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ABSTRACT

With recent advancements in long-context model variants, Large language mod-
els (LLMs) can conveniently process different types of task-related information
by simply converting them into an input sequence, even consisting of over 100K
tokens. Though with a simple and unified form, there is still considerable room
in leveraging input context effectively and efficiently. In this paper, we propose
a simple yet effective CASD (Context-Aware Speculative Decoding) method to
boost context usage. CASD is a decoding algorithm that requires no extra train-
ing or draft models. It improves not only generation performance but also in-
ference efficiency. Experiments on 8 datasets (including question answering,
summarization and code completion tasks in LongBench) show that CASD in-
creases the average generation score by 3.3 points. CASD achieves a mean ac-
ceptance length of 3.10 and a speed-up ratio of 1.99. Moreover, CASD integrates
effectively with context compression technology, addressing the issue of exces-
sive memory overhead caused by long contexts. Since CASD directly retrieves
token-level content from the input context to boost the generation accuracy, it
can effectively mitigate the possible side-effects of context compression methods
when crucial context information is dropped. Our anonymous code is available at
https://anonymous.4open.science/r/CASD.

1 INTRODUCTION

Directly prompting large language models (LLMs) with all relevant task information (e.g., task
description, query, relevant documents) has become a common setting when serving LLMs for real-
world applications, especially with recent long-context models (Anthropic, 2024; Meta-AI, 2024).
However, overly long input context might pose great challenges to LLMs in accurately capturing
salient context information and achieving decent generation performance, possibly making LLMs
unfollow instruction and output hallucinations (Belyi et al., 2024). Besides, since prefilling long
context input significantly increases memory overhead, many recent works explore prompt com-
pression methods (Jiang et al., 2023; Xu et al., 2024; Pan et al., 2024) to lower inference costs.
These compression techniques will inevitably drop part of critical context information, leading to
inferior generation performance.

Speculative decoding (Stern et al., 2018; Leviathan et al., 2023; Cai et al., 2024; Li et al., 2024)
algorithms have recently shown excellent performance in lossless decoding acceleration for autore-
gressive models. They generate multiple tokens in a single step by drafting with a small model
and verifying with the target model. The draft process can act as an interface to access external
information. REST (He et al., 2024) retrieves drafts from a general database. However, the input
context can provide drafts that are more relevant to the query and of higher quality. Inspired by this,
we propose a context-aware speculative decoding algorithm with conditional verification to enhance
the generation accuracy and efficiency of LMs, which is abbreviated as CASD. The overall design
is demonstrated in Figure 1. CASD uses the original context as the draft source and replaces the
strict verification mode in conventional speculative decoding with conditional verification, allowing
the model to access and utilize the retrieved information for accurate generation. In each decoding
step, pieces of the relevant context are verified and accepted at the token level, thus making better
use of the contextual information.
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Figure 1: Overall illustration of CASD. CASD constructs a draft pool with the full relevant context.
Then, the context can be directly inserted into the prompt or be compressed to adapt to the maximum
input length determined by the model or memory. After prefilling the prompt into the fixed LM,
CASD retrieves a draft tree from the draft pool according to the current prefix. The fixed LM
performs parallel conditional verification on the draft tree based on the output distribution. One or
multiple tokens are accepted in each decoding step.

Experimental results in Section 4.2 show that CASD outperforms the baseline for 8 datasets in ques-
tion answering, summarization and code completion tasks. With a manually adapted verification
condition, the performance of CASD can be further improved, demonstrating great potential for
reusing the context at the decoding stage. Experiments in Section 4.4 indicate that CASD can be
well adapted to prompt compression techniques and can make up for the performance loss caused by
the compression to some degree. CASD improves the average scores by 2.09, 1.00 and 1.39 under
a compression ratio of 3×, 5× and 10× when conducting prompt compression by LLMLingua-2
(Pan et al., 2024). As an external component, the draft pool does not need to be input into the
model, so it has no strict length limit. For context within 1M tokens, the draft retrieval time is less
than 0.01 seconds. As a result, we can construct the draft pool with full context while inputting the
compressed one. Even if some crucial passages were cut out, the draft pool retains the possibility
that the LM considers them. Besides, CASD achieves a speed-up ratio of up to 2 times compared to
autoregressive decoding, which is detailed in Section 5.1.

To sum up, we introduce a simple yet effective approach called CASD in this paper, which makes
better use of the relevant context during generation. Our contributions are as follows:

• We propose a novel decoding paradigm CASD for LMs, which does not require additional train-
ing and draft models. It applies to most scenarios where each request contains a question and
the relevant context. CASD reuses the input context during the decoding process. It enhances
generation accuracy from the token level, thus making better use of the relevant context.

• The proposed method can be effectively combined with prompt compression methods. While
dealing with the problems caused by long context input, it also alleviates the loss in performance
caused by the compression of vital information.

• CASD improves generation accuracy while reducing inference latency. It increases the average
score on 8 datasets by 3.3 points and increases throughput by up to 2 times.
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2 RELATED WORK

Long Context Generation Using context to improve generation performance is typical in retrieval-
augmented generation (RAG) scenarios. RAG methods (Zheng et al., 2023; Dai et al., 2023; Gao
et al., 2023; Fan et al., 2024; Zhao et al., 2024) retrieves relevant documents based on the given input
for model reference, thus improving the quality of generation. The naive approach (Ma et al., 2023)
applies the search engine as the retriever and directly combines the retrieved documents with the
user query as the input for frozen LLMs (e.g., GPT-4 (Achiam et al., 2023)). Most RAG methods
(Yoran et al., 2023; Luo et al., 2023; Asai et al., 2023; Melz, 2023; Yan et al., 2024; Wang et al.,
2024b) leveraging context on the input side to enhance generation. Self-RAG (Asai et al., 2023)
introduces generating reflection tokens to enable customizing models’ behaviors for different tasks.
Speculative RAG (Wang et al., 2024b) adopts instruct-tuned draft models to drafting according
to different retrieved documents and uses the target model to pick out the best draft as the final
response. Apart from them, CoG Lan et al. (2023) proposes a encoder-based model architecture to
seek suitable text spans from the context during generation. Cao et al. (2024) improves CoG through
linguistic heuristics initialization and iterative self-reinforcement.

Prompt compression (Li et al., 2023; Jiang et al., 2023; Xu et al., 2024; Pan et al., 2024) methods
have been proposed to extract crucial information from context and deal with the burden of long
text on models and hardware resources. LLM-Lingua (Jiang et al., 2023) employs a small language
model to conduct iterative token-level prompt compression, which takes into account the conditional
dependencies between tokens. LLM-Lingua2 (Pan et al., 2024) treats this problem as a binary
classification problem and trains an encoder model as a compressor.

Speculative decoding (SD) (Stern et al., 2018; Leviathan et al., 2023; Xia et al., 2023; 2024) adopts
a ”drafting-verification” pattern to lossless accelerates autoregressive decoding. At each decoding
step, a small model is used to draft the following few tokens based on the current input. Then, the
target model verifies the draft in parallel and accepts tokens that are consistent with the original
output. In this way, multiple tokens can be generated in a single step. Some works (Leviathan
et al., 2023; Cai et al., 2024; Li et al., 2024) employ independent small models or additional trained
modules as the draft models, while others (Saxena, 2023; Fu et al., 2024; He et al., 2024) retrieve
drafts from a draft pool. The draft structure has evolved from n-grams (Leviathan et al., 2023; Fu
et al., 2024) to draft trees (Cai et al., 2024; Li et al., 2024; Wang et al., 2024a). Among them,
REST (He et al., 2024) uses a common public data source to build a draft pool and retrieves the tree
structure draft according to the last several tokens of the current sequence at each decoding step.

3 CASD

In this section, we introduce CASD, a context-aware speculative decoding algorithm based on con-
ditional verification that improves generation performance and efficiency. Our approach applies to
scenarios where the input can be separated into a query and a supporting context.

Given a query q and the relevant context dq((q,dq) ∈ D) , where D is the whole dataset, our goal
is to make the language model M generate an answer Âq that are as close to the ground truth Aq

as possible based on q and dq . Query q and dq are usually highly correlated. In addition, Aq often
contains some the original phrases in dq .

Based on the above observations, we argue that the dependence of the content generated by the
model on the relevant context can be enhanced to achieve better generation accuracy. We design
CASD, a context-aware speculative decoding algorithm with conditional verification. By retrieving
high-quality drafts from the relevant context according to the current prompt, CASD enables the
LM to call the original fragment in the context directly under certain conditions. It enhances the
generation performance at a token level.

The overall design of CASD is demonstrated in Algorithm 1. CASD does not require any training
or external data other than the context that come with the question. Specifically, we construct a draft
pool with dq for each request. Query q and dq are applied to a task-related template to construct
a prompt p = (x1, x2, ..., xl), where xi(i = 1, 2, ..., l) represents each token and l represents the
prefix length, which is then input into the model to obtain the first next token:

yl+1 ∼ p(xl+1|(x1, x2, ..., xl),M), (1)

3
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Algorithm 1 Context-Aware Speculative Decoding.
Input: Query q,relevant context dq , LM M , threshold δ.
Output: Prediction Âq

1: R← dq ▷ Initialize the draft retriever R with full context.
2: if compress prompt then
3: dq ← Compress(dq)
4: end if
5: p = (x1, x2, ..., xl)← q + dq

6: while ⟨eos⟩ not in p do
7: T← R(p) ▷ Retrieve the draft tree according to the current prompt.
8: P←M(T) ▷ Get the next token distributions for all tokens in the draft.
9: y ← Conditional-verify(P,T, δ) ▷ Accept the longest draft that meets the conditions.

10: p← p+ y
11: end while
12: Âq ← p

where p(·|·,M) represents the output probability distribution of M .

Context-aware drafting We conduct drafting at each decoding step. Take the first decoding step
as an example. The draft pool provides a draft tree T and the corresponding tree attention mask
according to the current prompt p = (x1, x2, ..., xl, yl+1). T is defined as:

T = (V,E),V =

l+m⋃
i=l+1

ni⋃
j=1

{
ŷji

}
, (2)

where V and E is the set of its nodes and edges. ni is the number of retrieved tokens in the ith
layer of T. m is the depth of T. We use the exact-match-based retrieval algorithm proposed by He
et al. (2024) to retrieve and construct the draft tree from the draft pool. The tree size changes as the
retrieval result changes. Then we input T and the attention mask into the model and get the output
probability distribution p(yi|F(ŷji ),M) for each node, where F(ŷji ) is the set of all parent nodes
(including prefix) of ŷji .

Conditional verification For standard speculative decoding, tokens in T are verified by position
order. For draft token ŷji , it is accepted if it matches the token sampled from p(yi|F(ŷji ),M). If
ŷji is rejected, all its child nodes will be rejected. Through this rigorous verification, the output of
the model at any temperature will be consistent with the vanilla autoregressive decoding. However,
our goal is to use the relevant context to enhance the reliability of the generated content. An overly
strict verification mode limits model utilization of key information in the relevant context, while
over-reliance on the context may reduce the quality of the output. Therefore, we set a probability
threshold δ to balance the model’s confidence in the context and the quality of generation. Draft
token ŷji will be accepted under the following condition:

p(ŷji |F(ŷ
j
i ),M) > max(δ, p(⟨eos⟩ |F(ŷji ),M)). (3)

The probability of ⟨eos⟩ token is taken into consideration to avoid duplicate answers generation.
Note that its parent nodes should still have been accepted. Otherwise, it will be rejected uncondi-
tionally. In addition, to further ensure the quality of generation, we also consider a mixed condition
verification mode, which accepts ŷji if:

p(ŷji |F(ŷ
j
i ),M) > max(δ, p(⟨eos⟩ |F(ŷji ),M)) and ŷji ∈ Topk(p(yi|F(ŷji ),M)), (4)

where Topk(p) return the set of k tokens with the highest probability in distribution p.

We argue that using the probability threshold condition is superior to using the top-k condition alone
since the output probability directly reflects the model’s confidence in each draft token. Moreover,
the verification condition of top-k is not applicable for some extreme cases. For example, suppose
the probability of a certain token is close to 1, and the probability of all other words is close to 0,
except for the token with the highest probability. In that case, no other token should be accepted. If
all tokens have the same probability, then they should all be accepted or rejected at the same time.
However, the top-k verification condition will only pass individual tokens and reject others.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Combination with prompt compression Excessively long inputs have been a challenge for com-
puting resources and a maximum length of some LLMs, which also affect inference efficiency.
However, this is not a problem for the plug-in draft pool. For context with less than 1M tokens,
changes in context length have little impact on the retrieval efficiency of the draft pool, which is
elaborated in Section 5.1. To cope with the challenges posed by long context issue, we construct the
draft pool with full context and input the compressed prompt by LLMLingua-2 Pan et al. (2024).
Note that we only compress the context and leave the original question or instruction intact. In
this way, we retain the potential for missing critical information caused by prompt compression to
influence the model’s output.

4 EXPERIMENTS

4.1 SETTINGS

We compare the performance of CASD with vanilla autoregressive decoding with LLaMA3.1-8B-
Instruct (Meta-AI, 2024). We did not compare with the similar enhanced generation methods be-
cause they require additional training or use additional models. We evaluate the proposed method
on 3 different tasks: 1) Question Answering (QA): Nature Question (NQ) (Kwiatkowski et al.,
2019), TriviaQA (TQA) (Joshi et al., 2017), 2WikiMQA (Ho et al., 2020) and HotpotQA (Yang
et al., 2018), 2) Summarization: Multi-News (Fabbri et al., 2019) and GovReport (Huang et al.,
2021), 3) Code Completion: RepoBench-P (Liu et al., 2024) and LCC (Guo et al., 2023). For the
NQ dataset, we randomly sampled 300 queries from the validation set for evaluation. We use subsets
sampled by LongBench (Bai et al., 2023) for other datasets. We report F1 score for QA datasets,
ROUGE-L for summarization datasets and Edit Sim for code completion datasets.

We show the performance of CASD with two different verification strategies: 1) CASD (Fixed):
We set the threshold δ to 0.1 for all experiments, 2) CASD (Mixed): With the threshold set to 0.1,
the probability of all accepted tokens during verification is required to rank in the top 5 in their
corresponding output distributions. In addition, to explore the upper limit of CASD, we conduct
two other sets of experiments with manual parameter adjustment: 1) CASD (Oracle-D) (Dataset-
level threshold adjustment): We select the best threshold δ in {0.1, 0.01, 1e-3, 1e-4, 1e-5} for each
dataset (without the top-k requirement). 2) CASD (Oracle-S) (Sample-level threshold adjustment):
Similarly, we tune δ for each sample within the same search space. We did not consider the lower
thresholds as the coherence of the model’s responses will be significantly diminished.

4.2 MAIN RESULTS

Table 1: Performance of different methods with LLaMA3.1-8B-Instruct. For all metrics, higher
scores indicate better performance. The best results are in bold (except for Oracle-D and Oracle-S).

Method
NQ TQA 2WikiMQA HotpotQA Multi-News GovReport RepoBench-P LCC

Avg.
F1 F1 F1 F1 ROUGE-L ROUGE-L Edit Sim Edit Sim

Vanilla 29.13 92.13 42.83 49.80 13.51 15.96 48.11 66.05 44.69

CASD (Fixed) 33.51 92.62 44.67 51.72 14.97 20.09 56.31 69.24 47.89

CASD (Mixed) 33.69 92.62 43.95 52.46 14.83 20.06 56.63 69.46 47.96
CASD (Oracle-D) 43.78 92.75 44.52 52.46 15.14 20.13 58.08 70.72 49.70

CASD (Oracle-S) 53.84 92.75 45.43 53.84 17.79 23.40 61.14 74.16 52.79

Table 1 shows the performance of CASD on the above tasks. We report the average scores of the 8
datasets in the last column. Even with a fixed heuristic threshold, CASD can effectively improves
the generation performance. CASD (Fixed) and CASD (Mixed) outperform the baselines on all
datasets. CASD (Mixed) is slightly better than CASD (Fixed) in terms of the average score. It
improves the score from 44.69 to 47.96 compared to vanilla decoding.

Furthermore, the results of CASD (Oracle-D) and CASD (Oracle-S) highlight the high-performance
potential of CASD. If equipped with appropriate thresholds, the generation quality can be further
improved, especially for NQ, where the maximum improvement is from 29.13 (baseline) to 53.84.
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4.3 PERFORMANCE UNDER DIFFERENT THRESHOLDS

Figure 2: Performance of CASD under different thresholds. The top-k condition is not applied.
The dotted lines in each figure are the baselines of the dataset with the corresponding colors.

We evaluate CASD with different verification strictness in this section. Figure 2 demonstrates the
performance of CASD on each data set as the threshold changes. F1 score increases with decreasing
threshold for NQ while decreases for other 3 QA datasets. The ground truth is implicit in the context
for each sample in NQ. A more relaxed validation condition makes the model tend to use the original
statement in the context, which may be more accurate than the model’s output in some cases, thus
leading to better results. Therefore, for high-quality context, the threshold can be lowered to increase
confidence in the context for better performance and efficiency. For both summary datasets, the
overall trend of the scores decreases as the threshold decreases in the search range. But even when
the threshold is set to 1e− 5, CASD still outperforms the baselines. The threshold should not be set
too small to maintain the logic of the output in code completion tasks according to the observation
of the results.

Table 2: Comparison of generated results with CASD under different thresholds. The question is
“Who is the father of the director of film Kajraare?” The top-k requirement is not used.

Method Label and Predictions

Ground Truth Mahesh Bhatt
Vanilla Pooja Bhatt
CASD (δ=1e-3) Pooja Bhatt’s father is Mahesh Bhatt.
CASD (δ=1e-5) Pooja Bhatt’s television film Daddy was directed by her father Mahesh Bhatt.
CASD (δ=1e-7) Pooja Bhatt’s television film Daddy was directed by Pooja Bhatt, starring! the

director’s father, played by actor Anupam Kher

Table 2 displays the predictions under different thresholds for a sample in 2WikiMQA. Vanilla
output fails to give the correct answer. However, the prediction of CASD (δ=1e-3 and δ=1e-5)
contains the ground truth. With an appropriate threshold, CASD improves the accuracy of generation
through context-aware drafting from the relevant context. When the threshold is set to 1e-5, the logic
of generated content begins to lose. The prediction is completely messy when the threshold comes
to 1e-7. Therefore, the threshold should be large enough to keep the model output logical and fluent.

4.4 IMPLEMENTATION IN PROMPT COMPRESSION SCENARIO

LLMLingua-2 (Pan et al., 2024) conducts token-level extractive text compression through a Trans-
former encoder, which supports adjusting the compression ratio. We evaluate the performance of
CASD when using LLMlingua-2 to compress the prompt. The threshold δ is set to 0.1 for all ex-
periments. Table 3 demonstrates the results under 3 different compression rates. CASD improves
the average scores by 2.09, 1.00 and 1.3 under the three compression ratios. The performance on

6
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Table 3: Performance of CASD on prompt compression scenario with LLaMA3.1-8B-Instruct.
Prompts are compressed by LLMLingua-2 under 3 different compression ratios. n× means that we
compress the context to approximately 1

n of its original length. The best results are in bold.

Method
NQ TQA 2WikiMQA HotpotQA Multi-News GovReport RepoBench-P LCC

Avg.
F1 F1 F1 F1 ROUGE-L ROUGE-L Edit Sim Edit Sim

LLMLingua-2 (3×) 25.57 23.51 35.46 40.94 12.70 13.70 57.98 29.63 29.94

+CASD (Fixed) 26.75 30.90 38.85 45.99 13.39 15.47 59.96 25.52 32.10
+CASD (Mixed) 26.58 30.79 38.85 45.80 13.47 15.48 59.89 25.39 32.03

LLMLingua-2 (5×) 24.33 23.51 30.37 36.67 12.40 13.22 58.86 25.49 28.11

+CASD (Fixed) 24.85 25.70 31.04 41.14 12.96 13.83 58.81 23.64 29.00

+CASD (Mixed) 25.00 25.62 31.00 41.86 12.88 13.83 58.93 23.73 29.11
LLMLingua-2 (10×) 22.86 24.88 23.25 26.81 11.88 12.11 55.42 17.81 24.38

+CASD (Fixed) 22.99 23.94 26.43 27.33 12.11 12.58 58.03 22.51 25.74

+CASD (Mixed) 23.02 23.92 26.43 27.33 12.08 12.53 58.40 22.46 25.77

different datasets varies greatly after using prompt compression. Scores on TQA, HotpotQA and
LCC drop significantly while the score for RepoBench-P increases compared to baseline. A higher
compression rate improves the efficiency of the prefill stage and saves the memory, but it also leads
to more performance loss. CASD (Fixed) and CASD (Mixed) show comparable effects. CASD
improves scores on most datasets and generally outperforms baselines in each group. The improve-
ment is more obvious at lower compression ratios. However, for datasets like LCC, CASD reduces
the score at a low compression ratio while greatly improve the performance at a high one.

These observations suggest that CASD performs effectively when the prompt provides sufficient
information for the model to generate accurate answers. However, if critical information is lost due
to prompt compression, the output distribution can become uncertain, reducing the reliability of the
verification process. However, in the case of inferior prompt quality (e.g., LCC in the 10× group),
CASD simply pieces together some fragments from the context based on the current prompt, which
may bring gains in the score.

5 ANALYSIS

5.1 INFERENCE EFFICIENCY

Figure 3: Draft retrieval time overhead
under different context lengths.

We test the mean acceptance length (MAL) and through-
put of CASD with LLaMA3.1-8B-Instruct on NQ, Gov-
Report and LCC (one dataset for each task). MAL is de-
fined as the average accepted tokens per decoding step.
If all the draft tokens are rejected, the acceptance length
is 1 since we sample the token with the biggest probabil-
ity in the next token distribution. The threshold is set to
1e-5 for NQ and 0.1 for the other two datasets to study
the efficiency when the output has high quality. Table 4
shows the average results of three runs tested on a single
A100-PCIE-40GB GPU. The mean accuracy length on 3
datasets is greater than 2. CASD achieves a speed-up ra-
tio between 1.63 and 1.99 on the standard setting. How-
ever, although the input length is shortened, the speed-up
ratio drops to 1.01∼1.85 on the prompt compression set-
ting. Prompt compression reduces the time overhead of
the prefill phase. However, the lower input quality influ-
ences the effectiveness of the verification method, result-
ing in a smaller mean acceptance length. Judging from experimental results, though combining
CASD and prompt compression methods can significantly reduce the memory overhead, it does not
necessarily increase throughput.
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Table 4: Inference efficiency of CASD under standard and prompt compression settings. Lingua
represents LLM-Lingua2. MAL and TPS indicate mean acceptance length and tokens per second,
respectively. The “Speed-up” is the ratio of the method’s TPS to the TPS of vanilla.

Method
NQ GovReport LCC

MAL TPS Speed-up MAL TPS Speed-up MAL TPS Speed-up

Vanilla 1.00 24.61 1.00 1.00 28.45 1.00 1.00 27.02 1.00

CASD 3.10 48.94 1.99 2.02 46.48 1.63 2.58 48.58 1.80

CASD+Lingua(3×) 1.22 28.20 1.15 1.24 31.04 1.09 2.08 49.92 1.85

CASD+Lingua(5×) 1.21 30.31 1.23 1.16 29.41 1.03 1.74 43.29 1.60

CASD+Lingua(10×) 1.21 30.46 1.24 1.06 28.64 1.01 1.17 29.81 1.10

In addition, we test the draft retrieval time for context of different lengths, which is shown in Figure
3. The retrieval time is between 0 and 100 milliseconds for context within 1M tokens, which has
little impact on end-to-end inference efficiency.

5.2 CASE STUDY

Table 5: An example of generation with CASD on extractive QA task. The question is “where
does the term dog and pony show come from”. There are two candidates for the ground truth. We
omit some irrelevant part for brevity. The highlighted text of the corresponding mark shows the part
where CASD output is highly similar to the ground truth, which is also given in the relevant context.

Ground Truth:
[“ Dog and pony show ” is a colloquial term which has come to mean a ♠ highly promoted, often over-staged
performance, presentation, or event designed to sway or convince opinion for political, or less often, commer-
cial ends. Typically, the term is ♣ used in a pejorative sense to connote disdain , jocular lack of appreciation,
or distrust of the message being presented or the efforts undertaken to present it.,
The term was originally used ♦ in the United States in the late - 19th and early - 20th centuries to refer to small
traveling circuses that toured through small towns and rural areas. The name derives from the common use of
performing dogs and ponies as the main attractions of the events. Performances were generally held in open -
air arenas, such as race tracks or public spaces in localities that were too small or remote to attract larger, more
elaborate performers or performances.(...)]

Vanilla Output:
The term ”dog and pony show” is believed to have originated in the United States in the late 19th and early
20th centuries. It was originally used to refer to small traveling circuses that toured through small towns and
rural areas, featuring performing dogs and ponies as the main attractions. These circuses were often over-
hyped and over-staged, with the goal of convincing or entertaining the audience rather than providing a genuine
performance. Over time, the term ”dog and pony show” came to be used more broadly to describe any highly
promoted or over-staged event or presentation, often with a negative connotation.

CASD Output:
The term ”dog and pony show” originated ♦ in the United States in the late 19th and early 20th centuries to
refer to small traveling circuses that toured through small towns and rural areas. The name derives from the
common use of performing dogs and ponies as the main attractions of the events. These performances were
generally held in open-air arenas, such as race tracks or public spaces in localities that were too small or remote
to attract larger, more elaborate performers or performances.
The term ”dog and pony show” was originally ♣ used in a pejorative sense to connote disdain, jocular lack
of appreciation, or distrust of the message being presented or the efforts undertaken to present it. Over time,
the term has come to be used more broadly to refer to any ♠ highly promoted or over-staged performance,
presentation, or event designed to sway or convince opinion for political or commercial ends.

To intuitively show the effect of CASD, we pick an example in the NQ dataset, which is displayed
in Table 5. The ground truth can be found in the provided context. The F1 score of vanilla output

8
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and CASD output is 46.09 and 59.21, respectively. The output of CASD demonstrates high simi-
larity with the ground truth. Although CASD begins with the same few tokens as vanilla output, it
accurately generates the key points in the ground truth.

Even if the answer is given in the prompt, LMs would paraphrase in their own words based on the
habits acquired through pre-training. This characteristic may sometimes cause the model’s response
to deviate from the given facts. CASD adds an interface to leverage the original information of
the context on the decoding side through context-aware speculative decoding, making the model
more inclined to use the original statements in the context to answer questions. Especially for some
specific nouns, the expression in the context will be more precise. Therefore, CASD improves the
accuracy of the generated answer.

For the NQ dataset, where the ground truth is contained in the relevant context, simply piecing
together the original sentence in the input may also improve the F1 score. Therefore, we attempt
to use the GPT-4 model (OpenAI et al., 2024) to analyze the quality of the generation. GPT-4 also
believes that the output of CASD is superior to the vanilla output. In terms of content, CASD’s
answer more accurately captures the origin of ”dog and pony show” and the changes in its meaning.
Moreover, the CASD output covers the background, origin and evolution of the word while being
more organized and concise.

5.3 ABLATION STUDY

Table 6: Results of the ablation study. W/o threshold means using the top-k condition only for the
verification phase.

Method
NQ TQA 2WikiMQA HotpotQA Multi-News GovReport RepoBench-P LCC

Avg.
F1 F1 F1 F1 ROUGE-L ROUGE-L Edit Sim Edit Sim

CASD (Mixed) 33.69 92.62 43.95 52.46 14.83 20.06 56.63 69.46 47.96

w/o threshold 37.47 92.64 42.84 50.20 15.16 19.31 49.86 60.80 46.04

We conduct the ablation study in this section. We evaluate the performance of CASD with the top-k
verification condition only, which is compared with CASD (Mixed). Results are shown in Table 6.
Using the top-k condition alone decreases the scores for most datasets, especially for RepoBench-P
and LCC. NQ makes a difference since it fits more relaxed acceptance conditions. On the other
hand, removing the top-k condition (CASD (Fixed)) decreases the average score, which is already
shown in Table 1. In general, it is beneficial to combine the two verification conditions.

6 DISCUSSION

In this paper, we proposed CASD, a context-aware speculative decoding algorithm with conditional
verification, which enhances the generation accuracy of LMs at the token level. We explored the
potential for leveraging the input context in the decoding stage. CASD increases the probability that
the model adopts the tokens in the relevant context, thus making better use of the given information.
It does not introduce additional parameters and training, thus can be conveniently applied to pre-
trained LMs. CASD outperforms the baseline in experiments on 8 datasets in terms of generation
performance and efficiency. Implementation of CASD in prompt compression scenarios also bene-
fits the performance. CASD currently uses heuristic verification rules. If the verification strictness
can be adaptively set according to different inputs, the versatility of this method would be further
improved. We would like to explore adaptive verification conditions at the request level or token
level in future work.

Limitations CASD accepts the longest verified draft in each decoding step to pursue inference
efficiency. However, this generation paradigm conflicts with the sampling methods commonly used
in autoregressive models, such as greedy sampling and temperature sampling. Besides, if the input
context contain harmful information, using CASD may lead the model to incorporate it into its
responses. Therefore, in practical applications, CASD requires additional safety alignment to ensure
the security of the language model.
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A EXPERIMENTAL DETAILS

Table 7 shows the prompts used in the experiments in this paper. The instructions or questions are
unified for some datasets. So there is no separate question for each sample.

B SUPPLEMENTARY RESULTS

Table 8 shows the specific performance of casd on each data set under different thresholds. Figure 4
displays the curve of MAL as the verification threshold decreases.
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Table 7: Prompts used in experiments for all datasets. {context} represents the relevant context
for each sample. {question} indicates the query or instruct.

Dataset Prompt

NQ Answer the Question based on the given context. \n\n Context:{context} \n\n
Question:{question} \n\n Answer:

TQA Answer the question based on the given passage. Only give me the answer and do not output
any other words. The following are some examples. \n\n {context} \n\n {question}

2WikiMQA Answer the question based on the given passages. Only give me the answer and do not out-
put any other words. \n\n The following are given passages.\n {context} \n\n Answer
the question based on the given passages. Only give me the answer and do not output any
other words. \n\n Question:{question} \n Answer:

HotpotQA Answer the question based on the given passages. Only give me the answer and do not out-
put any other words. \n\n The following are given passages.\n {context} \n\n Answer
the question based on the given passages. Only give me the answer and do not output any
other words. \n\n Question:{question} \n Answer:

Multi-News You are given several news passages. Write a one-page summary of all news. \n\n
News:\n {context} \n\n Now, write a one-page summary of all the news. \n\n Sum-
mary:

GovReport You are given a report by a government agency. Write a one-page summary of the report.
\n\n Report:\n {context} \n\n Now, write a one-page summary of the report. \n\n
Summary:

RepoBench-P Please complete the code given below. \n {context} {question} Next line of code:\n
LCC Please complete the code given below. \n {context} Next line of code:\n

Table 8: Performance of CASD under different thresholds. Best results are in bold.

Threshold NQ TQA 2WikiMQA HotpotQA Multi-News GovReport RepoBench-P LCC Avg.
F1 F1 F1 F1 ROUGE-L ROUGE-L Edit Sim Edit Sim

0.1 33.51 92.62 44.67 51.72 14.97 20.09 56.31 69.24 47.89
0.01 35.51 92.75 38.29 49.74 15.14 19.89 48.98 61.50 45.23
1e-3 40.02 92.51 31.24 42.93 15.12 19.31 43.31 55.56 40.63
1e-4 42.83 91.83 28.02 36.36 14.69 18.52 40.19 52.75 40.65
1e-5 43.78 88.96 26.31 33.02 14.06 17.74 38.43 49.58 38.99

Figure 4: Mean acceptance lenghth under different thresholds.
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