URDF-Anything: Constructing Articulated Objects
with 3D Multimodal Language Model

Zhe Li'*, Xiang Bai'*, Jieyu Zhang?, Zhuangzhe Wu', Che Xu',
Ying Li', Chengkai Hou', Shanghang Zhang':f
!State Key Laboratory of Multimedia Information Processing, School of Computer
Science, Peking University, 2University of Washington
*Equal contribution and co-first authors. ~ fCorresponding author.

% T s
W e | %;

Segment the input point cloud by object parts "
and predict the articulation parameters of .
‘ the articulated objects. i

Figure 1: URDF-Anything: Generating Functional URDF Digital Twins from Visual Observa-
tions(single or multi-view images). Our framework, utilizing a 3D Multimodal Large Language
Model and guided by instructions (e.g., "Segment parts and predict parameters"), processes the point
cloud to jointly infer geometric part segmentation and kinematic structure. The output is a segmented
3D model with defined joints (represented here by different part colors), forming a functional URDF
digital twin directly usable in physics simulators.

.

a"

Abstract

Constructing accurate digital twins of articulated objects is essential for robotic
simulation training and embodied Al world model building, yet historically requires
painstaking manual modeling or multi-stage pipelines. In this work, we propose
URDF-Anything, an end-to-end automatic reconstruction framework based on a
3D multimodal large language model (MLLM). URDF-Anything utilizes an au-
toregressive prediction framework based on point-cloud and text multimodal input
to jointly optimize geometric segmentation and kinematic parameter prediction.
It implements a specialized [S EG] token mechanism that interacts directly with
point cloud features, enabling fine-grained part-level segmentation while main-
taining consistency with the kinematic parameter predictions. Experiments on
both simulated and real-world datasets demonstrate that our method significantly
outperforms existing approaches regarding geometric segmentation (mloU 17%
improvement), kinematic parameter prediction (average error reduction of 29%),
and physical executability (surpassing baselines by 50%). Notably, our method ex-
hibits excellent generalization ability, performing well even on objects outside the
training set. This work provides an efficient solution for constructing digital twins
for robotic simulation, significantly enhancing the sim-to-real transfer capability.

"Project page: https://1zvsdy.github.io/URDF-Anything/

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://lzvsdy.github.io/URDF-Anything/

1 Introduction

Constructing high-fidelity digital twins is essential for accurately simulating real-world physical
dynamics and complex interactions across numerous fields. These include core applications in
robotic simulation and training|[l1, 2] as well as expanding domains like autonomous driving|[3,
4}, 15]] and interactive virtual/augmented reality environments([6} [7, [8]]. However, populating these
interactive virtual environments requires precise digital representations of their components, especially
articulated objects (doors, drawers, scissors) with their complex internal structures and diverse degrees
of freedom, which typically demands painstaking manual modeling, and extensive development time.
Automating the reconstruction of these objects into fully functional, high-fidelity digital twins (for
example, in URDF format) not only alleviates this laborious effort but also offers an efficient pathway
to enrich virtual worlds and enable robust simulation-to-real transfer in robotic training.

However, automatically reconstructing articulated objects from visual observations presents signifi-
cant challenges. Unlike rigid objects, articulated objects consist of multiple parts connected by joints,
introducing complexities related to inferring both the geometry of individual links and the kinematic
parameters (type, origin, axis, limits) governing their motion. Prior efforts reconstruct articulated
objects by composing multiple models into a sophisticated pipeline and either rely on a given mesh
assets library or involve a separate part segmentation stage [9, [10].

In this paper, we explore an end-to-end approach for generating functional URDF models directly from
visual input; we propose URDF-Anything, which leverages 3D Multimodal Large Language Models
(MLLMEs) to jointly interpret object geometry and semantic attributes, infer kinematic structure, and
automatically produce high-fidelity URDF descriptions (Figure [2]illustrates the overall pipeline).
A 3D MLLM is uniquely suited for this task, as it can natively handle multimodal input (visual
features and text instructions), encodes powerful priors on 3D shapes from large-scale pretraining,
and directly understands spatial relationships to output precise coordinates. These capabilities
make it ideal for predicting detailed kinematic parameters and generalizing to unseen objects. In
addition, we leverage a dynamic [SEG] token mechanism [11] within the MLLM’s autoregressive
generation, which enables simultaneous prediction of the symbolic articulated structure (link names,
joint parameters) and emission of explicit segmentation signals that guide geometric segmentation
of object parts from point-cloud features via cross-attention. This tight coupling between symbolic
output and geometric segmentation, combined with end-to-end training, ensures full consistency
between predicted kinematics and reconstructed geometry, and enables an end-to-end approach for
reconstructing articulated objects.

Experimental evaluation on the PartNet-Mobility dataset [12], including both in-distribution and
challenging out-of-distribution objects, demonstrates the superior performance of URDF-Anything
compared to existing methods. Quantitatively, for part-level geometric segmentation,we achieve
higher mIoU on OOD instances (0.62) compared to the best baseline (0.51), and a much higher Count
Accuracy (0.97), surpassing the best baseline (0.84) by over 15 points. In joint parameter prediction,
our method consistently achieves significantly lower errors across all object categories compared to
baselines, outperforming them by a considerable margin, particularly on OOD objects. Crucially, the
physical executability rate of our generated URDF models is substantially higher than baselines(50%
improvement), enabling more robust simulation for unseen objects. These comprehensive results
highlight the effectiveness and strong generalization capability of our end-to-end MLLM framework
for automated articulated object reconstruction.

In summary, our main contributions are as follows:

* Proposing the first end-to-end 3D MLLM framework for articulated object reconstruction,
championing a new paradigm from complete 3D input to joint prediction output.

* Achieving deep coupling and joint prediction of kinematic parameters and geometric seg-
mentation through an innovative application of the [SEG] token.

* Demonstrating the superiority of this new paradigm through extensive experiments.

2 Related Work

LLMs for 3D Tasks. Recent years have seen significant progress in applying Large Multimodal
Models (LMMs) to 3D understanding and interaction tasks [[13} 14} 15016} 17,18} 19} 20} 21]. These
models leverage multimodal inputs (such as point clouds or images, combined with language) for 3D

spatial reasoning, perception, and structured output generation. Relevant advancements include the
development of 3D MLLM backbones like ShapeLLM [22]], capable of handling point cloud-language
interaction and demonstrating strong 3D understanding. Other works have explored language-guided
3D segmentation [23]], open-world 3D understanding [24], and tasks requiring precise 3D spatial
understanding from visual input [25]. While these models demonstrate powerful capabilities in
general 3D perception and generating text or segmentation masks, they do not typically address the
complex, coupled task of jointly inferring detailed link geometry and precise kinematic parameters
for articulated objects. Our work builds upon these advancements in 3D LMMs and their capabilities
for spatial reasoning and multimodal generation, specifically applying them to the challenging task of
articulated object reconstruction.

Articulated object modeling. The automated modeling of articulated objects for robotic manipulation
is an active field of research, with several distinct methodological approaches. Physics-based
interactive methods [26l 27, 28] utilize interaction in simulation or the real world to refine or
build models, demonstrating high accuracy with sufficient interaction but often requiring initial
models, struggling with robust passive reconstruction (without interaction), or limited adaptation
to novel geometries without extensive interaction data. Automation methods [10, 9] leveraging
visual-language models automate digital twin creation, using techniques such as VLM-to-code
generation, iterative refinement, mesh retrieval [[10]], or abstracting parts as OBBs with LLM parameter
prediction [9]. However, these methods can be limited by constraints such as reliance on asset
databases, brittleness in iterative processes, or loss of geometric detail and potential parameter
inaccuracy from using simplified representations like OBBs. [29] is fundamentally limited by its
reliance on a hard-coded system to assign kinematic parameters and retrieve meshes based on the
network’s discrete part classification output, a method which compromises final geometric and
kinematic fidelity. [30] is a specialized, small-scale feed-forward model with severe input and output
restrictions. Other works [31} 132} 133} [34) [35]] explore novel representations like 3D Gaussians for
reconstruction or focus on detection of specific features [36], addressing sub-problems rather than
the complete, end-to-end geometry and kinematics inference pipeline needed for a functional URDF.
Our work contributes to the field of automated articulated object modeling by proposing a novel
end-to-end framework that leverages the capabilities of 3D Large Multimodal Models for robust
reconstruction from visual input. While recent works have explored VLMs or 2D-based LLMs for
URDF generation [10, /9], none have leveraged raw 3D point clouds as the primary input to an MLLM
for end-to-end URDF synthesis—a key enabler of geometric precision in our framework.

3 Method

URDF-Anything is an end-to-end framework for reconstructing articulated objects from visual
observations into URDF-formatted digital twins. The pipeline consists of three main stages: (1) Input
Representation, where we generate dense 3D point clouds from single or multi-view RGB images,
in Sed3.2]; (2) Multimodal Articulation Parsing, where a 3D Multimodal Large Language Model
(MLLM) jointly predicts part segmentation and kinematic parameters, in Sed3.3]; and (3) Mesh
Conversion, where segmented point clouds are converted into meshes for simulation, in Sed3.5} The
key innovation lies in the integration of geometric and semantic features through a dynamic [SEG]|
token mechanism, enabling precise part-level segmentation and joint parameter prediction in a unified
framework.

3.1 Task Definition

To ensure compatibility with standard 3D simulators (e.g., MuJoCo, PyBullet), we represent articu-
lated objects as URDF (Unified Robot Description Format) models. A URDF structure defines an
object as a hierarchical tree composed of:

Links: Rigid components representing object parts (e.g., a cabinet’s door, drawer, or base). Each link
contains geometric (mesh) and inertial properties.

Joints: Connections between links that specify kinematic constraints. Each joint includes:

* Type: Prismatic, revolute, continuous, floating, planar or fixed.
 Parent/Child: Links connected by the joint.
* Origin : 3D position (x,y, z) € R? and orientation (7, p,y) € R3 relative to the parent link.

’

o . >, / . 0y
,:' POIHT clouds Pobj N\ 3D i point cloud \:
1 1
i Backbone : ;
1 1 1
1 1 1
i 3D | ;
| Decoder! | Pl e
’ ; mesh 1| e
I S H ! <l i -
5 3D & i H e
i MLLM : o
\ 1 <collision>
X ‘ 1 </collision>
AN x4 </link>

lora (" Origin xyz (1.57,0.00, 157)

1
1 Segment the e
i input point cloud into / Or‘lrgm 7 (CU, (Y7, <08
!) “, Joint type (revolute)

parts and predict .
1 h N Axis (1,0,0)
! articulation parameters. A A
I\ L link_O is

%

157 -0.0 157" xyz="-016 0.67 -0.22"/>
00"/

S’

Figure 2: Overview of the URDF-Anything Framework. The pipeline takes a 3D point cloud (from
image) and a structured language instruction as input. The 3D MLLM(fine-tuned with LoRA) autore-
gressively generates symbolic output (kinematic parameters) and [S EG] tokens. The embeddings
corresponding to the generated [SEG] tokens then interact with the point cloud features via a 3D
Decoder to perform fine-grained geometric segmentation of the point cloud into individual links.
Finally, the jointly predicted kinematic parameters and the segmented geometry are integrated into a
functional URDF file, resulting in a complete articulated 3D model ready for physics simulation.

* Axis: Normalized 3D vector defining the motion direction (e.g., [0, 1, 0] for vertical sliding).
* Limit: Defines the range of motion for prismatic, revolute and planar joints.

Our objective is to automatically infer these URDF components—specifically, the mesh for each link,
the type, origin, parent, child, and axis for each joint—from visual input of the articulated object.

3.2 Input Representation

The initial step of our pipeline is to transform the raw visual observation of an articulated object into
a 3D representation suitable for structural parsing. Real-world observations can vary significantly,
sometimes providing multiple viewpoints of the object and other times offering only a single view.
Accordingly, our point cloud acquisition strategy adapts to the input modality:

Multi-view Input: When multiple RGB images from different viewpoints are available , we leverage
DUSt3R[37] to generate a dense 3D point cloud P,;,;. DUSt3R excels at establishing dense 2D-to-3D
correspondences and reconstructing accurate 3D geometry from multiple views.

Single-view Input: For the more challenging single-view scenario, we utilize a generative approach
LGM38]. We first employ a pre-trained diffusion model to synthesize consistent multi-view images.
Subsequently, we reconstruct the 3D geometry from these synthesized views, which can be represented
as a 3D Gaussian Splatting model or converted into a point cloud P,;.

Regardless of the input type (single or multi-view), the output of this stage is a dense point cloud
Poy; € RV*C representing the entire articulated object. It is crucial to note that this initial point cloud
is a monolithic representation; it captures the overall geometry but does not inherently differentiate or
segment the object into its individual links or sub-components. This whole-object point cloud P,
serves as the primary geometric input for the subsequent multimodal articulation parsing stage. More
details about this section are reported in Appendix [A.2]

3.3 Articulation Parsing with 3D MLLM

We adopt ShapeLLM [22], a recent 3D MLLM, as our backbone, which combines a point cloud
encoder[39] with a large language model[40]. ShapeLLM has demonstrated the ability to perform 3D
visual grounding and output structured 3D information, such as 3D bounding-box coordinates. This
pre-existing capability is particularly beneficial for our task of predicting joint parameters, which
inherently involve 3D locations (origin, axis) and orientations (origin). This unified architecture offers
two advantages: (1) Open-world generalization: The 3D MLLM’s geometric understanding capability,
enhanced by large-scale 3D-language pretraining, enables robust reasoning about both seen and

unseen object categories. (2) Structured output capability: The MLLM inherently supports generating
JSON-formatted outputs of arbitrary length and complexity, enabling flexible representation of joint
hierarchies and part relationships.

Input: The input point cloud F,; is encoded by a 3D encoder to extract dense geometric features
Fye € RMXdpe where M is the number of points (potentially downsampled) and dp. is the feature
dimension. Simultaneously, natural language instructions are provided to guide the parsing process.
We employ a structured instruction template that explicitly incorporates the geometric features and
prompts the model for specific URDF information. The textual part of the instruction, Xy, is
processed by the LLM’s standard word embedding layer to yield text embeddings F},; € REX %t
where L is the number of tokens and d;,; is the embedding dimension. These multimodal features
(Fpc and Fi,;) are integrated and processed by the LLM’s layers. This core multimodal processing
and output generation can be formally represented as:

Youtput = MLLM(chy tht)

Output: While 3D MLLMs excel at processing multimodal inputs and generating structured tex-
tual outputs, they are not inherently equipped to generate dense, per-point predictions required for
geometric segmentation. Our task necessitates not only predicting the symbolic URDF structure
and parameters but also precisely segmenting the corresponding point cloud geometry for each link.
Inspired by LISA[L1], we extend the vocabulary with a special token [SEG] to achieve this joint
objective. The MLLM is trained to autoregressively generate a structured JSON output sequence
that contains the predicted joint parameters alongside descriptions of the links. Crucially, each link
description in the output is associated with a [SEG]| token (e.g., "link_0": "base_cabinet[SEG]",
"link_1": "drawer[SEG|]"). This means the MLLM simultaneously predicts the symbolic representa-
tion of the articulated structure and places markers ([SEG|) indicating the geometry corresponding
to each part needs to be identified. More details are reported in Appendix

3.4 Geometric Segmentation from Special-Token Mechanism

Geometric segmentation is performed for each object part indicated by a [S EG| token in the MLLM’s
output sequence Yo,;py¢. For each generated [SEG] token, we leverage its final hidden state hg.g,
combined with the preceding part category token’s state hcqtegory to form a fused token representation
heombined = [Reategory; Nseg]. This representation is then used as the query

Hquery = MLPquery (hcombined)

in a cross-attention mechanism. Another point feature S, is generated from 3D backbone S,. =
Fepne(Pop;). Then a mechanism attends over the projected point cloud features F . = MLP,,.(Sp.),
effectively computing per-point scores

Ymask = CrossAtn(Q = Hyuery, K = F,,,V = F})
indicating the likelihood of each point belonging to the part. These scores 4,451 are converted into a

binary segmentation mask for the corresponding link via a sigmoid and threshold. This process is
repeated for every [SEG] token, yielding masks for all predicted parts.

3.5 Mesh Conversion and URDF File Generation

The final stage of our pipeline consolidates the reconstructed geometry and kinematics into a standard
URDF XML file, ready for direct use in physics simulators. Segmented point clouds for each
link, obtained from the geometric segmentation process (Section [3.4)), are converted into 3D mesh
representations (e.g., OBJ format) using point-to-mesh conversion method[4 1} 42]. Simultaneously,
the MLLM'’s structured JSON output provides the complete kinematic structure, including joint types,
parent/child relationships, origins, and axis. We parse this JSON and assemble the final URDF XML
file, where each link references its generated mesh and joint elements are populated with the predicted
parameters. The resulting URDF model can be directly imported into standard physics simulators
(e.g., MuJoCo [43]], Sapiens [44]]). A complete example of a generated URDF file for a sample object
instance is provided in Figurdg]

3.6 Model Training

The URDF-Anything model is trained end-to-end to jointly generate the structured URDF parameters
and predict accurate part-level segmentation masks from the point cloud. The overall training
objective L is a weighted sum of the language modeling loss L., and the segmentation 1oss Lcg:

N
L = MextLiext + /\seg Z Li,seg
i=1

where \;,,, and 44 are hyperparameters balancing the contribution of each loss, and NV is the num
of object parts. The segmentation loss uses a combination of binary cross-entropy (BCE) loss and
Dice loss (DICE). For a given part associated with a [SEG] token, let M, € {0, 1} be the ground
truth binary mask for that part. The segmentation loss for this part is:

Lseg = Mee BCE(M, Myt) + Aaice DICE(M , M)
where A\pce and Ay, are hyperparameters weighting the BCE and DICE components.

4 Experiments

Implementation Details: We employ ShapelLLM [22] as our 3D MLLM backbone, with ShapeLLLM-
7B-general-v1.0 checkpoint as the default settings. For the 3D backbone, We use Uni3D [45]] to
extract dense geometric features. We adopt one NVIDIA 80G A800 GPU for training. We employ
LoRA [46] for efficient fine-tuning, with the rank of LoRA set to 8 by default. We use AdamW
optimizer [47] with the learning rate and weight decay set to 0.0003 and 0, respectively. We use the
cosine learning rate scheduler, with the warm-up iteration ratio set to 0.03. The batch size per device
is set to 2, and the gradient accumulation step is set to 10. Our model was fine-tuned in 2.5 hours on
a single NVIDIA A800 (80GB) GPU.

Dataset: We train and evaluate our framework on the PartNet-Mobility dataset [12]], a large collection
of 3D articulated objects with URDF annotations. The dataset is partitioned into In-Distribution (ID)
and Out-of-Distribution (OOD) subsets based solely on object categories. Since our method utilizes
image input, we generated visual data by rendering multi-view and single-view RGB images from
the dataset’s 3D models within a simulation environment. Ground truth kinematic and geometric
information from the original URDF files was processed and reorganized into a compact JSON format
matching our model’s output structure. The dataset is divided into standard training and testing sets.
More details are reported in Appendix [A.1]

Baselines: We compare against three prior methods: (1)Articulate-Anything, an actor-critic system
for iterative refinement via a mesh retrieval mechanism to generate code that can be compiled into
simulators. (2) Real2Code: an approach that represents object parts with oriented bounding boxes,
and uses a fine-tuned LLM to predict joint parameters as code. (3)URDFormer: a pipeline that
constructs simulation scenes complete with articulated structure directly from real-world images.

Evaluation Metrics: We evaluate the performance of our URDF-Anything framework on three
key aspects: part-level geometric segmentation, kinematic parameter prediction accuracy, and the
physical executability of the final reconstructed URDF.

* Part Segmentation Accuracy: For evaluating how accurately our method segments the point cloud
into individual links, we use mloU. A higher mIoU indicates better alignment between predicted
and ground truth part geometry. We use Count Acc to measure the percentage of test samples
where the number of predicted articulated parts (i.e., links with non-fixed joints) exactly matches
the ground-truth count.

* Joint Parameter Prediction Accuracy: Following Articulate-Anything[10], we evaluate the
correctness of several critical components for each joint prediction compared to the ground truth
URDF: (1)Joint Type Error: A binary metric indicating if the predicted joint type (e.g., revolute,
prismatic) matches the ground truth. (2)Joint Axis Error: Quantifies the angular difference
between the predicted and ground truth joint axes, normalized to be within [0, 7r]. (3)Joint Origin
Error: Measures the positional error of the joint origin.

» Physical Executability: Beyond static accuracy metrics, the ultimate test of a reconstructed
URDF is its functionality in a physics simulation. We evaluate the physical executability by

Table 1: Quantitative Results for Part-Level Link Segmentation. Comparison of our method
([SEG](Ours)) against baselines (Uni3D w/o text, Uni3D w/ text) on In-Distribution (ID) and Out-of-
Distribution (OOD) object instances. Performance is measured by mloU (segment accuracy) and
Count Accuracy (Count Acc), both where higher is better (1).

Models mloU 1 Count Acc T

ALL ID OOD ALL ID OOD
Uni3D w/o text 0.36+0.01 0.504+0.02 0.33+0.01 0.7340.02 0.834+0.03 0.70+0.01
Uni3D w/ text 0.54+0.02 0.64+0.01 0.51+0.02 0.84+0.02 0.91+0.02 0.82+0.02

URDF-Anything ([SEG]) 0.63(16.7%71) 0.69+0.01 0.62+0.01 0.97 (15.4%1) 0.99+0.02 0.96=0.02

loading the generated URDF models into a standard 3D simulator (e.g., Sapiens [44]]). We then
programmatically or manually attempt to actuate the joints. The physical executability metric
is defined as the percentage of generated URDFs that can be loaded and actuated correctly in
the simulator without exhibiting non-physical behavior (e.g., parts flying off, joints freezing,
unexpected rotations/translations). This metric provides a crucial validation of the end-to-end
reconstruction quality and its suitability for sim-to-real applications.

4.1 Link Segmentation Results

Table [T] presents the quantitative results for part-level geometric segmentation. This evaluation
assesses how accurately each method can delineate the individual links of an articulated object within
its point cloud representation. We compare our proposed method against two baselines that represent
different configurations of utilizing Uni3D features: (1) Uni3D w/o text, a supervised closed-set
model that adds an MLP head to classify points into predefined part categories using only geometric
features; and (2) Uni3D w/ text, which follows Uni3D’s original text-guided paradigm by aligning
point features with a fixed list of part-name prompts (e.g., drawer”, base”) via a feature propagation
layer. Both baselines lack the dynamic, context-aware coupling between segmentation and kinematic
structure enabled by our [SEG] token mechanism.

The poor performance of Uni3D w/o text demonstrates that relying solely on geometric features is
insufficient, highlighting the necessity of semantic guidance. Its weakness stems from a paradigm
mismatch—it discards the cross-modal semantic alignment Uni3D was pre-trained for. Meanwhile,
our method significantly outperforms Uni3D w/ text, showing that our [SEG] token mechanism
provides a superior guidance strategy: unlike static text prompting, it dynamically and end-to-end
couples segmentation with the autoregressive generation of kinematic structure, yielding more
accurate and context-aware results.

Our method achieves state-of-the-art performance across all metrics and datasets. Quantitatively,
URDEF-Anything ([SEG]) significantly outperforms the baseline on average, achieving 0.63 mloU (a
16.7 % improvement) and 0.97 Count Accuracy (a 15.4% improvement). This strong performance
holds for both ID and OOD data, particularly on challenging OOD instances, demonstrating superior
generalization capability compared to baselines. The significant improvement in mIloU on OOD data
demonstrates superior generalization capability in segmenting novel object geometries and structures
not seen during training.

Table 2: Quantitative Comparison of Joint Parameter Prediction Accuracy. This table presents
the average prediction errors for joint Type (fraction of incorrect), Axis (radians), and Origin (meters)
across different methods. Results are shown for All, In-Distribution (ID), and Out-of-Distribution
(OOD) object classes. Lower values indicate better performance (].). "Oracle" denotes baselines
evaluated with ground-truth part segmentation to isolate kinematic prediction performance, following
the protocol in [[10]].

Method All Classes ID Classes OOD Classes

Type | Axis | Origin | Type | Axis | Origin | Type | Axis | Origin |
Real2Code Oracle 0.537+0.014 1.006+0.723 0.294+0.417 0.410+0.029 1.164+0.671 0.344+0479 0.576+0016 0.937+0.734 0.272+0386
URDFormer Oracle 0.556+0.025 0.374+0.666 0.581+0355 0.418+0.036 0.208+0532 0.609+0357 0.679+0.032 0.643+0.766 0.513+0340
Articulate-Anything 0.025+0.005 0.145+0450 0.207+0392 0.018-+£0.004 0.143:+£0.198 0.195+0237 0.026+0.005 0.145+0.480 0.208+0.411

URDF-Anything (Ours) 0.008-+0.001 0.132+0.048 0.164£0.026 0.007+0.001 0.121+0.039 0.130+0.022 0.009+0.001 0.136+0.050 0.173+0.027

Cabinet Desk Drawer Laptop

Image

URDFormer

Articulate
Anything

Ours

Figure 3: Qualitative Comparison of Articulated Object Reconstruction Results. The top row
displays the input image for various articulated object instances (each column represents a different
object). We can find that baseline methods frequently struggle in predicting incorrect object types,
generating distorted geometry, or exhibiting significant errors in link placement, leading to misaligned
or incorrect structures.

4.2 Joint Parameter Prediction Results

Table [2] presents the quantitative results for joint parameter prediction accuracy. We compare
our proposed framework, URDF-Anything (Ours), against several prior methods. As shown in
Table 2] URDF-Anything demonstrates superior performance compared to baseline methods across
all evaluated categories. Specifically, our method achieves notably lower Type, Axis, and Origin
errors when evaluated on All Classes, ID Classes, and particularly on OOD Classes. This indicates
a significant improvement in accurately predicting kinematic parameters for articulated objects,
including robust performance on object categories not seen during training (OOD instances).

This strong performance on OOD articulated objects highlights the effectiveness of our MLLM-based
end-to-end approach. The MLLM'’s inherent capabilities in understanding complex structures and
generalizing from large-scale pretraining, combined with our method’s joint reasoning of geome-
try and kinematics, enables more accurate parameter prediction in challenging, unseen scenarios
compared to prior methods that may struggle with complexity or lack strong generalization priors.

4.3 Physical Executability

Beyond evaluating static link segmentation and joint parameter accuracy, a critical validation of our
end-to-end reconstruction framework is the physical executability of the generated URDF models in
a simulation environment. As defined in Section] this metric assesses the percentage of generated

Table 3: Physical Executability Rate (% 1) across methods on ID and OOD subsets.

Method ALL ID Classes OOD Classes
URDFormer Oracle 24% 34% 15%
Real2Code Oracle 41% 49% 23%
Articulate-Anything 52% 61% 44%
URDF-Anything(Ours) 78%(50.0%7) 86 % 71%

Table 4: Ablation Study on Input Modality for Joint Parameter Prediction.

Method Variant Input Modality Type | Axis | Origin |
OBB Text 0.42+0.18 0.70+0.26 0.47+0.22
Point Cloud only Point Cloud 0.34+0.11 0.29+0.18 0.26+0.15
Qwen2.5-VL-7B Image + Text 0.57+0.14 0.85+0.31 0.23+0.16
Qwen2.5-VL-7B + ft Image + Text 0.38+0.09 0.81+0.24 0.18=+0.10

Point Cloud + Text (Ours) Point Cloud + Text 0.008 +o0.001 0.132+0.048 0.164-+0.026

URDFs that can be successfully loaded and actuated in a physics simulator without errors or non-
physical behavior.

As shown in Table [3] URDF-Anything achieves a high physical executability rate, significantly
surpassing baseline methods, particularly for OOD objects. This demonstrates the superior overall
pipeline robustness of our approach. Compared to prior methods like Real2Code [9]], which rely on
complex, sequential pipelines where errors in one step can cascade and require manual intervention
for refinement, or Articulate-Anything [[10], which may depend on iterative refinement for parameter
estimation, our framework utilizes a unified, end-to-end MLLM that jointly reasons about geometry
and kinematics. This direct, integrated approach minimizes error propagation, allowing the model
to leverage rich multimodal context for robust prediction of a consistent geometric and kinematic
structure in a single pass. Figure [3]and Figurd7] provides qualitative results illustrating the visual
quality of our reconstructed articulated objects, showcasing both the generated link segmentation and
the resulting mesh geometry for various challenging instances.

4.4 Ablation Study

Impact of the geometric representation Modality. We conducted an ablation study on input
modality, with results in Table E} First, we found that even powerful, fine-tuned image MLLMs (e.g.,
’Qwen2.5-VL-7B + ft’) struggle to infer precise 3D kinematic parameters from 2D images, yielding
significantly higher errors than any 3D-based approach. This highlights the necessity of explicit 3D
geometry for this task.

Next, we evaluated different 3D representations. We observed that simplified geometry, such as
Oriented Bounding Boxes ("OBB’), is insufficient due to the loss of crucial geometric detail. While
using a detailed point cloud alone (Point Cloud only’) improves performance, our full method
("Point Cloud + Text’), which integrates language guidance into MLLM, achieves the best results by
a significant margin. This highlights the necessity of language and MLLM. Collectively, this study
validates our core design choice: achieving high-fidelity reconstruction requires the combination of
detailed 3D geometric input and effective language guidance within a 3D MLLM framework.

Importance of Joint Geometric and Kinematic Prediction. A core hypothesis of our work
is that jointly predicting an object’s geometry and kinematics is superior to tackling these tasks
independently. We posit that structured reasoning about kinematics provides crucial context for
geometric understanding, and similarly, geometric features must ground the kinematic predictions.
To validate this, we compare our full, jointly-trained model against two decoupled variants:

* Kinematics-Only: This model is trained solely on the language modeling loss (L;.,+) to predict
URDF parameters, without the [SEG] token or the associated segmentation loss.

* Segmentation-Only: This model is trained to generate only the link names and [SEG] tokens,
optimizing exclusively for the segmentation loss (L.g4), without predicting the kinematic structure.

The results, presented in Table[5] clearly demonstrate the performance degradation when the tasks
are decoupled. The ’Kinematics-Only’ model, lacking the geometric regularization provided by
the segmentation task, shows a decline in parameter accuracy. This quantitatively confirms that
the segmentation task acts as a crucial "booster” for learning accurate kinematic structures. More
strikingly, the ’Segmentation-Only’ model also shows a drop in both mloU and part count accuracy.
This suggests that the structured reasoning required to predict the full kinematic tree forces the model
to learn a more coherent and robust internal representation of the object’s structure, which in turn
benefits the geometric segmentation task.

These results provide strong evidence for the mutual benefits of joint prediction. Geometry provides
essential regularization for predicting accurate kinematics, while the task of inferring kinematics
imposes a structural prior that enhances geometric segmentation. This validates our end-to-end joint
prediction paradigm as essential for achieving high-performance reconstruction.

Table 5: Ablation on Joint Geometric and Kinematic Prediction.

Model Variant \ Loss \ Kinematic Segmentation

\ | Type Axis Origin mloU Count Acc
Kinematics-Only Lieat 0.009 0.138 0.175 - -
Segmentation-Only Lgeg - - - 0.61 0.89
URDF-Anything (Joint) ‘ Lseg + Liext ‘ 0.008 0.132 0.164 0.63 0.97

Summary of Design Choices. The results from these key ablations underscore a central finding of
our work: constructing a successful framework for this task is technically non-trivial. The preceding
experiments demonstrate that seemingly plausible, simpler approaches systematically fail. For
instance, relying on 2D image inputs (Table [)) leads to geometrically imprecise results, while
decoupling the geometric and kinematic prediction tasks (Table 3] results in error propagation and
performance degradation in both domains. Our success therefore stems not from a simple combination
of modules, but from a series of deliberate, non-trivial design choices—from the foundational use of
3D point clouds to the end-to-end joint reasoning mechanism.

5 Conclusion

In this paper, we presented URDF-Anything, a novel end-to-end framework that leverages the
power of 3D Multimodal Large Language Models (MLLMs) to reconstruct functional URDF digital
twins of articulated objects directly from visual observations. By utilizing the MLLM’s inherent
capabilities and introducing a dynamic [S EG] token mechanism for joint geometric segmentation and
kinematic parameter prediction, our method overcomes limitations of prior decoupled or simplified
approaches. Experiments demonstrate that URDF-Anything achieves state-of-the-art performance
across segmentation, parameter prediction, and physical executability metrics on the PartNet-Mobility
dataset, exhibiting superior generalization to complex and unseen objects. This work provides a robust
and efficient solution for automated articulated object digital twin creation, significantly advancing
capabilities for robotic simulation.

Limitations. While URDF-Anything demonstrates significant advancements, limitations include
the inability to generate certain URDF properties (e.g., mass, moment of inertia), partly due to
training data and base model constraints. Additionally, the pipeline is not fully end-to-end, relying
on an external point-to-mesh conversion module to generate link geometry. Precision of numerical
parameters is also limited by the token-based generation approach.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (62476011).

10

References

(1]

(2]

(3]

(4]

(5]

(6]

(71

(8]

(9]

(10]

(11]

[12]

(13]

(14]

[15]

[16]

(17]

(18]

(19]

Alessio Baratta, Antonio Cimino, Francesco Longo, and Letizia Nicoletti. Digital twin for human-
robot collaboration enhancement in manufacturing systems: Literature review and direction for future
developments. Computers & Industrial Engineering, 187:109764, 2024.

Junfei Li and Simon X Yang. Digital twins to embodied artificial intelligence: review and perspective.
Intelligence & Robotics, 5(1):202-227, 2025.

S M Mostaq Hossain, Sohag Kumar Saha, Shampa Banik, and Trapa Banik. A new era of mobility:
Exploring digital twin applications in autonomous vehicular systems, 2023.

Yangyang Zhou, Dong Hu, Chao Huang, and Hailong Huang. Review of digital twins in intelligent driving.
2024 8th CAA International Conference on Vehicular Control and Intelligence (CVCI), pages 1-6, 2024.

Orkun Kizilirmak, Emre Kaplan, and Cagr1 Glizay. Digital twin architecture for autonomous driving
validation and verification. 2023 14th International Conference on Electrical and Electronics Engineering
(ELECO), pages 1-6, 2023.

Youngho Lee, Sejin Oh, Choonsung Shin, and Woontack Woo. Recent trends in ubiquitous virtual reality.
In 2008 International Symposium on Ubiquitous Virtual Reality, pages 33-36. IEEE, 2008.

Miao Wang, Xu-Quan Lyu, Yi-Jun Li, and Fang-Lue Zhang. Vr content creation and exploration with deep
learning: A survey. Computational Visual Media, 6:3-28, 2020.

Dooyoung Kim, Taewook Ha, Jinseok Hong, Seonji Kim, Selin Choi, Heejeong Ko, and Woontack Woo.
Meta-objects: Interactive and multisensory virtual objects learned from the real world for use in augmented
reality, 2025.

Zhao Mandi, Yijia Weng, Dominik Bauer, and Shuran Song. Real2code: Reconstruct articulated objects
via code generation, 2024.

Long Le, Jason Xie, William Liang, Hung-Ju Wang, Yue Yang, Yecheng Jason Ma, Kyle Vedder, Arjun
Krishna, Dinesh Jayaraman, and Eric Eaton. Articulate-anything: Automatic modeling of articulated
objects via a vision-language foundation model, 2025.

Xin Lai, Zhuotao Tian, Yukang Chen, Yanwei Li, Yuhui Yuan, Shu Liu, and Jiaya Jia. Lisa: Reasoning
segmentation via large language model. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 9579-9589, 2024.

Kaichun Mo, Shilin Zhu, Angel X. Chang, Li Yi, Subarna Tripathi, Leonidas J. Guibas, and Hao Su.
Partnet: A large-scale benchmark for fine-grained and hierarchical part-level 3d object understanding,
2018.

Sijin Chen, Xin Chen, Chi Zhang, Mingsheng Li, Gang Yu, Hao Fei, Hongyuan Zhu, Jiayuan Fan,
and Tao Chen. LlI3da: Visual interactive instruction tuning for omni-3d understanding reasoning and
planning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
26428-26438, 2024.

Boyuan Chen, Zhuo Xu, Sean Kirmani, Brain Ichter, Dorsa Sadigh, Leonidas Guibas, and Fei Xia.
Spatialvlim: Endowing vision-language models with spatial reasoning capabilities. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 14455-14465, 2024.

Weipeng Deng, Jihan Yang, Runyu Ding, Jiahui Liu, Yijiang Li, Xiaojuan Qi, and Edith Ngai. Can 3d
vision-language models truly understand natural language? arXiv preprint arXiv:2403.14760, 2024.

Zhangyang Qi, Ye Fang, Zeyi Sun, Xiaoyang Wu, Tong Wu, Jiaqi Wang, Dahua Lin, and Hengshuang
Zhao. Gpt4point: A unified framework for point-language understanding and generation. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 26417-26427, 2024.

Yilun Chen, Shuai Yang, Haifeng Huang, Tai Wang, Ruiyuan Lyu, Runsen Xu, Dahua Lin, and Jiangmiao
Pang. Grounded 3d-1lm with referent tokens. arXiv preprint arXiv:2405.10370, 2024.

Runsen Xu, Xiaolong Wang, Tai Wang, Yilun Chen, Jiangmiao Pang, and Dahua Lin. Pointllm: Empower-
ing large language models to understand point clouds. In European Conference on Computer Vision, pages
131-147. Springer, 2025.

Zhihao Yuan, Jinke Ren, Chun-Mei Feng, Hengshuang Zhao, Shuguang Cui, and Zhen Li. Visual
programming for zero-shot open-vocabulary 3d visual grounding. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 20623-20633, 2024.

11

[20]

[21]

(22]

(23]

[24]

(25]

[26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

[34]

[35]

(36]

(371

(38]

(39]

(40]

Jiajun Deng, Tianyu He, Li Jiang, Tianyu Wang, Feras Dayoub, and lan Reid. 3d-llava: Towards generalist
3d Imms with omni superpoint transformer. arXiv preprint arXiv:2501.01163, 2025.

Senqgiao Yang, Jiaming Liu, Ray Zhang, Mingjie Pan, Zoey Guo, Xiaoqi Li, Zehui Chen, Peng Gao,
Yandong Guo, and Shanghang Zhang. Lidar-llm: Exploring the potential of large language models for 3d
lidar understanding. arXiv preprint arXiv:2312.14074, 2023.

Zekun Qi, Runpei Dong, Shaochen Zhang, Haoran Geng, Chunrui Han, Zheng Ge, Li Yi, and Kaisheng
Ma. Shapellm: Universal 3d object understanding for embodied interaction, 2024.

Shuting He, Henghui Ding, Xudong Jiang, and Bihan Wen. Segpoint: Segment any point cloud via large
language model, 2024.

Xiangyang Zhu, Renrui Zhang, Bowei He, Ziyu Guo, Ziyao Zeng, Zipeng Qin, Shanghang Zhang, and
Peng Gao. Pointclip v2: Prompting clip and gpt for powerful 3d open-world learning, 2023.

Fan Yang, Sicheng Zhao, Yanhao Zhang, Hui Chen, Haonan Lu, Jungong Han, and Guiguang Ding.
Llmi3d: Mllm-based 3d perception from a single 2d image, 2025.

Jun Lv, Qiaojun Yu, Lin Shao, Wenhai Liu, Wengiang Xu, and Cewu Lu. Sagci-system: Towards
sample-efficient, generalizable, compositional, and incremental robot learning, 2022.

Cheng-Chun Hsu, Ben Abbatematteo, Zhenyu Jiang, Yuke Zhu, Roberto Martin-Martin, and Joydeep
Biswas. Kinscene: Model-based mobile manipulation of articulated scenes, 2024.

Ligian Ma, Jiaojiao Meng, Shuntao Liu, Weihang Chen, Jing Xu, and Rui Chen. Sim2real?: Actively
building explicit physics model for precise articulated object manipulation, 2023.

Zoey Chen, Aaron Walsman, Marius Memmel, Kaichun Mo, Alex Fang, Karthikeya Vemuri, Alan
Wau, Dieter Fox, and Abhishek Gupta. Urdformer: A pipeline for constructing articulated simulation
environments from real-world images, 2024.

Nick Heppert, Muhammad Zubair Irshad, Sergey Zakharov, Katherine Liu, Rares Andrei Ambrus, Jeannette
Bohg, Abhinav Valada, and Thomas Kollar. Carto: Category and joint agnostic reconstruction of articulated
objects. In 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), page
21201-21210. IEEE, June 2023.

Yu Liu, Baoxiong Jia, Ruijie Lu, Junfeng Ni, Song-Chun Zhu, and Siyuan Huang. Artgs: Building
interactable replicas of complex articulated objects via gaussian splatting, 2025.

Jiayi Liu, Ali Mahdavi-Amiri, and Manolis Savva. Paris: Part-level reconstruction and motion analysis for
articulated objects. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages
352-363, 2023.

Jiahui Lei, Yufu Wang, Georgios Pavlakos, Lingjie Liu, and Kostas Daniilidis. Gart: Gaussian articulated
template models, 2023.

Shaojie Ma, Yawei Luo, Wei Yang, and Yi Yang. Mags: Reconstructing and simulating dynamic 3d objects
with mesh-adsorbed gaussian splatting, 2024.

Di Wu, Liu Liu, Zhou Linli, Anran Huang, Liangtu Song, Qiaojun Yu, Qi Wu, and Cewu Lu. Reartgs:
Reconstructing and generating articulated objects via 3d gaussian splatting with geometric and motion
constraints, 2025.

Xiaohao Sun, Hanxiao Jiang, Manolis Savva, and Angel Xuan Chang. Opdmulti: Openable part detection
for multiple objects, 2023.

Shuzhe Wang, Vincent Leroy, Yohann Cabon, Boris Chidlovskii, and Jerome Revaud. Dust3r: Geometric
3d vision made easy, 2024.

Jiaxiang Tang, Zhaoxi Chen, Xiaokang Chen, Tengfei Wang, Gang Zeng, and Ziwei Liu. Lgm: Large
multi-view gaussian model for high-resolution 3d content creation, 2024.

Zekun Qi, Runpei Dong, Guofan Fan, Zheng Ge, Xiangyu Zhang, Kaisheng Ma, and Li Yi. Contrast with
reconstruct: Contrastive 3d representation learning guided by generative pretraining, 2023.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. Llama: Open and efficient foundation language models, 2023.

12

[41]

[42]

[43]

(44]

[45]

[46]

[47]

H. Edelsbrunner, D. Kirkpatrick, and R. Seidel. On the shape of a set of points in the plane. IEEE
Transactions on Information Theory, 29(4):551-559, 1983.

F. Bernardini, J. Mittleman, H. Rushmeier, C. Silva, and G. Taubin. The ball-pivoting algorithm for surface
reconstruction. /IEEE Transactions on Visualization and Computer Graphics, 5(4):349-359, 1999.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control. In
2012 IEEE/RSJ international conference on intelligent robots and systems, pages 5026-5033. IEEE, 2012.

Rawal Khirodkar, Timur Bagautdinov, Julieta Martinez, Su Zhaoen, Austin James, Peter Selednik, Stu-
art Anderson, and Shunsuke Saito. Sapiens: Foundation for human vision models. arXiv preprint
arXiv:2408.12569, 2024.

Junsheng Zhou, Jinsheng Wang, Baorui Ma, Yu-Shen Liu, Tiejun Huang, and Xinlong Wang. Uni3d:
Exploring unified 3d representation at scale. In International Conference on Learning Representations
(ICLR), 2024.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. Lora: Low-rank adaptation of large language models, 2021.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization, 2019.

13

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Our contributions claimed correspond with experiment result in Sectiond]and
we provide detailed figures and tables.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss limitations in Sectior[3]
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

14

Justification: This study focuses on empirical/applied aspects rather than theoretical deriva-
tions.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide experiment detail in Sectionfd]

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

15

Answer: [Yes]

Justification: We provide supplemental material, including instruction to download and
prepare data and how to use our code and derive the result. We also include our code.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We provide experiment details in sectiorfd]
Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: The reported experimental results are not accompanied by error bars, confi-
dence intervals, or statistical significance tests to quantify the variability of the performance
metrics.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

16

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

8.

10.

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We include compute resources information in sectionfd]
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We went through the guidelines carefully and we are sure that our research
conform, in every respect, with the NeurIPS Code of Ethics.
Guidelines:
* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: Our paper pose no such risks as a novel model.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

17

https://neurips.cc/public/EthicsGuidelines

11.

12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: Our paper pose no such risks as a novel model.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We cite all relevant papers in out references.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

18

paperswithcode.com/datasets

13.

14.

15.

16.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: We provide detailed README file in supplementary material for ease of use.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: We don’t involve crowdsourcing and human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: We don’t involve crowdsourcing and human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

19

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]

Justification: The proposed framework utilizes a Large Language Model as a core and
important component of its methodology. The role and implementation details of the LLM
are described in Section[3.3]and Section 4l

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

20

https://neurips.cc/Conferences/2025/LLM

A Appendix

A.1 Dataset Preparation Details

Following prior work [9,|10], we define In-Distribution (ID) objects as those from five categories:
Laptop, Box, Refrigerator, StorageFurniture, and Table. All other 41 categories in the PartNet-
Mobility dataset are held out as Out-of-Distribution (OOD) to evaluate generalization to entirely
unseen object classes.

The PartNet-Mobility dataset provides raw URDF files and mesh files. To prepare the data for
our MLLM framework, we performed several processing steps to ensure consistency and extract
necessary information.

Firstly, we performed a coordinate normalization and URDF structure regularization process. This
involved establishing a consistent *base’ link as the root reference frame for each object’s kinematic
tree. We then programmatically calculated the transformation (position xyz and orientation rpy)
from this ’base’ link to each subsequent link’s frame. The URDF structure was then modified: joints
not already having ’base’ as their parent were re-configured so that their child link connects directly
to the ’base’ link. The ‘<origin>‘ tag of these re-parented joints was updated to the previously
calculated transformation from ’base’ to the child link’s frame, effectively defining the child link’s
pose relative to the "base’. Additionally, for links that originally referenced multiple mesh files within
their ’<visual>’ and/or ’<collision>’ tags (e.g., multiple ’<visual>’ elements each with a mesh), these
URDF entries were consolidated. Each link was modified to reference a single, representative mesh
file for its visual geometry and similarly for its collision geometry. The original local transform (origin
zyz and rpy) specified in the first-found visual or collision mesh entry for that link was preserved and
applied to these new consolidated entries. This overall simplification aimed to streamline subsequent
geometric processing. An example of an original URDF file, which serves as input to our processing,
is shown in Figure[8] The result of this URDF processing, particularly the consolidated representation
for links, is illustrated in Figure

Secondly, for the purpose of dataset splitting and ensuring manageable complexity during training,
we filtered the dataset based on the number of parts. Specifically, objects with fewer than 8 articulated
parts (links involved in joints) were selected to form the primary dataset used for training and
evaluation splits.

Finally, since our framework requires visual input, we generated synthetic multi-view and multi-state
RGB images from the processed 3D models using the SAPIENS simulator. For multi-view rendering,
we employed two strategies: capturing viewpoints from an equator plane and capturing viewpoints
distributed spherically (Figure). The spherical viewpoint distribution utilized a minimum potential
energy method to ensure relatively uniform coverage around the object. These rendered images,
along with the corresponding point clouds derived from the 3D models, served as the visual input for
our model.

A.2 Point Cloud Generation Details

As detailed in Section3.2]the initial step of our pipeline is the generation of a dense 3D point cloud
P,y from the input visual observations. This process adapts based on whether multi-view or single-
view images are available. The generated point cloud serves as the primary geometric input for the
subsequent multimodal processing stages.

A.2.1 Multi-view Point Cloud Generation

When multiple RGB images of the articulated object from different viewpoints are available, we
leverage the capabilities of the pre-trained DUSt3R model [37]. DUSt3R is specifically designed for
establishing dense 2D-to-3D correspondences across multiple images and reconstructing accurate 3D
geometry. We feed the set of multi-view images into DUSt3R, which outputs a dense point cloud
P,y representing the reconstructed 3D structure of the object. Example results are showed in Figure
6

21

1L LYY

U @& e R e 8 o~ ~7N

d3Leosend

distributed spherically
rendering

equator plane
rendering

Figure 4: SAPIENS Simulator Rendering Strategies

A.2.2 Single-view Point Cloud Generation

For the more challenging scenario where only a single RGB image of the object is provided, we
employ a generative approach utilizing LGM (Large Generative Model) [38]]. This process involves
two main steps. First, we use a pre-trained diffusion model to synthesize a consistent set of multi-
view images that are plausible renderings of the object from viewpoints around the original single
image. Second, we reconstruct the 3D geometry from these synthesized multi-view images. This
reconstruction can be initially represented as a 3D Gaussian Splatting model, which is then converted
into the final dense point cloud representation F,;;. Example results are shown in Figure E}

Regardless of whether the point cloud is generated from multi-view images via DUSt3R or from a
single view via LGM and diffusion-based synthesis, the output of this stage is a dense point cloud
Py € RN %6 where each point is represented by its 3D spatial coordinates and RGB color value
(XYZRGB). It is important to reiterate that this generated point cloud P,; provides a holistic,
monolithic representation of the entire object geometry; it does not intrinsically contain part-level
segmentation information.

A.3 3D MLLM’s input and output Design Details
Input Prompt Design

The input to our 3D MLLM consists of processed 3D point cloud features (passed to the model via a
designated token, e.g., <point>) and a text instruction. To enhance the robustness and generalization
capability of the model, we utilize several different text instruction templates during training. These
templates vary in the level of detail provided about the object and its parts (e.g., including object
category, number of parts, detailed description of objects) but consistently specify the desired task:
predict joint parameters and segmentation masks in a structured format. A portion of these templates
include the "number of parts," primarily serving as a pedagogical tool or a strong supervisory signal
to ease the fitting pressure and help the model learn the correlation between an object’s visual form
and its internal articulated structure more effectively.

A representative example of a general input instruction template structure is:

The articulated object [Object Category] consists of [Number of Parts]
parts. [Optional descriptive phrases about links or overall object,
e.g., This object is a kitchen faucet. There are two distinct handles
or witches positioned on either side of the base.] Predict all joint
parameters in JSON format, including type, origin,axis, parent, and

22

child. Segment each link in JSON format.

An instance of a concrete input prompt generated from a template for a specific object (a Faucet in this
case) used in our experiments is shown below. Note that the full input to the MLLM would include
the point cloud features encoded prior to this text sequence. During Inference, providing the number
of parts is entirely optional. For all quantitative evaluations in the paper and for fair comparison with
other models, we uniformly used a generic prompt that did not contain any information about the
number of parts or joints (e.g., "Please segment the object and predict its joint parameters").

This articulated object Faucet consists of 4 parts. Predict all joint
parameters in JSON format, including type, origin, axis, parent, and
child. Segment each link in JSON format.

QOutput Format Design

The MLLM is trained to autoregressively generate its output as structured text in JSON format. This
output design is critical as it simultaneously specifies the predicted kinematic structure and provides
explicit signals for geometric segmentation. The output JSON contains two primary keys:

* "joints": This key maps to a list, where each element represents a predicted joint. Each
joint object includes the essential URDF parameters: "id", "type" (e.g., "revolute", "pris-
matic", "fixed"), "parent" link name, "child" link name, "origin" (containing "xyz"

position and "rpy" orientation), and "axis" vector.

* "1links": This key maps to an object that provides information about the predicted links.
Specifically, it maps each predicted link name (e.g., "link_0", "link_1") to the predicted
semantic category of the part followed immediately by the special [SEG] token (e.g.,
"switch[SEG]"). The presence and position of the [SEG] token in the output sequence is
the explicit signal generated by the MLLM that triggers and guides the geometric segmenta-
tion process for the corresponding link in the input point cloud (as detailed in Section [3.4] of
the main paper).

A complete example of the MLLM’s generated output in JSON format for the Faucet instance,
corresponding to the input prompt shown above, is provided below:

{
"joints": [
{
"id": "joint_0",
"type": "revolute",
"parent": "base",

"child": "link_O",
"origin": {
"xyz": [-0.079, -0.48747, -0.0],
"rpy": [1.5708, -0.0, 1.5708]
},
"axis": [0.0, 1.0, 0.0],
"limit": {"lower": O, "upper": 1.57}

}’
{
llidll: lljoint_lll,
"type": "revolute",
"parent": "base",
"child": "link_ 1",
"origin": {
"xyz": [-0.079, 0.49568, -0.0],
"rpy": [1.5708, -0.0, 1.5708]
}9
"axis": [0.0, -1.0, 0.0],
"limit": {"lower": 0, "upper": 1.57}
}:

23

Ilidll . Iljoint_zll’

"type": "continuous",

"parent": "base",

"child": "link_ 2",

"origin": {
"xyz": [-0.079, 0.00411, -0.0],
"rpy": [1.5708, -0.0, 1.5708]

>

"axis": [0.0, 1.0, 0.0]

}!
{
Ilidll: Iljoint_SII s
"typell: llfixed" s
"parent": "base",
"child": "link_3",
"origin": {
"xyz": [0.0, 0.0, 0.0],
"rpy": [1.5708, 0.0, 1.5708]
},
"axis": [1.0, 0.0, 0.0]
}
] bl
"links": {
"link_O": "switch[SEG]",
"link_1": "switch[SEG]",
"link_2": "spout[SEG]",
"link_3": "faucet_base[SEG]"
}

A.4 Shape Reconstruction Quality

To quantitatively evaluate the geometric fidelity of the final mesh outputs—including the point-to-
mesh conversion stage—we compute the Chamfer Distance (CD) between our generated meshes and
the ground-truth meshes from PartNet-Mobility. We compare against two strong baselines that also
produce explicit mesh outputs.The results, shown in Table[6] clearly demonstrate the superiority of
our method in shape reconstruction quality.

Table 6: Comparison of Shape Reconstruction Quality (Chamfer Distance).

Method ALL ID OOD
CARTO 1.24 088 1.27
PARIS 3.06 217 3.3

URDF-Anything (Ours) 139 040 1.51

A.5 Failure Case Analysis

We analyze failure cases from the physical executability evaluation (22% failure rate overall). As
shown in Table7] the vast majority of failures (21%) stem from incorrect kinematic parameters—such
as misaligned joint origins or axes—leading to non-physical motion (e.g., parts colliding or detaching).
Only 1% of failures are due to invalid JSON format, confirming our MLLM reliably generates valid
syntax. To provide a more detailed error analysis for physical executability, we have conducted a
deeper failure analysis, shown in Table

24

Input Image i “ ‘ “l-—

k=l [/
T o Ao w ik \ \

Point Cloud i

Figure 5: LGM: Point Cloud Generation via Multi-view Synthesis

Input Image Point Cloud

Figure 6: Multi-view Point Cloud Generation using DUSt3R.

A.6 Comparison with Alternative Methodologies

For completeness, this appendix provides a targeted comparison against alternative methods like
CARTO [30] and PARIS [32], which address more constrained problems under different assumptions.

* PARIS is an optimization-based method requiring images of start/end states. Its
per-instance optimization is slow at inference (>3min), making it impractical for many
applications.

» CARTO [30] is a fast feed-forward model, but it is highly specialized for single-joint objects
and cannot perform part segmentation or generate a complete, executable URDF.

Tables [9)and [I0]quantify the trade-offs in speed, accuracy, and capability. While CARTO is faster, its
simplicity results in high prediction errors and extremely. PARIS’s optimization-based approach also
struggles to find physically plausible solutions, leading to poor accuracy and executability (25%).

25

image point cloud 4\se‘qmen’raﬁon ™~ ‘URDF

N

Figure 7: Step-by-Step Reconstruction from Real-World Image to Functional URDF.

Table 7: Breakdown of Physical Executability Failures.

Failure Type Percentage
Incorrect joint parameters 21%
JSON Format Error 1%
Overall Failure 22%

In contrast, URDF-Anything’s MLLM-based design provides a robust balance, achieving vastly
superior accuracy and a high executability rate (90%) with a practical feed-forward inference time
(13s). This result validates our design choice for tackling complex, general-purpose reconstruction.

A.7 Zero-Shot Sim-to-Real Generalization Evaluation

To assess the real-world applicability of our framework, we conducted a zero-shot sim-to-real
evaluation. Our model, trained exclusively on the simulated PartNet-Mobility dataset, was tested
directly on the real-world portion of the PARIS dataset [32]. This dataset provides real-world captures
and annotations for two main categories: Fridge and Storage.

The quantitative results of this evaluation are presented in Table[TT]

These results provide several key insights into the model’s sim-to-real transfer capabilities. First, our
method achieves reasonable performance on geometric tasks (segmentation mloU and mesh CD) and
continuous parameter prediction (axis/origin), despite the significant domain gap between synthetic
training data and real-world images. For the Fridge and Storage categories present in the dataset, the
model correctly identified the joint type in all cases.

A.8 More Ablation

Impact of Context Fusion in Segmentation. We also analyzed the impact of our proposed context
fusion mechanism for the [SEG] token. We compared our approach, which fuses the hidden states
of the [SEG] token and its preceding category token, against a baseline that uses only the generic
hidden state of the [SEG] token (hsg). Table|'1;2| shows that our context fusion design achieves a clear
improvement in segmentation mloU, confirming its effectiveness in providing part-aware context for
fine-grained segmentation.

26

<?xml version="1.0" ?>
<robot name="UNNAMED_34">
<l-- base link --I>
<link name="base"/>
<link name="link_0">
<visual>
<origin rpy="0.0 0.0 0.0" xyz="0.0 0.0 0.0"/>
<geometry>
<mesh filename="link_O_combined_mesh.obj"/>
</geometry>
</visual>
<collision>
<origin rpy="0.0 0.0 0.0" xyz="0.0 0.0 0.0"/>
<geometry>
<mesh filename="link_O_combined_mesh.obj"/>
</geometry>
</collision>
</link>
<I--link 1 --I>
<link name="link_1">
<visual>
<origin rpy="0.0 0.0 0.0" xyz="-0.67 0.22 0.16"/>
<geometry>
<mesh filename="link_1_combined_mesh.obj"/>
</geometry>
</visual>
<collision>
<origin rpy="0.0 0.0 0.0" xyz="-0.67 0.220.16"/>
<geometry>
<mesh filename="link_1_combined_mesh.obj"/>
</geometry>
</collision>
</link>
<I-- joint O --I>
<joint type="fixed" name="joint_0">
<parent link="base"/>
<child link="link_0"/>
<origin rpy="157 0.0 1.57" xyz="0.0 0.0 0.0"/>
<axis xyz="100"/>
</ joint>
<I-- joint 1 --I>
<joint type="revolute" name="joint_1">
<parent link="base"/>
<child link="link_1"/>
<origin rpy="157 -0.0 1.57" xyz="-0.16 0.67 -0.22"/>
<axis xyz="-1.0 0.0 0.0"/>
<limit lower="-1.83" upper="-0.0" effort="0.0" velocity="0.0"/>
</ joint>
</robot>

Figure 8: Example Generated URDF File

27

Table 8: Breakdown of Physical Executability Failures by Category.

Category Total (%) JSON Format Error (%) Joint Error (%)
Type Axis Origin
Window 15.5 0.00 0.03 0.05 0.07
Chair 22.2 0.01 0.06 0.06 0.09
Globe 14.8 0.00 0.03 0.05 0.07

Table 9: Comparison of Inference Speed and Methodology.

Method Core Methodology Avg. Inference Time
CARTO [30] Feed-forward Encoder-Decoder 1s

PARIS [32] Per-instance Optimization >3min
URDF-Anything (Ours) Feed-forward MLLM Inference 13s

Table 10: Comparison of Reconstruction Accuracy and Physical Executability. Our method
delivers substantially lower prediction errors and a much higher rate of generating functional URDFs.

Method mloU CD TypeError Axis Error Origin Error Executability
CARTO [30] - 1.24 0.12 - - -
PARIS [32] 0.44 3.06 0.25 0.84 0.30 25%
URDEF-Anything(Ours) 0.69 1.39 0.007 0.121 0.13 90 %

Table 11: Zero-Shot Sim-to-Real Performance on the PARIS Real-World Dataset. The model
was trained only on simulation data and tested on real-world images.

Category mloU CD Type Error Axis Error Origin Error

Fridge 0.57 1.03 0.0 0.335 0.256
Storage 0.56 0.99 0.0 0.362 0.349

Table 12: Ablation: Context Fusion Mechanism for Segmentation.

Segmentation Mechanism Query Feature mloU
Generic only Pseg 0.58
Context Fusion (OllI'S) hcombined = [hcategory§ hseg] 0.63

A.9 Analysis of the Joint Segmentation and Kinematics Learning Mechanism

A critical aspect of our framework is the tight coupling between geometric segmentation and kinematic
parameter prediction, facilitated by the ‘[SEG]‘ token and end-to-end joint optimization. This section
aims to demystify this process, explaining it as a form of "Geometric Regularization" and providing
empirical validation.

Theoretical Explanation: Geometric Regularization via Joint Optimization The core principle
behind this synergy is that the segmentation task (Lg.4) provides a powerful physical anchor for
the kinematic prediction task (Lsc,¢). A model predicting only kinematics might hallucinate a
joint that is textually plausible but physically baseless. Our joint optimization forces the model to
ground its abstract kinematic predictions in the concrete geometric entities of the point cloud. This
geometric grounding effectively constrains the parameter search space, guiding the model toward
more physically consistent articulation structures. This is enabled by the shared representation in our
end-to-end model, which forces the hidden states used for both tasks to be mutually informative.

28

Experimental Validation To empirically validate this theory, we provide both quantitative and
qualitative evidence.

Quantitative Ablation. We trained a variant of our model without the ‘[SEG]‘ token and its
associated segmentation loss (Lcg). As shown in Table 5] "Kinematics-Only” removes the geometric
regularization from the segmentation task, leading to a consistent increase in prediction error across
all kinematic parameters. This quantitatively demonstrates that joint segmentation is crucial for
achieving high-fidelity kinematic inference.

Qualitative Visualization. To provide intuitive insight into the "black-box" mechanism, we visualized
the self-attention maps from a key transformer layer while the model generated a kinematic parameter
token (e.g., ‘axis®). As illustrated in Figure[9] the full model’s attention is sharply focused on the
physically relevant joint region (the hinge). In contrast, the model trained without segmentation
exhibits diffuse, unfocused attention. This visualization provides direct evidence that our joint
optimization strategy forces the model to ground abstract kinematic concepts in concrete geometric
features, demystifying the learning process.

(a) (b)

Figure 9: Attention Visualization for Kinematic Token Generation. (a) Our full model, trained
with joint segmentation, concentrates its attention (yellow areas) on the relevant joint region when
predicting the joint ‘axis‘. (b) The model trained without the segmentation loss shows diffuse
attention, lacking precise geometric grounding.

29

	Introduction
	Related Work
	Method
	Task Definition
	Input Representation
	Articulation Parsing with 3D MLLM
	Geometric Segmentation from Special-Token Mechanism
	Mesh Conversion and URDF File Generation
	Model Training

	Experiments
	Link Segmentation Results
	Joint Parameter Prediction Results
	Physical Executability
	Ablation Study

	Conclusion
	Appendix
	Dataset Preparation Details
	Point Cloud Generation Details
	Multi-view Point Cloud Generation
	Single-view Point Cloud Generation

	3D MLLM's input and output Design Details
	Shape Reconstruction Quality
	Failure Case Analysis
	Comparison with Alternative Methodologies
	Zero-Shot Sim-to-Real Generalization Evaluation
	More Ablation
	Analysis of the Joint Segmentation and Kinematics Learning Mechanism

