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ABSTRACT

As an intrinsic and fundamental property of big data, data heterogeneity exists in
a variety of real-world applications, such as in agriculture, sociology, health care,
etc. For machine learning algorithms, the ignorance of data heterogeneity will sig-
nificantly hurt the generalization performance and the algorithmic fairness, since
the prediction mechanisms among different sub-populations are likely to differ. In
this work, we focus on the data heterogeneity that affects the prediction of machine
learning models, and first formalize the Predictive Heterogeneity, which takes into
account the model capacity and computational constraints. We prove that it can
be reliably estimated from finite data with PAC bounds even in high dimensions.
Additionally, we propose the Information Maximization (IM) algorithm, a bi-level
optimization algorithm, to explore the predictive heterogeneity of data. Empiri-
cally, the explored predictive heterogeneity provides insights for sub-population
divisions in agriculture, sociology, and object recognition, and leveraging such
heterogeneity benefits the out-of-distribution generalization performance.

1 INTRODUCTION

Big data bring great opportunities to modern society and promote the development of machine learn-
ing, facilitating human life within a wide variety of areas, such as the digital economy, healthcare,
scientific discoveries. Along with the progress, the intrinsic heterogeneity of big data introduces
new challenges to machine learning systems and data scientists (Fan et al., 2014; He, 2017). In
general, data heterogeneity, as a fundamental property of big data, refers to any diversity inside data,
including the diversity of data sources, data generation mechanisms, sub-populations, data struc-
tures, etc. When not properly treated, data heterogeneity could bring pitfalls to machine learning
systems, especially in high-stake applications, such as precision medicine, autonomous driving, and
financial risk management (Dzobo et al., 2018; Breitenstein et al., 2020; Challen et al., 2019), lead-
ing to poor out-of-distribution generalization performances and some fairness issues. For example,
in supervised learning tasks where machine learning models learn from data to predict the target
variable with given covariates, when the whole dataset consists of multiple sub-populations with
shifts or different prediction mechanisms, traditional machine learning algorithms will mainly focus
on the majority but ignore the minority. It will hurt the generalization ability and compromise the
algorithmic fairness, as is shown in (Kearns et al., 2018; Sagawa et al., 2019; Duchi & Namkoong,
2021). Another well-known example is Simpson’s paradox, which brings false discoveries to the
social research (Wagner, 1982; Hernán et al., 2011).

Despite its widespread existence, due to its complexity, data heterogeneity has not converged to
a uniform formulation so far, and has different meanings among different fields. Li & Reynolds
(1995) define the heterogeneity in ecology based on the system property and complexity or vari-
ability. Rosenbaum (2005) views the uncertainty of the potential outcome as unit heterogeneity in
observational studies in economics. More recently, in machine learning, several works of causal
learning (Peters et al., 2016; Arjovsky et al., 2019; Koyama & Yamaguchi, 2020; Liu et al., 2021;
Creager et al., 2021) and robust learning (Sagawa et al., 2019; Liu et al., 2022) leverage hetero-
geneous data from multiple environments to improve the out-of-distribution generalization ability.
However, previous works have not provided a precise definition or sound quantification. In this
∗Corresponding Author.
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work, from the perspective of prediction power, we propose the predictive heterogeneity, a new type
of data heterogeneity.

From the machine learning perspective, the main concern is the possible negative effects of data
heterogeneity on making predictions. Therefore, given the complexity of data heterogeneity, in
this work, we focus on the data heterogeneity that affects the prediction of machine learning mod-
els, which could facilitate the building of machine learning systems, and we name it the predictive
heterogeneity. We raise the precise definition of predictive heterogeneity, which is quantified as the
maximal additional predictive information that can be gained by dividing the whole data distribution
into sub-populations. The new measure takes into account the model capacity and computational
constraints, and can be reliably estimated from finite samples even in high dimensions with PAC
bounds. We theoretically analyze its properties and examine it under typical cases of data hetero-
geneity (Fan et al., 2014). Additionally, we design the information maximization (IM) algorithm
to empirically explore the predictive heterogeneity inside data. Empirically, we find the explored
heterogeneity is explainable and it provides insights for sub-population divisions in many fields,
including agriculture, sociology, and object recognition. And the explored sub-populations could
be leveraged to enhance the out-of-distribution generalization performances of machine learning
models, which is verified with both simulated and real-world data.

2 PRELIMINARIES ON MUTUAL INFORMATION AND PREDICTIVE
V -INFORMATION

In this section, we briefly introduce the mutual information and predictive V-information (Xu et al.,
2020) which are the preliminaries of our proposed predictive heterogeneity.

Notations. For a probability triple (S,F ,P), define random variables X : S → X and Y : S → Y
whereX is the covariate space and Y is the target space. Accordingly. x ∈ X denotes the covariates,
and y ∈ Y denotes the target. Denote the set of random categorical variables as C = {C : S →
N|supp(C) is finite}. Additionally, P(X ),P(Y) denote the set of all probability measures over
the Borel algebra on the spaces X ,Y respectively. H(·) denotes the Shannon entropy of a random
variable, and H(·|·) denotes the conditional entropy of two random variables.

In information theory, the mutual information of two random variables X , Y measures the depen-
dence between the two variables, which quantifies the reduction of entropy for one variable when
observing the other:

I(X;Y ) = H(Y )−H(Y |X). (1)
It is known that the mutual information is associated with the predictability of Y (Cover Thomas

& Thomas Joy, 1991). While the standard definition of mutual information unrealistically assumes
the unbounded computational capacity of the predictor, rendering it hard to estimate especially in
high dimensions. To mitigate this problem, Xu et al. (2020) raise the predictive V-information
under realistic computational constraints, where the predictor is only allowed to use models in the
predictive family V to predict the target variable Y .
Definition 1 (Predictive Family (Xu et al., 2020)). Let Ω = {f : X ∪ {∅} → P(Y)}. We say that
V ⊆ Ω is a predictive family if it satisfies:

∀f ∈ V, ∀P ∈ range(f), ∃f ′ ∈ V, s.t. ∀x ∈ X , f ′[x] = P, f ′[∅] = P. (2)

A predictive family contains all predictive models that are allowed to use, which forms computa-
tional or statistical constraints. The additional condition in Equation 2 means that the predictor can
always ignore the input covariates (x) if it chooses to (only use ∅).
Definition 2 (Predictive V-information (Xu et al., 2020)). Let X,Y be two random variables taking
values in X ×Y and V be a predictive family. The predictive V-information from X to Y is defined
as:

IV(X → Y ) = HV(Y |∅)−HV(Y |X), (3)
where HV(Y |∅), HV(Y |X) are the predictive conditional V-entropy defined as:

HV(Y |X) = inf
f∈V

Ex,y∼X,Y [− log f [x](y)]. (4)

HV(Y |∅) = inf
f∈V

Ey∼Y [− log f [∅](y)]. (5)

Notably that f ∈ V is a function X ∪{∅} → P(Y), so f [x] ∈ P(Y) is a probability measure on Y ,
and f [x](y) ∈ R is the density evaluated on y ∈ Y . HV(Y |∅) is also denoted as HV(Y ).
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Compared with the mutual information, the predictive V-information restricts the computational
power and is much easier to estimate in high-dimensional cases. When the predictive family V
contains all possible models, i.e. V = Ω, it is proved that IV(X → Y ) = I(X;Y ) (Xu et al., 2020).

3 PREDICTIVE HETEROGENEITY

In this paper, from the machine learning perspective, we quantify the data heterogeneity that affects
decision making, named Predictive Heterogeneity, which is easy to integrate with machine learning
algorithms and could help analyze big data and build more rational algorithms.

3.1 INTERACTION HETEROGENEITY

To formally define the predictive heterogeneity, we begin with the formulation of the interaction
heterogeneity. The interaction heterogeneity is defined as:
Definition 3 (Interaction Heterogeneity). Let X , Y be random variables taking values in X × Y .
Denote the set of random categorical variables as C, and take its subset E ⊆ C. Then E is an
environment set iff there exists E ∈ E such that X,Y ⊥⊥ E . E ∈ E is called an environment
variable. The interaction heterogeneity betweenX and Y w.r.t. the environment set E is defined as:

HE (X,Y ) = sup
E∈E

I(Y ;X|E)− I(Y ;X). (6)

Each environment variable E represents a stochastic ‘partition’ of X × Y , and the condition for the
environment set implies that the joint distribution of X,Y could be preserved in each environment.
In information theory, I(Y ;X|E) − I(Y ;X) is called the interaction information, which measures
the influence of the environment variable E on the amount of information shared between the target
Y and the covariate X . And the interaction heterogeneity defined in Equation 6 quantifies the
maximal additional information that can be gained from involving or uncovering the environment
variable E . Intuitively, largeHE (P ) indicates that the predictive power from X to Y is enhanced by
E , which means that uncovering the latent sub-population associated with the environment partition
E will benefit the X → Y prediction.

3.2 PREDICTIVE HETEROGENEITY

Based on the mutual information, the computation of the interaction heterogeneity is quite hard,
since the standard mutual information is notoriously difficult to estimate especially in big data sce-
narios. Also, even if the mutual information could be accurately estimated, the prediction model
may not be able to make good use of it.

Inspired by Xu et al. (2020), we raise the Predictive Heterogeneity, which measures the interaction
heterogeneity that can be captured under computational constraints and affects the prediction of
models within the specified predictive family. To begin with, we propose the Conditional Predictive
V-information, which generalizes the predictive V-information.
Definition 4 (Conditional Predictive V-information). Let X,Y be two random variables taking
values in X × Y and E be an environment variable. The conditional predictive V-information is
defined as:

IV(X → Y |E) = HV(Y |∅, E)−HV(Y |X, E), (7)
where HV(Y |∅, E) and HV(Y |X, E) are defined as:

HV(Y |X, E) = Ee∼E
[

inf
f∈V

Ex,y∼X,Y |E=e[− log f [x](y)]

]
. (8)

HV(Y |∅, E) = Ee∼E
[

inf
f∈V

Ey∼Y |E=e[− log f [∅](y)]

]
. (9)

Intuitively, the conditional predictive V-information measures the weighted average of predictive V-
information among environments. And here we are ready to formalize the predictive heterogeneity
measure.
Definition 5 (Predictive Heterogeneity). Let X , Y be random variables taking values in X ×Y and
E be an environment set. The predictive heterogeneity for the prediction X → Y with respect to E
is defined as:

HE
V (X → Y ) = sup

E∈E
IV(X → Y |E)− IV(X → Y ), (10)
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where IV(X → Y ) is the predictive V-information following from Definition 2.

Leveraging the predictive V-information, the predictive heterogeneity defined in Equation 10 char-
acterizes the maximal additional information that can be used by the prediction model when involv-
ing the environment variable E . It restricts the prediction models in V and the explored additional
information could benefit the prediction performance of the model f ∈ V , for which it is named
predictive heterogeneity. Next, we present some basic properties of the interaction heterogeneity
and predictive heterogeneity.
Proposition 1 (Basic Properties of Predictive Heterogeneity). LetX , Y be random variables taking
values in X × Y , V be a function family, and E , E1, E2 be environment sets.

1. Monotonicity: If E1 ⊆ E2,HE1

V (X → Y ) ≤ HE2

V (X → Y ).

2. Nonnegativity: HE
V (X → Y ) ≥ 0.

3. Boundedness: HE
V (X → Y ) ≤ HV(Y |X).

4. Corner Case: If the predictive family V is the largest possible predictive family that includes
all possible models, i.e. V = Ω, we haveHE (X,Y ) = HE

Ω(X → Y ).

For further theoretical properties of predictive heterogeneity, in Section 3.3, we derive its explicit
forms under endogeneity, a common reflection of data heterogeneity. And we demonstrate in Section
3.4 that our proposed predictive heterogeneity can be empirically estimated with guarantees if the
complexity of V is bounded (e.g., its Rademacher complexity).

3.3 THEORETICAL PROPERTIES IN LINEAR CASES

In this section, we analyze the theoretical properties of the predictive heterogeneity in multiple
linear settings, including (1) a homogeneous case with independent noises and (2) heterogeneous
cases with endogeneity brought by selection bias and hidden variables. Under these typical settings,
we could approximate the analytical forms of the proposed measure and the conclusions provide
insights for general cases.

Firstly, under a homogeneous case with no data heterogeneity, Theorem 1 proves that our measure
is bounded by the scale of label noises (which is usually small) and reduces to 0 in linear case under
mild assumptions. It indicates that the predictive heterogeneity is insensitive to independent noises.
Notably that in the linear case we only deal with the environment variable satisfying X ⊥ ε|E , since
in common prediction tasks, the independent noises are unknown and unrealistic to be exploited for
the inference of latent environments E .
Theorem 1 (Homogeneous Case with Independent Noises). For a prediction task X → Y where
X , Y are random variables taking values in Rn × R, consider the data generation process as Y =
g(x) + ε, ε ∼ N (0, σ2) where g : Rn → R is a measurable function. 1) For a function class G such
that g ∈ G, define the function family as VG = {f |f [x] = N (φ(x), σ2

V ), φ ∈ G, σV ∈ R+}. With an
environment set E , we have HE

VG (X → Y ) ≤ πσ2. 2) Take n = 1 and g(x) = βx,β ∈ R. Assume
E[X] = 0 and E[X2] exists. Given the function family Vσ = {f |f [x] = N (θx, σ2), θ ∈ R, σ fixed }
and the environment set E = {E|E ∈ C, |supp(E)| = 2, X ⊥ ε|E}. We haveHE

Vσ (X → Y ) = 0.

Secondly, we examine the proposed measure under two typical cases of data heterogeneity (Fan
et al., 2014), named endogeneity by selection bias (Heckman, 1979; Winship & Mare, 1992; Cui &
Athey, 2022) and endogeneity with hidden variables (Fan et al., 2014; Arjovsky et al., 2019).

To begin with, in Theorem 2, we consider the prediction task X → Y with X , Y taking values in
R2 × R. Let X = [S, V ]T . The predictive family is specified as:

V = {f |f [x] = N (θSS + θV V, σ
2), θS , θV ∈ R, σ = 1}. (11)

And the data distribution P (X,Y ) is a mixture of latent sub-populations, which could be formulated
by an environment variable E∗ ∈ C such that P (X,Y ) =

∑
e∈supp(E∗) P (E∗ = e)P (X,Y |E∗ = e).

For each e ∈ supp(E∗), P (X,Y |E∗ = e) is the distribution of a homogeneous sub-population. Note
that the prediction task is to predict Y with covariates X , and the sub-population structure is latent.
That is, P (E∗|X,Y ) is unknown for models. In the following, we derive the analytical forms of our
measure under the one typical case.
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Theorem 2 (Endogeneity with Selection Bias). For the prediction task X = [S, V ]T → Y with a
latent environment variable E∗, the data generation process with selection bias is defined as:

Y = βS + f(S) + εY , εY ∼ N (0, σ2
Y ); V = r(E∗)f(S) + σ(E∗) · εV , εV ∼ N (0, 1), (12)

where f : R → R and r, σ : supp(E∗) → R are measurable functions. β ∈ R. Assume that
E[f(S)S] = 0 and there exists L > 1 such that Lσ2(E∗) < r2(E∗)E[f2]. For the predictive family
defined in equation 11 and the environment set E = C, the predictive heterogeneity of the prediction
task [S, V ]T → Y approximates to:

HCV(X → Y ) ≈ Var(re)E[f2] + E[σ2(E∗)]
E[r2e ]E[f2] + E[σ2(E∗)] E[f2(S)], error bounded by

1

2
max(σ2

Y , R(r, σ, f)). (13)

And R(r(E∗), σ(E∗), f) = E[( 1
r2E[f2]

σ2
+1

)2]E[f2] + EE∗ [( 1
r
σ
+ σ
rE[f2]

)2] < E[f2]( 1
(L+1)2

+ 1

L+2+ 1
L

).

Intuitively, the data generation process in Theorem 2 introduces the spurious correlation between
the spurious feature V and the target Y , which varies across different sub-populations (i.e. r(E∗)
and σ(E∗) varies) and brings about data heterogeneity. Here E[f(S)S] = 0 indicates a model mis-
specification since there is a nonlinear term f(S) that could not be inferred by the linear predictive
family with the stable feature S. The constantL characterizes the strength of the spurious correlation
between V and Y . Larger L means V could provide more information for prediction.

From the approximation in Equation 13, we can see that our proposed predictive heterogeneity
is dominated by two terms: (1) Var[r(E∗)]/E[r2(E∗)] characterizes the variance of r(E∗) among
sub-populations; (2) E[f2(S)] reflects the strength of model misspecifications. These two compo-
nents account for two sources of the data heterogeneity under selection bias, which validates the
rationality of our proposed measure. According to the theorem, the more various r(E∗) among the
sub-populations and stronger model misspecifications, the larger the predictive heterogeneity.

In general, Theorem 1 and 2 indicate that (1) our proposed measure is insensitive to the homoge-
neous cases and (2) for the two typical sources of data heterogeneity, our measure accounts for the
key components reflecting the latent heterogeneity. Therefore, the theoretical results validate the
rationality of our measure.

3.4 PAC GUARANTEES FOR PREDICTIVE HETEROGENEITY ESTIMATION

Defined under explicit computation constraints, our Predictive Heterogeneity could be empirically
estimated with guarantees if the complexity of the model family V is bounded. In this work, we
provide finite sample generalization bounds with the Rademacher complexity. First, we describe the
definition of the empirical predictive heterogeneity, the explicit formula for which could be found in
Definition 7 in Appendix.
Definition 6 (Empirical Predictive Heterogeneity (informal)). For the prediction task X → Y with
X , Y taking values inX×Y , a datasetD is independently and identically drawn from the population
such that D = {(xi, yi)Ni=1 ∼ X,Y }. Given the predictive family V and the environment set
EK = {E|E ∈ C, supp(E) = K} where K ∈ N+ is the number of environments, the empirical
predictive heterogeneity ĤEK

V (X → Y ;D) with respect to D is readily obtained by estimating
HEK
V (X → Y ) on D with expectations replaced by statistics of finite samples. The formal definition

is placed in Definition 7.

Theorem 3 (PAC Bound). Consider the prediction task X → Y where X , Y are random variables
taking values in X × Y . Assume that the predictive family V satisfies ∀x ∈ X , ∀y ∈ Y ,∀f ∈ V ,
log f [x](y) ∈ [−B,B] where B > 0. For given K ∈ N, the environment set is defined as EK =
{E|E ∈ C, supp(E) = K}. LetQ be the set of all probability distributions of X ,Y ,E where E ∈ EK .
Take an e ∈ supp(E) and define a function class GV = {g|g(x, y) = log f [x](y)Q(E = e|x, y), f ∈
V, Q ∈ Q}. Denote the Rademacher complexity of G with N samples by RN (G). Then for any
δ ∈ (0, 1/(2K + 2)), with a probability over 1 − 2(K + 1)δ, for dataset D independently and
identically drawn from X , Y , we have:

|HEK
V (X → Y )− ĤEK

V (X → Y ;D)| ≤ 4(K + 1)R|D|(GV) + 2(K + 1)B

√
2 log

1

δ
/|D|, (14)

where R|D|(GV) = O(|D|− 1
2 ) (Bartlett & Mendelson, 2002).
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4 ALGORITHM

To empirically estimate the predictive heterogeneity in Definition 6, we derive the Information Max-
imization (IM) algorithm from the formal definition in Equation 33 to infer the distribution of E that
maximizes the empirical predictive heterogeneity ĤEK

V (X → Y ;D).

Objective Function. Given dataset D = {XN , YN} = {(xi, yi)}Ni=1, denote supp(E) =
{e1, . . . , eK}, we parameterize the distribution of E|(XN , YN ) with weight matrixW ∈ WK , where
K is the pre-defined number of environments andWK = {W : W ∈ RN×K+ and W1K = 1N} is
the allowed weight space. Each element wij in W represents P (E = ej |xi, yi) (the probability of
the i-th data point belonging to the j-th sub-population). For a predictive family V , the solution to
the supremum problem in the Definition 7 is equivalent to the following objective function:

min
W∈WK

RV(W, θ∗1(W ), . . . , θ∗K(W )) =

{
1

N

N∑
i=1

K∑
j=1

wij`V(fθ∗j (xi), yi) + UV(W,YN )

}
,

s.t. θ∗j (W ) ∈ arg min
θ

{
LV(W, θ) =

N∑
i=1

wij`V(fθ(xi), yi)

}
, for j = 1, . . . ,K,

(15)

where fθ : X → Y denotes a predicting function parameterized by θ, `V(·, ·) : Y × Y → R rep-
resents a loss function and UV(W,YN ) is a regularizer. Specifically, fθ, `V and UV are determined
by the predictive family V . Here we provide implementations for two typical and general machine
learning tasks, regression and classification.

(1) For the regression task, the predictive family is typically modeled as:

V1 = {g : g[x] = N (fθ(x), σ2), f is the predicting function and θ is learnable, σ is a constant}. (16)

The corresponding loss function is `V1(fθ(X), Y ) = (fθ(X)− Y )2, and UV1(W,YN ) becomes

UV1(W,YN ) = Varj∈[K](Y
j
N ) =

K∑
j=1

(
N∑
i=1

wijyi

)2

1

N
∑N
i=1 wij

−

(
1

N

N∑
i=1

yi

)2

(17)

where Y jN denotes the mean value of the label Y given E = ej and U(W,YN ) calculates the

variance of Y jN among sub-populations e1 ∼ eK .

(2) For the classification task, the predictive family is typically modeled as:

V2 = {g : g[x] = fθ(x) ∈ ∆c, f is the classification model and θ is learnable}, (18)

where c is the class number and ∆c denotes the c-dimensional simplex. Here each model in the
predictive family V2 outputs a discrete distribution in the form of a c-dimensional simplex. In this
case, the corresponding loss function `V2(·, ·) is the cross entropy loss and the regularizer becomes
UV2(W,YN ) = −

∑K
j=1

1
N (
∑N
i=1 wij)H(Y jN ), where H(Y jN ) is the entropy of Y given E = ej .

Optimization. The bi-level optimization in Equation 15 can be solved by performing projected
gradient descent w.r.t. W . The gradient of W can be calculated by: (we omit the subscript V here)

∇WR = ∇WU +
[
`(fθj (xi), yi)

]N×K
i,j

+

K∑
j=1

∇θjR|θ∗j∇W θ
∗
j , (19)

where ∇θjR
∣∣
θ∗j
∇W θ∗j ≈ ∇θjR

∣∣
θtj

∑
h≤t

∏
k<h

(I − ∂2L
∂θj∂θTj

∣∣∣∣∣
θt−k−1
j

)

 ∂2L
∂θj∂WT

∣∣∣∣
θt−h−1
j

(20)

≈ ∇θjR
∣∣
θtj

∂2L
∂θj∂WT

∣∣∣∣
θt−1
j

, for j = 1, . . . ,K. (21)

where `(fθj (xi), yi)]
N×K
i,j is an N ×K matrix in which the (i, j)-th element is `(fθj (xi), yi). Here

Equation 20 approximates θ∗j by θtj from t steps of inner loop gradient descent and Equation 21
performs 1-step truncated backpropagation (Shaban et al., 2019; Zhou et al., 2022). Our information
maximization algorithm updates W by projected gradient descent as:

W ← ProjWK (W − η∇WR) , η is the learning rate of W. (22)
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Then we prove that minimizing Equation 15 exactly finds the supremum w.r.t. E in the Definition 7
(formal) of the empirical predictive heterogeneity.

Theorem 4 (Justification of the IM Algorithm). For the regression task with predictive family V1 and
classification task with V2, the optimization of Equation 15 is equivalent to the supremum problem
of the empirical predictive heterogeneity ĤEK

V1 (X → Y ;D), ĤEK
V2 (X → Y ;D) respectively in

Equation 33 with the pre-defined environment number K (i.e. supp(E) = K).

Remark 1 (Difference from Expectation Maximization). The expectation maximization (EM) al-
gorithm is to infer latent variables of a statistic model to achieve the maximum likelihood. Our
proposed information maximization (IM) algorithm is to infer the latent variables W which brings
the maximal predictive heterogeneity associated with the maximal information. Due to the regu-
larizer UV in our objective function, the EM algorithm cannot efficiently solve our problem, and
therefore we adopt bi-level optimization techniques.

5 EXPERIMENTS

5.1 PROVIDE INSIGHTS FOR THE SUB-POPULATION DIVISION

The predictive heterogeneity could provide insights for the sub-population division and benefit
decision-making, and we illustrate this in prediction tasks of various fields, including agricultural
research, sociological research, and object recognition. From the illustrative examples, we show that
the learned sub-population division is highly explainable and relevant to decision-making.

Example: Agriculture It is known that the climate affects crop yields and crop suitability (Lo-
bell et al., 2008). We leverage the data from the NOAA database which contains daily weather
from weather stations around the world. Following Zhao et al. (2021), we summarize the weather
sequence of the year 2018 into summary statistics, including the average yearly temperature, hu-
midity, wind speed and rainy days. The task is to predict the crop yield in each place with weather
summary statistics and location covariates (i.e. longitude and latitude) of the place. For easy illus-
tration, we focus on the places with crop types of wheat or rice. Notably that the input covariates do
not contain the crop type. We use MLP models in this task and set K = 2 for our IM algorithm.

Since the crop yield prediction mechanisms are closely related to the crop type that is unknown in
the prediction task, we think this causes data heterogeneity in the entire data and the recognized
predictive heterogeneity should relate to it. In Figure 1 (a), we plot the real distribution map of
wheat and rice planting areas, and in Figure 1 (b), we plot the learned two sub-populations of our
IM algorithm. From the results, we surprisingly find the division given by our algorithm is quite
similar to the real division of the two crops, indicating the rationality of our measure. For the areas
that are not similar (e.g. Tibet Plateau in Asia), we think it is due to some missing features (e.g.
population density, altitude) that significantly affect the crop yields.

Example: Sociology We use the UCI Adult dataset (Kohavi & Becker, 1996), which is derived
from the 1994 Current Population Survey conducted by the US Census Bureau and is widely used
in the study of algorithmic fairness. The task is to predict whether the income of a person is greater
or less than 50k US dollars according to personal features. We use linear models in this task and set
K = 2. In this example, we would like to investigate whether there exist sub-population structures
inside data that affect the learning of machine learning models.

Figure 1: Results on the crop yield data. We color each region according to its main crop type, and
the shade represents the proportion of the main crop type after smoothing via k-means (k = 3).
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Figure 2: Results on the Adults data. Here we
show the average of features and the feature co-
efficients of the two learned sub-populations.

Figure 3: Results on the Waterbird data. Here
we randomly sample 50 images for each class
and each learned sub-population.

In Figure 2 (a), we plot summary statistics for the two sub-populations, where the main difference
lies in the capital gain. In Figure 2 (b), we plot the feature importance given by linear models for
the two sub-populations, and we find that for people with a high capital gain, the prediction model
focuses mainly on capital gain, which is fair. However, for people with a low capital gain, models
also address some sensitive attributes such as sex and marital status, which tend to cause discrimina-
tion. Our results correspond with the results in Zhao et al. (2021) and can help us identify potential
inequality in decision-making. For example, our results indicate the potential discrimination for low
capital gain people, which could further promote algorithm design and improve policy fairness.

Example: Object Recognition Finally, we use the Waterbird dataset (Sagawa et al., 2019), which
is widely used to evaluate the model’s robustness in the robust learning field. The task is to recognize
waterbirds or landbirds. However, the image backgrounds are spuriously correlated with the target
label, i.e. for the majority, waterbirds are on the water and landbirds on the land, and for minority,
the correlation is reversed. Therefore, the spurious correlation causes predictive heterogeneity in this
dataset, since such correlation could affect the machine learning model. In this example, we use the
ResNet18 and set K = 2 in our IM algorithm. In Figure 3, to show the learned sub-populations of
our method, we randomly sample 50 images for each class (waterbird or landbird) and each learned
sub-population. In sub-population 1, the majority of landbirds are on the ground and waterbirds are
in the water, while in sub-population 2, the majority of landbirds are in the water and waterbirds are
on the ground. Our measure captures such spurious correlation and in the two sub-populations, the
spurious correlation between the object and background is inverse. And the learned sub-populations
could be leveraged by many robust learning methods (Sagawa et al., 2019; Koyama & Yamaguchi,
2020) to learn models with better generalization ability, since they can help to eliminate the influence
of backgrounds on model predictions.

5.2 BENEFIT OOD GENERALIZATION

The predictive heterogeneity could benefit the out-of-distribution (OOD) generalization of machine
learning models. Here we investigate the empirical performance of our IM algorithm w.r.t. the OOD
generalization performances on simulated data and real-world colored MNIST data.

Baselines First, we compare with empirical risk minimization (ERM) and environment inference
for invariant learning (EIIL, (Creager et al., 2021)) which infers the environments for learning in-
variance. Then we compare with the well-known KMeans algorithm, which is the most popular

Table 1: Results of the experiments on out-of-distribution generalization, including the simulated
data and colored MNIST data.

Method
1. Simulated Data 2. Colored MNIST

Training Sub-population Error Test Error Train Accuracy Test AccuracyMajor (r = 1.9) Minor (r = −1.9) r = −2.3 r = −2.7
ERM 0.255(±0.024) 0.740(±0.022) 0.738(±0.035) 0.737(±0.023) 0.998(±0.001) 0.406(±0.019)

EIIL 0.164(±0.014) 1.428(±0.035) 1.431(±0.061) 1.431(±0.046) 0.812(±0.006) 0.610(±0.016)

KMeans
Balance 0.231(±0.022) 0.847(±0.024) 0.846(±0.039) 0.845(±0.026) 0.999(±0.001) 0.328(±0.021)

IRM 0.231(±0.022) 0.845(±0.024) 0.844(±0.039) 0.843(±0.026) 0.947(±0.004) 0.259(±0.021)

IGA 0.235(±0.022) 0.840(±0.023) 0.839(±0.038) 0.838(±0.027) 0.997(±0.001) 0.302(±0.021)

Ours
Balance 0.403(±0.041) 0.423(±0.016) 0.416(±0.022) 0.416(±0.014) 0.749(±0.012) 0.692(±0.039)

IRM 0.391(±0.039) 0.432(±0.016) 0.430(±0.022) 0.430(±0.014) 0.759(±0.014) 0.727(±0.047)
IGA 0.449(±0.037) 0.426(±0.017) 0.417(±0.022) 0.417(±0.014) 0.759(±0.012) 0.713(±0.034)

8



Published as a conference paper at ICLR 2023

(a) KMeans. (b) EIIL. (c) Our IM.

Figure 4: Sub-population division on the simulated data of three
methods, where two colors denote two sub-populations.

Figure 5: Sub-population di-
vision on the MNIST data of
our IM algorithm.

clustering algorithm. For our IM algorithm and KMeans, we involve three algorithms as backbones
to leverage the learned sub-populations, including sub-population balancing and invariant learning
methods. The sub-population balancing simply equally weighs the learned sub-populations. in-
variant risk minimization (IRM, (Arjovsky et al., 2019)) and inter-environment gradient alignment
(IGA, (Koyama & Yamaguchi, 2020)) are typical methods in OOD generalization, which take the
sub-populations as input environments to learn the invariant models.

Data Generation of Simulated Data The input features X = [S, T, V ]T ∈ R10 consist of stable
features S ∈ R5, noisy features T ∈ R4 and the spurious feature V ∈ R:

S ∼ N (0, 2I5), T ∼ N (0, 2I4), Y = θTSS+h(S)+N (0, 0.5), V ∼ Laplace(sign(r) ·Y, 1/(5 ln |r|)) (23)

where θS ∈ R5 is the coefficient and h(S) = S1S2S3 is the nonlinear term. |r| > 1 is a factor
for each sub-population, and here the data heterogeneity is brought by the endogeneity with hidden
variable (Fan et al., 2014). V is the spurious feature whose relationship with Y is unstable across
sub-populations and is controlled by the factor r. Intuitively, sign(r) controls whether the spurious
correlation between V and Y is positive or negative. And |r| controls the strength of the spurious
correlation, i.e. the larger |r| means the stronger spurious correlation. In training, we generate
10000 points, where the major group contains 80% data with r = 1.9 (i.e. strong positive spurious
correlation) and the minor group contains 20% data with r = −1.9 (i.e. strong negative spurious
correlation). In testing, we test the performances of the two groups respectively, and we also set
r = −2.3 and r = −2.7 to simulate stronger distributional shifts. We use linear regression and set
K = 2 for all methods, and we report the mean-square errors (MSE) of all methods.

Data Generation of Colored MNIST Following Arjovsky et al. (2019), we design a binary clas-
sification task constructed on the MNIST dataset. Firstly, digits 0 ∼ 4 are labeled Y = 0 and
digits 5 ∼ 9 are labeled Y = 1. Secondly, noisy labels Ỹ are induced by randomly flipping the
label Y with a probability of 0.2. Then we sample the colored id V spurious correlated with Ỹ as
V =

{
+Ỹ , with probability r,
−Ỹ , with probability 1− r. . In fact, r controls the spurious correlation between Ỹ and V . In

training, we randomly sample 10000 data points and set r = 0.85, meaning that for 85% of the data,
V is positively correlated with Ỹ and for the rest 15%, the spurious correlation becomes negative,
which causes data heterogeneity w.r.t. V and Ỹ . In testing, we set r = 0 (strong negative spurious
correlation), bringing strong shifts between training and testing.

Analysis From the results in Table 1, for both the simulated and colored MNIST data, the two
backbones with our IM algorithm achieve the best OOD generalization performances. Also, for the
simulated data, the learned predictive heterogeneity enables backbone algorithms to equally treat
the majority and minority inside data (i.e. low-performance gap between ’Major’ and ’Minor’), and
significantly benefits the OOD generalization. Further, for both experiments, we plot the learned
sub-populations of our IM algorithm in Figure 4 and 5. From Figure 4, compared with KMeans and
EIIL, our predictive heterogeneity exploits the spurious correlation between V and Y , and enables
the backbone algorithms to eliminate it. From Figure 5, the learned sub-populations of our method
also reflect the different directions of the spurious correlation between digit labels Y and colors (red
or green), which helps backbone methods to avoid using colors to predict digits.

6 CONCLUSION

We define the predictive heterogeneity, as the first quantitative formulation of the data heterogeneity
that affects the prediction of machine learning models. We demonstrate its theoretical properties and
show that it benefits the out-of-distribution generalization performances.
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A FORMAL DEFINITION OF EMPIRICAL PREDICTIVE HETEROGENEITY

In this section, we derive the explicit formula for the empirical estimation of the predictive hetero-
geneity which is described in Definition 6.

The dataset D = {(xi, yi)}|D|i=1 is independently and identically drawn from the population X,Y .
Given a function family V and an environment set EK , letQ be the set of all probability distributions
of X ,Y ,E where E ∈ EK . For given E , denote supp(E) = {(ek)Kk=1}. The empirical predictive
heterogeneity ĤEK

V (X → Y ;D) is given by:

ĤEK
V (X → Y ;D) = sup

E∈EK

ÎV(X → Y |E ;D)− ÎV(X → Y ;D) (24)

= sup
Q̂∈Q

K∑
k=1

[
Q̂(E = ek)ĤV(Y |E = ek;D)− Q̂(E = ek)ĤV(Y |X, E = ek;D)

]
(25)

− [ĤV(Y ;D)− ĤV(Y |X;D)]. (26)

Specifically,

Q̂(E = ek)ĤV(Y |X, E = ek;D) (27)

= inf
f∈V

Q̂(E = ek)
∑

xi,yi∈D
− log f [xi](yi)

Q̂(xi, yi|E = ek)∑
xj ,yj∈D Q̂(xj , yj |E = ek)

(28)

= inf
f∈V

Q̂(E = ek)
∑

xi,yi∈D
− log f [xi](yi)

Q̂(E = ek|xi, yi)Q̂(xi, yi)∑
xj ,yj∈D Q̂(E = ek|xj , yj)Q̂(xj , yj)

(29)

= inf
f∈V

Q̂(E = ek)
∑

xi,yi∈D
− log f [xi](yi)

Q̂(E = ek|xi, yi)Q̂(xi, yi)

Q̂(E = ek)
(30)

= inf
f∈V

∑
xi,yi∈D

− log f [xi](yi)Q̂(E = ek|xi, yi)Q̂(xi, yi) (31)

= inf
f∈V

1

|D|
∑

xi,yi∈D
− log f [xi](yi)Q̂(E = ek|xi, yi). (32)

The explicit formula for Q̂(E = ek)ĤV(Y |E = ek;D), ĤV(Y |X;D) and ĤV(Y ;D) could be
similarly derived. Here we are ready to formally define the empirical predictive heterogeneity.

Definition 7 (Empirical Predictive Heterogeneity (formal)). For the prediction taskX → Y withX ,
Y taking values in X × Y , a dataset D is independently and identically drawn from the population
such that D = {(xi, yi)Ni=1 ∼ X,Y }. Given the predictive family V and the environment set
EK = {E|E ∈ C, supp(E) = K} where K ∈ N, let Q be the set of all probability distributions of
X ,Y ,E where E ∈ EK . The empirical predictive heterogeneity ĤEK

V (X → Y ;D) with respect to D
is defined as:

ĤEK
V (X → Y ;D) = sup

Q̂∈Q

K∑
k=1

[
Q̂(E = ek)ĤV(Y |E = ek;D)− Q̂(E = ek)ĤV(Y |X, E = ek;D)

]
− [ĤV(Y ;D)− ĤV(Y |X;D)],

(33)
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where

Q̂(E = ek)ĤV(Y |X, E = ek;D) = inf
f∈V

1

|D|
∑

xi,yi∈D
− log f [xi](yi)Q̂(E = ek|xi, yi). (34)

Q̂(E = ek)ĤV(Y |E = ek;D) = inf
f∈V

1

|D|
∑

xi,yi∈D
− log f [∅](yi)Q̂(E = ek|xi, yi). (35)

ĤV(Y |X;D) = inf
f∈V

1

|D|
∑

xi,yi∈D
− log f [xi](yi). (36)

ĤV(Y ;D) = inf
f∈V

1

|D|
∑

xi,yi∈D
− log f [∅](yi). (37)

B SENSITIVITY OF K

In the experiments of Section 5, we set the K = 2 for easy illustrations. In this section, we add the
results of choosing different Ks for the simulated experiment in Section 5.2 to show that the OOD
generalization performances of some typical algorithms plus our proposed method are not sensitive
to the choices of K.

Figure 6: The out-of-distribution generalization error of our methods with Sub-population Balanc-
ing, IRM and IGA as backbones. Here we plot the errors of different backbones under r = −2.7,
which introduces strong distributional shifts with training data.

In Figure 6, we show the out-of-distribution generalization error of our methods with Sub-population
Balancing, IRM and IGA as backbones. We plot the OOD testing performances under r = −2.7,
which has strong distributional shift with the training distribution. From the results, we can see that
the performances of three OOD generalization methods do not be affected much by the choice of K,
and from Table 1 , our performances significantly outperforms all the baselines.

Also, we add one more experiment to show that (1) when the chosen K is smaller than the ground-
truth, the performances of our methods will drop but are still better than ERM (2) when the chosen
K is larger, the performances are not affected much (consistent with the results in Appendix B).

Experiment Setting: The input features X = [S, T, V ] ∈ R10 consist of stable features S ∈ R5,
noisy features T ∈ R4 and the spurious feature V ∈ R:

S ∼ N (2, 2I5), T ∼ N (0, 2I4), Y = θTSS + S1S2S3 +N (0, 0.5),

and we generate the spurious feature via:

V = θeV Y +N (0, 0.3),
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where θeV varies across sub-populations and is dependent on which sub-population the data point
belongs to. In training, we sample 8000 data points from e1 with θ1

V = 3.0, 1000 points from e2

with θ2
V = −1.0, 1000 points from e3 with θ3

V = −2.0 and 1000 points from e4 with θ4
V = −3.0.

Therefore, the ground-truth number of sub-populations is 4. In testing, we test the performances on
e4 with θ4

V = −3.0, which has strong distributional shifts from training data. The average MSE
over 10 runs are shown in Figure 7.

Figure 7: The out-of-distribution generalization error of our methods with Sub-population Bal-
ancing, IRM and IGA as backbones for the added experiments. The ground-truth sub-population
number is 4.

From the results, we can see that when K is smaller than the ground-truth, increasing K benefits the
OOD generalization performance, and when K is larger, the performances are not affected much,
which is consistent with the results in Figure 6.

For our IM algorithm, we think there are mainly two ways to choose K:

• According to the predictive heterogeneity index: When the chosen K is smaller than the
ground-truth, our measure tends to increase quickly when increasing K; and when K is
larger than the ground-truth, the increasing speed will slow down, which could direct people
to choose an appropriate K.

• According to the prediction model: Since our IM algorithm aims to learn sub-populations
with different prediction mechanisms, one could compare the learned model parameters
θ1, . . . , θK to judge whether K is much larger than the ground-truth, i.e., if two resultant
models are quite similar, K may be too large (divide one sub-population into two). For
linear models, one can directly compare the coefficients. For deep models, we think one
can calculate the transfer losses across sub-populations.

For a detailed analysis of the best choice of K, we leave it for future work.

C RELATED WORK

To the best of our knowledge, data heterogeneity has not converged to a uniform formulation so far,
and has different meanings among different fields. Li & Reynolds (1995) define the heterogeneity
in ecology based on the system property and complexity or variability. Rosenbaum (2005) views
the uncertainty of the potential outcome as unit heterogeneity in observational studies in economics.
For graph data, the heterogeneity refers to various types of nodes and edges (Wang et al. (2019)).
More recently, in machine learning, several works of causal learning (Peters et al., 2016; Arjovsky
et al., 2019; Koyama & Yamaguchi, 2020; Creager et al., 2021) and robust learning (Sagawa et al.,
2019) leverage heterogeneous data from multiple environments to improve the out-of-distribution
generalization ability. Specifically, invariant learning methods (Arjovsky et al., 2019; Koyama &
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Yamaguchi, 2020; Creager et al., 2021; Zhou et al., 2022) leverage the heterogeneous environment
to learn the invariant predictors that have uniform performances across environments. And in distri-
butionally robust optimization field, Sagawa et al. (2019); Duchi et al. (2022) propose to optimize
the worst-group prediction error to guarantee the OOD generalization performance. However, in
machine learning, previous works have not provided a precise definition or sound quantification of
data heterogeneity, which makes it confusing and hard to leverage to develop more rational machine
learning algorithms.

As for clustering algorithms, most algorithms only focus on the covariates X , typified by KMeans
and Gaussian Mixture Model (GMM, (Reynolds, 2009)). However, the learned clusters by KMeans
cannot reflect the predictive heterogeneity, which is shown by our experiments. And the expectation
maximization (EM, (Moon, 1996)) can also be used for clustering. However, our IM algorithm
has essential differences from EM, for our IM algorithm infers latent variables that maximizes the
predictive heterogeneity but EM maximizes the likelihood. Also, there are methods (Creager et al.,
2021) from the invariant learning field to infer environments. Though it could benefit the OOD
generalization, it lacks the theoretical foundation and only works in some settings.

D PROOF OF PROPOSITION 1

Proof of Proposition 1.

1. Monotonicity:

Because of E1 ⊆ E2,

HE1

V (X → Y ) = sup
E∈E1

IV(X → Y |E)− IV(X → Y ) (38)

≤ sup
E∈E2

IV(X → Y |E)− IV(X → Y ) (39)

= HE2

V (X → Y ). (40)

2. Nonnegativity:

According to the definition of the environment set, there exists E0 ∈ E such that for any e ∈ supp(E),
X,Y |E = e is identically distributed as X,Y . Thus, we have

HE
V (X → Y ) = sup

E∈E
[HV(Y |∅, E)−HV(Y |X, E)]− [HV(Y |∅)−HV(Y |X)] (41)

≥ [HV(Y |∅, E0)−HV(Y |X, E0)]− [HV(Y |∅)−HV(Y |X)] . (42)

Specifically,

HV(Y |X, E0) = Ee∼E0
[

inf
f∈V

Ex,y∼X,Y |E=e[− log f [x](y)]

]
(43)

= Ee∼E0
[

inf
f∈V

Ex,y∼X,Y [− log f [x](y)]

]
(44)

= HV(Y |X). (45)

Similarly, HV(Y |∅, E0) = HV(Y |∅). Thus,HE
V (X → Y ) ≥ 0.

3. Boundedness:

First, we have

HV(Y |X, E) = Ee∼E
[

inf
f∈V

Ex,y∼X,Y |E=e[− log f [x](y)]

]
(46)

= Ee∼E
[

inf
f∈V

Ex∼X|E=e

[
Ey∼Y |x,e[− log f [x](y)]

]]
(47)

≥ 0, (48)

by noticing that Ey∼Y |x[− log f [x](y)] is the cross entropy between Y |x, e and f [x].
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Next,

HV(Y |∅, E) = Ee∼E
[

inf
f∈V

Ey∼Y |E=e[− log f [∅](y)]

]
(49)

≤ inf
f∈V

Ee∼E
[
Ey∼Y |E=e[− log f [∅](y)]

]
(50)

= inf
f∈V

Ey∼Y [− log f [∅](y)] (51)

= HV(Y |∅), (52)

where Equation 50 is due to Jensen’s inequality.

Combing the above inequalities,

HE
V (X → Y ) = sup

E∈E
[HV(Y |∅, E)−HV(Y |X, E)]− [HV(Y |∅)−HV(Y |X)] (53)

≤ sup
E∈E

HV(Y |∅, E)− [HV(Y |∅)−HV(Y |X)] (54)

≤ HV(Y |∅)− [HV(Y |∅)−HV(Y |X)] (55)
= HV(Y |X). (56)

4. Corner Case:

According to Proposition 2 in Xu et al. (2020),

HΩ(Y |∅) = H(Y ). (57)
HΩ(Y |X) = H(Y |X). (58)

By taking random variables R,S identically distributed as X,Y |E = e for e ∈ supp(E), we have

HΩ(Y |X, E = e) = HΩ(S|R) = H(S|R) = H(Y |X, E = e). (59)

Thus,

HΩ(Y |X, E) = Ee∼E [HΩ(Y |X, E = e)] = Ee∼E [H(Y |X, E = e)] = H(Y |X, E). (60)

Similarly, we have HΩ(Y |∅, E) = H(Y |E). Thus,

HE
Ω(X → Y ) = sup

E∈E
[HΩ(Y |∅, E)−HΩ(Y |X, E)]− [HΩ(Y |∅)−HΩ(Y |X)] (61)

= sup
E∈E

[H(Y |E)−H(Y |X, E)]− [H(Y )−H(Y |X)] (62)

= sup
E∈E

I(Y ;X|E)− I(Y ;X) (63)

= HE (X,Y ). (64)

E PROOF OF THEOREM 1

Proof of Theorem 1.

1)

HVG (Y |X) = inf
f∈VG

Ex∼X
[
Ey∼Y |x[− log f [x](y)]

]
(65)

≤ Ex∼X

[
Ey∼Y |x[− log

1√
2π · 1√

2π

exp

[
− (y − g(x))2

2 · 1
2π

]]
(66)

= Ex∼X
[
Ey∼Y |x[π(y − g(x))2]

]
(67)

= πσ2. (68)
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Equation 66 holds by taking f [x] = N (g(x), 1
2π ).

2)

Given the function family Vσ = {f |f [x] = N (θx, σ2), θ ∈ R, σ fixed }, by expanding the Gaussian
probability density function in the definition of predictive V-information, it could be shown that

IVσ (X → Y ) ∝ min
k∈R

E[(Y − kX)2]− Var(Y ), (69)

where the predictive V-information is proportional to Mean Square Error subtracted by the variance
of target, by a coefficient completely dependent on σ.

The minimization problem is solved by

k =
E[XY ]

E[X2]
= 1. (70)

Substituting k into eq.69,

IVσ (X → Y ) ∝ E[ε2]− Var(X + ε) (71)

= −Var(X) = −E[X2]. (72)

Denote supp(E) = {E1, E2}. Let Q be the joint distribution of (X, ε, E). Let Q(E1) = α and
Q(E2) = 1− α be the marginal of E . Abbreviate Q(X, ε|E = E1) by P1(X, ε) and Q(X, ε|E = E2)
by P2(X, ε).

Similar to 69,

IVσ (X → Y |E) ∝ min
k

E[(Y − kX)2|E ]− Var(Y |E). (73)

For E = E1, the minimization problem is solved by

k =
EP1 [XY ]

EP1
[X2]

. (74)

Thus,

IVσ (X → Y |E = E1) ∝ EP1

[(
Y − EP1

[XY ]

EP1
[X2]

X

)2
]
− VarP1

(Y ) (75)

= EP1 [Y 2]−
E2
P1

[XY ]

EP1 [X2]
− (EP1 [Y 2]− E2

P1
[Y ]) (76)

= E2
P1

[Y ]−
E2
P1

[XY ]

EP1 [X2]
. (77)

Similarly, we have

IVσ (X → Y |E = E2) ∝ E2
P2

[Y ]−
E2
P2

[XY ]

EP2 [X2]
. (78)

Notably, EP1
[X2] and EP2

[X2] are constrained by α and E[X2].

E[X2] = E[E[X2|E ]] = αEP1 [X2] + (1− α)EP2 [X2]. (79)

Similarly,
E[X2] = E[XY ] = αEP1

[XY ] + (1− α)EP2
[XY ]. (80)

0 = E[Y ] = αEP1
[Y ] + (1− α)EP2

[Y ]. (81)
The moments of P2 could thereafter be represented by those of P1.

EP2
[X2] =

E[X2]− αEP1 [X2]

1− α
. (82)

EP2
[XY ] =

E[X2]− αEP1
[XY ]

1− α
. (83)
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EP2 [Y ] = −αEP1 [Y ]

1− α
. (84)

Substituting to eq.78,

IVσ (X → Y |E = E2) ∝ α2

(1− α)2
E2
P1

[Y ]− 1

1− α

(
E[X2]− αEP1 [XY ]

)2
E[X2]− αEP1

[X2]
. (85)

Thus,

HE
Vσ (X → Y ) = sup

E∈E
IVσ (X → Y )− αIVσ (X → Y |E = E1)− (1− α)IVσ (X → Y |E = E2)

(86)

∝ sup
E∈E
−E[X2]− αE2

P1
[Y ] + α

E2
P1

[XY ]

EP1
[X2]

− α2

1− α
E2
P1

[Y ] +

(
E[X2]− αEP1 [XY ]

)2
E[X2]− αEP1

[X2]
(87)

= sup
E∈E
− α

1− α
E2
P1

[Y ] + α

(
EP1

[X2]− EP1
[XY ]

)2
EP1

[X2] (E[X2]− αEP1
[X2])

E[X2] (88)

= sup
E∈E
− α

1− α
E2
P1

[X + ε] + α
E2
P1

[Xε]

EP1
[X2] (E[X2]− αEP1

[X2])
E[X2]. (89)

Assuming X ⊥ ε | E ,

HE
Vσ (X → Y ) = sup

E∈E
− α

1− α
E2
P1

[X + ε] ≤ 0. (90)

From Proposition 1, we haveHE
Vσ (X → Y ) ≥ 0. Thus,HE

Vσ (X → Y ) = 0.

F PROOF OF LINEAR CASES (THEOREM 2 AND ??)

Proof of Theorem 2.

For the ease of notion, we denote the r(E∗) as re, σ(E∗) as σe, and σ(E∗) · εv as εe. And we omit
the superscript C ofHCV . Firstly, we calculate the HV [Y |∅] as:

HV [Y |∅] =
1

2σ2
Var(Y ) + log σ +

1

2
log 2π, (91)

HV [Y |∅, E∗] =
1

2σ2
EE∗ [Var(Y |E∗)] + log σ +

1

2
log 2π. (92)

Therefore, we have

HV [Y |∅, E∗]−HV [Y |∅] = − 1

2σ2
Var(E[Y |E∗]) ≤ 0. (93)

As for HV [Y |X], we have

HV [Y |X] = inf
hS ,hV

EX,Y
[
‖Y − (hSS + hV V )‖2

] 1

2σ2
(94)

= inf
hS ,hV

EX,Y
[
‖f(S) + εY − (hSS + hV V )‖2

] 1

2σ2
(95)

= inf
hS ,hV

EE∗
[
E[‖f(S) + εY − (hSS + hV (ref(S) + εe))‖2|E∗]

] 1

2σ2
, (96)

where we let hS = hS − β here. Then we have

2σ2HV [Y |X] = inf
hS ,hV

EE∗
[
E[‖(1− hV re)f(S) + εY − hSS − hV εe‖2|E∗]

]
(97)

= inf
hS ,hV

EE∗
[
E[‖(1− hV re)f(S)− hSS‖2|E∗]

]
+ σ2

Y + h2
V EE∗ [σ2

e ], (98)
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notably that here for ei, ej ∈ supp(E∗), we assume P ei(S, Y ) = P ej (S, Y ) (we choose such E∗ as
one possible split). And the solution of hS , hV is

hS =
Var(re)E[f2(S)]E[f(S)S] + E[σ2

e ]E[f(S)S]

E[r2
e ]E[f2(S)]E[S2] + E[σ2

e ]E[S2]− E2[re]E2[f(S)S]
, (99)

hV =
E[re](E[f2(S)]E[S2]− E2[f(S)S])

E[r2
e ]E[f2(S)]E[S2] + E[σ2

e ]E[S2]− E2[re]E2[f(S)S]
. (100)

According to the assumption that E[f(S)S] = 0, we have

hS = 0, (101)

hV =
E[r(E∗)]E[f2]

E[r2(E∗)]E[f2] + E[σ2(E∗)]
. (102)

Therefore, we have

2σ2HV [Y |X] = EE∗ [E[‖(1− hV re)f(S)‖2|E∗]] + σ2
Y + h2

V EE∗ [σ2
e ] (103)

=
Var(re)E[f2] + E[σ2(E∗)]
E[r2

e ]E[f2] + E[σ2(E∗)]
E[f2(S)] + σ2

Y , (104)

2σ2HV [Y |X, E∗] = σ2
Y + E[(

1
r2eE[f2]
σ2
e

+ 1
)2]E[f2] + EE∗ [(

1
re
σe

+ σe
reE[f2]

)2]. (105)

Note that here we simply set σ = 1 in the main body. And we have:

HV(X → Y ) ≈ Var(re)E[f2] + E[σ2(E∗)]
E[r2

e ]E[f2] + E[σ2(E∗)]
E[f2(S)] (106)

The approximation error is bounded by 1
2 max(σ2

Y , R(r(E∗), σ(E∗),E[f2])), and
R(r(E∗), σ(E∗),E[f2]) is defined as:

R(r(E∗), σ(E∗),E[f2]) = E[(
1

r2eE[f2]
σ2
e

+ 1
)2]E[f2] + EE∗ [(

1
re
σe

+ σe
reE[f2]

)2] (107)

Proof of Theorem ??. As proved above, we have

hS = β +
E[f(S)S]

(
Var(re)(E[f2(S)] + σ2

Y ) + E[σ2
e ]
)

E[r2
e ]E[f2(S)]E[S2] + E[r2

e ]σ
2
Y E[S2] + E[σ2

e ]E[S2]− E2[re]E2[f(S)S]
, (108)

hV =
E[re](σ

2
Y + E[f2(S)])E[S2]− E[re]E2[f(S)S]

E[r2
e ]E[f2(S)]E[S2] + E[r2

e ]σ
2
Y E[S2] + E[σ2

e ]E[S2]− E2[re]E2[f(S)S]
. (109)

• For the model misspecification case, we further assume that (1) E[f(S)S] = 0 and (2)
E[σ2

e ]� E[f2(S)]E[S2], and then we have

hS = β, (110)

hV =
E[re]

E[r2
e ]
, (111)

and for the heterogeneity, we have
Var(re)
E[r2e ]

(E[f2(S)] + E[σ2
Y ]) + h2

V EE [σ2
e ] + σ2

Y ≥ 2σ2HV(X → Y )

≥ Var(re)
E[r2e ]

(E[f2(S)] + E[σ2
Y ]) + h2

V EE [σ2
e ]− EE [

1

r2e
σ2
e ].

(112)

• Without the model misspecification, we assume that f ≡ 0, and then we have

hS = β, (113)

hV =
E[re]σ

2
Y

E[r2
e ]σ

2
Y + E[σ2

e ]
, (114)
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and for the heterogeneity we have

2σ2HV(X → Y ) ≥ σ2
Y (1− 2hV E[re] + h2

V E[r2
e ]) + h2

V E[σ2
e ]− E[

1

r2
e

σ2
e ], (115)

2σ2HV(X → Y ) ≤ σ2
Y (1− 2hV E[re] + h2

V E[r2
e ]) + h2

V E[σ2
e ]. (116)

G PROOF OF THE ERROR BOUND FOR FINITE SAMPLE ESTIMATION
(THEOREM 3)

In this section, we will prove the error bound of estimating the predictive heterogeneity with the
empirical predictive heterogeneity. Before the proof of Theorem 3 which is inspired by Xu et al.
(2020), we will introduce three lemmas.

Lemma 1. Assume ∀x ∈ X ,∀y ∈ Y ,∀f ∈ V , log f [x](y) ∈ [−B,B] where B >
0. Define a function class GkV = {g|g(x, y) = log f [x](y)q(E = ek|x, y), f ∈ V, q ∈
Q}. Denote the Rademacher complexity of G with N samples by RN (G). Define f̂k =
arg inff

1
|D|
∑
xi,yi∈D − log f [xi](yi)q(E = ek|xi, yi).

Then for any q ∈ Q, any δ ∈ (0, 1), with a probability over 1− δ, we have∣∣∣∣∣∣q(E = ek)HV(Y |X, E = ek)− 1

|D|
∑

xi,yi∈D
− log f̂k[xi](yi)q(E = ek|xi, yi)

∣∣∣∣∣∣ (117)

≤ 2R|D|(GkV) +B

√
2 log 1

δ

|D|
. (118)

Proof. Apply McDiarmid’s inequality to the function Φ(D) which is defined as:

Φ(D) = sup
f∈V,q∈Q

∣∣∣∣∣∣q(E = ek)Eq [− log f [x](y)|E = ek]− 1

|D|
∑

xi,yi∈D
− log f [xi](yi)q(E = ek|xi, yi)

∣∣∣∣∣∣ .
(119)

Let D and D′ be two identical datasets except for one data point xj 6= x′j . We have:

Φ(D)− Φ(D′) (120)

≤ sup
f∈V,q∈Q

∣∣∣∣∣∣q(E = ek)Eq [− log f [x](y)|E = ek]− 1

|D|
∑

xi,yi∈D
− log f [xi](yi)q(E = ek|xi, yi)

∣∣∣∣∣∣
(121)

−

∣∣∣∣∣∣q(E = ek)Eq [− log f [x](y)|E = ek]− 1

|D′|
∑

x′i,y
′
i∈D′
− log f [x′i](y

′
i)q(E = ek|x′i, y′i)

∣∣∣∣∣∣


(122)

≤ sup
f∈V,q∈Q

∣∣∣∣∣∣ 1

|D|
∑

xi,yi∈D
− log f [xi](yi)q(E = ek|xi, yi)−

1

|D′|
∑

x′i,y
′
i∈D′
− log f [x′i](y

′
i)q(E = ek|x′i, y′i)

∣∣∣∣∣∣
(123)

= sup
f∈V,q∈Q

1

|D|
∣∣log f [xj ](yj)q(E = ek|xj , yj)− log f [x′j ](y

′
j)q(E = ek|x′j , y′j)

∣∣ (124)

≤ 2B

|D|
. (125)
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According to McDiarmid’s inequality, for any δ ∈ (0, 1), with a probability over 1− δ, we have:

Φ(D) ≤ ED[Φ(D)] +B

√
2 log 1

δ

|D|
. (126)

Next we derive a bound for ED[Φ(D)].

Consider a datasetD′ independently and identically drawn from q(X,Y ) = P (X,Y ) with the same
size as D. We notice that

q(E = ek)Eq [− log f [x](y)|E = ek] (127)
= q(E = ek)Eq [− log f [x](y)q(E = ek|x, y)|E = ek] (128)
= Eq [Eq [− log f [x](y)q(E = ek|x, y)|E = ek]] (129)
= Eq [− log f [x](y)q(E = ek|x, y)] (130)

= ED′

− 1

|D′|
∑

x′i,y
′
i∈D′
− log f [x′i](y

′
i)q(E = ek|x′i, y′i)

 . (131)

Thus, ED[Φ(D)] could be reformulated as:

ED[Φ(D)] (132)

= ED

 sup
f∈V,q∈Q

∣∣∣∣∣∣ED′
− 1

|D′|
∑

x′i,y
′
i∈D′
− log f [x′i](y

′
i)q(E = ek|x′i, y′i)

 (133)

− 1

|D|
∑

xi,yi∈D
− log f [xi](yi)q(E = ek|xi, yi)

∣∣∣∣∣∣
 (134)

≤ ED

 sup
f∈V,q∈Q

ED′

∣∣∣∣∣∣− 1

|D′|
∑

x′i,y
′
i∈D′
− log f [x′i](y

′
i)q(E = ek|x′i, y′i) (135)

− 1

|D|
∑

xi,yi∈D
− log f [xi](yi)q(E = ek|xi, yi)

∣∣∣∣∣∣
 (136)

≤ ED,D′

 sup
f∈V,q∈Q

1

|D|

∣∣∣∣∣∣
∑

xi,yi∈D
log f [xi](yi)q(E = ek|xi, yi) (137)

−
∑

x′i,y
′
i∈D′

log f [x′i](y
′
i)q(E = ek|x′i, y′i)

∣∣∣∣∣∣
 (138)

= ED,D′,σ

 sup
f∈V,q∈Q

1

|D|

∣∣∣∣∣∣
∑

xi,yi∈D
σi log f [xi](yi)q(E = ek|xi, yi) (139)

−
∑

x′i,y
′
i∈D′

σi log f [x′i](y
′
i)q(E = ek|x′i, y′i)

∣∣∣∣∣∣
 (140)

≤ ED,σ

 sup
f∈V,q∈Q

1

|D|

∣∣∣∣∣∣
∑

xi,yi∈D
σi log f [xi](yi)q(E = ek|xi, yi)

∣∣∣∣∣∣
 (141)

+ ED′,σ

 sup
f∈V,q∈Q

1

|D′|

∣∣∣∣∣∣
∑

x′i,y
′
i∈D′

σi log f [x′i](y
′
i)q(E = ek|x′i, y′i)

∣∣∣∣∣∣
 (142)

= 2R|D|(GkV), (143)
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where σi are independent Rademacher variables. Equation 137 follows from Jensen’s inequality and
the convexity of sup. Equation 139 holds due to the symmetry of log f [xi](yi)q(E = ek|xi, yi) −
log f [x′i](y

′
i)q(E = ek|x′i, y′i) and the argument that Radamacher variables preserve the expected

sum of symmetric random variables with a convex mapping (Ledoux & Talagrand (1991), Lemma
6.3).

Substituting Equation 143 to Equation 126, we have for any δ ∈ (0, 1), with a probability over 1−δ,
∀f ∈ V , ∀q ∈ Q, the following holds:∣∣∣∣∣∣q(E = ek)Eq [− log f [x](y)|E = ek]− 1

|D|
∑

xi,yi∈D
− log f [xi](yi)q(E = ek|xi, yi)

∣∣∣∣∣∣ (144)

≤ 2R|D|(GkV) +B

√
2 log 1

δ

|D|
. (145)

Let f̃k = arg inff{q(E = ek)Eq [− log f [x](y)|E = ek]}.

Let f̂k = arg inff{ 1
|D|
∑
xi,yi∈D − log f [xi](yi)q(E = ek|xi, yi)}.

Now we have

q(E = ek)Eq
[
− log f̃k[x](y)|E = ek

]
− 1

|D|
∑

xi,yi∈D
− log f̃k[xi](yi)q(E = ek|xi, yi) (146)

≤ q(E = ek)HV(Y |X, E = ek)− 1

|D|
∑

xi,yi∈D
− log f̂k[xi](yi)q(E = ek|xi, yi) (147)

≤ q(E = ek)Eq
[
− log f̂k[x](y)|E = ek

]
− 1

|D|
∑

xi,yi∈D
− log f̂k[xi](yi)q(E = ek|xi, yi). (148)

Combining Equation 144 and Equation 146-148, the lemma is proved.

Lemma 2. Assume ∀x ∈ X ,∀y ∈ Y ,∀f ∈ V , log f [∅](y) ∈ [−B,B] where B > 0. The definition
of GkV and RN (G) follows from Lemma 1. Define f̂k = arg inff

1
|D|
∑
xi,yi∈D − log f [∅](yi)q(E =

ek|xi, yi).

Then for any q ∈ Q, any δ ∈ (0, 1), with a probability over 1− δ, we have∣∣∣∣∣∣q(E = ek)HV(Y |E = ek)− 1

|D|
∑

xi,yi∈D
− log f̂k[∅](yi)q(E = ek|xi, yi)

∣∣∣∣∣∣ (149)

≤ 2R|D|(GkV) +B

√
2 log 1

δ

|D|
. (150)

Proof. Similar to Lemma 1, we could prove that∣∣∣∣∣∣q(E = ek)HV(Y |E = ek)− 1

|D|
∑

xi,yi∈D
− log f̂k[∅](yi)q(E = ek|xi, yi)

∣∣∣∣∣∣ (151)

≤ 2R|D|(GkV∅) +B

√
2 log 1

δ

|D|
, (152)

where GkV∅ = {g|g(x, y) = log f [∅](y)q(E = ek|x, y), f ∈ V, q ∈ Q}.
According to the definition for the predictive family V (Xu et al. (2020), Definition 1), ∀f ∈ V ,
there exists f ′ ∈ V such that ∀x ∈ X , f [∅] = f ′[x]. Thus, GkV∅ ⊂ G

k
V , and therefore R|D|(GkV∅) ≤

R|D|(GkV). Substituting into Equation 151, the lemma is proved.
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Lemma 3 ((Xu et al., 2020), Theorem 1). Assume ∀x ∈ X ,∀y ∈ Y ,∀f ∈ V , log f [x](y) ∈ [−B,B]
where B > 0. Define a function class G∗V = {g|g(x, y) = log f [x](y), f ∈ V}. The definition of
RN (G) follows from Lemma 1.

Then for any δ ∈ (0, 0.5), with a probability over 1− 2δ, we have

∣∣∣IV(X → Y )− ÎV(X → Y )
∣∣∣ ≤ 4R|D|(G∗V) + 2B

√
2 log 1

δ

|D|
. (153)

Finally we are prepared to prove Theorem 3.

Proof of Theorem 3. We first bound the error of empirical estimation with the sum of items in
Lemma 1,2,3.

|HEK
V (X → Y )− ĤEK

V (X → Y ;D)| (154)

=

∣∣∣∣[ sup
E∈EK

IV(X → Y |E)− IV(X → Y )

]
−
[

sup
E∈EK

ÎV(X → Y |E ;D)− ÎV(X → Y ;D)

]∣∣∣∣
(155)

≤
∣∣∣∣ sup
E∈EK

IV(X → Y |E)− sup
E∈EK

ÎV(X → Y |E ;D)

∣∣∣∣+
∣∣∣IV(X → Y )− ÎV(X → Y ;D)

∣∣∣ (156)

≤ sup
E∈EK

∣∣∣IV(X → Y |E)− ÎV(X → Y |E ;D)
∣∣∣+
∣∣∣IV(X → Y )− ÎV(X → Y ;D)

∣∣∣ (157)

= sup
q∈Q

∣∣∣∣∣
K∑
k=1

[q(E = ek)HV(Y |E = ek)− q(E = ek)HV(Y |X, E = ek)] (158)

−
K∑
k=1

[
q(E = ek)ĤV(Y |E = ek;D)− q(E = ek)ĤV(Y |X, E = ek;D)

]∣∣∣∣∣ (159)

+
∣∣∣IV(X → Y )− ÎV(X → Y ;D)

∣∣∣ (160)

≤
K∑
k=1

sup
q∈Q

∣∣∣q(E = ek)HV(Y |E = ek)− q(E = ek)ĤV(Y |E = ek;D)
∣∣∣ (161)

+

K∑
k=1

sup
q∈Q

∣∣∣q(E = ek)HV(Y |X, E = ek)− q(E = ek)ĤV(Y |X, E = ek;D)
∣∣∣ (162)

+
∣∣∣IV(X → Y )− ÎV(X → Y ;D)

∣∣∣ (163)

=

K∑
k=1

sup
q∈Q

∣∣∣∣∣∣q(E = ek)HV(Y |E = ek)− 1

|D|
∑

xi,yi∈D
− log f̂k[xi](yi)q(E = ek|xi, yi)

∣∣∣∣∣∣ (164)

+

K∑
k=1

sup
q∈Q

∣∣∣∣∣∣q(E = ek)HV(Y |X, E = ek)− 1

|D|
∑

xi,yi∈D
− log f̂ ′k[∅](yi)q(E = ek|xi, yi)

∣∣∣∣∣∣
(165)

+
∣∣∣IV(X → Y )− ÎV(X → Y ;D)

∣∣∣ , (166)

where f̂k = arg inff
1
|D|
∑
xi,yi∈D − log f [xi](yi)q(E = ek|xi, yi),

and f̂ ′k = arg inff
1
|D|
∑
xi,yi∈D − log f [∅](yi)q(E = ek|xi, yi), for any q ∈ Q and 1 ≤ k ≤ K.
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For simplicity, let

Errk = sup
q∈Q

∣∣∣∣∣∣q(E = ek)HV(Y |X, E = ek)− 1

|D|
∑

xi,yi∈D
− log f̂k[xi](yi)q(E = ek|xi, yi)

∣∣∣∣∣∣ .
(167)

Err′k = sup
q∈Q

∣∣∣∣∣∣q(E = ek)HV(Y |X, E = ek)− 1

|D|
∑

xi,yi∈D
− log f̂ ′k[∅](yi)q(E = ek|xi, yi)

∣∣∣∣∣∣ . (168)

Err∗ =
∣∣∣IV(X → Y )− ÎV(X → Y ;D)

∣∣∣ . (169)

Then, by Lemma 1,2,3,

Pr

|HVK − ĤVK(D)| > 4(K + 1)R|D|(GV) + 2(K + 1)B

√
2 log 1

δ

|D|

 (170)

≤ Pr

 K∑
i=1

Errk +

K∑
i=1

Err′k + Err∗ > 4(K + 1)R|D|(GV) + 2(K + 1)B

√
2 log 1

δ

|D|

 (171)

≤ Pr

 K∑
i=1

Errk +

K∑
i=1

Err′k + Err∗ >

K∑
k=1

4R|D|(GkV) + 4R|D|(G∗V) + 2(K + 1)B

√
2 log 1

δ

|D|


(172)

≤ Pr

 K⋃
k=1

Errk >2R|D|(GkV) +B

√
2 log 1

δ

|D)|

+

K⋃
k=1

Err′k >2R|D|(GkV) +B

√
2 log 1

δ

|D)|


(173)

+

Err∗ > 4R|D|(G∗V) + 2B

√
2 log 1

δ

|D|

 (174)

≤
K∑
k=1

Pr

Errk >2R|D|(GkV) +B

√
2 log 1

δ

|D)|

+

K∑
k=1

Pr

Err′k >2R|D|(GkV) +B

√
2 log 1

δ

|D)|


(175)

+ Pr

Err∗ > 4R|D|(G∗V) + 2B

√
2 log 1

δ

|D|

 (176)

≤ 2(K + 1)δ. (177)

Equation 172 is because of GkV = GV , G∗V ⊂ GV and therefore R|D|(GkV) ≤ R|D|(GV), R|D|(G∗V) ≤
R|D|(GV).

Hence,

Pr

|HEK
V (X → Y )− ĤEK

V (X → Y ;D)| ≤ 4(K + 1)R|D|(GV) + 2(K + 1)B

√
2 log 1

δ

|D|


(178)

≥ 1− 2(K + 1)δ. (179)
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H PROOF OF THEOREM 4

Proof of Theorem 4. The objective function of our IM algorithm is directly derived from the defi-
nition of empirical predictive heterogeneity in Definition 6. For the regression task, we assume the
predictive family as

V1 = {g : g[x] = N (fθ(x), σ2), f is the regression model and θ is learnable, σ = 1.0(fixed)}, (180)

where we only care about the output of the model and the noise scale of the Gaussian distribution
is often ignored, for which we simply set σ = 1.0 as a fixed term. Then for each environment
e ∈ supp(E∗), the IV(X → Y |E∗ = e) becomes

IV(X → Y |E∗ = e) ∝ min
θ

E[‖Y − fθ(X)‖2|E∗ = e]− Var(Y |E∗), (181)

which corresponds with the MSE loss and the proposed regularizer in Equation 17. For the classifi-
cation task, the derivation is similar, and the regularizer becomes the entropy of Y in sub-population
e and the loss function becomes the cross-entropy loss.

I DISCUSSION ON DIFFERENCES WITH SUB-GROUP DISCOVERY

Subgroup discovery (SD, (Helal, 2016)) is aimed at extracting ”interesting” relations among differ-
ent variables (X) with respect to a target variable Y . Coverage and precision of each discovered
group is the focus of such method. To be specific, it learns a partition on P (X) such that some
target label y dominates within each group. The most siginficant gap between subgroup discovery
and our predictive heterogeneity lies in the pattern of distributional shift among clusters: for sub-
group discovery, P (X) and P (Y ) varies across subgroups but there is a universal P (Y |X). While
for predictive heterogeneity P (Y |X) differs across sub-population, which indicates diversified pre-
diction mechanism. It is such disparity of prediction mechanism that inhibits the performance of a
universal predictive model on a heterogeneous dataset, which is the emphasis of OOD problem and
group fairness.

We think sub-group discovery is more applicable for settings where the distributional shift is minor
while high explainability is required, since it generates simplified rules that people can understand.
Also, sub-group discovery methods is suitable for the settings that only involve tabular data (typli-
cally from a relational database), where the input features have clear semantics. And our proposed
method could deal with general machine learning settings, including complicated data (e.g., image
data) that involves representation learning. Also, when people have to handle settings where data
heterogeneity w.r.t. prediciton mechanism exists inside data, our method is more applicable. How-
ever, both kinds of methods can be used to help people understand data and make more reasonable
decisions.

J DISCUSSION ON THE POTENTIAL FOR FAIRNESS

We find combining our measure with algorithmic fairness is an interesting and promising direction
and we think our measure has the potential to deal with algorithmic bias. Our method could generate
sub-populations with possibly different prediction mechanisms, which could do some help in the
following aspects:

Risk feature selection: we could select features according to our predictive heterogeneity measure
to see what features bring the largest heterogeneity. If they are sensitive features, people should
avoid their effects, and if they are not, they could direct people to build better machine learning
models.

Examine the algorithmic fairness: we could use the learned sub-populations to examine whether
a given algorithm is fair by calculating the performance gap across the sub-populations.
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