
Abstract 1 

In modern automation settings, jobs are processed 2 

across numerous machines and are characterized by 3 

strong inter-task dependencies while adhering to 4 

limited equipment availability. When accounting for 5 

transportation of jobs between machines, this gives 6 

rise to a complex multi-agent routing problem with 7 

intricate operational limitations. Existing Multi-8 

Agent Path Finding (MAPF) algorithms used for 9 

routing jobs already consider some aspects such as 10 

robustness, uncertainty, and plan execution. In this 11 

paper, we propose MAPF-SC – a lifelong variant of 12 

MAPF that incorporates scheduling constraints for a 13 

continuous stream of tasks. We propose to solve 14 

MAPF-SC utilizing a Multi-Agent Reinforcement 15 

Learning (MARL) formulation with temporal and 16 

team reward. We investigate the effects of temporal 17 

and topological variations of various automation 18 

scenarios on the performance of our method. 19 

1 Introduction 20 

State-of-the-art automation settings involve multiple interact-21 

ing components that require coordinated actions. These sce-22 

narios can be conceptualized as multiple jobs simultaneously 23 

being transported to successions of machines for task pro-24 

cessing. Whether it is logistics, manufacturing, or laboratory 25 

and healthcare automation, the Multi-Agent Path Finding 26 

(MAPF) formulation can be used to address important as-27 

pects of these target domains such as collision avoidance and 28 

travel time minimization to ensure optimal and safe motion 29 

between machines. Recent works have shown significant pro-30 

gress in different variants of MAPF [Li et al. 2021; Shahar et 31 

al. 2021; Chudý et al. 2021]. 32 

 One key assumption prevalent across MAPF variants is in-33 

stantaneous task processing which is atypical in many real-34 

world situations. Even in the popular warehouse setting, a ro-35 

bot agent delivering a payload would certainly require a non-36 

instantaneous amount of time at the processing station. This 37 

discrepancy is amplified in domains such factory automation, 38 

where tasks demand specific non-trivial processing as a part 39 

of the automation pipeline. The automation workflow may 40 

also be subject to restricted space due to costs or physical 41 

constraints such as ventilation, power outlets, structural con-42 

straints, etc. Machines may further require additional time be-43 

tween tasks for operations such as component switching or 44 

decontamination. Finally, a job would have a specific se-45 

quence of operations to undergo, leading to strong prece-46 

dence constraints. Under the classical MAPF formulation, 47 

agent congestions will arise as they fail to capture the prece-48 

dence constraints and queuing effects induced by the intrica-49 

cies of the automation pipeline. 50 

 In this work, we formulate the MAPF-SC problem with ex-51 

ecution schedules and precedence constraints. Such con-52 

straints address the challenges of automation domains char-53 

acterized by earliest arrival times, deadlines, non-instantane-54 

ous task processing times, and inter-task precedence con-55 

straints. The schedule is enforced by the automation pipeline 56 

capabilities i.e., machine operating characteristics. To handle 57 

this, we model Multi-Agent Path Finding with Scheduling 58 
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Figure 1: Example MAPF-SC instance. The bottom plane encodes 

the spatial information. Agents (circles) need to go to goals (black 

squares) according to schedules (colored rectangles). The elevation 

of the rectangles represents the earliest arrival time, and its height 

represents the duration of the time-window. 



Constraints (MAPF-SC) as a sequential decision-making 59 

problem that builds upon recent works [Sartoretti et al. 2019; 60 

Damani et al. 2021; van Knippenberg et al. 2021] showing 61 

promising results in adapting to uncertain and dynamical en-62 

vironments in a scalable decentralized manner.  63 

2 Related Work 64 

Classical MAPF is concerned with finding collision-free 65 

paths for a group of agents from their start locations to their 66 

goal locations. There are many lines of work on solving 67 

MAPF [Surynek et al. 2019; Hoenig et al. 2016]. The related 68 

literature we focus on involves MAPF variants that factor in 69 

time, as well as Reinforcement Learning approaches to the 70 

problem. 71 

2.1 MAPF with Time  72 

Several works have studied temporal aspects of MAPF. 73 

Wang et al. [Wang and Chen 2022] focus on minimizing the 74 

violation of task specific due times. More recently, Gao et al. 75 

[Gao et al. 2023] focus on the maximizing the average cus-76 

tomer satisfaction proportional to the degree of deadline vio-77 

lation. Another line work [Ma et al. 2018; Zhang et al. 2022] 78 

focuses on the problem of maximizing the number of agents 79 

that reach their goals within a global deadline or satisfying 80 

precedence-constraints among goal sequences. The Flatland 81 

environment [Mohanty et al. 2020] simulates the railway set-82 

ting as a multi-agent problem with the additional motion and 83 

schedule constraints. However, trains are allowed to park off 84 

the map before their departure and after their arrival, limiting 85 

the complexity of the planning problem. 86 

2.2 Reinforcement Learning for MAPF 87 

Early works [Sartoretti et al. 2019; Damani et al. 2021] model 88 

MAPF as a MARL problem and utilize expert training to train 89 

decentralized policies with a mixture of imitation learning 90 

and reinforcement learning. Another line of work focus on 91 

solving MAPF with arrival and deadline constraints using 92 

Reinforcement Learning [Knippenberg et al. 2021] but are 93 

limited to instantaneous task execution and may remove 94 

agents outside their scheduled times similar to Flatland. 95 

3 Problem Formulation 96 

The MAPF-SC problem is defined by an undirected graph 97 

𝐺 = (𝑉, 𝐸), a set of 𝑚 agents {𝑎1, … , 𝑎𝑚}, and a schedule 𝑆. An 98 

example instance is illustrated in figure 1. These agents rep-99 

resent the jobs within the schedule, each having a sequence 100 

of associated tasks. The set of vertices 𝑉 corresponds to loca-101 

tions on the graph and the set of edges 𝐸 represents motion 102 

constraints for each vertex. At each step, an agent can either 103 

move to one of the unoccupied neighboring vertices or wait 104 

at its current vertex. Each agent 𝑖 is assigned a sequence of 105 

goals corresponding to vertices {𝑣𝑖
1, 𝑣𝑖

2…} according to the 106 

schedule. The schedule represents time-windows of goal 𝑗 for 107 

agent 𝑖 consisting of Earliest Arrival Time 𝐴𝑡(𝑖, 𝑗), Deadline 108 

𝐷𝑡(𝑖, 𝑗), and Goal Processing Time 𝑃𝑡(𝑖, 𝑗). An agent may ar-109 

rive at its goal prior to 𝐴𝑡(𝑖, 𝑗), but the task will not be pro-110 

cessed until the scheduled time 𝐴𝑡(𝑖, 𝑗). 𝐷𝑡(𝑖, 𝑗) indicates the 111 

latest time that an agent is allowed to reach its goal for pro-112 

cessing. 𝑃𝑡(𝑖, 𝑗) represents the task processing time during 113 

which the agent is not allowed to move from the goal posi-114 

tion. Figure 2 demonstrates relationship between these tem-115 

poral components. Scheduling constraints may also involve 116 

precedence among tasks assigned to the same machine where 117 

the order of arriving agents needs to be preserved. As in typ-118 

ical job shop automation workflows, the precedence con-119 

straints have a higher priority than the time-window con-120 

straints i.e., even if some agents are delayed past their dead-121 

lines, the order in which the machine processes them remains 122 

the same. These situations arise when machines require some 123 

postprocessing (e.g., replenish resource) after completing a 124 

task, leading to a lag in the execution of the schedule.  Finally, 125 

agents are always present on the graph from the beginning 126 

and do not disappear after completing their goals - the persis-127 

tence of all agents on a space-constrained track is a key chal-128 

lenge we aim to address. 129 

4 Method  130 

We model agent interactions with the environment as a Par-131 

tially Observable Markov Decision Process (POMDP) 132 

(𝑆, 𝑂, 𝐴, 𝑃, 𝑅, γ) where 𝑆 is the set of environment states, 𝑂 133 

is the set of partial observations, 𝐴 is the set of actions, 𝑃 is 134 

the transition probabilities, 𝑅 is the reward function, and 𝛾 135 

is the discount factor. We aim to learn a decentralized policy 136 

that can be deployed to different numbers of agents. 137 

4.1 Observations  138 

The observation space consists of two main components. The 139 

first component is the agent-centered Local Field of View 140 

(FOV) which builds upon earlier related works [Sartoretti et 141 

al. 2019; Damani et al. 2021]. The FOV consists of channels 142 

denoting obstacles, the presence of other agents, and other 143 

agents’ target locations. An additional channel provides the 144 

distance from each cell in the FOV to the agent’s goal. In our 145 

experiments, we use a 7x7x5 FOV. 146 

 The second component encodes the agent’s task as vectors. 147 

The spatial context of the task is represented through a three-148 

dimensional vector, 𝑮𝒔, as the difference in x-coordinates, 149 

difference in y-coordinates, and the magnitude of the vector 150 

from the agent’s current location to its goal. The context is 151 

captured in another three-dimensional vector, 𝝉𝒕 , that pro-152 

vides the remaining time until the earliest arrival time 𝐴𝑡, the 153 

duration until the deadline 𝐷𝑡, and a binary delay indicator if 154 

the deadline 𝐷𝑡 has passed. The dimensions of this… 155 

4.2 Rewards  156 

Contrary to classical MAPF, we do not assign a motion pen-157 

alty to minimize the travel distance. Our intuition is that an 158 

Figure 2: Different aspects of scheduling constraints. 



agent may have surplus time until its earliest arrival time 𝐴𝑡. 159 

Such an agent may potentially take a longer path to allow 160 

other agents to pass through. Taking this into consideration, 161 

minimizing only the travel distance may be detrimental to the 162 

throughput due to induced congestion. In our setup, each 163 

agent receives a positive reward when it reaches its goal 164 

within the scheduled time-window and a negative reward for 165 

each time step it occupies its goal before its earliest arrival 166 

time 𝐴𝑡. Similarly, agents receive a negative reward for each 167 

time step it has not reached its goal past the deadline 𝐷𝑡 to 168 

incentivize arriving on time. However, agents may fail to 169 

meet their schedules on-time especially early on in training. 170 

Rather than terminating the episode, we permit soft deadline 171 

violations to allow the schedule’s continued execution. All 172 

precedence constraints of the schedule remain enforced 173 

through the environment, which results in a queueing system 174 

for agents that have overlapping goal locations. 175 

4.3 Architecture  176 

We process the local FOV with a 3-layer convolutional neural 177 

network, each layer followed by a max pooling operation (ex-178 

cept for the last one which is followed by a global average 179 

pooling) to produce a FOV representation vector. The task 180 

vectors (location and time) are then subsequently fed through 181 

fully connected layers to produce a combined task represen-182 

tation vector. Both the FOV and task vectors are then passed 183 

through a recurrent module to incorporate information about 184 

past states as a mitigation strategy for partial observability 185 

problems. The model is optimized with Proximal Policy Op-186 

timization which has shown great results on cooperative 187 

multi-agent settings [Yu et al. 2022]. 188 

5 Experiments  189 

We provide a comprehensive overview of the layout design’s 190 

attributes and its influence on input spatial characteristics. 191 

Simultaneously, we adjust the time-windows’ parameters to 192 

induce variations in the resulting schedule slack. 193 

5.1 Layouts  194 

While scaling to a larger number of agents within the same 195 

fixed layout is an important aspect of MAPF, we argue that it 196 

does not hold the same value in the time-constrained scenario 197 

where the throughput of the entire system is limited by the 198 

schedule capacity itself. In most automation settings, the 199 

tasks are finite and are rate-limited by the machines that pro-200 

cess them. Adding more agents will simply lead to them wait 201 

idle and have sufficient time to navigate the track. This means 202 

that as the number of agents increases in MAPF-SC, the bot-203 

tleneck becomes then the schedule itself rather than the path 204 

finding algorithm. 205 

 To investigate these effects, we focus on more restrictive 206 

layout designs as shown in the Layout column in table 1. 207 

These capture variations in restricted tracks connected by sin-208 

gle lane corridors to capture situations with limited spatial re-209 

sources e.g., repurposing an existing automation plant. We 210 

vary the layouts across three design dimensions: 211 

• Redundancy: Lanes are connected to remove dead ends 212 

and provide continuous coverage of the entire layout. 213 

• Size: The number of machines and corresponding lanes are 214 

varied to create small (3) and large (6). 215 

The agent count is adjusted proportionally and set to the num-216 

ber of machines + 2. 217 

• Padding: Decision regions where agents have more than 218 

two degrees of freedom are padded with additional vertices. 219 

5.2 Schedules 220 

To replicate the temporal intricacies found in automation do-221 

mains, we introduce variations in schedule distributions 222 

across two dimensions, similar to the approach in the Flatland 223 

environment [Mohanty et al. 2020; Laurent et al. 2021]: 224 

• Single-agent shortest distance (A* factor) which is the 225 

minimum distance traveled by an agent assuming there are no 226 

other agents in the environment. 227 

• Multi-agent congestion factor where we add the average of 228 

all single agent shortest distances as a congestion estimate. 229 

 These dimensions represent scheduling constraints that in-230 

fluence the earliest arrival time for each agent providing min-231 

imal necessary conditions for the schedule to be feasible. Ad-232 

ditionally, we vary the size of the time-windows from earliest 233 

arrival time to deadline, and the task processing runtime be-234 

fore completion. We investigate two distributions of sched-235 

ules we use: 236 

• Tight: A* factor is sampled uniformly from [1, 2] and task 237 

durations are sampled uniformly from [4, 11]. 238 

• Relaxed: A* factor is sampled uniformly from [1.5, 3] and 239 

task durations are sampled uniformly from [5, 25]. 240 

We generate schedules specific to each layout using OR-241 

Tools [Perron and Furnon 2023] where the solver optimizes 242 

for a randomly sampled list of agent tasks. 243 

6 Results and Discussion 244 

Through the experiments, we note that the model tends to 245 

complete more goals on-time on a relaxed schedule versus a 246 

tight one. Intuitively, this reflects a less constrained optimi-247 

zation problem since agents have less restricted time-win-248 

dows to reach their goals. Table 1 summarizes the results for 249 

different spatial and temporal configurations. 250 

 In the closed-loop layouts (table 1, rows 1-4), we find that 251 

the agents learn to maintain a state of steady flow by circling 252 

the track. Upon nearing their earliest arrival times, we ob-253 

serve deviation from this behavior as agents move directly 254 

towards their goals. This continuous flow behavior globally 255 

reduces congestion. In the padded layouts with dead end 256 

lanes (table1, rows 5-6), agents learn maneuvering behaviors 257 

through the padded sections surrounding the decision re-258 

gions. Agents also tend to use these padding vertices as 259 

“parking” to wait for their scheduled goals without blocking 260 

other agents.  261 

 In general, we find the most restrictive instances (table 1, 262 

rows 7-8) to be less stable in training and the RL policy often 263 



collapses without converging to acceptable performance lev-264 

els. More restrictive optimization problems induce harder un-265 

derlying MDPs which destabilizes the RL training [Hafner et 266 

al. 2023]. The less restrictive scenarios (rows 1-6) almost 267 

converge near 10k episodes while the most restrictive scenar-268 

ios progress slower by an order of magnitude. We hypothe-269 

size that the performance degradation in the more restrictive 270 

scenarios has to do with the increasing planning complexity 271 

arising from the restrictive maneuverability of the layouts. 272 

Examples of failed instances are shown in figure 3. These re-273 

stricted layouts yield configurations that require long-horizon 274 

swapping maneuvers with higher degrees of agent coordina-275 

tion, and we look to further explore… 276 

7 Conclusions  277 

In this paper, we proposed a variant of the MAPF problem 278 

(MAPF-SC) to address scheduling constraints using shared 279 

rewards and spatiotemporal observations. We evaluated our 280 

algorithm on a variety of automation layouts and schedule 281 

distributions, and observed how the spatial constraints pre-282 

sent a harder challenge than the temporal constraints. As next 283 

steps, we aim to improve agent coordination to improve per-284 

formance in the more challenging layouts.  285 

Disclaimer 286 

The concepts and information presented in this paper are 287 

based on research results that are not commercially available. 288 

Future commercial availability cannot be guaranteed. 289 
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Table 1: Results for layouts with different degrees of re-
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Figure 3: Example failure cases. Agents are represented by 

squares with lines pointing to their scheduled goal locations. 
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