncertainty (STNU) is a
structure for representing and reasoning about time constraints
on actions with uncertain durations. An STNU is dynamically
controllable (DC) if there exists a dynamic strategy for exe-
cuting the network that guarantees that all of its constraints5

will be satisfied no matter how the uncertain durations turn
out—within their specified bounds. However, such strategies
typically require exponential space. Therefore, it is essential
to convert a DC STNU into a so-called dispatchable form for
practical applications. For a dispatchable STNU, the relevant10

portions of a real-time execution strategy can be incrementally
constructed during execution, requiring only O(n2) space,
while also providing maximum flexibility but requiring only
minimal computation during execution. Existing algorithms
can generate equivalent dispatchable STNUs, but with no guar-15

antee about the number of edges in the output STNU. Since
that number directly impacts the computations during execu-
tion, this paper presents a novel algorithm for converting any
dispatchable STNU into an equivalent dispatchable network
having a minimal number of edges. The complexity of the20

algorithm is O(kn3), where k is the number of actions with
uncertain durations, and n is the number of timepoints. The
paper also provides an empirical evaluation of the order-of-
magnitude reduction of edges obtained by the new algorithm.

1 Introduction and Related Work25

Temporal constraint networks facilitate representating and
reasoning about temporal constraints on activities. Among
the many kinds of temporal constraint networks in the litera-
ture, Simple Temporal Networks with Uncertainty (STNUs)
are one of the most important because they allow the explicit30

representation of actions with uncertain durations (Morris,
Muscettola, and Vidal 2001). In an STNU, an action with
uncertain duration is represented by a contingent link that
specifies bounds on the duration’s uncertainty. A contingent
link also represents that a scheduler cannot decide the ac-35

tion’s duration, but instead can only observe it at runtime.
Therefore, for STNUs, it is important to know whether a
strategy exists for executing the network that guarantees that
all of its constraints will be satisfied no matter how the uncer-
tain durations play out. If such a strategy exists, the STNU40

is said to be dynamically controllable (DC). The literature
includes several polynomial-time algorithms for checking the
DC property that differ in their approaches to finding possible

inconsistencies, characterized by different kinds of negative
cycles (Stedl and Williams 2005; Morris 2006, 2014; Nilsson, 45

Kvarnstrom, and Doherty 2014; Cairo, Hunsberger, and Rizzi
2018). But the algorithms are not constructive (i.e., they do
not output actual execution strategies in positive instances).

For DC STNUs, an execution strategy can be specified by
pre-computing every possible incremental schedule for every 50

possible combination of uncertain action durations. However,
such a strategy requires exponential space and, therefore, is
exceedingly impractical. So, for practical applications, Mor-
ris (2014, 2016) proposed converting DC STNUs into an
equivalent dispatchable form. For a dispatchable STNU, a 55

dynamic execution strategy can be generated incrementally,
during execution, using only O(n2) space, where n is the
number of timepoints (citation omitted/blind review). More-
over, such a strategy provides maximum flexibility for the
action scheduler, but requires minimal real-time computation. 60

Most DC-checking algorithms do not guarantee a dispatch-
able output, but Morris (2014) indicated that his DC-checking
algorithm could be modified to do so. We call that version
of his algorithm Morris14. More recently, Hunsberger and
Posenato (2023) presented an algorithm for creating an equiv- 65

alent dispatchable STNU, called FD
STNU

. Although these are
the only known algorithms that guarantee an equivalent dis-
patchable output, they do not provide any guarantees about
the number of edges in it. Since the number of edges directly
impacts computations during execution, this paper presents a 70

novel algorithm for converting any dispatchable STNU into
an equivalent dispatchable network with a minimal number
of edges. The complexity of the algorithm is O(kn3), where
k is the number of actions with uncertain durations, and n is
the number of nodes in the network. The paper provides an 75

empirical evaluation of the order-of-magnitude reduction in
the number of edges obtained by the new algorithm.

2 Background
This section summarizes definitions and results for the dis-
patchability of Simple Temporal Networks (STNs) and STNs 80

with Uncertainty (STNUs). Our focus is on the dispatchabil-
ity of STNUs, but the work on STNs is also important.

Definition 1 ((Dechter, Meiri, and Pearl 1991)). A Simple
Temporal Network (STN) is a pair S = (T , C), where T is
a set of real-valued variables called timepoints (TPs) and 85



C is a set of constraints of the form (Y − X ≤ δ), for
some X,Y ∈ T and some δ ∈ R. Each STN S = (T , C)
has a corresponding graph G = (T , E), where the TPs
in T serve as the graph’s nodes, and the constraints in
C correspond to labeled, directed edges in E . In partic-90

ular: E = {X δ Y | (Y −X ≤ δ) ∈ C}. For convenience,
X δ Y may be notated as (X, δ, Y ).

An STN is consistent if it has a solution as a constraint
satisfaction problem. Although solutions for consistent STNs
can be computed in advance of execution (e.g., by the95

Bellman-Ford algorithm (Cormen et al. 2022)), it is often
desirable to preserve as much flexibility as possible during
execution (e.g., to enable reacting to unanticipated events).
Toward that end, Tsamardinos, Muscettola, and Morris (1998)
first specified a real-time execution algorithm for STNs,100

called the Time Dispatching (TD) algorithm, and then de-
fined an STN to be dispatchable if every run of the TD
algorithm was guaranteed to generate a solution. The TD
algorithm provides maximum flexibility during execution
by maintaining time windows for each timepoint. It requires105

minimal computation during execution by propagating the
effects of each real-time execution, X = v, only locally (i.e.,
to X’s neighbors; that is, timepoints connected to X by a sin-
gle edge). Morris (2016) subsequently provided a graphical
characterization of STN dispatchability in terms of vee-paths.110

Definition 2 (Vee-path (Morris 2016)). A vee-path is a path
consisting of zero or more negative edges followed by zero
or more non-negative edges. If P is a vee-path from X to Y
that is also a shortest path from X to Y , then P is called a
shortest vee-path (SVP). If, in addition, P contains no proper115

cycles, then P is called a simple shortest vee-path (SSVP).
Theorem 1. (Morris 2016) An STN is dispatchable if and
only if whenever there is a path from any X to any Y , then
there is a shortest vee-path from X to Y (i.e., an SVP).
Definition 3 ((Morris, Muscettola, and Vidal 2001)). A Sim-120

ple Temporal Network with Uncertainty (STNU) augments
an STN to accommodate actions with uncertain durations.
Formally, an STNU is a triple, S = (T , C,L), where (T , C)
is an STN, and L is a set of contingent links (CLs), each of the
form (A, x, y, C), where A,C ∈ T and 0 < x < y < ∞.125

Intuitively, once the activation timepoint A is executed
(i.e., assigned a value during execution), the contingent time-
point C is guaranteed to be executed such that the duration
C −A ∈ [x, y], but the particular execution time for C is not
controlled by the agent in charge of executing the network;130

instead, it is only observed in real time.
⇒ For convenience, and without loss of generality, we as-

sume that no contingent timepoint C can serve as the
activation timepoint for another contingent link.

Each STNU S = (T , C,L) has a corresponding graph,135

G = (T , Eo ∪ Elc ∪ Euc), where (T , Eo) is the graph for
the STN (T , C), and Elc and Euc contain labeled, directed
edges derived from the contingent links in L. In particular:
Elc = {A c:x C | (A, x, y, C) ∈ L}, and Euc = {C C:−y A |
(A, x, y, C) ∈ L}. The so-called lower-case (LC) edge140

A c:x C represents the uncontrollable possibility that the du-
ration C − A might take on its minimum value x, while

the so-called upper-case (UC) edge C C:−y A represents
the uncontrollable possibility that C − A might take on its
maximum value y. Such edges may be respectively notated 145

as (A, c:x,C) and (C,C:−y,A), while constraints in C and
edges in Eo may be called ordinary constraints and edges,
respectively, to distinguish them from the LC and UC edges.

Definition 4. An STNU S = (T , C,L) is dynamically con-
trollable (DC) if there exists a dynamic strategy for executing 150

its timepoints such that all constraints in C are guaranteed
to be satisfied no matter how the durations of the CLs in L
turn out (Morris, Muscettola, and Vidal 2001). The strategy
is dynamic in that its execution decisions cannot depend on
advance knowledge of future contingent executions. 155

Several polynomial-time DC-checking algorithms have
been presented in the literature (Morris 2006, 2014; Cairo,
Hunsberger, and Rizzi 2018; Hunsberger and Posenato 2022).
However, in positive instances, such algorithms only confirm
the existence of a dynamic execution strategy; they do not 160

output one. Since such strategies typically require exponential
space, Morris (2016) extended the concept of dispatchability
from STNs to extended STNUs (ESTNUs), as follows.

First, we must backtrack. Some of the DC-checking al-
gorithms for STNUs generate a new kind of conditional 165

constraint called a wait (Morris 2006). A typical wait can be
glossed as: “If the contingent timepoint C has not yet exe-
cuted, then W must wait until at least w after the activation
timepoint A.” Its graphical representation is the generated
UC edge, W C:−w A, where A and C are the activation and 170

contingent timepoints for some CL (A, x, y, C). Intuitively,
since the execution of C cannot be directly controlled and
might occur as late as y after A, W must wait until w after
A; but if C executes earlier than w after A, then the wait is
automatically satisfied and W may be executed immediately. 175

Generating wait edges is not required to determine the DC
property (e.g., as seen in the algorithms of Morris (2014) and
Cairo, Hunsberger, and Rizzi (2018)), but wait edges turn out
to be necessary for enforcing the dispatchability of STNUs.
Anticipating this, Morris (2016) defined an extended STNU 180

(ESTNU) to be an STNU augmented to include zero or more
waits (equivalently, an STNU graph together with a set Eucg
of generated UC edges). He then defined the dispatchability
of ESTNUs in terms of their STN projections, as follows.

Definition 5 (Situation). Let S be an STNU with k contin- 185

gent links whose duration ranges are [x1, y1], . . . , [xk, yk].
A situation (for S) is a k-tuple ω = (ω1, ω2, . . . , ωk) where
ωi ∈ [xi, yi] for each i ∈ {1, 2, . . . , k}. The space of all
situations is notated as Ω = [x1, y1]× . . .× [xk, yk].

In other words, a situation ω ∈ Ω specifies a fixed dura- 190

tion for each contingent link. For convenience, if C is the
contingent timepoint for a link (A, x, y, C), then the duration
C −A in the situation ω may be notated as ωc.

Definition 6 (Projection). For any ESTNU G = (T , Eo ∪
Elc ∪ Euc ∪ Eucg), and any situation ω, the projection of G 195

onto ω is the STN Gω = (T , Eo ∪ Eω
lc ∪ Eω

uc ∪ Eω
ucg), where:

• Eω
lc = {(Ai, ωi, Ci) | ∃(Ai, ci:xi, Ci) ∈ Elc}

• Eω
uc = {(Ci,−ωi, Ai) | ∃(Ci, Ci:−yi, Ai) ∈ Euc}



• Eω
ucg = {(W, δ,Ai) | ∃(W,Ci:−v,Ai) ∈ Eucg

and δ = max{−ωi,−v}}200

Definition 7 (Dispatchable ESTNU). An ESTNU is dispatch-
able iff all of its STN projections are dispatchable (as STNs).

Morris suggested that a dispatchable ESTNU could be exe-
cuted using the TD algorithm for STNs, while pretending that
the execution times for the contingent TPs were chosen by205

external reality. Others (citation omitted for blind review) re-
cently confirmed this by formally defining a real-time execu-
tion algorithm for ESTNUs and proving that it is guaranteed
to successfully execute any dispatchable ESTNU, preserving
maximum flexibility while requiring minimal computation.210

Most DC-checking algorithms do not output a dispatchable
ESTNU. However, as Morris (2014) noted, his O(n3)-time
DC-checking algorithm can easily be modified to generate
waits and, insodoing, guarantee that it will output an equiv-
alent dispatchable ESTNU. More recently, Hunsberger and215

Posenato (2023) presented a faster algorithm for generating
equivalent dispatchable ESTNUs. However, neither algorithm
makes any claim about the number of edges in the dispatch-
able output. Since that number impacts the performance of
the real-time execution algorithm, producing an equivalent220

dispatchable ESTNU with a minimal number of edges is of
practical importance. This paper presents the first algorithm
for solving this problem. It runs in O(kn3) worst-case time.

3 The minDispESTNU Algorithm
This section introduces our new minDispESTNU algorithm.225

When given a dispatchable ESTNU as input, it outputs an
equivalent dispatchable ESTNU with a minimal number of
edges.1 Since the input is dispatchable, the algorithm need
only determine which edges can be removed while preserv-
ing dispatchability (i.e., while ensuring that every pair of230

timepoints connected by a path are connected by an SVP in
every projection). However, a key observation is that for any
timepoints V and Y , the length of the shortest vee-path from
V to Y may be different across different STN projections.

Definition 8 (Path-length notation). The length of a path P in235

a projection Gω is notated as |P|ω. For timepoints X and Y ,
dω(X,Y ) denotes the length of the shortest path from X
to Y in Gω; and maxd(X,Y ) = maxω{dω(X,Y )} denotes
the maximum such length across all projections. Finally,
do(X,Y ) denotes the length of the shortest path from X240

to Y that has only ordinary edges from the ESTNU graph.

For example, suppose e = (V, σ, Y ) is an ordinary edge in
a dispatchable ESTNU G. Suppose further that in every STN
projection Gω, there is an SVP P from V to Y that does not
use e, and such that |P|ω ≤ σ. Then in every projection, e is245

not needed to ensure dispatchability. Therefore, the ESTNU
obtained by removing e must still be dispatchable.

If maxd(V, Y ) is determined solely by ordinary edges,
then the dispatchability algorithm for STNs (i.e., for ordinary
edges) can be used to remove all ordinary edges dominated250

by ordinary vee-paths (Tsamardinos, Muscettola, and Morris

1We intentionally blur the distinction between an ESTNU and
its graph, and between edges and constraints.
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Figure 1: Special structure that determines maxd(V, Y )

1998). However, the value of maxd(V, Y ) can also be deter-
mined by a variety of paths involving labeled edges (e.g., LC,
UC or wait edges) whose lengths differ across projections.

The left of Figure 1 illustrates the kind of special struc- 255

ture that can determine the value of maxd(V, Y ) based on
different paths comprising various combinations of ordinary
and labeled edges. Since this example has only one contin-
gent link, (A, x, y, C) = (A, 1, 10, C), the range of projec-
tions is given by ωc ∈ [x, y] = [1, 10]. Particularly rele- 260

vant is that in different projections the length of the short-
est vee-path from V to Y is determined by different paths.
For example, the blue dotted line in the plot on the right
of the figure shows the length of the path VACY β , where
the superscript β signals that the first edge in this path is 265

the ordinary edge (V, β,A) = (V,−2, A) from V to A, not
the wait edge. This path, which also includes the LC edge
(A, c:x,C) = (A, c:1, C), happens to be shortest in projec-
tions where ωc ∈ [1, 2]. In contrast, the green dot-dashed
line shows the length of the path VACY wt that instead uses 270

the wait edge, (V,C:α− y,A) = (V,C:−6, A). This path is
shortest in projections where ωc ∈ [2, 7]. Finally, the dashed
red line shows the length of the path VAY wt , which also
uses the wait edge. This path is shortest for ωc ∈ [7, 10].
The black and dashed-orange lines indicate the lengths of the 275

ordinary paths VAY and VCY , which are not shortest in any
projection. The dot-dashed gray line indicates the length of
VCAY , which uses the UC edge (C,C:−10, A) and is only
shortest in the projection where ωc = y = 10. The thick,
blue dashed line plots the lengths of the shortest vee-paths 280

from V to Y across all projections. Its maximum value is 7;
hence, maxd(V, Y ) = 7. In other words, despite there being
no ordinary path from V to Y of length 7, the edges in this
special structure nonetheless entail the constraint Y −V ≤ 7.

The lengths of the relevant paths in Figure 1 are speci- 285

fied algebraically in Table 1. Since each plot is continuous,
piecewise-linear and monotonic (whether non-increasing or
non-decreasing), the minimum plot, represented by the thick
blue dashed line in Figure 1, can be determined by finding
each value ω†

c ∈ [x, y] = [1, 10] at which any of the above 290

plots might intersect, and then taking the minimum value of
the plots at each such ω†

c . The maximum of those minimum
values, across all of the intersection points, will be the maxi-
mum SVP length across all projections (i.e., maxd(V, Y )).

The Problem Turns Out to be Simpler! 295

Although six different paths from V to Y in the ESTNU
graph from Figure 1 were explored above, it turns out that in



(1) |VAY β |ωc = β + δ = 11

(2) |VAY wt |ωc = max{−ωc, α− y}+ δ
= max{δ−ωc, α+δ−y} = max{13−ωc, 7} ∈ [7, 12]

(3) |VACY β |ωc
= β + ωc + γ = 4 + ωc ∈ [5, 14]

(4) |VACY wt |ωc
= max{−ωc, α− y}+ ωc + γ

= max{γ, α+ γ − y + ωc} = max{6, ωc} ∈ [6, 10]

(5) |VCY |ωc
= α+ γ = 10

(6) |VCAY |ωc
= α− ωc + δ = 17− ωc ∈ [7, 16]

Table 1: The lengths of the paths in Figure 1
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Figure 2: A simpler structure determines maxd(V, Y )

general it suffices to consider only two of the paths: namely,
(2) VAY wt and (4) VACY wt , as shown in Figure 2. As will
be seen, the desired max-of-the-mins value must occur at the300

intersection of these two paths. But if the intersection point
is outside of the interval (x, y), then one of the paths, (2) and
(4), will dominate the other throughout the entire interval
[x, y] which, as will be shown, implies that a pre-existing
ordinary path is shortest from V to Y . On the other hand,305

if the intersection lies within the interval (x, y), the desired
maxd(V, Y ) value will necessarily occur at that intersection
point—because path (2) is non-increasing, while path (4) is
non-decreasing. Hence, it suffices to find where the paths
(2) and (4) intersect, which a simple computation reveals310

is where ω = δ − γ. For the numbers in Figure 2, the two
paths intersect where ω = δ − γ = 13 − 6 = 7 ∈ (1, 10).
Their lengths in the projection, ω = 7, gives the value of
maxd(V, Y ), which also happens to be 7, as seen earlier.

Although the path, (3) VACY β , in Figure 1 has the mini-315

mum length for ω ∈ [1, 2], that has no effect on the value of
maxd(V, Y ). Our new algorithm explores simpler structures
like those in Figure 2 to find the strongest constraints entailed
by various combinations of labeled and ordinary edges.

Nesting of Special Structures320

The ESTNU in Figure 3 contains two special structures,
one nested inside the other. The inner structure involves
the timepoints A2, A,C and Y ; the outer structure involves
V2, A2, C2 and Y . The values of δ, γ and ω̂ for the outer struc-
ture, using the ordinary edge (A2, 9, Y ) as the path from A2325

to Y , and the ordinary edge (C2, 2, Y ) as the path from C2

to Y , are: δ = 9, γ = 2, and ω̂ = 9− 2 = 7. This implies an
entailed ordinary edge (V2, 3, Y ), shown as dashed and red
in the figure. The inner structure, as seen in Figure 2, entails
the ordinary edge (A2, 7, Y ), also shown as red and dashed.330

The key point is that with the entailed edge (A2, 7, Y ), a
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Figure 3: Example of nested of special structures

new analysis of the outer structure reveals stronger values
(δ = 7, γ = 2 and ω̂ = 7− 2 = 5) that entail a stronger edge
(V2, 2, Y ), shown as blue and dashed in the figure.

Since special structures can be nested, exploring each one 335

only once will typically not be sufficient. However, as will
be shown later on, it suffices to consider nestings that use
the labeled edges from each contingent link at most once.
Therefore, k rounds of processing, where each round involves
processing every special structure, will suffice. 340

Algorithm Pseudocode
Algorithm 1 shows pseudocode for our new algorithm. It
takes a dispatchable ESTNU as its only input and generates
as its output an equivalent dispatchable ESTNU having a min-
imal number of edges. The algorithm begins (at Lines 3-8) 345

by inserting any missing weak-ord edges needed to make the
input ESTNU weak-ord complete (defined below).

Definition 9 (Weak-ord Edges). Let (A, c:x,C),
(C,C:−y,A) and (V,C:−v,A) be the LC, UC and
any wait edges associated with a contingent link (A, x, y, C). 350

The corresponding weak-ord edges are (A, y, C), (C,−x,A)
and (V,−x,A). For any labeled edge e, the corresponding
weak-ord edge is denoted by eo. An ESTNU G is called
weak-ord complete if for each labeled edge e in G, G contains
an ordinary edge ê such that |ê| ≤ |eo|. 355

Note that for any edge e and situation ω, |e|ω ≤ |eo|. For
the LC and original UC edge, the result is trivial. For waits:
|(V,C:−v,A)|ω = max{−v,−ωc} ≤ max{−x,−x} =
−x = |(W,−x,A)|. (We assume −v < −x, since other-
wise the wait is equivalent to the ordinary edge (V,−x,A).) 360

Since every inserted weak-ord edge is dominated by the
projection of its labeled counterpart in G, such edges are
not needed for dispatchability. However, as will be seen,
making them explicit in G enables the algorithm to com-
pute maxd(V, Y ) values derived from the kinds of special 365

structures seen in Figure 2. To ensure that they are removed
before the end of the algorithm, each inserted weak-ord edge
is “marked” for later removal.

The next part of the algorithm comprises the multiply
nested loops at Lines 9-23. Their purpose is to discover and 370

insert ordinary edges that are entailed by the kinds of special
structures seen in Figure 2. Since these structures can be
nested to a maximum depth of k, the outermost loop does k
iterations. Each iteration begins (at Line 10) by using John-
son’s algorithm to compute the distance matrix d for the STN 375

consisting of the ordinary edges from the input ESTNU—
which includes the weak-ord edges inserted at Lines 3-8, as



Algorithm 1: minDispESTNU

Input: G = (Tx ∪ Tc, Eo ∪ Elc ∪ Euc ∪ Eucg),
a dispatchable ESTNU

Output: G, modified to be an equivalent dispatchable ESTNU
having a minimal number of edges

1 L ··= the contingent links associated with G
2 T ··= Tx ∪ Tc; marked ··= ∅

// Insert weak-ord edges entailed by LC and UC edges; mark them
3 foreach (A, x, y, C) ∈ L do
4 Eo ··= Eo ∪ {(A, y, C), (C,−x,A)}
5 marked ··= marked ∪ {(A, y, C), (C,−x,A)}

// Insert weak-ord edges entailed by wait edges; mark them
6 foreach (V,C:−v,A) ∈ Eucg do
7 Eo ··= Eo ∪ {(V,−x,A)} // x is lower bound for C − A

8 marked ··= marked ∪ {(V,−x,A)}
9 for i ··= 1 to k do // k = max depth of nested special structures
10 d ··= Johnson(T , Eo) // Distance matrix for ord edges

// Explore special structures involving any V,A,C and Y

11 edgeAdded ··= ⊥
12 foreach (A, x, y, C) ∈ L do
13 foreach V, Y ∈ T \{A,C} | V ̸≡ Y and

∃(V,C:−q,A) ∈ Eucg do
14 γ ··= d(C, Y ), δ ··= d(A, Y )
15 if γ < ∞ and δ < ∞ then
16 ω̂ ··= δ − γ
17 if x < ω̂ < y then
18 θ ··= max{−ω̂,−q}+ δ
19 if θ ≤ d(V, Y ) then // max min ord edge
20 Eo ··= Eo ∪ {(V, θ, Y )}
21 marked ··= marked ∪ {(V, θ, Y )}
22 edgeAdded ··= ⊤

23 if edgeAdded == ⊥ then exit from the for loop

24 Eo ··= dispstn(T , Eo) // STN dispatchability on ordinary edges
25 if edgeAdded then d ··= Johnson(T , Eo) // Update distances
26 Eo ··= Eo\marked // Remove marked edges from Eo

27 markeduc ··= ∅
28 foreach C ∈ Tc do

// Remove negative ord. edges emanating from contingent TPs
29 foreach (C, v,X) ∈ Eo do
30 if v < 0 then Eo ··= Eo\{(C, v,X)}

// Remove non-negative ord edges terminating at contingent TPs
31 foreach (X, v, C) ∈ Eo do
32 if v ≥ 0 then Eo ··= Eo\{(X, v, C)}

// Mark wait edges emanating from contingent TPs

33 foreach (C, Ĉ:v, Â) ∈ Eucg | C ∈ Tc do
34 markeduc ··=markeduc∪{(C, Ĉ:v, Â)}

35 foreach (V,C:−v,A) ∈ Eucg do // Mark dominated waits from Eucg

36 if d(V,A) ≤ −v or d(V,C) ≤ 0 then
37 markeduc ··= markeduc ∪ {(V,C:−v,A)}
38 else
39 foreach U ∈ T | ∃(U,C:−u,A) ∈ Eucg do
40 if d(V,U) ≤ 0 and

d(V,U)− u ≤ max{−y,−v} then
41 markeduc ··= markeduc ∪ {(V,C:−v,A)}

42 Eucg ··= Eucg\markeduc

43 return G = (T , Eo ∪ Elc ∪ Euc ∪ Eucg)

well as any ordinary edges inserted during previous itera-
tions. The inner loops (Lines 12-22) then explore all possible
simpler structures involving timepoints V,A,C and Y , as 380

illustrated in Figure 2. If the values of γ and δ are finite,
then ω̂ = δ − γ is the value of ωc at which the paths la-
beled (2) and (4) in Figure 2 intersect. If ω̂ ∈ (x, y), then
the desired max-of-the-mins value (i.e., a possible update
for maxd(V, Y )) (called θ in the pseudocode) is computed 385

(Line 18). If θ ≤ d(V, Y ), then the ordinary edge (V, θ, Y )
is inserted—and marked—to make explicit the constraint
entailed by the special structure. It is marked because it is en-
tailed by other edges and, hence, must be removed before the
algorithm completes. In the meantime, it contributes to the 390

distance matrix computation at the start of the next iteration.
After all of the ordinary edges entailed by combinations

of labeled and ordinary edges have been inserted into the
graph, the final part of the algorithm (Lines 24-42) deter-
mines which edges to remove from the ESTNU to achieve 395

the minimal equivalent dispatchable ESTNU. At Line 24, the
STN dispatchability algorithm is run on the subgraph of ordi-
nary edges (i.e., the edges in Eo). This replaces that ordinary
STN subgraph with a minimal equivalent dispatchable STN.
Next, any marked ordinary edges that were not removed by 400

the STN dispatchability algorithm are removed at Line 26.
Lines 28-34 remove negative (ordinary or wait) edges em-

anating from any contingent TP, and non-negative ordinary
edges terminating at any contingent TP. That’s because in a
dispatchable network, the presence of such edges necessarily 405

imposes constraints on the corresponding activation TP that
make the above-mentioned edges redundant.

Lines 35-42 remove wait edges that are dominated by alter-
native paths that are either ordinary or involving a different
wait edge associated with the same contingent link. 410

Complexity. The worst-case time complexity of the
minDispESTNU algorithm is dominated by the k+1 calls to John-
son’s algorithm which has complexity O(mn log n), where
m ≤ n2 is the maximum number of edges in the created STN.
Therefore, the overall complexity is O(kn3). 415

4 Empirical Evaluation
We evaluated the performance of the minDispESTNU algorithm,
comparing it against Morris14 and FD

STNU
. Our aim was to

demonstrate: (1) the increase in computational cost required
to minimize a dispatchable ESTNU, and (2) the reduction in 420

the number of edges in the minimized network.
Morris14 is the DC-checking algorithm proposed by Mor-

ris (2014), modified according to his high-level description
to enable it to generate equivalent dispatchable networks for
DC instances. We implemented the modified version for this 425

evaluation. FD
STNU

is the fast dispatchable STNU algorithm
presented by Hunsberger and Posenato (2022).

We implemented all algorithms in Java and ran them on a
JVM 21 with 8GB of heap memory on a Linux computer with
two AMD Opteron™ 4334@3.1 GHz (6200 BogoMIPS). Our 430

implementations are available at (omitted for blind review).
For our evaluation, we used one of the bench-

marks published by Posenato (2020). For each n ∈
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{500, 1000, 1500, 2000}, the benchmark contains 30 ran-
domly generated DC STNUs, each having n nodes, n/10435

contingent links, and about 6 incident edges for each node
(for a total of m ≈ 3n edges).

Each DC STNU was separately fed to the Morris14
and FD

STNU
algorithms to generate a pair of equivalent dis-

patchable ESTNUs. Both ESTNUs were then fed to the440

minDispESTNU algorithm to check that the two minimized net-
works were the same. For the large majority of instances, they
were, but for a few instances, the two minimized ESTNUs
had some different edges. We discovered that simultaneity
constraints among pairs of timepoints can result in trivially445

different, but equivalent minimized ESTNUs.
The plots in Figure 4 display the average numbers of edges

in: the original STNU (black); the ESTNU generated by Mor-
ris14 (red) and FD

STNU
(blue); and the minimized ESTNU

generated by minDispESTNU (green). The error bars show 95%450

confidence intervals (difficult to see because the standard
deviations are small). The average number of edges in the
minimized networks is an order of magnitude smaller than in
the ESTNUs generated by Morris14 and about 34% smaller
than in the ESTNUs generated by FD

STNU
, confirming the im-455

portance of minDispESTNU for providing dispatchable networks
that can be more efficiently executed.

Fig. 5 demonstrates the computational cost of generating
minimal dispatchable ESTNUs. The results highlight the
influence of the number of edges on the computing time,460

a factor that is absorbed by the O(kn3) theoretical worst-
case complexity. Indeed, the minDispESTNU average execution
time when Morris14 gives the input instances (violet line)
is an order of magnitude higher than the average execution
time of minDispESTNU when FD

STNU
gives the input instances465

(green line). For n = 2000, the average execution time of
minDispESTNU(Morris14) is not reported because it was above
the 30m timeout. Such a difference is equal to the differ-
ence in the average number of edges between the instances
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Figure 6: The simpler case covered by Lemma 2

determined by Morris14 and FD
STNU

(see Figure 4) and is 470

explained by the most expensive operation in minDispESTNU

(i.e., the determination of all-pairs-shortest-paths) having
complexity O(mn log n), where m is the number of edges.

Another interesting result: for most instances with 2000
nodes, the execution time of minDispESTNU(FD

STNU
) was 475

smaller than Morris14 without running minDispESTNU.

5 Formal Analysis
This section presents a proof of correctness for the
minDispESTNU algorithm. Throughout this section, we assume
G is a dispatchable and weak-ord complete ESTNU. 480

Definition 10. We say that an edge e in a projection Gω de-
rives from a contingent link (A, x, y, C) if e is the projection
of an LC, UC or wait edge associated with that link.

Definition 11 (Needed). A contingent link (A, x, y, C) is
needed for maxd(X,Y ) in G if removing all of the labeled 485

edges associated with that contingent link from G would
change the value of maxd(X,Y ).

If no contingent link is needed for maxd(X,Y ), then its
value is determined solely by ordinary edges in G. Otherwise,
there must be some contingent link (A, x, y, C) that is needed 490

to determine maxd(X,Y ).

Lemma 1. If a contingent link (A, x, y, C) is needed for
maxd(X,Y ), then at least two labeled edges associated with
(A, x, y, C) are needed for maxd(X,Y ).

Proof. Suppose only one labeled edge is needed. 495

Case 1: The LC edge e = (A, c:x,C) is the only la-
beled edge associated with (A, x, y, C) that is needed for
maxd(X,Y ). Let ω be any situation in which e is needed.
Then for any situation ω′ that is the same as ω except pos-
sibly for the value of C − A, e must also be needed, since 500

otherwise there would have to be a path P in G that does
not include e and such that |P |ω′ ≤ maxd(X,Y ). But then
|P |ω = |P |ω′ = maxd(X,Y ), contradicting that e is needed
in Gω. But since e is needed in Gω′′ , where ω′′

c = y = |eo|,
then the weak-ord edge eo contradicts the need for e. 505

Case 2: The only needed labeled edge E is either the origi-
nal UC edge (C,C:−y,A) or some wait edge (V,C:−v,A).
This case is similar to Case 1 except that E must be needed
in Gω† , where ω†

c = −x = |Eo|, implying that the weak-ord
edge Eo contradicts the need for E. 510

Lemma 2. If (A, x, y, C) is needed for maxd(X,Y ), then
the original LC and UC edges for (A, x, y, C) are, by them-
selves, insufficient for determining maxd(X,Y ).

Proof. If no wait edges are needed, then we have the sim-
pler structure in Figure 6 where |XACY |ω = β + ω + γ 515
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Figure 7: An ESTNU structure and its projection

(increasing with ω) and |XCAY |ω = α − ω + δ (de-
creasing with ω). For both the LC and UC edges to be
needed, the minimum path lengths across the entire range
of ω ∈ [x, y] must use |XACY |ω for smaller values of ω,
and |XCAY |ω for larger values of ω. This minimum takes520

on its maximum value at the intersection of the two plots
(i.e., where β + ω + γ = α − ω + δ). This occurs when
ω = (α+ δ − β − γ)/2. The value of both plots at that point
is ((α+ γ) + (β + δ))/2 = (|XCY |ω + |XAY |ω)/2 >
maxd(X,Y ), which is a contradiction. Hence, the only way525

the contingent link (A, x, y, C) can matter for the value of
maxd(X,Y ) is if at least one wait edge is needed.

Theorem 2. Suppose (A, x, y, C) is a contingent link needed
for maxd(X,Y ) such that no other needed contingent link
is constrained to have its activation TP occur after A. Then530

maxd(X,Y ) = min{do(X,V ) + maxd(V, Y )

such that ∃(V,C:− v,A) ∈ Eucg}

Proof. Let ω′ be any situation in which some paths,
P1, P2, . . ., each involving one or more edges derived from
(A, x, y, C), are needed to determine maxd(X,Y ); and let
ω′
c denote the value of C −A specified by ω′. By construc-

tion, the lengths of the Pi paths in Gω′ must be strictly less535

than the lengths of any other paths from X to Y in Gω′ .
Next, let Ω′

c denote the family of situations, where each
situation in Ω′

c specifies the same duration as ω′ for every con-
tingent link except possibly (A, x, y, C). If we let µ ∈ [x, y]
be any possible value for C−A, then the family of situations540

Ω′
c is effectively parameterized by µ; so we can let Ω′

c(µ)
denote the situation in Ω′

c for which C −A = µ.
Since the lengths of the Pi paths are less than the lengths

of any other paths from X to Y in Gω′ ; and their lengths
vary piecewise-linearly with µ or −µ, there must be some545

non-trivial open interval (a, b) where ω′
c ∈ (a, b) ⊆ [x, y]

and the lengths of the Pi paths are all less than the lengths
of any other paths from X to Y in any situation ω = Ω′

c(µ)
for which µ ∈ (a, b). Without loss of generality, choose the
smallest value of a and the largest value of b for which this550

property holds. Furthermore, since all relevant functions are
continuous, we may include the endpoints of the interval
(a, b) with the understanding that the lengths of the Pi paths
may be less than or equal to the lengths of any other paths
from X to Y in the situations Ω′

c(a) and Ω′
c(b). With this in555

mind, let Ω∗
c refer to the subset {Ω′

c(µ) | µ ∈ [a, b]}.
Note: For convenience, in what follows, we use ω to refer

to any situation in the restricted family Ω∗
c ; and we refer to

the duration of C−A by ωc rather than µ (i.e., we effectively
stipulate that Ω∗

c is parameterized by ωc, rather than µ).560

f1(ωc) = |XVAY |ω = σ +max{−v,−ωc}+ δ

f2(ωc) = |XACY |ω = β + ωc + γ

f3(ωc) = |XVACY |ω = σ +max{−v,−ωc}+ ωc + γ

f4(ωc) = |XCAY |ω = α− ωc + δ

Table 2: The lengths of the paths in Figure 7

Let ω be any projection in Ω∗
c . As illustrated in Fig-

ure 7, each simple shortest vee-path from X to Y in
Gω, which by construction must include edges derived
from (A, x, y, C), must have one of the following forms:2

XVAY ,XACY ,XVACY or XCAY , where the subpaths 565

XC ,XV ,XA,CY and AY contain only ordinary edges
or edges derived from other contingent links. Therefore,
the lengths of those subpaths are constant across all
situations in Ω∗

c . In contrast, the lengths of the paths,
XVAY ,XACY ,XVACY and XCAY , are functions of ωc, 570

as listed in Table 2 using names such as f1(ωc), f2(ωc), etc.
Note that, by construction, XCY and XAY don’t have any

edges derived from (A, x, y, C). Thus, using an argument
similar to that in the proof of Lemma 1, they cannot be
needed for maxd(X,Y ) across the family Ω∗

c . Therefore, 575

maxd(X,Y ) < |XCY |ω and maxd(X,Y ) < |XAY |ω .
From Table 2 it is apparent that the four length functions

are each continuous, piecewise-linear and monotone (either
non-decreasing or non-increasing). Therefore, if we define
f(ωc) = min1≤i≤4{fi(ωc)} to be the minimum of the four 580

length functions over [a, b], then it too is continuous and
piecewise-linear, although not necessarily monotone. Further-
more, the endpoints of each segment of the f(ωc) function
are necessarily at values of ωc where at least two of the four
length functions intersect. In what follows, we first com- 585

pute the values of f(ωc) at each possible intersection point,
which completely determines the value of maxd(X,Y ) =
max{f(ωc) | ωc ∈ [a, b]}. We then show that for each such
ωc, f(ωc) = min{f1(ωc), f3(ωc)} ≤ maxd(X,Y ). This
will prove that it suffices, in general, to restrict attention to f1 590

and f3 (i.e., to the paths XVAY and XVACY ) to determine
maxd(X,Y ), which shall require only computing the single
value of ωc where those two paths intersect.

Computing the intersection points. To keep track
of all possible points of intersection among the paths 595

XVAY ,XACY ,XVACY and XCAY , we use expressions
such as τij to denote the value of ωc where fi(ωc) = fj(ωc).
For example, τ13 denotes the value of ωc at which f1(ωc) =
f3(ωc) (i.e., where |XVAY | = |XVACY |). Intersection
points that depend on the projected length of the wait edge 600

(i.e., max{−v,−ωc}) are given the superscript v (for the case
where −v ≥ −ωc) or w (for the case where −ωc ≥ −v).

2Lemma 2 does not rule out that multiple wait edges might be
needed across different situations. However, in the projection Gω′ ,
some wait edge (V,C:−v,A) must minimize the length of the path
from X to V to A over some open interval, as described earlier. (If
more than one wait yields the same minimum value, then disregard
all but one.) Therefore, we may safely assume henceforth that only
one wait edge is needed over the restricted family of situations Ω∗

c .



It is easy, but tedious to compute the seven distinct points
of intersection. For example, f1(ωc) = f2(ωc) if and only
if σ +max{−v,−ωc}+ δ = β + ωc + γ. For −v ≥ −ωc,605

we get ωc = σ + δ − v − β − γ, which we notate as τv12.
Here’s the full list: τv12 = σ + δ − v − β − γ, τ13 =

δ − γ, τw12 = (σ + δ − β − γ)/2, τv14 = α − σ + v,
τv34 = (α + δ − σ + v − γ)/2, τw23 = σ − β, and
τw34 = α + δ − σ − γ. Lemma 3, below, ensures that at610

each intersection point τ , f(τ) = min{f1(τ), f3(τ)} =
min{|XVAY |, |XVACY |} ≤ maxd(X,Y ). Hence, all
paths needed to determine maxd(X,Y ) must include a
wait edge. Also, if it were possible for two different waits,
(V1, C:−v1, A) and (V2, C:−v2, A), to be needed in the615

same situation to determine maxd(X,Y ), Lemma 3 en-
sures that they each achieve their maximum value at the
same ωc = τ13 = δ − γ. Hence, both could be needed
only if their maximums were the same. Therefore, us-
ing one needed wait (V,C:−v,A) suffices; and all SSVPs620

from X to Y start with a prefix XV that necessarily com-
prises only negative edges (since the wait edge is nega-
tive and XV precedes it in a vee-path). But then any time-
point in XV is constrained to occur after A which, by
the choice of (A, x, y, C) implies that XV cannot con-625

tain the activation TP for any other contingent link needed
for maxd(X,Y ). So, the value of maxd(X,V ) cannot de-
pend on any needed contingent links. Thus, maxd(X,V )
only depends on ordinary edges, and maxd(X,Y ) =
min(V,C:−v,A)∈Eucg

{do(X,V )+maxd(V, Y )}. Hence, com-630

puting maxd(X,Y ) reduces to computing maxd(V, Y ) val-
ues for wait edges (V,C:−v,A).

Lemma 3. For each intersection point τ listed earlier,

f(τ) = min{f1(τ), f3(τ)} ≤ maxd(X,Y )

Proof. Due to space limitations, we only illustrate the proof
for the case of τv12 (i.e., where f1 = f2 and −v ≥ −ωc). If635

the minimum is f1(τv12) = f2(τ
v
12) or f3(τv12), then the result

holds. Therefore, it suffices to show that the min value is
not f4(τv12) = α − τv12 + δ = (α + γ) + (β − σ + v). If
β > (σ−v), then f4(τ

v
12) > (α+γ) > maxd(X,Y ). But if

β ≤ (σ − v), then the ordinary path XA dominates XVA for640

all ωc ∈ [a, b], contradicting the need for the wait edge.

Dealing with Nested Structures
As seen previously in Figure 3, the structures addressed by
our algorithm can be nested. But Theorem 2 ensures that
nesting can only occur in the paths, CY or AY (or both).645

Therefore, we can use an inductive argument to prove that the
algorithm correctly computes every maxd(V, Y ) value by
analyzing paths starting with a wait edge (V,C:−v,A); and
therefore it correctly computes every maxd(X,Y ) value.
Theorem 3. Given any dispatchable ESTNU, Algorithm 1650

correctly computes every maxd(X,Y ) value.

Proof. We begin with the following observations. First, in
any SSVP, there can be no repeat nodes or edges; therefore,
the edges that derive from our chosen (A, x, y, C) cannot
appear in either CY or AY . Therefore, at most k contingent655

links can be needed to determine any given maxd(X,Y )

value. Since the order of nesting is typically not known in
advance, the algorithm performs k outer iterations to ensure
that every possible nesting order can be accommodated.

Second, for any contingent links needed for maxd(C, Y ) 660

or maxd(A, Y ), there must be durations that ensure that
|CY |ω = maxd(C, Y ) and |AY |ω = maxd(A, Y ). This
holds even if CY and AY share a common suffix. And these
durations may be chosen independently of the durations of
any other contingent links. And since these maximum values 665

for |CY | and |AY | can only result in increased values for
|VACY | and |VAY |, replacing CY and AY by the ordinary
edges (C,maxd(C, Y ), Y ) and (A,maxd(A, Y ), Y ) cannot
change the value of maxd(V, Y ).

Since the values of maxd(C, Y ) and maxd(A, Y ) cannot 670

need as many contingent links as the value of maxd(V, Y ),
because they cannot use (A, x, y, C), the inductive hy-
pothesis ensures that the algorithm correctly computes
maxd(C, Y ) and maxd(A, Y ) and, therefore, it correctly
computes maxd(V, Y ). 675

Lemma 4. For a dispatchable ESTNU G, and contingent
timepoint C, removing negative (ordinary or wait) edges
emanating from C, and non-negative ordinary edges pointing
at C cannot threaten the dispatchability of G.

Proof. Omitted due to space limitations. 680

Theorem 4. Algorithm 1 computes an equivalent dispatch-
able ESTNU having a minimal number of edges.

Proof. Suppose the output G of Algorithm 1 contains an ordi-
nary edge e = (X, δ, Y ) that is not needed for dispatchability.
Then in every projection Gω , there must be some shortest vee- 685

path P from X to Y that does not use e such that |P|ω ≤ δ.
But then maxd(X,Y ) ≤ δ and the algorithm marks e for
removal, contradicting that e in the output G.

Next, suppose E = (V,C:−v,A) is a wait edge in
the output G that is not needed for dispatchability but not 690

marked for removal. This happens when all of the follow-
ing hold: (1) maxd(V,A) > −v; (2) maxd(V,C) > 0; and
(3) for each wait (U,C:−u,A) ∈ Eucg, maxd(V,U) > 0
or maxd(V,U) − u > max{−y,−v}. We will show that
there must be a value ωc < v such that in that pro- 695

jection, every alternative path from V to A has length
greater than −ωc = |(V,C:−v,A)|. First, note that for
any (U,C:−u,A), if maxd(V,U) > 0, then |VUA| >
max{−u,−ωc} > −ωc. Next, let −u∗ be the minimum
value of maxd(V,U)− u for all waits (U,C:−u,A) where 700

maxd(V,U) − u > max{−y,−v}. Then −u∗ > −v. Let
−u† = min{−u∗,maxd(V,A)} > −v. And then let ωc be
any point in (u†, v). It is not hard to check that the length of
every alternative path from V to A (i.e., VAo ,VCA or any
VUA) is greater than −ωc = |E|. Hence, E is needed. 705

6 Conclusions
This paper presented a new algorithm for generating equiv-
alent dispatchable ESTNUs having a minimal number of
edges. The empirical evaluation demonstrated its effective-
ness in reducing the number of edges. The formal analysis 710

proved the algorithm’s correctness.
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