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Abstract

Autonomy is a hallmark of animal intelligence, enabling adaptive and intelligent
behavior in complex environments without relying on external reward or task
structure. Existing reinforcement learning approaches to exploration in reward-
free environments, including a class of methods known as model-based intrinsic
motivation, exhibit inconsistent exploration patterns and do not converge to an
exploratory policy, thus failing to capture robust autonomous behaviors observed
in animals. Moreover, systems neuroscience has largely overlooked the neural
basis of autonomy, focusing instead on experimental paradigms where animals are
motivated by external reward rather than engaging in ethological, naturalistic and
task-independent behavior. To bridge these gaps, we introduce a novel model-based
intrinsic drive explicitly designed after the principles of autonomous exploration in
animals. Our method (3M-Progress) achieves animal-like exploration by tracking
divergence between an online world model and a fixed prior learned from an
ecological niche. To the best of our knowledge, we introduce the first autonomous
embodied agent that predicts brain data entirely from self-supervised optimization
of an intrinsic goal—without any behavioral or neural training data—demonstrating
that 3M-Progress agents capture the explainable variance in behavioral patterns
and whole-brain neural-glial dynamics recorded from autonomously behaving
larval zebrafish, thereby providing the first goal-driven, population-level model
of neural-glial computation. Our findings establish a computational framework
connecting model-based intrinsic motivation to naturalistic behavior, providing a
foundation for building artificial agents with animal-like autonomy.

1 Introduction

Animals exhibit remarkable autonomy, navigating complex environments through self-directed, inter-
nally driven behaviors rather than solely responding to external rewards or immediate physiological
needs. Unlike typical artificial agents designed to optimize explicit, predefined task objectives in
well-defined problem settings, animals intrinsically explore and adapt in open-ended, naturalistic
environments where goals are neither clear nor stable. This capacity for autonomous behavior allows
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Figure 1: Simulation of the zebrafish agent in a physics-based virtual environment. A) The 6-link
embodiment geometry [1] in a environment with dynamic fluid forces. B) The agent controls the
torque exerted by motors at each joint (5 DoF) to swim and navigate its environment. C) A custom
cosmetic skin to mimic the appearance of larval zebrafish. D) A virtual environment matching the
experimental parameters of the open loop protocol Mu et al. [2]. The root joint located at the head is
fixed during training.

organisms, including humans, to flexibly engage in abstract thinking, exploratory learning, and
innovative problem-solving. Central to this autonomy is the ability to generate intrinsic goals, seek
novel experiences, and continuously refine internal models of the world that inform future actions.
Understanding the interplay between extrinsic and intrinsic motivations remains a fundamental
challenge in both systems neuroscience and artificial intelligence, particularly for building robust
agents capable of lifelong autonomy.

However, existing methods in reinforcement learning for intrinsic motivation using world-models
—such as curiosity-driven exploration and variants [3–6]—exhibit inconsistent behavioral patterns
due to difficulties distinguishing between controllable and uncontrollable stimuli, coping with non-
stationary environments, and avoiding the “noisy TV” problem [7]. For example, agents driven by
reinforcing prediction-error alone gets locked into pursuing inherently unpredictable or irrelevant
aspects of the environment, hindering their ability to develop robust exploratory behaviors [3].
Moreover, existing methods typically fail to produce structured and stable behavioral transitions that
characterize genuine autonomous behaviors observed in animals and children [8].

At the same time, systems neuroscience has historically overlooked the cellular basis of autonomy,
favoring experimental paradigms centered on explicit external rewards to motivate task-dependent
behaviors rather than free, unconstrained exploration. As a result, the cellular mechanisms underlying
naturalistic autonomy—particularly those involving whole-brain interactions—remain poorly under-
stood. Growing experimental, computational, and theoretical evidence suggests that non-neuronal
cells, especially astrocytes, play a critical role in the generation of intelligent behavior [2, 9–14].
Owing to their close association with neurons, distinctive connectivity (with a single astrocyte capable
of interfacing with up to a million nearby synapses) and ability to perform integrative computations
using a hierarchy of timescales, astrocytes are well-positioned to support adaptive, naturalistic,
goal-directed behavior [15–20].

A Dataset for Animal Autonomy To investigate these questions, we study autonomy in larval
zebrafish—a uniquely valuable animal model due to their optical transparency, which affords whole-
brain calcium imaging via light-sheet microscopy [21]. Given that the cellular basis of autonomous
behavior remains largely unknown, whole-brain imaging allows us to search across the entire recorded
population of over 250,000 cells (roughly 125K neurons and 125K astrocytes) to measure how our
proposed model aligns with brain activity [2] 3. We examine a particular cognitive behavior known as
futility-induced passivity, an experimentally induced state of "giving up" observed across the animal
spectrum [2, 22–24]. In zebrafish, futility-induced passivity occurs when their swimming effort in a
virtual environment fails to simulate optic flow, a key visual feedback signal associated with motor-
action under ethological circumstances. After some time in the passive state, zebrafish reattempt to
swim–an exploratory behavior to assess whether the open-loop dynamics of the environment have
changed. This cycle between active and passive states continues over the course of a trial.

Mu et al. [2] offers rigorous experimental evidence suggesting this transition to passivity is driven
neuron-glial interactions in the lateral medulla oblongata (L-MO) that detect and accumulate sensori-
motor feedback error. Noradrenergic (NE) neurons signal swim failures which slowly activate radial

3The dataset we use is open-source and freely available here.
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astrocyte with extending processes to the NE cluster of L-MO. At a critical level of intracellular cal-
cium, astrocyte processes downstream of L-MO activate GABAergic neurons that suppress premotor
neurons relevant for swimming. With extensive manipulation experiments, Mu et al. [2] demonstrate
that futility-induced passivity is not due to fatigue, struggle, or positional homeostasis. Specifically,
when visual feedback from closed-loop trials was replayed during the open-loop condition, zebrafish
still transitioned to a passive state. This indicates the behavior is mediated by an internal model
that is used to detect active sensorimotor feedback error, providing strong evidence for model-based
intrinsic motivation.

Contributions In this work, we study neural-glial computations and their relationship to au-
tonomous animal behavior by training an embodied zebrafish agent with model-based intrinsic
motivation and studying its emergent behavior and internal representations. We introduce a novel
intrinsic reinforcement learning algorithm termed Model-Memory-Mismatch Progress (3M-Progress)
alongside a virtual environment that captures the fundamental physics of the zebrafish embodiment.
Our approach leverages an internal model that continually compares the agent’s online memory
formed by its current sensory experience against an ethologically relevant prior memory; intrinsic
reward then reinforces transitions between behaviors that maximize the divergence between memories
relative to its temporal history. 3M-Progress is uniquely capable of producing stable, ethologically-
relevant behavioral transitions among several state-of-the-art exploration algorithms in reinforcement
learning.

By training embodied agents with 3M-Progress, we successfully replicate both the robust behavioral
patterns and whole-brain neural-glial dynamics in autonomously-behaving zebrafish. Capturing
nearly all of the variance in neural and astrocytic activity, this marks the first predictive and normative
model of neural-glial computation. Our agent was not trained on any behavioral or neural data,
and thus represents the first autonomous embodied agent that predicts brain data completely from
optimizing a self-supervised, intrinsic goal. To summarize, our technical contributions are:

• 3M-Progress, a novel intrinsic reward that leverages an ecological dynamics prior to guide
exploration in new environments.

• Emergence of an autonomous behavior known as futility-induced passivity in 3M-Progress
agents, closely matching larval zebrafish behavior.

• Alignment between whole-brain calcium response and 3M-Progress agents, providing the
first goal-driven model of neural-glial computation.

• A general modeling perspective positioning intrinsic reinforcement learning as a computa-
tional framework for understanding autonomy in animals.

2 Related Work

Neural-Glial Models Although glial cells—especially astrocytes—are increasingly recognized
as crucial to adaptive brain function [2, 9, 17, 14, 19, 20, 11, 25, 26], computational models of
neural-glial interactions remain underdeveloped [27]. Existing models of neuron-astrocyte dynamics
typically fall into two categories: phenomenological models that reproduce specific experimental
findings like calcium oscillations or epileptic activity [28–31], and simplified, “bottom-up” mathemat-
ical models that explore theoretical principles based on astrocytes’ unique morphology and anatomy
[32–35, 12, 13]. While important, these models are not directly applicable to our setting because they
are (a) not yet directly trained on ethological tasks, embodied, or quantitatively validated against
real brain data, and (b) typically focused on a single astrocyte rather than a population of astrocytes.
In contrast, we adopt a “top-down” approach: we train a general-purpose recurrent architecture to
control an embodied agent to perform ethologically-relevant behavior and find that this imposes
strong constraints on the learned representations, allowing us to identify units whose activity patterns
closely match those observed in neurons and astrocytes of larval zebrafish.

Curiosity-driven Exploration Exploration using self-supervised world-models has demonstrated
promising success in several standard reinforcement learning domains, and even more recently in
language modeling [36]. Methods like learning progress [6] and Random Network Distillation
(RND) [4] were primarily evaluated using either handcrafted object-centric or state observations
with low-dimensionality embodiments, limiting the applicability to pixel-based environments or
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continuous control. The Intrinsic Curiosity Module (ICM) [3] uses a pixel-encoder trained with
an inverse-dynamics loss to predict features rather than raw states, but was evaluated on discrete
pixel-based environments like Doom and Atari. While some recent works, such as LEXA [37]
or Plan2Explore [38], extend intrinsic curiosity (specifically, Disagreement [5]) to continuous
control from visual inputs, success of the exploration policy is defined relative to downstream task
generalization. Since these methods do not independently evaluate the quality of the exploration
policy, it remains unclear whether these algorithms are powerful enough to learn complex behaviors.
In contrast, we investigate completely open-ended autonomous behavior in reward-free, continuous
MDPs with high-dimensional observations, turning the focus on the ability of the exploration
algorithm to develop ethological, interpretable behaviors independent of any downstream task.

Embodied AI in Neuroscience Several works have leveraged embodied AI to bridge computational
models with neuroscience, including virtual animal models such as the virtual rodent [39, 40], which
facilitates grounded studies of motor control by replicating rodent motor behaviors across various
tasks using imitation learning; the virtual fruit fly, a biomechanically detailed model matching both
the visual system and basic flight capacity used to study a diverse range of behaviors driven by
imitation learning [41–43]; the OpenWorm project [44], a biophysically accurate simulation of the
C-elegan nematode, but has yet to be combined with deep learning and task-optimization; and Zador
et al.’s Embodied Turing Test position paper [45], which emphasizes developing AI models whose
sensorimotor capabilities rival those of their biological counterparts. There are several existing
works that apply task-optimization to control details musculoskeletal models [46–48], use robots to
implement and validate neural circuits in zebrafish [49], and model animal-like social behavior or
object perception using digital twins [50, 51].

Our work extends these directions by providing the first predictive and normative computational
formalization of neural-glial interactions in embodied agents, thereby validating a circuit model
recently proposed by Mu et al. [2]. Most importantly, our model is trained entirely via intrinsically-
motivated exploration, unlike previous approaches that constrain behavior and their resulting neural
representations by supervised learning [39–41]. To the best of our knowledge, this marks the first
completely autonomous, embodied agent model of behavioral and brain data in neuroscience, pointing
towards a promising computational framework for understanding naturalistic, task-independent
behavior in biological systems using intrinsic reinforcement learning.

3 Methods

Virtual Zebrafish Environment Animals are physically coupled to the environment through their
embodiment; this coupling is often referred to as the sensory-motor or perception-action feedback
loop. Physical embodiment imposes strong constraints on both the sensory stream from which
an agent learns meaningful representations of the world and the actuation system by which the
agent manifests behavior. Following this top-down view of biological systems, we construct an
embodied agent and custom virtual environment in the MuJoCo physics engine [52] specifically
designed after the ethology of the zebrafish (Figure 1). Leveraging the procedurally generated n-link
swimmer and built-in inertial fluid model from the Deepmind Control Suite (dm-control) [1], we
construct an ethological environment (Figure 1A-C) in which the agent can freely behave in the
presence of both passive and active fluid currents, similar to the dynamic water environments to
which zebrafish are native. To evaluate our agent in the futility-induced passivity task, we construct a
second environment closely matching the open-loop experimental protocol in Mu et al. [2] (Figure
1D). In this environment, agents passively experience a high-contrast grating moving away from the
egocentric point-of-view, which simulates backward motion. In the closed-loop condition, the agent
is head-free and can learn a positional-homeostasis policy to counteract the perceived backward flow.
In the open-loop condition, the agent is head-fixed and its swim commands produce no movement.
The passive speed of the moving grating, its colors, and sizing relative to the zebrafish body were
determined from experimental parameters in Mu et al. [2]. These environments provide sensory
and actuator configurations that closely match the basic structure of free swimming as well as the
head-fixed protocol, facilitating a meaningful comparison between artificial and biological agents.

Agent Design The zebrafish agent is equipped with a recurrent sensory-cognitive architecture
to support perception and action in continuous, high-dimensional environments. Because the au-
tonomous zebrafish behavior recorded by Mu et al. [2] is primarily driven by visual input, we restrict
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Figure 2: Agent architecture and 3M-Progress. A) Egocentric visual input (It) is encoded via a
small residual network ϕI . Proprioceptive state observations (Jt) are encoded via a small multi-
layer perceptron ϕJ with shortcut paths to both the core and policy module. Sensory features are
passed into recurrent LSTM core (hc

t ) and policy (hπ
t ) modules that learn a state value function and

stochastic policy, respectively. The intrinsic drive module consists of a small multi-layer perceptron
that parameterizes a forward dynamics model on sensory features observed from an environment
with dynamics Tworld. B) 3M-Progress uses two memories created from environments with differing
transition dynamics. Divergence between the ethological prior ωθ and the current world-model ωθ′

defines 3M, which is then is used as input to leaky integrator ϵ̂ to generate intrinsic reward rit.

the sensory stream to a vision encoder operating on images with similar resolution to the visual acuity
of zebrafish [53]. Sensory features are used by three distinct cognitive networks with modularized
objectives. The core and policy modules are implemented as an actor-critic architecture using Long
Short-term Memory (LSTM) networks [54] followed by feedforward decoders trained end-to-end
with Proximal Policy Optimization (PPO) to output torques that are used as the control input to the
agent’s motors [55]. Specific agent implementation details can be found in Appendix E. Although
PPO is a model-free reinforcement learning algorithm, the intrinsic drive module (IDM) learns a
world model through online experience that approximates the world state-action transition dynamics
in sensory feature-space (as described below). However, this internal model functions only to generate
intrinsic reward and is not used for planning or model-based control.

Model-based Intrinsic Reinforcement Learning In classical reinforcement learning, policies
are obtained by mapping a desired behavior to maximizing a reward function [56]. This function
is one component of the Markov Decision Process (MDP) that formally specifies a task M as
a tuple (S,A, T, p0, r), where S is the space of environment states, A is the space of actions,
T : S ×A → P(S) is the transition dynamics (where P(S) is the set of probability densities over
S), p0 is the distribution over initial states, and r is the reward function. Importantly, when reward
is defined as part of the task MDP, it is extrinsic and provided from the environment. However,
learning complex behaviors using extrinsic reward can fail for many real-world situations where r is
extremely sparse (winning a long-horizon game like Go) or intractable to begin with (intellectual
pursuits such as knowledge acquisition) without a powerful exploration mechanism to guide behavior.
Model-based intrinsic motivation is a class of such mechanisms that leverage predictive world models
to convey exploration-relevant information using prediction-error to the form an intrinsic reward rit.
In the absence of any extrinsic reward ret , policy learning with intrinsic motivation is completely
self-supervised. In this work, we consider intrinsic motivation driven by forward dynamics world
models ω. Let θ parameterize a neural network and ωθ : S ×A → P(S). For simplicity, we assume
a fixed variance Gaussian density ωθ = N (ϕ(st+1) | ϕ(st),at;µθ, σI). Here, ϕ(·) denotes the
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Figure 3: Model-behavioral alignment. A) Swim power traces of artificial agents with different intrin-
sic drives throughout training. B) Pearson’s r correlation between agent swim power (joint torques)
and zebrafish swim power (motor neuron activity) for active and passive behavioral transitions. C)
(Top) Timecourse of active-passive transitions in zebrafish compared against stationary behavior from
progress-driven agents for a single rollout. (Bottom) Average number of behavioral transitions per
rollout across training for different intrinsic drives.

concatenated sensory embeddings from ϕI(·) and ϕJ(·). This class of methods is appealing from two
complimentary perspectives. On one hand, it is computationally straightforward; learning an internal
model of an MDP’s transition dynamics is a natural way to measure novelty of the states visited
under the agent’s policy—states with a high prediction error under the internal model indicate regions
of the state-action space that are poorly understood or rarely visited. On the other hand, it is well
motivated by experimental evidence in both neuroscience and psychology; numerous empirical studies
suggest humans and animals depend on predictive models of the world for decision-making [57–61].
Thus, world models are well-positioned as a primary substrate for intrinsic motivation; however, we
emphasize that a world model is best viewed as only a substrate, as exactly how it should be used for
intrinsic motivation remains unclear.

Model-Brain and Inter-Animal Alignment To rigorously evaluate our embodied agents against
whole-brain data collected by Mu et al. [2], neural-glial recordings from zebrafish were first aligned
to periods specifically capturing behavioral state transitions between active swimming and futility-
induced passivity. Correspondingly, latent states and predicted neural-glial responses from our
agents were aligned to these same experimentally defined epochs using event-triggered averaging
around transition events. To quantify model-brain alignment, we employed a stringent “One-to-One”
mapping, in which each neural or astrocytic unit from the zebrafish brain was matched directly to
the single most correlated artificial unit from the virtual embodied agent. Although this mapping is
typically too restrictive for capturing inter-animal alignment in heterogeneous neural populations
for brain-region-specific (e.g. not whole brain) data in other animals (as shown in prior sensory [62]
and cognitive systems [63] where full linear regression is necessary), we found it was fully sufficient
here due to the exceptional whole-brain reliability of zebrafish neural-glial responses during futility-
induced passivity. Indeed, inter-animal alignment computed from pairwise correlations between
individual zebrafish was nearly 100%, establishing a robust empirical ceiling for evaluating model
performance.

Inter-animal alignment was computed as the correlation of neural-glial response patterns across
pairs of zebrafish within aligned epochs, thus formally defining the upper bound of predictivity
achievable by any candidate model (the mathematical details of the chosen metric can be found in
Appendix F). This approach ensures that successful computational models achieve neural predictivity
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indistinguishable from biological measurements, within the bounds set by natural biological variability.
Together, these procedures allowed us to precisely quantify model-brain alignment; achieving close
correspondence between artificial and biological responses under this strict One-to-One mapping
criterion provides strong evidence that our intrinsic motivation-driven embodied agents effectively
capture the detailed neural-glial dynamics underlying autonomous behavioral transitions in zebrafish.

Model-Behavioral Alignment To quantify similarity between biological zebrafish and artificial
agents, we use Pearson’s r as a metric between the respective swim power readouts for each system
surrounding state transitions. In zebrafish, swim power was calculated as the standard deviation over
a 10ms window of recorded tail motor nerve signals following Mu et al. [2]. We use the same passive
and active transitions windows identified by Mu et al. [2] to compute the inter-animal behavioral
alignment across 11 subjects by applying the metric to swim power after smoothing and normalization
over a 20 second window surrounding the transition time. For the artificial agents, we take the norm
of their joint torques as swim power and identify behavioral transitions as high-frequency changes in
swim power above a threshold of 1 Newton. This threshold was determined empirically by recording
joint activations during active and passive behaviors in the default swim task in the dm-control suite
6-link swimmer environment [1]. Model-behavioral consistency is then computed by applying the
metric between segmented zebrafish data and the agent’s swim power surrounding these transitions
over a 20-step window.

4 Animal-like Exploration from First Principles: Lessons from Zebrafish

Autonomy in animals enables intelligent and robust decision-making in complex environments,
even in the presence of high-entropy or unfamiliar dynamics such as noisy stimuli or laboratory
habitats. Reflecting on characteristics of autonomous exploration in zebrafish, we propose two simple
desiderata for intrinsic drives that capture animal-like autonomy:

1. Animals do not perseverate on unpredictable stimuli or pursue stimuli they cannot causally
interact with. Mu et al. [2] demonstrate that zebrafish transition to passive behavioral
states when motor commands elicit unpredictable sensory-feedback (unlearnable dynamics)
or when sensory-feedback is withheld altogether (uncontrollable dynamics). An intrinsic
objective for animal autonomy should avoid unpredictable or uncontrollable stimuli.

2. Animals exhibit consistent decision-making strategies across repeated encounters of the same
context. Zebrafish exhibit stable behavioral state-switching in the open-loop experimental
protocol across trials and subjects, ultimately converging on a single exploration policy [2].
An intrinsic objective for animal autonomy should converge to a stable behavioral policy.

Intrinsic objectives that rely on prediction-error alone [3, 4] reward stochastic environment dynamics
and incentivize learning transitions in which the agent has no causal control4. Learning progress
[6, 7, 64] and Disagreement [5] overcome this by leveraging temporal dynamics or statistics of a
world model ensemble, but together with ICM and RND, are formulated as functions of the world
model training loss and are thus non-stationary—learning on repeated behavioral strategies drive
the training loss towards zero, and so any single behavioral strategy is transient since it is not
consistently reinforced. Although these properties are suitable for exploration in some robotics
domains, particularly when the policy is supplemented with an extrinsic task reward [36–38, 3, 5],
they fail to capture the nature of autonomous exploration in animals.

3M-Progress In order to overcome these drawbacks, we introduce Model-Memory-Mismatch
Progress (3M-Progress), a novel intrinsic drive that incorporates these simple normative properties
of animal autonomy inspired by zebrafish. Curiosity, disagreement, and learning progress couple
intrinsic reward to a moving world model, yielding a non-stationary policy objective. The RL problem
becomes a two player minimax game, where the actor seeks states that increase prediction-error and
the learner reduces it, leading to a reward landscape that flattens and precludes a stationary optimal
policy5. Thus, each of the existing curiosity-driven exploration algorithms we consider fails to
converge to an exploratory policy. However, learning progress [6] is unique among these algorithms

4Although [3] proposed an inverse dynamics feature space to avoid representing uncontrollable stimuli, it’s
efficacy has not been demonstrated outside of simple pixel-based environments with discrete actions.

5See Appendix C.1 for mathematical details.
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Figure 4: Model-brain alignment averaged across active and passive transitions. A) Noise-corrected
Pearson’s r correlation between whole-brain neural and glial units and artificial units from trained
agents. B) Model scores on behavioral and whole-brain alignment.

in its ability to avoid perseveration on unpredictable and uncontrollable stimuli by leveraging the
temporal dynamics of prediction-error. This is achieved by maintaining two world models, an online
model and a long-term memory implemented as an exponential weight decay on the online model.
The slow timescale memory provides a moving baseline that, when compared with the online model,
creates an intrinsic reward that flattens as the temporal dynamics of the online model’s predictions
flatten—in other words, a computationally efficient and biologically plausible implementation of a
time-derivative.

To combine the adaptive behavior afforded by derivative-like operations with an intrinsic goal that
admits a stationary solution, we propose to decouple the two memories completely. We achieve
this by learning the long-term memory ωθ in a pretraining environment and deploying it as a fixed
prior while the online model ωθ′ is learned in a new environment with new transition dynamics. The
frozen “ethological memory” functions as a static memory primitive: comparing its predictions with
the online memory produces a residual that encodes an explicit bias toward transition dynamics that
match the pretraining environment, which can then be leveraged to partition the state-action space in
the new context into regions where memories systematically agree or disagree 6. This reflects the idea
that animals develop in an ecological niche with characteristic environment dynamics, distilled via
experience as an internal world model ωθ. In new environments with different transition dynamics,
such as the experimental protocol in Mu et al. [2], animals can use this prior to seek or avoid regions
that match their ecological niche as they learn new world model ωθ′ . To capture this, we define the
model-memory-mismatch (ϵt), exponential filter (ϵ̂t), and niche-aware intrinsic motivation rit as

ϵt := DKL [ωθ (ϕ(st+1) | ϕ(st),at) || ωθ′ (ϕ(st+1) | ϕ(st),at)] , (1)
ϵ̂t = (1− γ)ϵ̂t−1 + γϵt, (2)

rit = |ϵ̂t − ϵt|, (3)

where DKL denotes the Kullback-Leibler divergence and γ is the filter timescale. The non-negativity
of this divergence coarsely partitions the state-action space into niche-seeking (model-memory
agreement: ϵt ≈ 0) and niche-avoidance (model-memory disagreement: ϵt ≫ 0). We design
the intrinsic reward mechanistically after γ-Progress [6] to maintain a moving baseline, but filter
model-memory-mismatch rather than model parameters.

Due to the moving baseline, the reward does not perseverate on any single partition, either agreement
or disagreement. The symmetry enforced by the absolute value encourages periodic exploration
between partitions by reinforcing deviations from the moving baseline in either direction. Unlike
learning progress, this formulation does not saturate as learning unfolds since ϵt is computed using a
fixed memory. In fact, as the prediction error from ωθ′ stabilizes with more environment interactions,
the signal-to-noise ratio in ϵt only increases, resulting in more robust behavioral patterns. Note
that the absolute value is a specific choice of an activation function. The shape of this function
and the progress horizon γ determine the relative time spent in each partition. All experiments and

6See Appendix C.2 for mathematical details.
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baseline algorithms include an action penalty rat = −λ∥at∥22 to encourage exploration of passive
behavior. Figure 2B illustrates a specific example inspired by zebrafish, where ωθ is learned in an
ethological environment—the agent can freely behave and experiences passive fluid forces induced
by self-motion as it swims and and active fluid forces as it learns positional homeostasis by resisting
an opposing current. The agent is then put into an unethological experimental protocol where it
is head-fixed and its swim commands do not elicit sensory feedback. As the agent behaves in this
environment, it distills a new memory ωθ′ from experience.

3M-Progress as a Normative Model of Neural-Glial Computation Owing to the formulation of
3M-Progress, the state-value function must implement units in the core module that are functionally
equivalent to neurons in the Noradernergic cluster of the Medulla Oblongata (NE-MO) and radial
astrocytes identified by Mu et al. [2] (2A). 3M-Progress detects sensory-motor mismatch using a
prior memory as an expectation of how action is coupled to sensory-feedback under ethological
environment dynamics (2B). This is functionally equivalent to signaling failed swim-attempts by
NE-MO neurons in zebrafish. Similarly, the exponential filter is a discrete-time leaky integrator on
model-memory-mismatch (NE-MO input), which is functionally equivalent to radial astrocytes that
accumulate NE-MO signals during failed swim-attempts and decay during passivity (2C).

5 Experimental Results

3M-Progress Agents Replicate Behavioral Patterns Observed in Zebrafish We first as-
sessed the ability of intrinsic motivation methods to replicate detailed behavioral patterns
observed in biological zebrafish during autonomous exploration. Behavioral alignment
was quantified by comparing locomotor trajectories and state transitions (active to pas-
sive and back) between artificial agents and zebrafish across multiple trials and subjects.
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Figure 5: Latent dynamics of 3M-Progress agent’s inter-
nal activations compared with normalized whole-brain
neural-glial response in zebrafish. A) Principal com-
ponents during passive and active transitions in the
agent. B) Normalized average whole-brain neural-glial
response during passive and active transitions in a ze-
brafish subject.

3M-Progress discovers ethologically-
relevant behavioral state transitions by
10 million environment steps and sooner,
whereas other intrinsic drives display tran-
sient strategies and stabilize on complete
passivity or activity over training (Figure
3A). Agents trained with 3M-Progress
exhibited the highest model-behavior
alignment, successfully capturing the dy-
namics of state transitions recorded in the
biological data (Figure 3B). Additionally,
agents trained with traditional intrinsic
motivation methods such as ICM, RND,
Disagreement, and γ-progress showed
significantly lower alignment and failed
to capture the characteristic stable cycling
between active and passive states (Figure
3B-C).

3M-Progress Agents Saturate Explain-
able Variance of Whole-Brain Neural-
Glial Dynamics To evaluate how closely
intrinsic motivation-driven agents matched
zebrafish neural-glial dynamics, we com-
pared model predictions to whole-brain cal-
cium imaging data recorded during behavioral transitions of futility-induced passivity. Neural-glial
alignment was quantified using a One-to-One mapping, where each recorded biological neuron
and astrocyte was matched to the single most correlated artificial unit from the model. Strikingly,
3M-Progress agents captured nearly all of the explainable variance in neural and astrocytic activity,
markedly outperforming existing intrinsic motivation algorithms, as well as baseline controls (Figure
4A). Model-free intrinsic drive controls include energy cost (homeostatic), entropy bonus (MaxEnt),
and a randomly intialized agent. Data-derived controls include a Gaussian Process fit to neural-glial
responses, proportional-integral-derivative (PID) control, average neural-glial population response,
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and white-noise. More details on these controls can be found in Appendix D. In fact, the 3M-Progress
agent is the only model that is almost completely aligned with both the behavioral alignment and
neural-glial alignment, highlighting that accurate behavioral modeling can tightly constrain detailed
neural dynamics (Figure 4B). Taken together, 3M-Progress agents pass the NeuroAI Turing Test on
this dataset, a criterion emphasizing models that match both behavior and internal function [65].

Latent Dynamics of 3M-Progress Agents Reflect Underlying Neural-Glial Computations Given
that 3M-Progress best matched both behavioral and neural-glial alignment among all candidate
models, we then characterized the agent’s internal dynamics by performing Principal Component
Analysis (PCA) on its in silico neural-glial population during behavioral state transitions. PCA
revealed that the dominant latent dimensions of the agent’s core module closely mirrors whole-brain
neural-glial dynamics measured from biological zebrafish, whereby glial responses accumulate
evidence of motor futility via noradrenergic signaling to drive behavioral suppression, and neural
responses reflect transient activation patterns associated with detecting mismatches between expected
and actual sensory outcomes during unsuccessful swim attempts. This analysis demonstrates that
the 3M-Progress mechanism for intrinsic motivation not only generates realistic behavior, but also
robustly captures fundamental internal neural-glial computations underlying autonomous exploration
and behavioral state transitions (Figure 5).

6 Discussion

Our work seeks to identify and computationalize intrinsic goals that enable autonomous, task-
independent behavior in animals. Leveraging a unique whole-brain dataset recorded in larval zebrafish
during an autonomous behavior known as futility-induced passivity, we identify two simple principles
of intrinsic goals for autonomous agents: avoid perseveration on stimuli that are uncontrollable and
unpredictable, and converge on a robust decision-making strategy. We introduced 3M-Progress, a
novel intrinsic drive that operationalizes these principles by continually tracking divergence between
an online world model and an ethologically relevant prior. Learned from experience in an ecological
niche that captures the basic physics of a naturalistic zebrafish habitat, this prior guides exploration in
new environments by partitioning the behavioral space into niche-seeking and niche-avoiding modes.

Unlike prior intrinsic motivation methods that suffer from behavioral inconsistency and non-
stationarity, 3M-Progress reliably generated stable cycling behaviors closely matching those observed
in biological zebrafish. Moreover, 3M-Progress agents were uniquely successful in capturing whole-
brain neural-glial activity among all candidate models. We showed that artificial agent’s internal
latent dynamics mirror neural-glial computation, wherein astrocytic responses accumulate evidence
of motor futility through noradrenergic signaling to trigger behavioral suppression, while neural
populations transiently encode mismatches between expected and observed sensory outcomes. To the
best of our knowledge, our work marks the first goal-driven model of neural-glial computation, as
well as the first completely self-supervised embodied agent that predicts behavioral and brain data.

Our findings suggest two complementary evolutionary constraints for developing robust, animal-like
autonomous agents: (1) maintaining an intrinsic drive informed by memory, and (2) continually
monitoring divergence between this memory and new sensory experiences. Functionally, tracking this
mismatch within reinforcement learning frameworks allows artificial agents to identify ineffective
strategies, update internal models adaptively, and discover new behaviors. Such mechanisms offer
significant potential for enhancing the autonomy of artificial systems, especially in open-ended
environments lacking clear external rewards or goals.

Limitations and Future Work Our current analyses primarily focused on behavioral transitions
within constrained virtual environments, limiting ecological realism. Future work could extend
both the artificial environments and biological experiments to richer ecological settings and more
complex behavioral repertoires, providing stronger and more diverse constraints on computational
models of autonomy. The biomechanical realism of the body could also be expanded to include
muscles and motor circuits, providing realistic constraints on the low-level controller. Additionally,
while our model captures essential neuron-glial interactions at a population level, it abstracts away
detailed biochemical signaling mechanisms and anatomy of astrocytes and neurons. Incorporating
more biologically detailed models of these processes could aid in providing predictions about these
mechanisms at a finer scale. Finally, 3M-Progress can be generalized in a variety of ways that extend
beyond futility-induced passivity (see Appendix C.3)—we leave this to future work.
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Appendix

A Model-Brain Alignment per Transition and per Module
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Figure 6: Model-Brain alignment for active and passive transitions and per module, excluding per
module read-in and readout layers where applicable. A) Alignment for Active Transitions. B)
Alignment per Agent Module for Active Transitions. C) Alignment for Passive Transitions. D)
Alignment per Agent Network Module for Passive Transitions.

B Latent Dynamics of Baseline Agents
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Figure 7: Latent dynamics of each agent-based control model. Dashed line indicates time since
passivity. Coloring of PCs neural-glial cell-types (Fig. 2, Fig. 5) was chosen according to cell-types
of the 3M-Progress agent PCs.
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C Formal Intuitions

C.1 Curiosity-driven Exploration is Not Enough

Consider an MDP with discount γ ∈ (0, 1), occupancy dπ(s, a) = (1−γ)
∑

t≥0 γ
t Prπ(st=s, at=a),

and transition kernel T (s′ | s, a). Let a predictive world model with parameters θ be trained online
to minimize

L(π, θ) = E(s,a,s′)∼dπT
[
ℓ(s, a, s′; θ)

]
,

and suppose the policy receives intrinsic reward determined by this predictor: ri(s, a, s′; θ) =
g
(
ℓ(s, a, s′; θ)

)
where ℓ ≥ 0 and g : R≥0 → R≥0 is monotone increasing with g(0) = 0. The policy

is updated to maximize
J(π, θ) = E(s,a,s′)∼dπT

[
ri(s, a, s′; θ)

]
.

Under either alternating or simultaneous updates that decrease L in θ and increase J in π, the process
cannot converge to a nontrivial, uniquely defined exploratory policy. The only stationary outcome
is a degenerate collapse in which ri is constant on the visited support; otherwise the policy-model
coupling remains non-stationary and induces drift. That is, any stationary point (π⋆, θ⋆) satisfies one
of the following cases:

1. Reward collapse. If θ⋆ minimizes L(π⋆, θ) on the support of dπ⋆T and the model class is
realizable on that support, then ℓ(·; θ⋆) = 0 almost surely, hence ri(·; θ⋆) = 0 almost surely
and J(π, θ⋆) = 0 for all π. The objective is flat and does not select a unique exploratory
policy.

2. No stationary policy. If we freeze the model at θ⋆, then ri(·; θ⋆) is a fixed reward. If
residual error remains, then ℓ(·; θ⋆) (hence ri) is not almost surely constant, so there exists
a measurable set U on which the intrinsic advantage Arint

π⋆ (s, a) > 0 for some actions. By
the policy-gradient identity,

∇J(π⋆, θ⋆) = (1− γ)Edπ⋆

[
Aπ⋆(s, a)∇ log π⋆(a | s)

]
.

For some state s ∈ U , suppose we increase π⋆(a | s) slightly on an action with Aπ⋆(s, a) >
0 and decrease it on other actions to preserve

∑
a π

⋆(a | s) = 1. This choice makes the
inner product ⟨Aπ⋆(s, ·),∇ log π⋆(· | s)⟩ strictly positive on U , hence the expectation above
is positive and the policy gradient is nonzero. Therefore π⋆ is not a local maximizer of the
stationary objective. Any such occupancy shift then triggers predictor updates that reduce
rint on U , moving the high-reward region and preventing a nontrivial fixed point.

In both cases, these intrinsic signals do not converge to a stable, uniquely-defined exploratory policy.
Either training drives the intrinsic signal to a constant (degenerate) value on the visited distribution,
or residual heterogeneity in the reward keeps creating ascent directions that are then neutralized by
predictor updates, preventing stabilization.

C.2 3M-Progress Partitions the Behavioral Space

Consider two reward-free MDPs, M1 = (S,A, T1, p0) and M2 = (S,A, T2, p0), that differ only
in their transition densities. Further, suppose there exists a set U ⊂ S ×A such that T1(· | s, a) =
T2(· | s, a) almost everywhere in s′ for all (s, a) ∈ U . Let p(· | s, a) and q(· | s, a) be world models
trained on data from T1 and T2, respectively, with pointwise consistency:

DKL (T1(· | s, a)∥p(· | s, a))
p→ 0, DKL (T2(· | s, a)∥q(· | s, a))

p→ 0.

Assume for each (s, a), both kernels share the same support with no vanishing probabilities (i.e.
∃c > 0 s.t. T2(s′ | s, a) ≥ c whenever T1(s′ | s, a) > 0). Then it follows that for all (s, a) ∈ U ,

DKL (p(· | s, a)∥q(· | s, a))
p→ 0,

and that for all (s, a) ∈ U c,

DKL (p(· | s, a)∥q(· | s, a))
p→ DKL(T1∥T2) > 0.

17



C.3 Beyond Futility-induced Passivity

Although we demonstrate 3M-Progress on a specific autonomous behavior known as futility-induced
passivity, our algorithm applies to any exploration behavior in which a dynamics niche is reasonably
specified. In our experiments, futility-induced passivity arises completely from the choice of the
pretraining environment and the online learning environment; we choose these environments such
that the transition dynamics between environments agree when the agent is passive, thus defining the
ecological niche that guides exploration (see Appendix C.2: simply put, we choose environments
such that there exists a subset U in which the transition dynamics locally agree). In general, the
pretraining environment should encode a meaningful dynamics prior the agent can use for continual
learning with environments whose physics vary systematically from the pretraining environment.

For example, suppose we pretrain an agent and world model on a foraging task (e.g. the virtual rodent
environment in [66]). In a new environment that includes the opportunity for foraging and any of its
constituent locomotor primitives (running, turning, jumping, etc.), the basic distribution-matching
objective of 3M-Progress rewards the agent for trajectories whose dynamics are predictable under the
pretrained world model (namely, foraging and constituent motor primitives):

rit = f(ϵ̂t − ϵt); ϵt = DKL(ωθ′∥ωθ); ϵ̂t = (1− γ)ϵ̂t + γϵt

where θ′ is learned online and θ is pretrained. Niche-aware exploration is primarily mediated by
the activation function f . When f is monotonic non-decreasing, such as a rectified linear unit,
3M-Progress is niche-seeking with the niche defined by the dynamics prior ωθ. Conversely, if f
is monotonic non-increasing, 3M-Progress is niche-avoiding and explores dynamics outside the
prior. Non-monotonic functions allow some amount of symmetry between niche-seeking and niche-
avoidance depending on the specific function shape.

The utility of this approach can also be appreciated when the pretraining stage involves a large
diversity of dynamics, either from multiple environments and tasks or a single environment with
multiple tasks. A world model with sufficient computational capacity that captures these diverse
dynamics can be flexibly used in new environments to motivate exploration in a variety of ways. In
the simplest case, for example, suppose we pretrain an ensemble of dynamics models {ωθj}Nj=1 on
N separate environments and tasks. Maintaining independent temporal filters ϵ̂jt for each prior, a
deterministic intrinsic motivation can be defined as rit = max{f(ϵ̂jt − ϵjt )}Nj=1. Alternatively, one
can imagine various sampling schemes over the ensemble in order to drive specific exploration styles,
such as ϵ-greedy or max-entropy. This extends 3M-Progress to niche-aware exploration over multiple
niches, thereby allowing the flexibility of multiple modes of behavior in a single objective function.
Each addition of a dynamics prior further partitions the behavioral space in the online environment,
and allows the dynamics characteristic of each pretraining environment to be composed to form an
exploration landscape of attractors (niche-seeking) or repellors (niche-avoidance) for online learning.

D Description of Control Models

D.1 Model-based Controls

The Intrinsic Curiosity Module (ICM) [3] defines intrinsic reward as the Shannon surprise
of the forward model, rit := − logωθ(ϕ

I
t | ϕt,at). I denotes an augmented inverse feature space

that is learned on-top of sensory embeddings from ϕ—ICM trains an additional embedding layer
ϕI using an inverse dynamics model parameterized by θI by optimizing an MSE loss L(θI) =

Eπθ

∥∥f(θI ;ϕI
t , ϕ

I
t+1)− at

∥∥2
2
.

Random Network Distillation (RND) [4] defines a fixed random nonlinear projection of sen-
sory features g(ϕ) and trains a predictor network ĝ using an MSE loss rit := L(θRND) =

Eπθ
∥g(ϕt)− ĝ(θRND;ϕt)∥22. With the distillation objective as the intrinsic reward, RND does

not reinforce behaviors by scoring their predictability by a forward dynamics model as in ICM;
instead, the random memory provides a simple exploration bonus for visiting novel states under the
policy distribution.
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Disagreement [5] learn an ensemble of world models {ωθj}Nj=1 and defines intrinsic reward as
rti := Var

(
{µθj : j ∈ [N ]}

)
for N randomly initialized world models. Ensemble variances scores

the stochasticity of the environment and reinforces state-action pairs for which models disagree.

γ-Progress [7] leverages the temporal history of Shannon surprise to define intrinsic reward using
prediction gain, rti := log

ωθnew

ωθold

, where θnew parameterized a world model after learning on new
transitions withheld from an lagging model θold.

D.2 Model-Free Controls

Homeostatic Agent One straightforward way to achieve a passive behavioral transition is to simply
add an action-cost that outweighs any other positive reward signal. In the presence of a fixed or
nonexistent extrinsic reward signal which the agent has no control over (such as in the open-loop
protocol), an action-cost encourages the agent to become passive, corresponding to a metabolic
constraint or homeostatic regulation of energy. We implement this cost as the magnitude of the force
exerted by the agent’s motors, c(at) = λ∥at∥2. In all our experiments, we set λ = 1.

Maximum Entropy Agent Maximum entropy RL is a general exploration strategy that provides a
bonus reward proportional to the entropy of the current policy. That is, rit = λH [π(at | st)]. In all
our experiments, we set λ = 1.

Random Agent To test a random baseline model for embodied control, we use a randomly
initialized agent with the same model architecture (described in section 3, Figure 2A, and in PPO
implementation details below).

Whole-brain Average We use the average recorded neural-glial activity during a specified be-
havioral transition in one larval zebrafish to predict whole-brain neural-glial activity recorded from
another larval zebrafish undergoing the same transition. The alignment under the metric described in
section 3 is computed using the average response of each cell-type (neural and glial) from the source
animal to predict the corresponding cell-type in the target animal. We use two subjects and report the
total alignment as the sample-weighted average between scores from both source-target pairs.

Gaussian-Process We fit a separate Gaussian Process (GP) to each cell-type (neural and glial) for
each subject, using a radial basis function (RBF) kernel and centering the prior mean at the average
whole-brain response. Alignment under the metric described in section 3 is computed between the
whole-brain data from the target cell-type from an individual subject and its corresponding GP as the
source. We use two subjects and report the total alignment as the sample-weighted average between
scores from both source-target pairs.

White-noise At each timestep t, the model’s predicted next state is give by xt+1 = xt + ηt,
where ηt ∼ N (0, 1) is white-noise. Because the metric that saturates inter-animal alignment is
correlation-based, the mean and variance of this random walk are arbitrary.

PID Controller To implement the circuit-based word model proposed by Mu et al. [2] for the
zebrafish brain’s transition from active to passive states, we employ a threshold-based (“bang–bang”)
controller that switches the fish’s swim power P (t) between an active waveform Pbase(t) and complete
cessation (P (t) = 0) once a cumulative “futility” signal exceeds a fixed GABAergic threshold. This
controller can be interpreted as the high-gain limit of a saturated PID controller.

Perceived hydrostatic drift is modeled as a constant vd. The motor plant converts swim power into a
counter-drift locomotor velocity with gain gMS,

vs(t) = vd − gMSP (t).

Visual mismatch is the product of forward stimulus velocity and ongoing motor drive but is rectified
to ignore overshoot,

e(t) =


vs(t)P (t), if vs(t) > 0,

0, otherwise.
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A leaky integrator with time constant τF accumulates the mismatch (i.e., the futility):

Ḟ (t) = −λFF (t) + kF e(t),

where λF = 1/τF and kF is a gain. A second leaky integrator converts sustained futility into an
inhibitory drive,

Ġ(t) = −λGG(t) + kG max(0, F (t)− θF ),

P (t) =


Pbase(t), G(t) ≤ θG,

0, G(t) > θG.

To mimic experimental perturbations we set gMS = 0 between tOL on and tOL off, effectively clamping
optic-flow feedback.

E Implementation Details

All code can be found in https://github.com/neuroagents-lab/autonomous_zebrafish.

Proximal Policy Optimization (PPO) In all our experiments, we train our agents with PPO using
a clipped surrogate objective [55] with ϵCLIP = 0.2 and normalized advantage function computed
using Generalized Advantage Estimation (GAE) [67] with λGAE = 0.95 . The policy network is an
MLP with two hidden layers [128, 64] optimized by Adam [68] with learning rate α = 0.0003 and
gradients computed over 5 epochs of 1000-step trajectories with a 250-step batch size vectorized
across 64 environments. This MLP parameterizes the policy as a 5-dimensional diagonal Gaussian
distribution which is sampled to produce actions during training. For evaluation (the experiments
in section 5), the policy is deterministic by taking actions as the mean of the distribution. Actions
take the form of continuous real-valued torques on [−1, 1]. The intrinsic rewards are normalized
by dividing by a running estimate of the standard deviation of the sum of discounted rewards with
discount factor γ = 0.99, which then supervises the value network MLP with two hidden layers
[128, 64] to estimate the expected discounted return using this same discount factor. Both policy and
value networks compute on hidden states from separate LSTM blocks (Figure 2A) using a shared
embedding from the sensory feature extractors. Image embeddings are obtained from 64x64 pixel
observations passed through a three-layer ResNet resulting in outputs with a spatial resolution of
16x16 (closely matching the visual acuity of larval zebrafish at the final layer). Image embeddings
were flattened and concatenated with proprioceptive features including joint positions and rotational
velocities and their embeddings from a two-layer MLP with hidden size [64, 64].

Intrinsic Drive Module (IDM) The IDM architecture details vary depending on which intrinsic
drive it implements, and is described on a case-by-case basis in the sections below. Here, we describe
the commonalities between intrinsic drives, which include the optimizer, forward dynamics loss,
general forward model architecture, and memory buffer parameters. Each forward dynamics model
across intrinsic drives is implemented as a two-layer MLP with hidden sizes [512, 512], trained to
predict the true observation one time-step into the future from the current observation using an MSE
loss (where inference is done in feature-space), and optimized using Adam [68] with learning rate
α = 0.001. The IDM maintains a memory buffer of the last 100 observation embeddings from each
environment in the vector and trains it’s constituent networks on this buffer every 20 steps. The IDM
is trained for 1e5 steps before the intrinsic rewards are observed by the agent.

3M-Progress The ethological memory is created (with the default configuration outlined above)
by training a swimmer agent on a simple navigation task in a head-free version of the experimental
protocol outlined in section 3. This environment is chosen to provide the forward model with a
similar visual input space as the head-fixed version while maintaining the ethology of unconstrained
swimming in which the agent experiences naturalistic fluid forces and positional displacement in
response to swim commands. The task is implemented as shaped reward proportional to the distance
of the agent from a target location that in front of the agent, such that the swim-to-target behavior
results in stabilizing the constant backwards flow of the high-contrast grating. The episode is long
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enough that optimizing this reward allows the agent to become passive was the target is reached.
Together, our setup allows the agent to experience state-action-state triplets (current state, current
action, and resulting state) associated with active and passive behaviors. This provides a close
correspondence between sensory-motor coupling in our virtual ethological environment and the
closed-loop experimental condition in Mu et al. [2], where larval zebrafish swim against the passive
backwards flow of high-contrast gratings motivated by positional homeostasis. Although our agent
is motivated to swim by a different signal than its biological twin (i.e., moving towards a target
location rather than a homeostatic drive that resists displacement from an opposing current), the
design of the virtual environment renders the sensory-motor stream experienced by the internal
world model equivalent between scenarios, since in both cases optic flow is counteracted by forward
swim motion. Because this sensory-motor stream and it’s resulting world-model alone define the
ethological memory, the discrepancy in the signal that drove behavior has no bearing on training the
new policy and value network in the open-loop environment (Figures 1D, 2B).

In the open-loop environment, the agent randomly initializes a new world-model memory that is
trained online with the default configuration outlined in the IDM section. The ethological world-model
memory is loaded from earliest checkpoint where the agent achieved optimal swim-to-target behavior
and it’s weights are frozen. The model-memory-mismatch is computed as the MSE between the
predictions from each memory, filtered by an exponential moving average with timescale γ = 0.99,
and the difference filtered and unfiltered predictions are passed through an L1 activation.

Random Network Distillation (RND) [4] For RND both target and predictor networks are im-
plemented using the default configuration in the IDM section. The predictor network is trained to
predict random feature projections from the target as described in section 3.

Intrinsic Curiosity Module (ICM) [3] In addition to a forward model implemented using the
default configuration in the IDM section, the ICM implements an inverse dynamics model as an
MLP with an identical architecture and optimization routine to train a one-layer MLP on top of
sensory features. The forward and inverse networks are cotrained by minimizing a joint objective
βLF + (1− β)LI , where LF and LI are the forward and inverse MSE loss functions, respectively.
In our experiments, we set β = 0.2.

Disagreement [5] We use N = 3 randomly initialized independent forward models using the
default configuration described in the IDM section. Disagreement is computed as the mean variance
across feature dimensions.

γ-Progress [6] Using a randomly initialized forward model implemented using the default con-
figuration in the IDM section, the trailing memory is created by copying these initial weights and
updating them using an exponential moving average with timescale γ. In all our experiments, we use
γ = 0.99.

F Inter-Subject Noise Correction Derivation

Herein we describe how the metric M should correct for noise if there is trial-to-trial variability.
This is unified and adapted from Nayebi* et al. [62], Nayebi et al. [63, 69]. If you prefer to skip the
derivation, for common choices of metric M, such as Pearson correlation, RSA, and especially any
metric that satisfies transitive closure [70], one will need to correct by the square root of the product
of the mapping consistency and internal consistency of the units, in order to properly approximate the
true value of M in the limit of infinite trials.

To make this correction explicit, suppose we have neural responses from two animals (or subjects)
A and B. Let tpi be the vector of true responses (either at a given time bin or averaged across a set
of time bins) of animal p ∈ A = {A,B, . . . } on stimulus set i ∈ {train, test}. Of course, we only
receive noisy observations of tpi , so let spj,i be the jth set of n trials of tpi . Finally, let M(x; y)i be the
predictions of a mapping M (e.g., PLS, or any type of regression) when trained on input x to match
output y and tested on stimulus set i. For example, M

(
tAtrain; t

B
train

)
test

is the prediction of mapping
M on the test set stimuli trained to match the true neural responses of animal B given, as input, the
true neural responses of animal A on the train set stimuli. Similarly, M

(
sA1,train; s

B
1,train

)
test

is the
prediction of mapping M on the test set stimuli trained to match the trial-average of noisy sample 1
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on the train set stimuli of animal B given, as input, the trial-average of noisy sample 1 on the train set
stimuli of animal A. Then we have that:

Mtrue :=
〈
Corr

(
M

(
tAtrain; t

B
train

)
test

, tBtest
)〉

∼ M̂est :=

〈 predictivity︷ ︸︸ ︷
Corr

(
M(sA1,train; s

B
1,train)test, s

B
2,test

)√√√√C̃orr
(
M(sA1,train; s

B
1,train)test, M(sA2,train; s

B
2,train)test

)︸ ︷︷ ︸
mapping consistency

× C̃orr
(
sB1,test, s

B
2,test

)︸ ︷︷ ︸
internal consistency

〉
,

(4)

where the average ⟨·⟩ is taken over bootstrapped split-half trials and train-test splits, and Corr(·, ·)
denotes the Pearson correlation of the two quantities. C̃orr(·, ·) denotes the Spearman-Brown cor-
rected value of the original quantity (since it is computed on split-halves of the trials, unlike the
numerator, which is evaluated on the full trial set). The analogous correction for RSA holds, where the
RDM/RSM of the responses is instead used for s, and M is the identity mapping, M(x; ·)test ≡ xtest.
When constructing M̂est for model-brain mappings (rather than brain-brain mappings), we just
replace A with the model responses, which are deterministic.

The above correction in (4) is fully implemented in the brainmodel_utils pack-
age (https://github.com/neuroagents-lab/brainmodel_utils), specifically in the
get_linregress_consistency function. This function can be imported as follows:

from b r a i n m o d e l _ u t i l s . m e t r i c s . c o n s i s t e n c y i m p o r t g e t _ l i n r e g r e s s _ c o n s i s t e n c y

The r_xy_n_sb value returned by this function corresponds to the ratio in (4). Refer to the README
and the function docstring for usage details across a range of linearly regressed and non-regressed
(e.g. RSA) metrics.

F.1 Single Subject Pair

Suppose we have neural responses from two animals (or subjects) A and B. Let tpi be the vector
of true responses (either at a given time bin or averaged across a set of time bins) of animal
p ∈ A = {A,B, . . . } on stimulus set i ∈ {train, test}. Of course, we only receive noisy observations
of tpi , so let spj,i be the jth set of n trials of tpi . Finally, let M(x; y)i be the predictions of a mapping
M (e.g., PLS) when trained on input x to match output y and tested on stimulus set i. For example,
M

(
tAtrain; t

B
train

)
test

is the prediction of mapping M on the test set stimuli trained to match the true
neural responses of animal B given, as input, the true neural responses of animal A on the train
set stimuli. Similarly, M

(
sA1,train; s

B
1,train

)
test

is the prediction of mapping M on the test set stimuli
trained to match the trial-average of noisy sample 1 on the train set stimuli of animal B given, as
input, the trial-average of noisy sample 1 on the train set stimuli of animal A.

With these definitions in hand, the inter-animal mapping consistency from animal A to animal B
corresponds to the following “true” quantity to be estimated by M̂est in the limit of infinite trials:

Mtrue := Corr
(
M

(
tAtrain; t

B
train

)
test

, tBtest
)
, (5)

where Corr(·, ·) is the Pearson correlation across a stimulus set. In what follows, we will argue that
Eq (5) can be approximated with the following ratio of measurable quantities, where we split in half
and average the noisy trial observations, indexed by 1 and by 2:

Mtrue := Corr
(
M

(
tAtrain; t

B
train

)
test

, tBtest
)

∼ M̂est :=
Corr

(
M

(
sA1,train; s

B
1,train

)
test

, sB2,test

)
√
Corr

(
M

(
sA1,train; s

B
1,train

)
test

,M
(
sA2,train; s

B
2,train

)
test

)
× Corr

(
sB1,test, s

B
2,test

) . (6)

In words, the inter-animal consistency (i.e., the quantity on the left side of Eq (6)) corresponds to
the predictivity of the mapping on the test set stimuli from animal A to animal B on two different
(averaged) halves of noisy trials (i.e., the numerator on the right side of Eq (6)), corrected by the
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square root of the mapping reliability on animal A’s responses to the test set stimuli on two different
halves of noisy trials multiplied by the internal consistency of animal B.

We justify the approximation in Eq (6) by gradually replacing the true quantities (t) by their measur-
able estimates (s), starting from the original quantity in Eq (5). First, we make the approximation
that:

Corr
(
M

(
tAtrain; t

B
train

)
test

, sB2,test
)
∼ Corr

(
M

(
tAtrain; t

B
train

)
test

, tBtest
)
× Corr

(
tBtest, s

B
2,test

)
, (7)

by the transitivity of very positive correlations. Namely, in scenarios where correlations are very
close to 1, a form of transitivity holds, meaning if variable A is highly correlated with variable B,
and variable B with variable C, then variable A is also highly correlated with variable C. This is
the desired situation, as low or negative correlations indicate neurons that are not self-consistent.
Moreover, calculating certain metrics in these cases can result in undefined values due to operations
like taking the square root of a negative number. Assuming high correlations is reasonable, especially
when the number of stimuli is large. Next, by transitivity and normality assumptions in the structure
of the noisy estimates and since the number of trials (n) between the two sets is the same, we have
that:

Corr
(
sB1,test, s

B
2,test

)
∼ Corr

(
sB1,test, t

B
test

)
× Corr

(
tBtest, s

B
2,test

)
∼ Corr

(
tBtest, s

B
2,test

)2
. (8)

In words, Eq (8) states that the correlation between the average of two sets of noisy observations of n
trials each is approximately the square of the correlation between the true value and average of one
set of n noisy trials. Therefore, combining Eq (7) and Eq (8), it follows that:

Corr
(
M

(
tAtrain; t

B
train

)
test

, tBtest
)
∼

Corr
(
M

(
tAtrain; t

B
train

)
test

, sB2,test
)√

Corr
(
sB1,test, s

B
2,test

) . (9)

From the right side of Eq (9), we can see that we have removed tBtest, but we still need to remove the
M

(
tAtrain; t

B
train

)
test

term, as this term still contains unmeasurable (i.e., true) quantities. We apply the
same two steps, described above, by analogy, though these approximations may not always be true
(they are, however, true for Gaussian noise):

Corr
(
M

(
sA1,train; s

B
1,train

)
test

, sB2,test

)
∼ Corr

(
sB2,test,M

(
tAtrain; t

B
train

)
test

)
× Corr

(
M

(
tAtrain; t

B
train

)
test

,M
(
sA1,train; s

B
1,train

)
test

)
Corr

(
M

(
sA1,train; s

B
1,train

)
test

,M
(
sA2,train; s

B
2,train

)
test

)
∼ Corr

(
M

(
sA1,train; s

B
1,train

)
test

,M
(
tAtrain; t

B
train

)
test

)2

,

which taken together implies the following:

Corr
(
M

(
tAtrain; t

B
train

)
test

, sB2,test
)
∼

Corr
(
M

(
sA1,train; s

B
1,train

)
test

, sB2,test

)
√
Corr

(
M

(
sA1,train; s

B
1,train

)
test

,M
(
sA2,train; s

B
2,train

)
test

) .
(10)

Eq (9) and Eq (10) together imply the final estimated quantity given in Eq (6).

F.2 Multiple Subject Pairs

For multiple animals, we consider the average of the true quantity for each target in B in Eq (5) across
source animals A in the ordered pair (A,B) of animals A and B:

Mtrue :=
〈
Corr

(
M

(
tAtrain; t

B
train

)
test

, tBtest
)〉

A∈A:(A,B)∈A×A

∼ M̂est :=

〈
Corr

(
M

(
sA1,train; s

B
1,train

)
test

, sB2,test

)
√
C̃orr

(
M

(
sA1,train; s

B
1,train

)
test

,M
(
sA2,train; s

B
2,train

)
test

)
× C̃orr

(
sB1,test, s

B
2,test

)
〉

A∈A:(A,B)∈A×A

.
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We also bootstrap across trials, and have multiple train/test splits, in which case the average on the
right hand side of the equation includes averages across these as well.

Note that each neuron in our analysis will have this single average value associated with it when
it was a target animal (B), averaged over source animals/subsampled source neurons, bootstrapped
trials, and train/test splits. This yields a vector of these average values, which we can take median
and standard error of the mean (s.e.m.) over, as we do with standard explained variance metrics.

F.3 RSA

We can extend the above derivations to other commonly used metrics for comparing representations
that involve correlation. Since RSA(x, y) := Corr(RDM(x),RDM(y)), then the corresponding
quantity in Eq (6) analogously (by transitivity of maximally positive correlations) becomes:

Mtrue :=
〈
RSA

(
M

(
tAtrain; t

B
train

)
test

, tBtest
)〉

A∈A:(A,B)∈A×A
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〈
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)
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)
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(
sB1,test, s

B
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)
〉

A∈A:(A,B)∈A×A

.

(11)

Note that in this case, each animal (rather than neuron) in our analysis will have this single average
value associated with it when it was a target animal (B) (since RSA is computed over images and
neurons), where the average is over source animals/subsampled source neurons, bootstrapped trials,
and train/test splits. This yields a vector of these average values, which we can take median and s.e.m.
over, across animals B ∈ A.

For RSA, we can use the identity mapping (since RSA is computed over neurons as well, the number
of neurons between source and target animal can be different to compare them with the identity
mapping). As parameters are not fit, we can choose train = test, so that Eq (11) becomes:

Mtrue :=
〈
RSA

(
tA, tB

)〉
A∈A:(A,B)∈A×A ∼ M̂est :=

〈
RSA

(
sA1 , s

B
2

)√
R̃SA

(
sA1 , s

A
2

)
× R̃SA

(
sB1 , s

B
2

)
〉

A∈A:(A,B)∈A×A

.

(12)

F.4 Pooled Source Animal

Often times, we may not have enough neurons per animal to ensure that the estimated inter-animal
consistency in our data closely matches the “true” inter-animal consistency. In order to address this
issue, we holdout one animal at a time and compare it to the pseudo-population aggregated across
units from the remaining animals, as opposed to computing the consistencies in a pairwise fashion.
Thus, B is still the target heldout animal as in the pairwise case, but now the average over A is over a
sole “pooled” source animal constructed from the pseudo-population of the remaining animals.

Pooling data across subjects to create larger pseudopopulations is a common practice [? ], and helps
researchers better isolate core representational principles that are conserved across individuals when
data collection modalities limit the number of collected neurons per session.

F.5 Spearman-Brown Correction

The Spearman-Brown correction can be applied to each of the terms in the denominator individually,
as they are each correlations of observations from half the trials of the same underlying process to
itself (unlike the numerator). Namely,

C̃orr (X,Y ) :=
2Corr (X,Y )

1 + Corr (X,Y )
.
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Analogously, since RSA(X,Y ) := Corr(RDM(x),RDM(y)), then we define

R̃SA (X,Y ) := C̃orr(RDM(x),RDM(y))

=
2RSA (X,Y )

1 + RSA (X,Y )
.

25



NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We confirm that the claims made in the abstract and introduction do not
exaggerate or fabricate the scope of our contributions and results.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: We confirm that we include a paragraph on limitations in the conclusions
section.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: We do not provide any theoretical results in our paper.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We fully detail the architectures, environment, and algorithms used, as well as
the data used for model-brain alignment comparisons.
Guidelines:
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We will provide full access to our code, as well as links to access the larval
zebrafish data.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.
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• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provide a complete characterization of all the methods in our paper, with
more details in the supplemental materials.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We report error bars on all our plots when applicable.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We include details on the computational resources we used.
Guidelines:

• The answer NA means that the paper does not include experiments.
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• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We strickly adhere to the NeurIPS code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Our paper addressed fundamental scientific questions, and is not directly aimed
towards societal impact.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
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Justification: Our paper does not have high risk for misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We make sure to properly credit everybody.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We do not provide any new assests.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
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Answer: [NA]
Justification: We do not conduct any crowdsourcing experiments.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our paper does not use participants.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: We do not use LLMs for the mentioned purposes.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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