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Abstract

Microblog content (e.g., Tweets) is noisy due to001
its informal use of language and its lack of con-002
textual information within each post. To tackle003
these challenges, state-of-the-art microblog004
classification models rely on pre-training lan-005
guage models (LMs). However, pre-training006
dedicated LMs is resource-intensive and not007
suitable for small labs. Supervised contrastive008
learning (SCL) has shown its effectiveness009
with small, available resources. In this work,010
we examine the effectiveness of fine-tuning011
transformer-based language models, regular-012
ized with a SCL loss for English microblog013
classification. Despite its simplicity, the evalu-014
ation on two English microblog classification015
benchmarks (TweetEval and Tweet Topic Clas-016
sification) shows an improvement over baseline017
models. The result shows that, across all sub-018
tasks, our proposed method has a performance019
gain of up to 11.9 percentage points. All our020
models are open source.021

1 Introduction022

Microblog classification is a text classification023

task on microblog content (e.g., Tweets). State-024

of-the-art microblog classification models rely on025

pre-training domain-specific transformer-based lan-026

guage models (LMs), such as Bertweet (Nguyen027

et al., 2020), XLM-T (Barbieri et al., 2022) and028

TimeLMs (Loureiro et al., 2022). In comparison,029

large language models (LLMs) such as ChatGPT030

and GPT-4 fall short of this task (Kocon et al.,031

2023). However, pre-training LMs requires large032

computational resources, which is not feasible for033

small labs. An affordable alternative is to fine-tune034

a base pre-trained LM, such as RoBERTa (Liu et al.,035

2019). In this work, we focus on the fine-tuning036

approach.037

Typically, microblog content is noisy. First, the038

informal use of language introduces a large vol-039

ume of incorrect grammar or typos. Second, social040

Figure 1: An example of how supervised contrastive
learning utilizes label information to form better rep-
resentation on a hyper-sphere. The orange circle with
the red edge represents an ambiguous sentence whose
representation can be improved with SCL.

media posts are mostly short in length. Due to 041

the character limit, microblog content often lacks 042

contextual information (Kim et al., 2014), which 043

inherently increases the difficulty for the model to 044

learn a good representation of the data. We hence 045

investigate the use of supervised contrastive learn- 046

ing (SCL) (Khosla et al., 2020; Gunel et al., 2021) 047

for microblog classification. 048

We suggest that SCL helps improve the learnt 049

representation of models and performance on mi- 050

croblog classification tasks. This is because SCL 051

utilizes label information to enhance the intra-class 052

concentration of features (Saunshi et al., 2019). 053

Figure 1 depicts a common phenomenon in mi- 054

croblog classification, where the model fails to rep- 055

resent an ambiguous sentence (circle with the red 056

edge) in the embedding space. Models trained 057

with a SCL loss explicitly pull the ambiguous sen- 058

tence closer to the region where semantically simi- 059

lar sentences are located. Therefore features of the 060

same label are more concentrated in the embedding 061

space. The orange arrow represents the “pulling” 062

effect of SCL’s learning objective. 063

Overall, our contributions are: 064

1. We examine the effectiveness of SCL loss in a 065
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supervised learning setting in terms of down-066

stream performance on two microblog clas-067

sification tasks, namely, TweetEval1 (Barbi-068

eri et al., 2020) and Tweet Topic Classifica-069

tion2 (Antypas et al., 2022).070

2. We open-sourced a generic fine-tuning071

framework with SCL (https://anonymous.072

4open.science/r/74D1).073

2 Related Work074

We provide two lines of literature that are related to075

our work: microblog classification and contrastive076

learning in NLP.077

2.1 Microblog classification078

State-of-the-art models for microblog classifi-079

cation follow the pre-training and fine-tuning080

supervised learning schema. Pre-trained LMs081

such as Bertweet (Nguyen et al., 2020) or082

TimeLMs (Loureiro et al., 2022) provides a good in-083

stantiation of model parameters, which often leads084

to superior performance after fine-tuning on ded-085

icated downstream tasks, such as part-of-speech086

tagging (Gimpel et al., 2011; Liu et al., 2018; Rit-087

ter et al., 2011), named-entity recognition (Strauss088

et al., 2016) and microblog classification (Barbieri089

et al., 2020; Rosenthal et al., 2019; Hee et al., 2018).090

However, pre-training on large scale corpora is not091

accessible to small labs. Therefore, we focus on092

the fine-tuning stage with a base LM (RoBERTa),093

to achieve comparable performance of pre-trained094

models.095

2.2 Contrastive learning in NLP096

Two often used contrastive learning algorithms097

in NLP are self-supervised contrastive learning098

(SSCL) and SCL. SSCL algorithms such as Sim-099

CLR (Chen et al., 2020) learn representations in an100

instance discrimination task, which is an extreme101

case of a multi-class classification task, where each102

instance has its own class. During training, SSCL103

loss forces a higher inner product of representations104

between positive pairs than negative pairs. Since105

SSCL does not require label information, it is ideal106

for learning sentence-level embeddings (Gao et al.,107

2021; Wu et al., 2020).108

However, learning can be error-prone without109

label information. This is reflected in the defect110

1https://huggingface.co/datasets/tweet_eval
2https://huggingface.co/cardiffnlp/

tweet-topic-19-single

of the instance discrimination objective (Wang and 111

Liu, 2021). The pushing apart of negative samples 112

ignores their underlying relations, which causes the 113

breakdown of the formation of certain useful fea- 114

tures. Saunshi et al. (2019) provided a theoretical 115

analysis of how negative classes can overlap in the 116

latent space in SSCL, known as class collision. 117

To account for this problem, SCL leverages label 118

information to enforce a different representation 119

of inherently “similar” samples. Previous work 120

applied SCL loss in NLP for few-shot text clas- 121

sification (Gunel et al., 2021) and showed its ef- 122

fectiveness under the problem of data scarcity. It 123

is evaluated on the GLUE benchmark, which is a 124

collection of nine sentence- or sentence-pair lan- 125

guage understanding tasks in the domain of movie 126

reviews and news. Differentiating from their work, 127

we investigate whether SCL is beneficial for regu- 128

lar supervised learning with many labeled data in 129

the domain of microblog classification. 130

3 Method 131

To examine the effectiveness of SCL for microblog 132

classification, we train a transformer-based se- 133

quence classifier in a supervised learning setting. 134

The learning objective is to minimize a linear com- 135

bination of a SCL loss and a CE loss. 136

3.1 Architecture 137

Given a single-label multi-class text classification 138

dataset χ and a batch size of Nbs, a feature ex- 139

tractor fθ(·) maps the input sentence, xn, into 140

two augmented feature vectors ri, rj ∈ RNfeature . 141

Nfeature is the output dimensionality of the fea- 142

ture extractor (768 in our case). Consistent with 143

the original SCL paper (Khosla et al., 2020), the 144

augmented feature vectors are then L2-normalized 145

and fed into a projection network to create the la- 146

tent representation hn = gϕ(rn) ∈ RNproj , where 147

the distance matrix is computed. Since this is a se- 148

quence classification task, Nproj equals the number 149

of classes in the dataset. Cosine similarity is used 150

as the distance measure. In this work, we use the 151

huggingface implementation of RoBERTa-base3 as 152

the feature extractor and a linear layer as the pro- 153

jection network. A detailed architecture diagram is 154

illustrated in Figure 2. 155

3https://huggingface.co/roberta-base
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Figure 2: Architecture of the proposed method.

3.2 Losses156

Given a multi-view batch of augmented samples157

with index i ∈ I ≡ {1, 2, ..., 2Nbs}, the positive158

pairs are constructed from the augmented views159

of the same instance, and all other augmented in-160

stances with the same label as the anchor. Negative161

samples are all other augmented instances with dif-162

ferent labels from the same batch. Let P (i) and163

K(i) (with cardinality |P (i)| and |K(i)|) be a set164

of positive and negative samples with index i.165

The SCL loss is defined as,166

LSCL =
∑
i∈I

−1

|P (i)|
∑

j∈P (i)

log
exp(

hi·hj

τ )∑
k∈K(i)

exp(hi·hk
τ )

(1)167

, where τ ∈ R+ denotes the temperature param-168

eter. Note that the summation over P (i) indicates169

that the SCL loss allows an arbitrary number of170

positive pairs. The final loss is a linear combina-171

tion of supervised contrastive loss and a standard172

CE loss,173

Lfinal = αLSCL + (1− α)LCE (2)174

with a coefficient α ∈ [0, 1].175

4 Evaluation176

4.1 Benchmarks177

Our method is evaluated on two tweets classifica-178

tion benchmarks, TweetEval (Barbieri et al., 2020)179

and Tweet Topic Classification (Antypas et al.,180

2022). In total, eight subtasks are used for eval-181

uation, where seven of which are from TweetEval182

and one subtask from Tweet Topic Classification.183

TweetEval. TweetEval is a benchmark consisting 184

of seven microblog classification subtasks, includ- 185

ing emoji prediction, emotion recognition, irony de- 186

tection, hate speech detection, offensive language 187

identification, sentiment analysis and stance detec- 188

tion. Each subtask is collected from the SemEval 189

shared task series from 2016 to 2019. 190

Tweet Topic Classification. Tweet Topic Clas- 191

sification is a microblog classification benchmark 192

with multi-label and single-label settings. We con- 193

sider only the single-label setting in our experiment. 194

Six classes are included in this dataset, namely, 195

arts&culture, business&entrepreneurs, pop culture, 196

daily life, sports&gaming and science&technology. 197

Additionally, since the original dataset does not 198

have a validation set, we split 10% of the training 199

set into a validation set. 200

Preprocessing. A minimal preprocessing step 201

is used in this work. All user mentions are re- 202

placed with a “@user” special token and links with 203

a “http” special token. The masking of user men- 204

tions prevents the leaking of real user information. 205

4.2 Metrics 206

We use the same evaluation metrics from the orig- 207

inal benchmarks. Specifically, for TweetEval, we 208

use macro averaged F1 over all classes, in most 209

cases. There are three exceptions: stance detec- 210

tion (macro-averaged of F1 of favor and against 211

classes4), irony detection (F1 of ironic class5), 212

and sentiment analysis (macro-averaged recall). A 213

global metric (TE) based on the average of all 214

dataset-specific metrics is as well included. For 215

4Stance detection is a classification task with three labels,
namely, favor, against and none.

5Irony detection is a binary classification task with two
labels, namely, irony and non-irony.
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Model Emoji Emotion Hate Irony Offensive Sentiment Stance All
ChatGPTllm 18.2 - - - - 63.7 56.4 -
Rob-rt pt 31.4 78.5 52.3 59.7 77.1 69.1 66.7 61.0
Rob-tw pt 29.3 72.0 46.9 65.4 80.5 72.6 69.3 65.2
XLM-rpt 28.6 72.3 44.4 57.4 75.7 68.6 65.4 57.6
XLM-twpt 30.9 77.0 50.8 69.9 79.9 72.3 67.1 64.4
Bertweetpt 33.4 79.3 56.4 82.1 79.5 73.4 71.2 67.9
TimeLM-19pt 33.4 81.0 58.1 48.0 82.4 73.2 70.7 63.8
TimeLM-21pt 34.0 80.2 55.1 64.5 82.2 73.7 72.9 66.2
Rob-bs (CE)ft 30.9 76.1 46.6 61.7 79.5 71.3 68.0 61.3
Rob-bs (CE+SCL)ft 32.0 78.1 49.4 68.0 79.6 72.0 69.4 64.1
Metric M-F1 M-F1 M-F1 F(i) M-F1 M-Rec AVG(F) TE

Table 1: Results on TweetEval. We divide three types of models for a fair comparison, namely, pre-trained LMs,
LLMs and fine-tuned LMs. Note that our proposed models are fine-tuned RoBERTa-base. Results from pre-trained
LMs and LLMs are provided as a reference to evaluate our fine-tuned models. SotA models are bold for each
subtasks in each model class indicated by the superscript (llm, pt and ft).

Tweet Topic Classification, we report macro aver-216

age precision, recall, F1, and accuracy.217

4.3 Result218

We compare models fine-tuned with a combined219

SCL and CE loss, compared with models fine-tuned220

with only CE loss. The choice of hyper-parameters221

is presented in A.1. All experiments are run with a222

single NVIDIA RTX A6000 48 GB graphics card,223

and are run three times with different seeds (0, 1224

and 2). Numbers shown in the following section225

represent the average value over three seeds.226

We provide three categories of baseline models,227

including (a) LLMs (Kocon et al., 2023), (b) pre-228

trained LMs (Barbieri et al., 2022; Nguyen et al.,229

2020; Loureiro et al., 2022; Barbieri et al., 2020)230

and (c) fine-tuned LMs (Barbieri et al., 2020).231

TweetEval. We compare RoBERTa-base fine-232

tuned with and without SCL loss in the TweetEval233

benchmark. All hyper-parameters are shared across234

seven sub-tasks. We observed (Table 1) that mod-235

els fine-tuned with the linear combination of a SCL236

and a CE loss show an improvement, ranging from237

0.1 to 8.3 percentage points. Although the perfor-238

mance of our fine-tuned model (CE+SCL) is not as239

good as the SotA pre-trained LMs, it surpasses the240

performance by ChatGPT in all subtasks and by its241

pretrained counterparts in various subtasks.242

Tweet Topic Classification. According to results243

shown in Table 2, the SCL+CE model outperforms244

the CE baseline on the Tweet Topic Classification245

benchmark by large margins. Tweet Topic Clas-246

sification is a single-label classification task with247

Model P R F1 Acc
Rob-bs (CE) 64.8 66.7 65.6 85.9
Rob-bs (CE+SCL) 76.9 75.7 76.2 88.2
SotA 76.5 68.9 70.0 86.4

Table 2: Results on Tweet Topic Classification. SotA
refers to TimeLM-19 (Loureiro et al., 2022).

six classes. Moreover, it surpasses the state-of-the- 248

art model presented in the original paper (Antypas 249

et al., 2022). 250

5 Conclusion 251

With the observation that user-generated microblog 252

content contains a large volume of noise that is in- 253

herent in the dataset, we develop a generic yet sim- 254

ple microblog classification fine-tuning framework 255

with a SCL-based regularizer in the training objec- 256

tive. Our framework improves the baseline variant 257

that is fine-tuned with only a cross-entropy loss by 258

large margins across all tasks on the TweetEval and 259

Tweet Topic Classification benchmarks. On Tweet 260

Topic Classification, our model also surpassed the 261

state-of-the-art models which are pre-trained on 262

microblog-related corpora. The ablation study in 263

Appendix A.2 in shows the importance of utilizing 264

label information for the SCL regularizer. By quali- 265

tatively evaluating the model’s prediction, we have 266

identified two types of commonly made errors in 267

Appendix A.3. 268
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Limitations271

Albeit evidence has shown that our training frame-272

work improves transformer-based models’ perfor-273

mance on English microblog classification tasks.274

There exist three limitations that we are aware of.275

First, other variants of text augmentation tech-276

niques have not been experimented with in this277

work. Contrastive learning as a learning framework278

learns good representation in terms of good class279

separability. A critical component that influences280

learning is data augmentation. Notably, how to do281

data augmentation on text is by itself an important282

and challenging topic. We ground our hypothesis283

based on observations made by others, which use284

the dropout mechanism in the transformer-based285

feature extractors. Yet, it is not clear why and how286

relying on such a simple mechanism creates good287

results in terms of quality.288

Second, microblog classification benchmarks of289

languages other than English have not been ex-290

perimented with. Tested on all publically avail-291

able English microblog classification datasets, we292

claim that our framework is generic only to English293

corpora. However, it is interesting to investigate294

whether it generalizes to other languages as well,295

in particular, low-resource languages. Yet that adds296

another layer of complexity, which is learning with297

limited label information.298

Third, the effect of batch size is not experi-299

mented with due to the limit in our computational300

resources. Large batch size is another key hyper-301

parameter that leads to the success of contrastive302

learning. The upper threshold that is constrained303

by our GPU device is 96. This includes an anchor304

batch of size 32 together with its two augmented305

batches.306

Ethics Statement307

To our knowledge, this work does not concern any308

substantial ethical issue. Corpora used in this work309

are preprocessed by masking all user mentions and310

links. Example sentences shown in this paper do311

not harm any individuals or groups. Of course,312

the application of classification algorithms could313

always play a role in Dual-Use scenarios. However,314

we consider our work as not-risk-increasing.315
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A Appendix 462

A.1 Hyper-parameters 463

For any anchor sentence, two augmented views are 464

generated via the dropout augmenter. The dropout 465

rate of both the self-attention and linear layer in the 466

transformer-based feature extractor is set to 0.1. We 467

use Adam optimizer with a learning rate of 1e− 5. 468

The learning rate is warmed up for 10 epochs. 469

Warming up the learning rate at the beginning of 470

the training phase prevents the model from early 471

over-fitting. The total number of training epochs 472

varies for all tasks, since we use early stopping on 473

the validation set with a patience of 5 epochs. We 474

conduct a hyper-parameter search on the SCL loss 475

ratio α ∈ {0.1, 0.3, 0.5, 0.7, 0.9} and the temper- 476

ature parameter τ ∈ {0.03, 0.1, 0.3, 0.5, 0.7, 0.9}. 477

The best combination is α = 0.5 and τ = 0.9. 478

Note that we use a batch size of 32, so the aug- 479

mented batch contains 96 instances. This is ex- 480

tremely small compared with other work in con- 481

trastive learning, which suggests larger batch size 482

benefits learning. However, due to the upper limit 483

of the GPU used in our lab, we can not conduct ex- 484

periments investigating the effect of a larger batch 485

size. 486
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Model Emoji Emotion Hate Irony Offensive Sentiment Stance All
Rob-bs (CE+SCL) 32.0 78.1 49.4 68.0 79.6 72.0 69.4 64.1
Rob-bs (CE+SSCL) 25.3 59.4 40.2 55.2 79.4 71.8 60.6 56.0
Metric M-F1 M-F1 M-F1 F(i) M-F1 M-Rec AVG(F) TE

Table 3: Results on models fine-tuned with a SSCL and a CE loss, compared with the same model fine-tuned with a
SCL and a CE loss, evaluated on TweetEval.

(a) CE+SCL (b) CE+SSCL

Figure 3: Confusion matrix on the emotion detection subtask.

Model Pr Recall F1 Acc
Rob-bs (CE+SCL) 74.3 76.0 74.9 88.2
Rob-bs (CE+SSCL) 63.4 57.4 43.5 33.0

Table 4: Ablation study result on models fine-tuned
with SSCL loss and CE loss, compared with the same
model fine-tuned with SCL loss and CE loss, evaluated
on Tweet Topic Classification.

A.2 Ablation Study487

To remove the effect of SCL’s intrinsic negative488

mining property, We conducted an ablation study489

on replacing the SCL loss term with a SSCL loss490

term, while keeping the CE loss. The motivation491

is to study the importance of label information in492

learning the representation of microblog texts. The493

model is evaluated on the same benchmarks above.494

Quantitative experiments. Experiment details495

including architecture and evaluation in the SSCL496

setting are identical to all other experiments, as497

described in Section 3.1 and Section 4. SSCL is498

an instance discrimination task with the following499

loss in Equation 3.500

LSCCL = − log
exp(hi · hj/τ)∑

k∈K(i)

exp(hi · hk/τ)
(3)501

The implementation difference is only shown 502

in the computation of the negative log-likelihood, 503

compared with the SCL loss. Specifically, the 504

SSCL loss does not include a summation over pos- 505

itive pairs of the same label as in Equation 1, as 506

well as the summation over the “true” negative 507

pairs whose labels are different. This indicates that 508

SSCL does not create an averaged representation 509

over all positive samples. Therefore, the pulling 510

and pushing effect of SSCL ignores information 511

carried by distances between other positive sam- 512

ples, leading to a higher chance of creating a worse 513

representation. Being able to consider multiple pos- 514

itives and negatives as in SCL, the model creates 515

more separable features, resulting in a more robust 516

clustering of the representation space. 517

Table 3 and Table 4 show the result of the clas- 518

sification performance on TweetEval and Tweet 519

Topic Classification, respectively. A noticeable 520

difference in performance, compared with models 521

fine-tuned with SCL and CE, is observed. 522

Qualitative study. To investigate qualitatively 523

the different behaviors on both classifiers, we first 524

provide the confusion matrices evaluated on the 525

Emotion Detection (test set) subtask in TweetEval, 526

as shown in Figure 3. We notice the CE+SSCL 527

model creates 17.3% (44 absolute counts) false pre- 528

7



Sentences SCL SSCL True Labels
@user @user Yip. Coz he’s a miserable huffy guy anger joy anger
And let the depression take the stage once more sadness joy sadness
I’m legit in the worst mood ever. #annoyed #irritated anger sadness anger
Of course I’ve got a horrible cold and am breaking out 2 days
before grad

sadness joy sadness

the thing about living near campus during the summer is that
it’s a ghost town but now everyone is back and im #annoyed

anger sadness anger

I need a beer #irritated anger sadness anger

Table 5: Ablation study result on models fine-tuned with SSCL loss and CE loss, compared with the same model
fine-tuned with SCL loss and CE loss, evaluated on TweetEval.

dictions more than the CE+SCL model. Addition-529

ally, we draw samples that are correctly classified530

in the CE+SCL model while being falsely classified531

in the CE+SSCL variation in Table 5. Interestingly,532

38.6% (39 out of 101) of those samples contain533

emojis, while 23.3% (330 out of 1421) of the full534

test set contains emojis. We observe that the use of535

certain emojis creates ambiguous predictions. It is536

likely that the model overfits to emojis that lead to537

misinterpretations. For example, a smiley emoji (538

) does not necessarily entail positive emotions.539

Utilizing label information, as in SCL, one can540

enforce the model to avoid over-fitting to such mis-541

leading information. Since the scope of this study542

is not to study noises that the model overfits, we543

leave this investigation to future work.544

A.3 Error Analysis545

By inspecting the classification result, we have546

identified the following two types of texts that547

are commonly falsely classified by the CE+SCL548

model.549

First, texts that lack contextual cues. Such sen-550

tences are either very short, such as “Duty calls.”;551

or impossible to the annotators to interpret without552

further information, such as “@user @user Can553

you falter Katli?” and “@user Haha nightmare”.554

The characteristic of microblog posts inevitably555

allows for different ways of interpreting the sen-556

tences. Thus, it is natural for annotators to embed557

this uncertainty in the data.558

Second, texts whose ground truth label is am-559

biguous to our evaluation. For example, “Binge560

watching #revenge im obsessed.” is labeled as561

anger, while the model’s prediction is joy. “Don’t562

grieve over things so badly..” is labeled as sadness563

and the model’s prediction is optimism. The anno-564

tation process of microblog classification corpora565

often adopts a generous post-aggregation strategy, 566

leading to the phenomenon where instances with 567

low inter-annotator agreement are not discarded. 568

We acknowledge, that the noise in labels creates 569

another difficulty for any classification model. 570

To conclude, we realize that the majority of the 571

falsely classified sentences have, to some extent, 572

various levels of ambiguities in the labels. The 573

ambiguities are mainly introduced by the charac- 574

teristic of microblog posts (e.g., lack of contextual 575

information in microblog posts), or in the anno- 576

tation process (e.g., a high inclusive rate in the 577

annotation phase). 578
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