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Abstract

Mass spectrometry is the dominant technology in
the field of proteomics, enabling high-throughput
analysis of the protein content of complex biolog-
ical samples. Due to the complexity of the instru-
mentation and resulting data, sophisticated com-
putational methods are required for the processing
and interpretation of acquired mass spectra. Here,
we propose unifying various spectrum prediction
tasks under a single foundation model. To this
end, we pre-train a spectrum encoder using de
novo sequencing as a pre-training task. We then
show that using these pre-trained spectrum repre-
sentations improves our performance on the four
downstream tasks of spectrum quality prediction,
chimericity prediction, phosphorylation predic-
tion, and glycosylation status prediction, demon-
strating that our foundation model has learned
generalizable representations of mass spectra.

1. Introduction
In recent years, foundation models have emerged as a power-
ful machine learning paradigm for various problem domains
[26, 27, 6]. These models are trained to learn rich latent
representations of input modalities from large datasets of
unlabeled or weakly labeled data using pre-training tasks
such as masked language modeling. The trained model can
subsequently be used to perform a variety of downstream
tasks, relying on the same input modality with little or no
supervised fine-tuning for the specific task in question. In
many cases, with a relatively small amount of supervised
fine-tuning a foundation model will outperform its peers
trained only with supervision.
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Motivated by the success of foundation models in language,
vision, and multi-modal tasks, we develop a foundation
model for tandem mass spectrometry proteomics. For many
prediction tasks, insufficient training data and noisy training
labels make it challenging to learn a rich understanding of
mass spectra in isolation for each task. We hypothesized
that learned spectrum embeddings, pre-trained on a large
dataset of high-confidence spectrum annotations, may prove
a valuable starting point for various downstream tasks.

2. Background and related work
Currently, tandem mass spectrometry is the only high-
throughput method for systematically analyzing the full
protein content of biological samples [21]. In a standard
tandem mass spectrometry experiment, proteins are digested
into short peptides, ionized, and fragmented. The mass-to-
charge ratios (m/z) of the resulting fragment ions are then
measured very precisely by the instrument. This process
yields a list of “peaks,” each representing the m/z of a spe-
cific ion along with an intensity value corresponding to its
abundance. Together, this list of peaks is called an “MS/MS
spectrum,” which serves as a fingerprint of the specific ana-
lyte being measured. In a typical mass spectrometry run, the
instrument will collect on the order of 100,000 such spectra,
each corresponding to a distinct analyte. Canonically, these
spectra are then processed by a database search algorithm,
with the goal of assigning to each spectrum its generating
peptide. However, there are a variety of other important
downstream tasks involving tandem mass spectra.

De novo sequencing An alternative strategy to database
search for spectrum annotation is de novo peptide sequenc-
ing. De novo sequencing aims to predict the generating
peptide for a given spectrum without relying on prior knowl-
edge, making it a valuable tool for identifying peptides not
present in a pre-defined protein database. Algorithms for
solving this problem were introduced in the late 1990’s [34]
and it was first solved using machine learning in 2015 [19]
and deep learning in 2017 [35]. More recently, Casanovo
[40] employed a transformer architecture to frame de novo
sequencing as a sequence-to-sequence translation task.
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Downstream tasks. We study four downstream tasks that
take tandem mass spectra as input: predicting spectrum qual-
ity, chimericity, phosphorylation, and glycosylation status.

In spectrum quality prediction, the model is asked to predict
whether an observed spectrum is identifiable, meaning that
it shows strong and clear signal for a peptide. This problem
has been addressed with a variety of classical machine learn-
ing techniques [25, 30, 38, 20] and more recently using a
convolutional neural network [12].

In mass spectrometry experiments, acquired spectra often
inadvertently contain signal from multiple peptides. Such
spectra are called chimeras, and they can be hard to analyze
due to the mixture of signals from each peptide. To our
knowledge, prediction of chimeric spectra has not previ-
ously been solved using machine learning methods. How-
ever, many existing methods generalize the database search
procedure to allow for chimeric matches [42, 11].

Predicting whether a post-translational modification is
present in a given spectrum is another key task. PhoStar
uses a random forest to predict whether a given spectrum
was generated by a phosphorylated peptide based on a set of
hand-designed features [10]. AHLF improves on this using
a convolutional model which takes as input a full spectrum
[2]. For predicting whether a spectrum contains a peptide
which is N- or O-glycosylated, current methods rely on
hand-designed rules based on specific fragment ions [33].

Learning representations of spectra. Prior work has inves-
tigated learning spectrum representations, but have primarily
focused on dimensionality reduction for clustering spectra
and improving peptide identification. GLEAMS learns low-
dimensional spectrum representations such that spectra from
the same peptide cluster together [5]. Similarly, yHydra co-
embeds peptides and spectra such that spectra are close to
their generating peptides in embedding space [1].

Finally, prior work has investigated foundation models for
tandem mass spectra in the metabolomics space. The meth-
ods LSM1-MS2 [4], PRISM [14], and DreaMS [7] use un-
supervised masked-peak modeling to learn representations
of metabolomics mass spectra, demonstrating that these rep-
resentations improve performance on downstream chemical
property prediction tasks.

3. De novo peptide sequencing as a
pre-training task

To accurately perform de novo sequencing, a model needs to
capture the fundamental relationships between the analyte
present in the instrument (i.e., the peptide) and the observed
signal measured by the mass spectrometer. This in turn
requires a rich understanding of the physics and chemistry
governing peptide chromatography, ionization, and frag-

mentation. We hypothesize that this prior understanding of
mass spectra, acquired through pre-training on the de novo
sequencing task, will generalize to other tasks involving
mass spectra for which less training data is available.

Typically, foundation models are trained in an unsupervised
manner, so as to benefit from massive datasets of unlabeled
training examples. However, unlike the settings of natural
language processing and computer vision, where there are
orders of magnitude more unlabeled training examples than
labeled samples, typically 40–60% of acquired spectra can
be annotated with their generating peptide in a given mass
spectrometry run. Additionally, this labeling is fully auto-
mated and high-throughput, with no need for costly human
annotations. Thus, here we consider making use of these
labels to explore the supervised task of de novo peptide
sequencing as pre-training for a foundation model.

In this work we perform experiments with a state-of-the
art, transformer-based de novo sequencing model, Casanovo
[40, 41]. Casanovo is trained on a dataset of 30 million high-
quality labeled tandem mass spectra from the MassIVE-
KB spectral library [36]. We use Casanovo’s pre-trained
spectrum encoder off the shelf as a foundation model for
mass spectrometry proteomics.

4. Downstream tasks
We use our foundation model as a starting point to address
a series of downstream tasks. In each task, we compare the
frozen Casanovo encoder coupled with a small task-specific
dense predictor head (“Casanovo Foundation”) against at
least two baselines. First, we bin spectrum peaks along the
m/z axis to obtain spectrum embeddings and then train a
gradient boosted decision tree classifier directly on those
embeddings (“binned embedding”). Second, we train a
transformer spectrum encoder, which has the same architec-
ture as Casanovo, along with a dense classifier head from
scratch to learn the downstream tasks end-to-end (“end-to-
end transformer”).

4.1. Spectrum quality prediction

The first downstream task we consider is spectrum quality
prediction. For this task, the goal is to predict whether
a given observed MS/MS spectrum will be successfully
annotated by database search. To create a labeled dataset
for this task, we run databsase search on 20 high-resolution
human mass spectrometry runs from MassIVE. Spectra that
are matched to a peptide under 1% false discovery rate
(FDR) are labeled as high quality, whereas spectra that
failed to be matched are annotated as low quality for the
binary classification task.

Applying Casanovo Foundation to this task, we achieve
an AUROC of 0.820, outperforming our task-specific end-
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Figure 1. Downstream tasks. ROC curves and the area under the curve (AUC) reported for Casanovo foundation and baseline methods
on the tasks of (A) spectrum quality prediction, (B) chimericity prediction, and (C) phosphorylation prediction.

to-end transformer and the binned embedding baselines
(AUROC of 0.719 and 0.723, respectively) (Figure 1A). This
result suggests that the pre-trained spectrum representations
from Casanovo capture properties that are hard to learn from
the quality prediction task alone. This is not too surprising,
given that the de novo sequencing pre-training task is both
an inherently richer task and took advantage of more data.

4.2. Spectrum chimericity prediction

Tandem mass spectrometry experiments are designed to
attempt to isolate individual peptide species for fragmenta-
tion. Nonetheless, in many cases, two peptides with similar
hydrophobicities and m/z values end up being fragmented
simultaneously. The result is an MS/MS spectrum that
contains peaks corresponding to both peptides. Accord-
ingly, our second downstream task involves detecting when
more than one peptide species is responsible for gener-
ating a given MS/MS spectrum, i.e., predicting whether
it is chimeric or not. Many existing methods generalize
the database search procedure to allow chimeric matches
[42, 11]; however, prediction of chimeric spectra has not
previously been solved using machine learning methods.
Such a predictor would be useful in deciding which spectra
to provide as input to one of the tools above or in adjusting
the settings of an instrument to avoid unwanted chimeras.

To train a chimericity predictor, we use spectra from human,
mouse, and yeast samples for training, validation, and test,
respectively. Database search is performed using the wide-
window setting in FragPipe [23], which allows spectra to
be assigned multiple peptides. For the binary classification
task, spectra assigned more than one peptide are labeled
chimeric and spectra annotated with a single peptide are
labeled non-chimeric. Comparing Casanovo Foundation to
the baseline methods, we again see that it achieves improved
performance (AUROC 0.780) compared to the two baselines
(AUROC of 0.684 and 0.711) (Figure 1B).

4.3. Post-translational modification detection

The final type of downstream task we consider is the detec-
tion of spectra generated by peptides containing PTMs. A
PTM is a molecular group that attaches to the side-chain of
one of the amino acids in a peptide. Successfully identifying
peptides carrying a PTM requires specific considerations in
both how the mass spectrometry experiment is conducted
and how the resulting data is analyzed. Thus, a model capa-
ble of identifying which PTMs are associated with a given
MS/MS spectrum would be valuable in guiding both data
collection and analysis. In fact, simple methods for solving
this task are regularly employed in practice to improve the
sensitivity and quantitative accuracy of experiments target-
ing peptides carrying a specific PTM [33, 18]. Here, we
train classifiers to recognize two common types of PTMs.

Phosphorylation detection We first consider the detec-
tion of spectra from phosphorylated peptides. Protein phos-
phorylation is arguably one of the most important and well
studied PTMs, and is responsible for driving key physiolog-
ical activities such as energy metabolism, cell proliferation
and growth, apoptosis, and signal transduction [3]. We
frame phosphorylation prediction as a binary classification
task, predicting whether or not a given spectrum derives
from a phosphorylated peptide.

To train a classifier, we use 19.2 million labeled spectra from
the human phosphoproteome dataset [22] which were used
to train AHLF [2], a state-of-the-art phosphorylation predic-
tor. Comparing the ROC curves for Casanovo Foundation
(AUROC 0.948) to our baselines for this task, we observe
that it performs better than the binned spectrum baseline
(AUROC 0.861). Additionally, it outperforms the reported
performances of AHLF (AUROC 0.921) and PhoStar (AU-
ROC 0.917) on the dataset as a whole [2] and when broken
down by cell type (Supplementary Figure S1). However, it
performs worse than the end-to-end transformer model (AU-
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Figure 2. Learning Curve. Learning curve showing the perfor-
mance of Casanovo Foundation and baselines on the phosphoryla-
tion prediction task when trained on datasets of varying size.

ROC 0.965) (Figure 1C). This result is not too surprising,
because foundation modeling is not expected to provide a
major advantage on tasks with very large amounts of high-
quality labeled data available for training.

For PTMs other than phosphorylation, such a large training
set is unavailable and foundation modeling approach may
prove more valuable. Accordingly, to investigate the rela-
tionship between the number of training samples and the
performance of each model, we create a series of 10 nested
subsets of the phosphoproteomics training data ranging in
size from 7,700 to 7.7 million training spectra. We find that
for datasets with fewer than ∼1 million spectra, the relative
performance of our Casanovo Foundation model and the
end-to-end transformer baseline cross over (Figure 2). The
difference in performance grows as the size of the training
set decreases. Strikingly, Casanovo Foundation achieves an
AUROC of 0.881 when trained on a dataset of just 7,615
spectra, compared to 0.635 for the end-to-end transformer.

Glycosylation determination. To further explore the task
of PTM prediction, we turn to another important modifica-
tion for which training data is less readily available. Protein
glycosylation is a complex PTM where various combina-
tions of mono- and oligosaccharides are attached to specific
residues. Here, we consider the task of predicting the gly-
cosylation class of a peptide from its spectrum. The two
most common classes of glycosylation are N-glycosylation,
where glycans are attached to asparagine residues, and O-
glycosylation, where glycans are attached to serine or thre-
onine residues [13, 31, 17]. Recognizing whether a given
spectrum represents a glycosylated peptide is straightfor-
ward due to the presence of characteristic oxonium ions
[39, 29, 32, 43]. However, distinguishing N-glycosylation
from O-glycosylation is more difficult. Nevertheless, ef-
fectively classifying N- vs O-glycopeptides during data ac-
quisition is critical for the sensitivity and throughput of
glycoproteomics experiments (Supplementary Note S3.5).

To train a model to distinguish N- versus O-glycsolyation,
we use a publicly available dataset of the mouse brain gly-
coproteome [24]. This dataset contains 252,970 total gly-
copeptide identifications, of which 25,757 (10.2%) are O-
glycosylated. In addition to our two standard baselines, for
this task we also consider two domain-specific baselines.
The first looks at the ratio in intensity between the oxonium
ion at 138 m/z to that at 144 m/z. This ratio between the
abundances of expected product ions from N- and O-glycans
is currently used in practice for real-time prediction in gly-
coproteomics experiments [33]. The second baseline is a
slightly more sophisticated version of the prior approach,
which trains an XGBoost classifier on the abundance of 54
oxonium ions, extracted by GlyCounter [16], that are known
to be characteristic of glycosylation status.

Given the significant class imbalance in the data, we eval-
uate the performance of each method based on the area
under the precision-recall curve (AUPR). We find that the
domain-specific baselines are already reasonably good, with
an AUPR of 0.753 for the 138/144 ratio and 0.860 for
GlyCounter+XGBoost. The binned embedding baseline
and end-to-end transformer baselines are not much better,
achieving AUPRs of 0.811 and 0.867, respectively. How-
ever, we again find that Casanovo Foundation offers the best
results, achieving an AUPR of 0.914 (Figure 3).
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Figure 3. Glyco precision-recall curve. Precision-recall curve for
each model on the glycosylation status prediction task.

5. Conclusion and future work
In this work, we demonstrate that the spectrum encoder
learned by a model trained on the de novo sequencing task is
generally applicable as a foundation model for tandem mass
spectrometry data. Small models trained on frozen spectrum
embeddings give good performance across a wide range of
downstream tasks. These results demonstrate the utility of
foundation models for mass spectrometry proteomics as a
flexible starting point for solving novel tasks without the
need for massive task-specific labeled datasets.

One promising avenue for future research is to replace or
augment the de novo pre-training with an unsupervised pre-
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training task, as has been done in metabolomics [4, 14, 7].
Although this will not dramatically increase the training
dataset size, it may lead to richer and more generalizable
spectrum representations. Additionally, such an approach
would allow the inclusion of more diverse spectra, including
those not readily annotatable by database search.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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S1. Supplementary Tables

Table S1. Phosphorylation task performance. Comparison of AHLF, the end-to-end transformer baseline, Casanovo Foundation, and
multi-task trained Casanovo Foundation across phosphorylation detection datasets. The 25 datasets listed correspond to the holdout split a
described in [2]. The first two columns indicate the number of non-phosphorylated versus phosphorylated spectra in each dataset. The
reported performance metrics are F1 score and AUROC. The best performance on each metric in each row is indicated in bold. AHLF
results are directly taken from the paper and thus are only available to two significant figures as originally reported.

Dataset Number
non-phospho

Number
phospho

AHLF End-to-end
Transformer

Casanovo
Foundation

F1 AUROC F1 AUROC F1 AUROC
OVAS 90936 37720 0.92 0.99 0.878 0.983 0.887 0.982

TOV-21-Primary 62350 26978 0.92 0.99 0.872 0.981 0.884 0.982
ES2-Primary 16297 6667 0.91 0.99 0.818 0.981 0.834 0.979

Daudi 150915 210916 0.90 0.96 0.953 0.986 0.924 0.980
U2OS 92329 205353 0.90 0.95 0.913 0.938 0.909 0.964
HaCaT 19216 113775 0.95 0.93 0.939 0.950 0.964 0.978
HT-29 1625 27531 0.97 0.92 0.990 0.998 0.973 0.988
HeLa 1469194 2949614 0.89 0.92 0.923 0.953 0.917 0.955

HEPG2 426 45416 0.98 0.92 0.989 0.998 0.971 0.983
A549 4068 172792 0.92 0.91 0.977 0.988 0.950 0.960
Colon 8359 28798 0.90 0.90 0.938 0.965 0.904 0.925

Primary-Gastro 22026 219767 0.94 0.88 0.931 0.929 0.910 0.929
LNCaP 53851 5200 0.45 0.87 0.692 0.987 0.346 0.877

RPMI-8226 1184 413 0.65 0.87 0.992 0.999 0.727 0.938
HEK293 322811 332690 0.73 0.86 0.910 0.966 0.760 0.837

Primary-Prostate 9223 100617 0.89 0.86 0.954 0.982 0.894 0.919
Primary-AML 494184 5893 0.29 0.85 0.755 0.988 0.583 0.945

Kasumi-1 2294 29470 0.88 0.85 0.995 0.998 0.902 0.844
HPAC 594 807 0.56 0.78 0.962 0.985 0.733 0.820

SU.86.86 909 984 0.53 0.77 0.967 0.996 0.664 0.782
CFPAC-1 999 780 0.52 0.76 0.714 0.897 0.600 0.803

PANC-05-04 1079 1426 0.55 0.74 0.959 0.993 0.685 0.78
PANC-02-03 273 815 0.56 0.72 0.671 0.896 0.731 0.819

OVSAYO 11515 28 0.02 0.69 0.021 0.825 0.026 0.868
HDMVEC 4320 2961 0.40 0.60 0.873 0.970 0.618 0.783
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S2. Supplementary Figures

(A) (B) (C)

Figure S1. Learned spectrum embeddings. PCA plots visualizing the learned embeddings from the pre-trained encoder for test set
spectra for (A) the quality prediction task, (B) the chimericity prediction task and (C) the phosphorylation prediction task.
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Figure S2. Comparison of binned embedding performance at different binning resolutions on the chimericity prediction. ROC
curves and the area under the curve (AUC) are reported as a function of the number of bins used to represent peak intensities for the
chimericity prediction validation set.
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S3. Additional Explanations and Experimental Details
S3.1. Quality task

To create a labeled dataset for this task, we randomly sample 20 human Orbitrap HCD mass spectrometry runs
from the MassIVE-KB data. The experiments MSV000080254, MSV000080255, MSV000081563, MSV000081607,
MSV000081649, MSV000083508, MSV000083961, MSV000083966, MSV000083967 were used in the train set,
MSV000083978, MSV000083983, MSV000086369, MSV000086385, MSV000086389 in the validation set, and
MSV000086439, MSV000086448, MSV000086491, MSV000088236, MSV000088405 in the test set. We perform
a database search for each run against the reference human proteome (UniProt ID UP000005640) using Sage (version
0.14.7) with the default workflow. Spectra that are matched to a peptide under 1% false discovery rate (FDR) are labeled as
high quality, whereas spectra that failed to be matched are annotated as low quality.

S3.2. Chimericity task

The samples were prepared using the method described in [37] and analyzed using an Orbitrap Fusion Lumos mass
spectrometer. Raw MS/MS data were converted to mzML files using MSConvert with peak picking enabled in ProteoWizard
(version 3.0.24031) [8]. The human, mouse, and yeast MS/MS data were then searched against a human (20,597 proteins,
02/2024), mouse (21,701 proteins, 02/2024), and yeast (6060 proteins, 02/2024) proteome database, respectively, using
FragPipe (version 22.0) with the default workflow and “DDA+” mode (i.e., wide window database search). Database search
results were filtered at a 1% PSM-level FDR. Spectra were assigned as chimeric if involved in more than one high-confidence
PSM.

Unfortunately, the model weights for SPEQ [12], the only other deep learning method for this task, are not published so we
are unable to benchmark against this method. However, our end-to-end transformer serves as a methodologically similar
baseline.

S3.3. Phosphorylation task

The raw data and database search results from the human phosphoproteome dataset were downloaded from ProteomeXchange
PXD012174 [22], which contains data from 101 human cell and tissue types analyzed using phospho-enrichment assays.
Data was prepared following the pre-processing scripts used by AHLF [2], which were shared by the authors. These filtered
spectra at a 1% FDR at the PSM, protein, and phosphosite localization level. Additionally, PSMs were filtered based on a
minimum score for modified peptides of 40, and a minimum delta score for modified peptides of 6. Spectra assigned only to
phosporylated peptides were assigned a positive label and spectra assigned only to unphosphorylated peptides were assigned
a negative label. Remaining spectra were discarded. Finally, the data was split into train/validation/test sets at the cell/tissue
type level following the same splits used by Altenberg et al [2].

S3.4. Glycosylation task

The raw data from the 48 mouse brain HCD runs generated by Potel et al. was downloaded from ProteomeXchange
PXD052447 [24], along with the FragPipe [23] N- and O-glycopeptide search results. Raw MS/MS data were converted to
mzML files using MSConvert with peak picking enabled in ProteoWizard (version 3.0.24031) [8]. The data were randomly
split at the run level into train/validation/test sets containing 36/6/6 runs each. N-glyco PSMs in the MSFragger search results
were filtered for assigned modifications at asparagine residues; O-glyco PSMs were filtered for assigned modifications at
either serine or threonine residues. From there, results were filtered based on a hyperscore greater than 16 and a glycan
q-value less than 0.01 to obtain a 1% FDR for glycan assignment. For confident classification labels, cases of co-occupancy
of O- and N-glycosites on the same PSM were filtered out. Spectra identified as containing an O-glycopeptide were labeled
as positive examples, while spectra containing an N-glycopeptide were assigned negative labels. Spectra not identified with
a glycopeptide were discarded. GlyCounter [16] was run on each of these spectra, yielding a list of 54 oxonium ions, which
were in turn used to calculate the m/z 138/144 ratio.

S3.5. N- vs O-glycosylation

In some cases, distinguishing N-glycosylation from O-glycosylation is straightforward using ratios of ions that indicate the
presence of N-acetylglycosamine (GlcNAc) or N-acetylgalactoseamine (GalNAc). This classification can be simplified to
a comparison of m/z 138 to m/z 144, where a 1:1 ratio indicates the presence of GalNAc, but not GlcNAc, in a glycan
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composition. This ratio is useful for classifying N-glycopeptides, which have GlcNAc but not GalNAc residues, relative
to simple core 1 O-glycopeptides, which only contain GalNAc. This task becomes more challenging when considering
elongated core-1 O-glycans and core 2-8 O-glycans that contain both GalNAc and GlcNac moieties. For example, core 2
glycans are relatively common in mammalian glycoproteomic datasets, and the GlcNAc residues in these O-glycopeptides
mean they produce oxonium ion patterns that look more similar to N-glycopeptides than core 1 O-glycopeptides that lack
GlcNAc.

Tryptic N-glycopeptides typically only have a single potential glycosite, meaning that higher-energy collisional dissociation
(HCD) is sufficient for both identifying and localizing N-glycosylation [28]. On the other hand, O-glycopeptide sequences
can often contain multiple potential O-glycosites per peptide, and thus require the collection of alternative dissociation
methods, e.g., electron-transfer dissociation (ETD), to generate peptide fragment ions that retain glycan modifications that
facilitate localization. Acquiring ETD spectra incurs a significant overhead in instrument time. Thus, by predicting whether
a given HCD spectrum contains an N- versus an O-glycopeptide, we can intelligently guide the data acquisition to spend
instrument time acquiring ETD spectra only for the precursor ions for which it is necessary [33].

S4. Training Settings and Hyper-parameters
S4.1. Supervised pre-training

The weights for the pre-trained Casanovo model checkpoint 4.0.0 (Apache 2.0 license) were downloaded from GitHub.
This model was trained on the MassIVE-KB dataset using the supervised de novo sequencing task as described in Yilmaz
et al. [41]. Only the weights for the spectrum encoder from the encoder-decoder Casanovo model were used. This gives
an encoder-only model with nine transformer encoder block layers, an embedding size of 512, and eight attention heads.
Overall spectrum representations were obtained from this encoder by taking the mean of the individual peak embeddings.

S4.2. Task-specific training

Binned baseline. To pre-process the input for our binned baseline models, we discretize the m/z axis into equal-width bins
between 150 and 2000 m/z. For the binned embeddings, we experimented with different binning resolutions to obtain the
spectrum embeddings and settled on using 100-bin, i.e. 100-dimensional, embeddings (Supplementary Figure S2). Peaks
outside the range 140–2000 m/z are filtered out, and the remaining peak intensities are binned at 18.6 m/z resolution. We then
train a gradient-boosted decision tree classifier on these representations [9] using the validation set for early stopping based
on validation AUROC. The hyperparameter early stopping rounds was set to 32, and n iters was chosen to be sufficiently
large that training is always terminated by early stopping. Otherwise, default parameters were used.

Glycounter baseline. Similar to the binned baseline, the GlyCounter baseline for the glycosylation status prediction
task represents each spectrum as a 54-dimensional vector of intensities for a pre-defined set of oxonium ions known to be
produced by glycan fragmentation. An XGBoost classifier is likewise trained on these representations.

End-to-end transformer. For the end-to-end transformer pipeline, we train the transformer spectrum encoder and MLP
classifier head end-to-end on each task. The transformer encoder is implemented using depthcharge components to have the
same architecture as the Casanovo encoder, except for the number of transformer layers, which was optimized based on
validation set performance from the interval [1-9]. Gradient updates during were performed using the Adam optimizer [15]
with a learning rate of 1e-4 and a weight decay of 1e-6. Training is terminated with early stopping based on AUROC on the
validation set with a patience of to 5 epochs.

Casanovo Foundation. To apply Casanovo Foundation to a downstream task, we first use the pretrained encoder from
Casanovo version 4.0.0 (Apache License 2.0) to obtain 512-dimensional spectrum embeddings for each spectrum. We then
train a small two layer dense network on these embeddings. The dense model has one 512-dimensional hidden layer with
ReLU activation. The model is trained with a learning rate of 1e-3, and is also terminated via early stopping with a patience
of 5 epochs.

S4.3. Timing and compute resources

Pre-training Casanovo on MassIVE-KB took 8 days on 4 RTX 2080 Ti GPUs. Training models for each of the downstream
tasks was done using 2 L40S 48GB GPUs and took ∼8 days in total. The majority of this time was spent training the
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end-to-end transformer model on the phosphorylation task. All remaining experiments were done on a CPU workstation
with 16x Intel Xeon CPU E5-2680 @ 2.70GHz and 64GB of RAM in relatively negligible time.

This dependence on large compute resources, GPUs in particular, is a notable current limitation of Casanovo Foundation.
In practice, many mass spectrometry proteomics labs do not have access to or familiarity with using GPUs. However, as
deep learning is becoming more widespread in the field, labs are beginning to invest more in local and cloud-based compute
resources. Additionally, future engineering efforts to accelerate the inference time of Casanovo Foundation can further
bridge this gap.
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