
einspace: Searching for Neural Architectures
from Fundamental Operations

Linus Ericsson1 Miguel Espinosa Minano1 Chenhongyi Yang1

Antreas Antoniou1 Amos Storkey1 Shay B. Cohen1 StevenMcDonagh1 Elliot J. Crowley1

1The University of Edinburgh

Abstract Neural architecture search (NAS) finds high performing networks for a given task. Yet the
results of NAS are fairly prosaic; they did not e.g. create a shift from convolutional structures
to transformers. This is not least because the search spaces in NAS often aren’t diverse
enough to include such transformations a priori. Instead, for NAS to provide greater potential
for fundamental design shifts, we need a novel expressive search space design which is built
from more fundamental operations. To this end, we introduce einspace, a search space
based on a parameterised probabilistic context-free grammar (CFG). Our space is versatile,
supporting architectures of various sizes and complexities, while also containing diverse
network operations which allow it to model convolutions, attention components and more.
It contains many existing competitive architectures, and provides flexibility for discovering
new ones. Using this search space, we perform experiments to find novel architectures as
well as improvements on existing ones on the diverse Unseen NAS datasets. We show that
competitive architectures can be obtained by searching from scratch, and we consistently
find large improvements when initialising the search with strong baselines. We believe that
this work is an important advancement towards a transformative NAS paradigm where
search space expressivity and strategic search initialisation play key roles.

1 Introduction

The goal of neural architecture search (NAS) is to automatically choose a network architecture for
a given task, removing the need for expensive human expertise. A NAS method defines a search
space of all possible architectures that can be chosen, and a search algorithm to navigate through the
space, selecting the most suitable architecture with respect to search objectives. Despite significant
research investment in NAS, with over 1000 papers released since 2020 [49], manually designed
architectures such as transformers [47], MLP-Mixers [45], and ResNets [17] still dominate the
landscape, posing the question of why NAS isn’t more widely used.

Part of the problemwithNAS is thatmost search spaces arenot expressive enough, relyingheavily
on high-level operations and rigid structures, making it impossible to discover anything beyond
ConvNet characteristics [12, 51]. To address this, we propose einspace: a neural architecture search
space based on a parameterised probabilistic context-free grammar (CFG), which is highly expressive
and able to represent various network configurations including diverse state-of-the-art architectures
like ResNets, transformers, and theMLP-Mixer. This configuration allows for the integration of tried-
and-tested architectures as powerful priors, making the most out of architectural research to date.

To demonstrate the effectiveness of einspace, we perform experiments on the Unseen
NAS [14] datasets—eight diverse classification tasks including vision, language, audio, and chess
problems—using simple random and evolutionary search strategies. We find that in such an
expressive search space, the choice of search strategy is important and random search underperforms.
When using the powerful priors of human-designed architectures to initialise an evolutionary
search, we consistently find both large performance gains and significant architectural changes.
Code to reproduce our experiments is available in the supplementary material.

AutoML 2024Workshop Track © 2024 the authors, released under CC BY 4.0

mailto:linus.ericsson@ed.ac.uk
mailto:email2@example.com
mailto:email3@example.com
mailto:email3@example.com
mailto:email3@example.com
mailto:email3@example.com
mailto:email3@example.com
mailto:email3@example.com
https://creativecommons.org/licenses/by/4.0/

ResNet18 ViT MLP-Mixer

Derivation tree Derivation tree Derivation tree

Figure 1: Three state-of-the-art architectures and their associated derivation trees within einspace. Top
row shows the architectures where the black node is the input tensor and the red is the output.
Bottom row shows derivation trees where the top node represents the starting symbol, the
grey internal nodes the non-terminals and the leaf nodes the terminal operations. See Section
2.1 for details on other node colouring. Best viewed with digital zoom.

2 einspace: A Search Space of Fundamental Operations

Our neural architecture search space, einspace1 is introduced here. Based on a parameterised
probabilistic CFG, it provides an expressive space containing several state-of-the-art neural
architectures. We first describe the groups of operations we include in the space, then howmacro
structures are represented. We then present the CFG that defines the search space and finally, in
the appendix, its parameterised and probabilistic extensions.

As a running example we will be constructing a simple convolutional block with a skip
connection within einspace, explaining at each stage how it relates to the architecture. The block
will consist of a convolution, a normalisation and an activation, wrapped inside a skip connection.

2.1 Fundamental Operations

Each fundamental operation in einspace takes as input a tensor, either from the network input or
a preceding operation, and processes it further. The operations can be categorised into four groups
based on their role in the network architecture. The classifications one-to-one, one-to-many, and
many-to-one describe the number of input and output tensors for the functions within each group.
Branching. One-to-many functions that direct the flow of information through the network by
cloning or splitting tensors. Examples include the branching within self-attention modules into
queries, keys and values. In our visualisations, these are coloured yellow.
Aggregation. Many-to-one functions that merge multiple tensors into one. Examples include matrix
multiplication, summation and concatenation. In our visualisations, these are coloured purple.
Routing. One-to-one functions that change the shape or the order of the content in a tensor without
altering its information. Examples include axis permutations as well as the im2col and col2im
operations. In our visualisations, these are coloured green.
Computation. One-to-one functions that alter the information of the tensor, either by parameterised
operations, normalisation or non-linearities. Examples include linear layers, batch norm and
activations like ReLU and softmax. In visualisations, these are coloured blue.

In our example, the skip connection will be handled by a combination of branching and aggrega-
tion functions, the convolution is decomposed into the routing functions im2col and col2im, with a
linear layer fromthecomputationgroupbetween them. Thenormalisationandactivationcome from
the computation group. In the next subsection, we discuss the larger structures of the architecture.

1The name is inspired by the generality of the Einstein summation and related Python library einops [38] as many of
our operations can be implemented in it.

2

2.2 Macro Structure

The groups of functions above describe the fundamental operations that make up an architecture.
We now describe how these functions are composed in different ways to form larger components.

Amodule is defined as a composition of functions from above that takes one input tensor and pro-
duces oneoutput tensor,withpotential branching inside. Amodulemaycontainmultiple computation
and routing operations, but each branching must be paired with a subsequent aggregation operation.
Thus, the whole network can be seen as a module that takes a single tensor as input and outputs a
single prediction. A network module may itself contain multiple modules, directly pertaining to the
hierarchical phrase nature of CFG structures. We divide modules into four types, visualised in Fig. 2.

norm relu

linear

identity

clone add

im2col linear col2im

softmax

[
S
[
M
[
C
norm]][

M
[
C
relu]]]

[
S
[
B
 clone][

M1
[
C
 linear]][

M2
[
C
 identity]][

A
add]]

[
S
[
R1
 im2col][

M
[
C
 linear]][

R2
col2im]]

[
S
[
M
[
C
softmax]]]

Figure 2: Visualisation of ex-
ample modules with
their CFG derivations
in bracket notation.
From top to bottom;
sequential, branching,
routing and computa-
tion modules.

Sequential module. A pair of modules and/or functions that are ap-
plied to the input tensor sequentially. Using our grammar, defined in
Sec.2.3, this can be produced using the rule (M→MM), or equivalently
from the starting symbol S. This also applies to the rules below.
Branching module. A branching function first splits the input into
multiple branches. Each branch is processed by some inner set of
modules and/or functions. The outputs of all branches are subse-
quently merged in an aggregation function. In the grammar below
this can be produced by the rule (M→B M A).
Routingmodule. A routing function is applied, followedbyamodule
and/or function. A final routing function then processes the tensor.
In the grammar below this is produced by the rule (M→R1 M R2).
Computation module. This module only contains a single function,
selected from theone-to-one computation functions described above.
While this module is trivial, we will see later how its inclusion is
helpful when designing our CFG and its probabilistic extension. In
the grammar below this is produced by the rule (M→C).

To construct our example, we will use all four modules. The
branchingmodule combines thecloneandadd functions frombefore
to create a2-branchstructure. Onebranch is a simple skip connection
by using the identity function inside a computation module. The
other branch is themore complex sequence. The convolutional layer
is created by combining im2col, linear and col2im in a routing
module. Thenormand activation are eachwrapped in a computation
module and these are all composed in sequential modules. Fig. 2
shows similar module instantiations in action.

2.3 Search Space as a Context-Free Grammar

S → M M | B M A | R1 M R2,

M → M M | B M A | R1 M R2 | C,

B → clone | group-dim,

A → matmul | add | concat,

R1 → identity | im2col | permute,

R2 → identity | col2im | permute,

C → identity | linear | norm | relu | softmax | pos-enc.

The CFG above defines our einspace, where uppercase symbols represent non-terminals and
lowercase represent terminals. The colours refer to the function groups.

3

Table 1: NAS performance in einspacewith the simple search strategies of random sampling, random
search, and regularised evolution (RE). See text for further detail. We evaluate performance
across multiple datasets andmodalities fromUnseen NAS [14]. Search space results transcribed
from [14] are denoted *, where DARTS [25] and Bonsai [13] search spaces are employed. The
expressiveness of einspace enables performance that remains competitive with significantly
more elaborate search strategies. We highlight best and second best performance per dataset.

Baselines Regularised evolution (RE)
einspace

Rand. Search Rand.
Sampl.

Dataset RN18 PC-
DARTS*

Dr
NAS*

Bonsai-
Net*

RE
(RN18)

RE
(Mix)

RE
(Scratch) DARTS* Bonsai* ein

space
ein

space

AddNIST 93.36 96.60 97.06 97.91 97.54 97.72 83.87 97.07 34.17 67.00 10.13
Language 92.16 90.12 88.55 87.65 96.84 97.92 88.12 90.12 76.83 87.01 35.26
MultNIST 91.36 96.68 98.10 97.17 96.37 92.25 93.72 96.55 39.76 66.09 18.87
CIFARTile 47.13 92.28 81.08 91.47 60.65 62.76 30.89 90.74 24.76 30.90 25.25
Gutenberg 43.32 49.12 46.62 48.57 54.02 50.16 36.70 47.72 29.00 39.58 19.69
Isabella 63.65 65.77 64.53 64.08 64.30 62.72 56.33 66.35 58.53 56.90 32.24
GeoClassing 90.08 94.61 96.03 95.66 95.31 95.13 60.43 95.54 63.56 69.13 24.35
Chesseract 59.35 57.20 58.24 60.76 60.31 61.86 59.50 59.16 68.83 61.46 44.83

Average acc. ↑ 72.55 80.30 78.78 80.41 78.17 77.56 63.70 80.41 49.43 59.76 26.32
Average rank ↓ 6.50 4.44 4.38 3.50 3.75 3.88 8.12 4.06 8.62 7.88 10.88

Our networks are all constructed according to the high-level blueprint: backbone→headwhere
head is a predefined module that takes an output feature from the backbone and processes it into a
prediction (see Appendix C for more details). The backbone is thus the section of the network that is
generated by the above CFG.When searching for architectures we search different backbones.

For a thorough example of how sampling andmutation is performed in einspace, we recommend
looking at Appendix B, where we also present a full derivation tree of our running example.

3 Experiments

In this section we evaluate the effectiveness of einspace as a NAS search space. We use simple
random search and evolutionary search strategies on the diverse Unseen NAS datasets (Table 1)

Figure 3: The top RE(Mix) architecture on
AddNIST, found in einspace.

and on NAS-Bench-360 (Table 5 in the appendix).
For implementation details, see appendix Section C.

3.1 Random Sampling and Search

In previous NAS search spaces e.g. [12, 25, 51], com-
plex search methods often perform very similarly to
random search [22, 52]. Indeed, we can see this in
Tab. 1 comparing the PC-DARTS strategy to DARTS
random search.

However for einspace, this is not the case for
most datasets. Random sampling improves on pure
random guessing (not shown), but is far from the
baseline performance of a ResNet18. The random
search baseline is also far behind, but intriguingly
outperforms baseline NAS approaches on Chesseract.

4

3.2 Evolutionary Search from Scratch
We now turn to a more sophisticated search strategy. We perform regularised evolution in einspace
for 1000 iterations across all datasets, initialising the population with 100 random samples. In
Tab. 1 the results are shown in the column named RE(Scratch). The performance of this strategy is
significantly higher than random search on several datasets, indicating that the search strategy is
more important in an expressive search space like einspace compared to DARTS. Compared to the
top performing NASmethods, however, it is significantly behind on some datasets.

3.3 Evolutionary Search from Existing SOTAArchitectures
To fully use the powerful priors of existing human-designed structures, we now searchwith the initial
population of our evolutionary search seeded with a set of existing state-of-the-art architectures.
We first seed the entire population with the ResNet18 architecture. The search applies mutations to
these networks for 500 iterations. In Tab. 1, these results can be found in the RE(RN18) column.

Figure 4: The best model on the Language dataset,
found by RE(Mix) in einspace.

To further highlight the expressivity of
einspace, we perform experiments with the ini-
tial population as amix of ResNet18,WRN16-4, ViT
andMLP-Mixer architectures. To our knowledge,
no other NAS space is able to represent such a di-
verse set of architectures in a single space. These
results are shown in the RE(Mix) column.

On every single task, we find an improved ver-
sion of the initial architecture using RE(RN18) and
on all but one using RE(Mix). Moreover, in some
caseswebeatexistingstate-of-the-art, especiallyon
tasks further from the traditional computer vision
setting. In particular, where previousNASmethods
fail—i.e. the Language dataset—the architecture in
Fig. 4 has a direct improvement over the ResNet18 by 5.76%. See also the architecture in Fig. 3 and
the collection in Fig. 8 in the Appendix for the breadth of structures that are found in einspace.

4 Discussion
LimitationsOur search space, designed for diversity, is extremely large and uniquely unbounded in
terms of depth and width. This complexity makes formulating one-shot models like ENAS [31] or
DARTS [25] challenging. Instead, developing an algorithm to learn the probabilities of the PCFG
might bemore viable. This approachmust address the fact that sampling probabilities do not consider
network depth or previous decisions, although this could be mitigated by using the parameters
outlined in Section B.3. Furthermore, while einspace is diverse, it lacks options for recurrent
computation as found in RNNs and the newwave of state-space models like Mamba [15]. We also
chose to keep the options for activations and normalisation layers narrow since in practice the benefit
from changing these tends to be small.
Broader Impact Statement After careful reflection, the authors have determined that this work
presents no notable negative impacts to society or the environment.
ConclusionWe have introduced einspace: an expressive NAS search space based on a parame-
terised probabilistic CFG.We show that our work enables the construction of a comprehensive and
diverse range of existing state-of-the-art architectures and can further facilitate discovery of novel
architectures directly from fundamental operations. With only simple search strategies, we report
competitive resulting architectures across a diverse set of tasks, highlighting the potential value of
defining highly expressive search spaces. We further demonstrate the utility of initialising search
with existing architectures as priors. We believe that future work on developing intelligent search
strategies within einspace can lead to exciting advancements in neural architectures.

5

Acknowledgements. The authors are grateful to Joseph Mellor, Henry Gouk, and Thomas L. Lee for
helpful suggestions. Funding for this research is provided by an EPSRC New Investigator Award
(EP/X020703/1).

References

[1] Bender, G., Kindermans, P.-J., Zoph, B., Vasudevan, V., and Le, Q. V. (2018). Understanding and
simplifying one-shot architecture search. In International Conference on Machine Learning.

[2] Bender, G., Liu, H., Chen, B., Chu, G., Cheng, S., Kindermans, P.-J., and Le, Q. V. (2020). Canweight
sharing outperform random architecture search? An investigation with tunas. In Proceedings of
the IEEE/CVF Conference on computer vision and pattern recognition.

[3] Cai, H., Gan, C., Wang, T., Zhang, Z., and Han, S. (2020). Once-for-all: Train one network and
specialize it for efficient deployment. In International Conference on Learning Representations.

[4] Cai, H., Zhu, L., and Han, S. (2019). Proxylessnas: Direct neural architecture search on target
task and hardware. In International Conference on Learning Representations.

[5] Chen, A., Dohan, D., and So, D. (2023). Evoprompting: Language models for code-level neural
architecture search. Advances in Neural Information Processing Systems.

[6] Chen, M., Peng, H., Fu, J., and Ling, H. (2021). Autoformer: Searching transformers for visual
recognition. In Proceedings of the IEEE/CVF International Conference on Computer Vision.

[7] Chen, X., Wang, R., Cheng, M., Tang, X., and Hsieh, C.-J. (2020). DrNAS: Dirichlet neural
architecture search. In International Conference on Learning Representations.

[8] Chi, Z. (1999). Statistical properties of probabilistic context-free grammars. Computational
Linguistics, 25(1):131–160.

[9] Chu, X., Zhang, B., and Xu, R. (2021). FairNAS: Rethinking evaluation fairness of weight sharing
neural architecture search. In Proceedings of the IEEE/CVF International Conference on Computer
Vision.

[10] Ci, Y., Lin, C., Sun, M., Chen, B., Zhang, H., and Ouyang,W. (2021). Evolving search space for
neural architecture search. In Proceedings of the IEEE/CVF International Conference on Computer
Vision.

[11] Cohen, S. (2017). Latent-Variable PCFGs: Background and applications. In Proceedings of the
15th Meeting on the Mathematics of Language.

[12] Dong, X. and Yang, Y. (2019). Nas-bench-201: Extending the scope of reproducible neural
architecture search. In International Conference on Learning Representations.

[13] Geada, R., Prangle, D., andMcGough, A. S. (2020). Bonsai-net: One-shot neural architecture
search via differentiable pruners. arXiv preprint arXiv:2006.09264.

[14] Geada, R., Towers, D., Forshaw, M., Atapour-Abarghouei, A., and McGough, A. S. (2024).
Insights from the use of previously unseen neural architecture search datasets. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[15] Gu, A. and Dao, T. (2023). Mamba: Linear-time sequence modeling with selective state spaces.
arXiv preprint arXiv:2312.00752.

6

[16] Guo, Z., Zhang, X., Mu, H., Heng,W., Liu, Z., Wei, Y., and Sun, J. (2020). Single path one-shot
neural architecture search with uniform sampling. In Proceedings of the European Conference on
Computer Vision.

[17] He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image recognition. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.

[18] Hopcroft, J. E.,Motwani, R., andUllman, J. D. (2001). Introduction to automata theory, languages,
and computation. ACM SigAct News, 32(1):60–65.

[19] Hu, J., Shen, L., and Sun, G. (2018). Squeeze-and-excitation networks. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[20] Kandasamy, K., Neiswanger, W., Schneider, J., Poczos, B., and Xing, E. P. (2018). Neural
architecture search with bayesian optimisation and optimal transport. Advances in Neural
Information Processing Systems.

[21] Li, C., Tang, T., Wang, G., Peng, J., Wang, B., Liang, X., and Chang, X. (2021). BossNAS:
Exploring hybrid CNN-transformers with block-wisely self-supervised neural architecture search.
In Proceedings of the IEEE/CVF International Conference on Computer Vision.

[22] Li, L. and Talwalkar, A. (2019). Random search and reproducibility for neural architecture
search. In Conference on Uncertainty in Artificial Intelligence.

[23] Liu, C., Chen, L.-C., Schroff, F., Adam, H., Hua, W., Yuille, A. L., and Fei-Fei, L. (2019a). Auto-
deeplab: Hierarchical neural architecture search for semantic image segmentation. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[24] Liu, H., Simonyan, K., Vinyals, O., Fernando, C., and Kavukcuoglu, K. (2018). Hierarchical
representations for efficient architecture search. In International Conference on Learning Represen-
tations.

[25] Liu, H., Simonyan, K., and Yang, Y. (2019b). DARTS: Differentiable architecture search. In
International Conference on Learning Representations.

[26] Lu, Z., Whalen, I., Boddeti, V., Dhebar, Y., Deb, K., Goodman, E., and Banzhaf, W. (2019). NSGA-
Net: neural architecture search using multi-objective genetic algorithm. In Proceedings of the
Genetic and Evolutionary Computation Conference.

[27] Ma, N., Zhang, X., Zheng, H.-T., and Sun, J. (2018). Shufflenet v2: Practical guidelines for efficient
cnn architecture design. In Proceedings of the European Conference on Computer Vision.

[28] Manning, C. and Schutze, H. (1999). Foundations of statistical natural language processing. MIT
press.

[29] Mendoza, H., Klein, A., Feurer, M., Springenberg, J. T., and Hutter, F. (2016). Towards
automatically-tuned neural networks. In Proceedings of the Workshop on Automatic Machine
Learning. PMLR.

[30] Miikkulainen, R., Liang, J., Meyerson, E., Rawal, A., Fink, D., Francon, O., Raju, B., Shahrzad, H.,
Navruzyan, A., Duffy, N., et al. (2024). Evolving deep neural networks. In Artificial Intelligence in
the Age of Neural Networks and Brain Computing, pages 269–287. Elsevier.

[31] Pham, H., Guan, M., Zoph, B., Le, Q., and Dean, J. (2018). Efficient neural architecture search via
parameters sharing. In International Conference on Machine Learning.

7

[32] Radosavovic, I., Johnson, J., Xie, S., Lo, W.-Y., and Dollár, P. (2019). On network design spaces
for visual recognition. In Proceedings of the IEEE/CVF International Conference on Computer Vision.

[33] Ramachandran, P., Zoph, B., and Le, Q. V. (2017). Searching for activation functions. arXiv
preprint arXiv:1710.05941.

[34] Real, E., Aggarwal, A., Huang, Y., and Le, Q. V. (2019). Regularized evolution for image classifier
architecture search. In Proceedings of the AAAI Conference on Artificial Intelligence.

[35] Real, E., Liang, C., So, D., and Le, Q. V. (2020). AutoML-zero: Evolving machine learning
algorithms from scratch. In International Conference on Machine Learning.

[36] Real, E., Moore, S., Selle, A., Saxena, S., Suematsu, Y. L., Tan, J., Le, Q. V., and Kurakin, A. (2017).
Large-scale evolution of image classifiers. In International Conference on Machine Learning.

[37] Roberts, N., Khodak, M., Dao, T., Li, L., Ré, C., and Talwalkar, A. (2021). Rethinking neural
operations for diverse tasks. Advances in Neural Information Processing Systems.

[38] Rogozhnikov, A. (2022). Einops: Clear and reliable tensor manipulations with einstein-like
notation. In International Conference on Learning Representations.

[39] Ru, R., Esperanca, P., and Carlucci, F. M. (2020). Neural architecture generator optimization.
Advances in Neural Information Processing Systems.

[40] Schrodi, S., Stoll, D., Ru, B., Sukthanker, R., Brox, T., and Hutter, F. (2024). Construction of
hierarchical neural architecture search spaces based on context-free grammars. Advances in
Neural Information Processing Systems.

[41] So, D.,Mańke,W., Liu, H., Dai, Z., Shazeer, N., and Le, Q. V. (2021). Primer: Searching for efficient
transformers for language modeling. InAdvances in Neural Information Processing Systems.

[42] Springenberg, J. T., Dosovitskiy, A., Brox, T., and Riedmiller, M. (2015). Striving for Simplicity:
The All Convolutional Net. In ICLRWorkshops.

[43] Tan,M., Chen, B., Pang, R., Vasudevan, V., Sandler,M., Howard, A., and Le, Q. V. (2019). MnasNet:
Platform-aware neural architecture search for mobile. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition.

[44] Tan, M. and Le, Q. V. (2019). Mixconv: Mixed depthwise convolutional kernels. In Proceedings
of the British Machine Vision Conference.

[45] Tolstikhin, I., Houlsby, N., Kolesnikov, A., Beyer, L., Zhai, X., Unterthiner, T., Yung, J., Steiner,
A., Keysers, D., Uszkoreit, J., Lucic, M., and Dosovitskiy, A. (2021). MLP-Mixer: An all-MLP
Architecture for Vision. InAdvances in Neural Information Processing Systems.

[46] Tu, R., Roberts, N., Khodak, M., Shen, J., Sala, F., and Talwalkar, A. (2022). NAS-Bench-360:
Benchmarking Neural Architecture Search on Diverse Tasks. InNeural Information Processing
Systems Datasets and Benchmarks Track.

[47] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., and
Polosukhin, I. (2017). Attention is all you need. In Advances in Neural Information Processing
Systems.

[48] White, C., Neiswanger,W., and Savani, Y. (2021). BANANAS: Bayesian optimizationwith neural
architectures for neural architecture search. In Proceedings of the AAAI Conference on Artificial
Intelligence.

8

[49] White, C., Safari, M., Sukthanker, R., Ru, B., Elsken, T., Zela, A., Dey, D., and Hutter, F. (2023).
Neural Architecture Search: Insights from 1000 papers. arXiv preprint arXiv:2301.08727.

[50] Xu, Y., Xie, L., Zhang, X., Chen, X., Qi, G.-J., Tian, Q., and Xiong, H. (2020). Pc-darts: Partial
channel connections for memory-efficient architecture search. In International Conference on
Learning Representations.

[51] Ying, C., Klein, A., Christiansen, E., Real, E., Murphy, K., and Hutter, F. (2019). Nas-bench-101:
Towards reproducible neural architecture search. In International Conference onMachine Learning.

[52] Yu, K., Sciuto, C., Jaggi, M., Musat, C., and Salzmann, M. (2020). Evaluating the search phase of
neural architecture search. In International Conference on Learning Representations.

[53] Zagoruyko, S. and Komodakis, N. (2016). Wide Residual Networks. In Proceedings of the British
Machine Vision Conference.

[54] Zhang, X., Huang, Z., Wang, N., Xiang, S., and Pan, C. (2020). You only search once: Single shot
neural architecture search via direct sparse optimization. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 43(9):2891–2904.

[55] Zhong, Z., Yan, J., Wu,W., Shao, J., and Liu, C.-L. (2018). Practical block-wise neural network
architecture generation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition.

[56] Zoph, B. and Le, Q. V. (2017). Neural architecture search with reinforcement learning. In
International Conference on Learning Representations.

[57] Zoph, B., Vasudevan, V., Shlens, J., and Le, Q. V. (2018). Learning transferable architectures for
scalable image recognition. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition.

9

Submission Checklist

1. For all authors. . .

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes] All claims accurately reflect the paper’s contributions and
scope.

(b) Did you describe the limitations of your work? [Yes]We discuss limitations in section 4.

(c) Did you discuss any potential negative societal impacts of your work? [Yes] We discuss
potential negative societal impacts in section 4.

(d) Did you read the ethics review guidelines and ensure that your paper conforms to them?
https://2022.automl.cc/ethics-accessibility/ [Yes]We have read the guidelines and
ensured we conform to them.

2. If you ran experiments. . .

(a) Did you use the same evaluation protocol for all methods being compared (e.g., same bench-
marks, data (sub)sets, available resources)? [Yes] For all experiments we ran, we ensured the
same evaluation protocol. This is detailed in section C of the appendix.

(b) Did you specify all the necessary details of your evaluation (e.g., data splits, pre-processing,
search spaces, hyperparameter tuning)? [Yes] The experimental details are available in
section C of the appendix.

(c) Did you repeat your experiments (e.g., across multiple random seeds or splits) to account for
the impact of randomness in your methods or data? [No] Due to the cost of these types of
experiments, we could only afford one run per dataset, and we decided to prioritise breadth
of tasks instead of multiple runs for fewer tasks.

(d) Did you report the uncertainty of your results (e.g., the variance across random seeds or
splits)? [No] As we could not run over multiple seeds, this was not possible. We do however
report the average accuracy and ranks across the methods compared in Table 1.

(e) Did you report the statistical significance of your results? [No]We have not included results
on the statistical significance of the results across datasets, though we could add this if
requested.

(f) Did you use tabular or surrogate benchmarks for in-depth evaluations? [N/A] This paper fo-
cuses onanewsearch space, andhence couldnotmakeuseof tabular or surrogate benchmarks
with fixed search spaces.

(g) Did you compare performance over time and describe how you selected the maximum
duration? [No] Comparing performance over time for one-shot methods vs. our multi-trial
evolutionary search is non-trivial due to their fundamental differences. According to the
authors of Unseen NAS [14], they ran their methods for around 24 hours each. We ran ours
for 48-96 hours and selected the duration based on doing 500 or 1000 iterations of search.

(h) Did you include the total amount of compute and the type of resources used (e.g., type of gpus,
internal cluster, or cloud provider)? [Yes] This can be found in section C.4 of the appendix.

(i) Did you run ablation studies to assess the impact of different components of your approach?
[No] Running many searches over multiple versions of the search space is unfortunately
too costly. We do however include an ablation of sorts on the architecture complexity of
einspace in Table 6.

10

https://2022.automl.cc/ethics-accessibility/

3. With respect to the code used to obtain your results. . .

(a) Did you include the code, data, and instructions needed to reproduce the main experimental
results, including all requirements (e.g., requirements.txtwith explicit versions), random
seeds, an instructive READMEwith installation, and execution commands (either in the supple-
mental material or as a url)? [Yes] This has been included in the supplementary materials.

(b) Did you include a minimal example to replicate results on a small subset of the experiments
or on toy data? [Yes] This is described in the Readme of the codebase.

(c) Did you ensure sufficient code quality and documentation so that someone else can execute
and understand your code? [Yes] To the best of our ability, we have ensure good code quality
and documentation in our large and complex codebase.

(d) Did you include the raw results of running your experiments with the given code, data, and
instructions? [No] The results and log files were not included in the supplementarymaterials.

(e) Did you include the code, additional data, and instructions needed to generate the figures and
tables in your paper based on the raw results? [N/A] The necessary raw results files were not
included.

4. If you used existing assets (e.g., code, data, models). . .

(a) Did you cite the creators of used assets? [Yes]We describe the datasets we use, along with
citations to the authors, in C.3.

(b) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating if the license requires it? [N/A] The Unseen NAS datasets are released under
the CC By 4.0 license and NAS-Bench-360 under the MIT license, requiring no additional
consent.

(c) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A] The data does not contain personally identifiable
information or offensive content.

5. If you created/released new assets (e.g., code, data, models). . .

(a) Did you mention the license of the new assets (e.g., as part of your code submission)? [Yes]
Our code is released under the MIT license.

(b) Did you include the new assets either in the supplementalmaterial or as a url (to, e.g., GitHub
or Hugging Face)? [Yes] Our code is included in the supplementary materials.

6. If you used crowdsourcing or conducted research with human subjects. . .

(a) Didyou include the full textof instructionsgiven toparticipants andscreenshots, if applicable?
[N/A] No crowdsourcing or human subjects were used.

(b) Did you describe any potential participant risks, with links to Institutional Review Board
(irb) approvals, if applicable? [N/A] No crowdsourcing or human subjects were used.

(c) Did you include the estimated hourly wage paid to participants and the total amount spent
on participant compensation? [N/A] No crowdsourcing or human subjects were used.

7. If you included theoretical results. . .

(a) Did you state the full set of assumptions of all theoretical results? [N/A]No theoretical results
are claimed.

11

(b) Did you include complete proofs of all theoretical results? [N/A] No theoretical results are
claimed.

12

A Background

Neural architecture search
The search space used in NAS has a significant impact on results [52, 54]. This has facilitated the
need to investigate search space design alongside the actual search algorithms [32]. Early macro
design spaces [20, 56] made use of naive building blocks while accounting for skip connections
and branching layers. Further design strategies have looked at chain-structured [3, 4, 6, 37], cell-
based [13, 25, 55, 57] and hierarchical approaches. Hierarchical search spaces have been shown
to be expressive and effective in reducing search complexity and methods include factorised ap-
proaches [43], 𝑛-level hierarchical assembly [23, 24, 41], parameterisation of hierarchical random
graph generators [39] and topological evolutionary strategies [30]. Additional work on search spaces
have proposed new candidate operations and module designs such as hand-crafted multi-branch
cells [44], tree-structures [4], shuffle operations [27], dynamicmodules [19], activation functions [33]
and evolutionary operators [10]. In AutoML-Zero [35], the authors try to remove human bias from
search space construction by defining a space of basic mathematical operations as building blocks.

The pioneering work of [40] constructs search spaces using CFGs. We take this direction further
and construct einspace as a probabilistic CFG allowing for unbounded derivations, balanced by
careful tuning of the branching rate. We aim to strike a balance of the level of complexity in the search
space while incorporating components from diverse state-of-the-art architectures. Crucially, our
space enables flexibility in bothmacro structure and at the individual operation level. While previous
search spaces can be instantiated for specific architecture classes, our single space incorporates
multiple classes in one, ConvNets, transformers andMLP-only architectures. Such hybrid spaces
have been explored before [21], but they have been limited in their flexibility, offering only direct
choices between convolution and attention operations and not allowing the construction of novel
components.

Prominent search strategies include Bayesian optimisation [29, 48], reinforcement learning [55–
57] and genetic algorithms [5, 34, 36]. A popular thread of work, towards improving computational
efficiencyvia amortising training cost, involves the sharingofweights betweendifferent architectures
via a supernet [1, 4, 9, 16, 25, 26]. Efficiency has been further improved by sampling only a subset of
supernet channels [50], thus reducingbothspaceexplorationredundanciesandmemoryconsumption.
Alternative routes tomitigating space requirements have considered both architecture and operation-
choice pruning [7, 13]. We however highlight that random search often proves to be a very strong
baseline [22, 52]; a consequence of searching within narrow spaces. This is commonly the case for
highly engineered search spaces that contain a high fraction of strong architectures [49]. Contrasting
this, in our einspacewe see that random search across many tasks performs poorly, underpinning
the value of a good search strategy for large, diverse search spaces [2, 35].
Context-free grammars
A context-free grammar (CFG; [18]) is a tuple (𝑁,Σ,𝑅,𝑆), where 𝑁 is a finite set of non-terminal
symbols, Σ is a finite set of terminal symbols, 𝑅 is the set of production rules—where each rule maps
a non-terminal𝐴 ∈𝑁 to a string of non-terminal or terminals𝐴→(𝑁 ∪Σ)+—and 𝑆 is the starting
symbol. A CFG describes a context-free language, containing all the strings that the CFG can generate.
By recursively selecting a production, starting with the rules containing the starting symbol, we can
generate strings within the grammar. CFGs can be parameterised: each non-terminal, in each rule in
𝑅, is annotated with parameters 𝑝1,...,𝑝𝑛 that influence the production (right hand side parameters
have to appear in the left hand side). These parameters can condition production, based on an external
state or contextual information, thus extending the power of the grammar.

A probabilistic context-free grammar (PCFG) associates each production rule with a probability
[28]. These define the likelihood of selecting a particular rule given a parent non-terminal. These
probabilities allow for stochastic string generation.

13

B Search Space Details

B.1 Prior Choices

When designing a search space, we must balance the need for flexibility—which allows more valid
architectures to be included—and constraints – which reduce the size of the search space. We can
view constraints as imposing priors on which architectures we believe are worth including. As
discussed, many previous frameworks are too restrictive; therefore, we aim to imposeminimal priors,
listed below.

Convolutional prior. We design our routing module to enable convolutions to be easily con-
structed, while also allowing components like patch embeddings and transpose operations. We thus
enforce that a routing function is followed by another routing function later in themodule. Moreover,
im2col only appears in the production rule of the first routing function (R1) and col2im in the last (
R2). As shown in Fig. 2, to construct a convolution, we start from the rule (M→R1 M R2) and derive
the following (R1→im2col), (M→C→linear) and (R2→col2im).

Branching prior. We also impose a prior on the types of branching that can occur in a network.
The branching functions clone and group-dim can each have a branching factor of 2, 4 or 8. For a
factor of 2, we allow each inner function to be unique, processing the two branches in potentially
different ways. For branching factors of 4 or 8, the inner function M is repeated as is, processing all
branches identically (though all inner functions are always initialised with separate parameters).
Symbolically, given a branching factor of 2 we have (BM1M2A) but with a branching factor of 4 we
have (BM1M1M1M1A). Examples of components instantiated by a branching factor of 2 include skip
connections, and for 4, or 8, multi-head attention.

B.2 Feature Mode

Different neural architectures operate on different feature shapes. ConvNets maintain 3D features
throughout most of the network while transformers have 2D features. To enable such different types
of computations in the same network, we introduce the concept of amode 2 that affects the shape of
our features and which operations are available at that point in the network. Before and after each
module, we fix the feature tensor to be of one of two specific shapes, depending on which mode we
are in.

Immode. Maintains a 3D tensor of shape (C, H, W), where C is the number of channels, H is the
height and W is the width. Most convolutional architectures operate in this mode.

Col mode. Maintains a 2D tensor of shape (S, D), where S is the sequence length and D is the
token dimensionality. This is the mode in which most transformer architectures operate.

The mode is changed by the routing functions im2col and col2im. Most image datasets will
provide inputs in the Immode, while most tasks that use a language modality will provide it in Col
mode.

Our example architecturemaintains the Immode at almost all stages, apart from inside the routing
modules where the im2col function briefly puts us in the Colmode before col2im brings us back.

2Note that this is similar but not the same as themode of a general tensor, which determines the number of dimensions
of that tensor. We use the termmode to refer to the state that a particular part of the architecture is in.

14

B.3 Parameterising the Grammar

Due to the relatively weak priors we have put on the search space, sampling a new architecture
naïvely will often lead to invalid networks. For example, the shape of the output tensor of one
operation may not match the expected input shape of the next. Alternatively, the branching factor of
a branching function may not match the branching factor of its corresponding aggregation function.

We therefore extend the grammar with parameters. Each rule 𝑟 now has an associated set
of parameters (𝑠,𝑚,𝑏) which defines in what situations this rule can occur. When we sample an
architecture from the grammar, we start by assigning parameter values based on the expected input
to the architecture. For example, they might be the input tensor shape, feature mode and branching
factor:

(𝑠 = [3,224,224],𝑚=Im,𝑏=1) . (1)

Given this, we can continuously infer the current parameters during each stage of sampling by
knowing how each operation changes them. When we expand a production rule, we must choose a
rule which has matching parameters. If at some point, the sampling algorithm has no available valid
options, it will backtrack and change the latest decision until a full valid architecture is found. Hence,
we can ensure that we can sample architectures without risk of obtaining invalid ones.

As an example of this, the CFG rule for R1was previously

R1 → identity | im2col | permute. (2)

Enhanced with parameters, this now becomes two rules

R1(𝑚=Im) → identity | im2col | permute, (3)
R1(𝑚=Col) → identity | permute. (4)

This signifies that an im2col operation is not available in the Col mode. Similarly, the available
aggregation options depend on the branching factor of the current branching module

A(𝑏=2) → matmul | add | concat, (5)
A(𝑏=4) → add | concat, (6)
A(𝑏=8) → add | concat. (7)

B.4 Balancing Architecture Complexity

When sampling an architecture, we construct a decision treewhere non-leaf nodes represent decision
points and leaf nodes represent architecture operations. In each iteration, we either select a non-
terminal module to expand the architecture and continue sampling, or choose a terminal function to
conclude the search at that depth. Continuously selecting modules results in a deeper, more complex
network, whereas selecting functions leads to a shallower, simpler network. We can balance this
complexity by assigning probabilities to our production rules, thereby making a PCFG. Recall our
CFG rule

(M → M M | B M A | R1 M R2 | C) . (8)

If we choose one of the first three options we are delving deeper in the search tree since there is yet
another M to be expanded, but if we choose (M→C), the computation-module, then we will reach a
terminal function. Thus, to balance the depth of our traversal and therefore expected architecture
complexities, we can set probabilities for each of these rules:

𝑝 (M→M M | M), 𝑝 (M→B M A | M), 𝑝 (M→R1 M R2 | M), 𝑝 (M→C | M) . (9)

15

su
pe

r-c
rit

ica
l

su
b-

cr
iti

ca
l

0.0 0.2 0.4 0.6 0.8 1.0
p(M C M)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Br
an

ch
in

g
ra

te

Branching rate
p(M C M) = 0.31

Figure 5: To ensure our CFG is consistent
and does not generate infinite ar-
chitectures, we keep the branching
rate in the sub-critical region by
setting 𝑝 (M→C | M)>0.31.

The value of 𝑝 (M→ C | M) is especially important as
it can be interpreted as the probability that we will stop
extending the search tree at the current location.

We could set these probabilities to match what we
wish the expected depth of architectures to be, and for
empirical results on the architecture complexity, see Tab. 6
of the Appendix. However, we can actually ensure that
the CFG avoids generating infinitely long architecture
strings by setting the probabilities such that the branching
rate of the CFG is less than one [8]. For details of how,
see the next section. So, as shown in Fig. 5, we set the
computation module probability to 𝑝 (M → C | M) = 0.32
and the probabilities of the other modules to 1−0.32

3 . For
simplicity, all other rule probabilities are uniform.

B.5 Branching Rate of the CFG

If a PCFG is consistent, the probabilities of all finite derivations sum to one, or equivalently, it has a
zeroprobability of generating infinite strings or derivations. For us, thatmeans a sampled architecture
can not be infinitely large, and that the sampling algorithmwill halt with probability one. In order to
check if aCFG is consistent,we can inspect the spectral radius 𝜌 of its non-terminal expectationmatrix
[8]. If 𝜌 <1, then the PCFG is consistent. This expectation matrix is indexed by the non-terminals
in the grammar (both the columns and the rows), and at each cell it provides the expected number
of instances the column non-terminal being generated from the row non-terminal by summing the
probabilities of the row non-terminal multiplied by the count of the column non-terminal in each
rule.

We can also solve a (simple, in our case) set of linear equations in order to compute the expected
length of an architecture string, ℓ , as a function of the rule probabilities. More specifically, denote by
E[𝐴] the expected length of string generated by a nonterminal in the grammar𝐴. Then ℓ =E[S],
where:

E[S]=
∑︁
S→𝛼

𝑝 (S→𝛼 | S)
∑︁
𝑖

E[𝛼𝑖] (10)

E[M]=
∑︁
M→𝛼

𝑝 (M→𝛼 | M)
∑︁
𝑖

E[𝛼𝑖] (11)

E[B]=1 (12)
E[A]=1 (13)
E[R1]=1 (14)
E[R2]=1 (15)
E[C]=1 (16)

In the above, 𝛼 is the right hand side of a rule and 𝛼𝑖 varies over the nonterminals in that right
hand side.

B.6 Sampling

In this section, we explain the process of sampling an architecture from our parameterised PCFG
through an example. We specifically focus on how the running example from the main paper, a
simple convolutional block with a skip connection, could be generated.

16

We begin the process with the starting symbol S, which could produce several forms based on the
production rules, including (M M), (B M A), or (R1 M R2). Since our block includes a skip connection,
the macro structure of our architecture is best represented by a branching module (B M A).

Within thismodule, we expand the string from left to right, thereby startingwith (B). The specific
branching operation that fits our goal is (B→ clone) as we wish to later combine a transformed
version of the tensor with itself. Since we have two branches, they are produced separately (see
branching prior) and our module becomes (B M1M2 A).

For the first branch, (M1), we need a set of components that constitute a convolution followed
by batch normalisation and an activation. Since this involves several composed operations we
first expand into a sequential module (M1 → M3M4). The first of these operations represents the
convolution. Within einspace, a convolution, conv(𝑥), is decomposed into the three operations,
col2im(linear(im2col(𝑥))). Thus, in our grammarwe unfold it as a routingmodule, (M3→ R1 M5 R2
) which further produces (R1→ im2col), (M5→ C→ linear) and (R2→ col2im). The normalisation
and activation are then generated under (M4), defined as another sequential module (M4→ M6M7)
with (M6→C→norm) and (M7→C→relu). The second branch, M2, acts as a skip connection and is
thus derived as (M2→C→identity).

To finalise the architecture, the aggregation symbol (A) merges the tensors back into one unit.
To complete the residual connection, we use the rule (A→ add).

Completing our running example, we present the full derivation of the architecture in the CFG in
Fig. 6.

S

B

clone

M1

M3

R1

im2col

M5

C

linear

R2

col2im

M4

M6

C

norm

M7

C

relu

M2

C

identity

A

add

Figure 6: Example derivation tree of a traditional convolutional block with a skip connection.

B.7 Mutation

In the experiments that follow, we investigate how well a simple evolutionary search strategy
performs in einspace. We therefore define what amutation looks like in three straightforward steps:

1. Sample a Node: Choose a node randomly from the architecture’s derivation tree. Each node has
an equal chance of being selected, ensuring every part of the architecture can be modified. If a
non-leaf node is chosen, a whole subtree will be mutated.

2. Resample the Subtree: After selecting anode, replace the subtree rooted at this node by regenerating
it based on the grammar rules. This step allows the exploration of new configurations.

3. Validate Architecture: Check if the new architecture can produce a valid output in the forward
pass, given an input of the expected shape, and that it fits within the resource constraints, e.g. GPU
memory. If it does, accept it; otherwise, discard and retry the mutation.

As an example, suppose we have the derivation tree of Fig. 6. If we randomly pick the node (M4)
and resample it, we might produce another convolution+norm+relu component, making this whole
architecture akin to a basic ResNet block. We then check if this new architecture is valid. If it is, this
new architecture becomes a new individual in the population of the evolutionary search.

17

B.8 Fundamental Operations

Our grammar in the main paper is somewhat simplified. There are some fundamental operations
that have hyperparameters that allowmultiple versions to be chosen from. They are detailed here.

Branching functions. For the production rule (B→clone | group-dim), the full set of options is:

B → clone(b=2) | clone(b=4) | clone(b=8) | (17)
group-dim(dim=1,b=2)|group-dim(dim=1,b=4)|group-dim(dim=1,b=8)| (18)
group-dim(dim=2,b=2)|group-dim(dim=2,b=4)|group-dim(dim=2,b=8)| (19)
group-dim(dim=3,b=2)|group-dim(dim=3,b=4)|group-dim(dim=3,b=8), (20)

where b refers to the branching factor and dim is the dimension we group over.
Aggregation functions. Similarly, for the production rule (A→matmul | add | concat), the full

set of options is:

A → matmul(scaled=False) | matmul(scaled=True) | add | (21)
concat(dim=1,b=2)|concat(dim=1,b=4)|concat(dim=1,b=8)| (22)
concat(dim=2,b=2)|concat(dim=2,b=4)|concat(dim=2,b=8)| (23)
concat(dim=3,b=2)|concat(dim=3,b=4)|concat(dim=3,b=8), (24)

where scaled=Truemakes the matmul operation equivalent to the scaled dot product used in many
transformer architectures, dim is the dimension we concatenate over and b is the branching factor.

Routing functions. The im2col and col2im functions are implemented to offer the standard
functionality that enables convolutional operations, including variables that set the kernel sizes,
stride, dilation and padding. Below are the full set of options for im2col. The col2im only takes the
predicted output shape as a parameter so we can include only a single version of this operation.

im2col(k=1,s=1,p=0), im2col(k=1,s=2,p=0), (25)
im2col(k=3,s=1,p=1), im2col(k=3,s=2,p=1), (26)
im2col(k=4,s=4,p=0), im2col(k=8,s=8,p=0), im2col(k=16,s=16,p=0), (27)

where k is the kernel size, s is the stride and p the padding.
For the permute operation, there are 6 versions of the order parameter 𝑜 . There is one for the Col

mode and 5 for the Immode:

permute(o=(2,1)), (28)
permute(o=(1,3,2)), permute(o=(2,1,3)), permute(o=(2,3,1)), (29)
permute(o=(3,1,2)), permute(o=(3,2,1)). (30)

For completeness, the identity operation can also be included, making 2 in the Colmode (with
identity=permute(o=(1,2))) and 6 in the Immode (with identity=permute(o=(1,2,3))).

Computation functions. For linear layers, we vary the output dimension𝑑 across powers of two:

linear(d=16), linear(d=32), linear(d=64), (31)
linear(d=128), linear(d=256), linear(d=512), (32)
linear(d=1024), linear(d=2048). (33)

The norm operation takes on the batch-norm functionality in the Immode and layer-norm in Col
mode. The softmax is just a softmax operation applied to the final dimension, the relu activation is
implemented as the single option leaky-relu and pos-enc is a learnable positional encoding.

18

B.9 Patch Embeddings and Convolutions

In this section we provide some more information about how the routing module can represent
common components.

The routing module, (M → R1 M R2), puts a prior on certain types of operations inside our
architectures. A patch embedding, such as those found in many transformers, is achieved by the
following derivation: (M → im2col linear identity), while a convolution can be obtained by (
M → im2col linear col2im). In terms of the process required to sample such combinations, the
first is easy since there are no dependencies between the operations. The second, however, is more
complicated and requires some discussion.

Let 𝑥 be a tensor in R3×32×32 and let’s consider a routing module containing the functions:
im2col, linear, col2im. The functions will be applied in order to the input tensor, giving us

𝑥 ′=im2col(𝑥), (34)
𝑥 ′′=linear(𝑥 ′), (35)
𝑦=col2im(𝑥 ′′) . (36)

The shapes of the intermediate and final tensors {𝑥 ′,𝑥 ′′,𝑦} depend on several function hyperpa-
rameters. These are listed below.

Table 2: Hyperparameters for the three functions involved in a convolution component.

im2col col2im linear

𝑘𝑖𝑛 =7 (kernel size) 𝑘𝑜𝑢𝑡 =7 (kernel size) 𝑐𝑜𝑢𝑡 =64 (output channels)
𝑠𝑖𝑛 =2 (stride) 𝑠𝑜𝑢𝑡 =2 (stride)
𝑝𝑖𝑛 =3 (padding) 𝑝𝑜𝑢𝑡 =0 (padding)

The input tensor has height dimension ℎ𝑖𝑛 and width𝑤𝑖𝑛 . The im2col operation will extract
column vectors from this space a number of times depending on the kernel size 𝑘𝑖𝑛 , stride 𝑠𝑖𝑛 and
padding 𝑝𝑖𝑛 values in the table above. The number of column vectors equals

𝑙 =

⌊ℎ𝑖𝑛+2×𝑝𝑖𝑛−(𝑘𝑖𝑛−1)−1
𝑠𝑖𝑛

+1
⌋
×
⌊𝑤𝑖𝑛+2×𝑝𝑖𝑛−(𝑘𝑖𝑛−1)−1

𝑠𝑖𝑛
+1

⌋
, (37)

which in our case gives 𝑙 =256. The shapes of all intermediate tensors can therefore be written as in
Table 3.

Table 3: Tensor shapes in the forward pass of our convolution component. 𝑐𝑖𝑛 =3,ℎ𝑖𝑛 =32,𝑤𝑖𝑛 =32 in
this example.

Tensor Shape

𝑥 [𝑐𝑖𝑛,ℎ𝑖𝑛,𝑤𝑖𝑛]
𝑥 ′ [𝑙 , 𝑐𝑖𝑛×𝑘𝑖𝑛×𝑘𝑖𝑛]
𝑥 ′′ [𝑙 , 𝑐𝑜𝑢𝑡]
𝑦 [𝑐𝑜𝑢𝑡 ,ℎ𝑜𝑢𝑡 ,𝑤𝑜𝑢𝑡]

Therefore, to successfully apply the col2im function, the constraint 𝑙 = ℎ𝑜𝑢𝑡 ×𝑤𝑜𝑢𝑡 must be
satisfied. From Equation 37 we can see that the output height and width can be predicted by the

19

im2col parameters.

ℎ𝑜𝑢𝑡 =

⌊ℎ𝑖𝑛+2×𝑝𝑖𝑛−(𝑘𝑖𝑛−1)−1
𝑠𝑖𝑛

+1
⌋

(38)

𝑤𝑜𝑢𝑡 =

⌊𝑤𝑖𝑛+2×𝑝𝑖𝑛−(𝑘𝑖𝑛−1)−1
𝑠𝑖𝑛

+1
⌋

(39)

So, in practice, the im2col operation fully defines the behaviour of the convolution—apart from
the number of output channels defined by the linear layer—and the col2im only rearranges the tensor
back into its correct 3D form. This is trivial in the casewhereℎ𝑖𝑛 =𝑤𝑖𝑛 sinceℎ𝑜𝑢𝑡 =𝑤𝑜𝑢𝑡 =

√
𝑙 . However,

if ℎ𝑖𝑛 ≠𝑤𝑖𝑛 , then the predicted output shapes must be remembered until the col2im operation is
applied.

Thus, in our sampling and mutation algorithm, whenever an im2ol operation is sampled, we
must store the predicted output shape until a corresponding col2im is applied. Additionally, the
dimensionality of 𝑙 must not change in the connecting branch as it would break the constraint
ℎ𝑜𝑢𝑡 =𝑤𝑜𝑢𝑡 =

√
𝑙 .

C Implementation and Experimental Details

C.1 Search strategies

We explore three search strategies within einspace: random sampling, random search, and regu-
larised evolution (RE). Random sampling estimates the average expected test performance from𝐾

random architecture samples. Random search samples𝐾 architectures and selects the best performer
on a validation set. In regularised evolution, we start by constructing an initial population of 100
individuals, which are either randomly sampled from the search space or seeded with existing archi-
tectures. For (𝐾−100) iterations, the algorithm then randomly samples 10 individuals and selects
the one with the highest fitness as the parent. This parent is mutated to produce a new child. This
child is evaluated and enters the population while the oldest individual in the population is removed,
following a first-in-first-out queue structure. An architecture is mutated in three straightforward
steps shown in Section B.7.

Note that these are very simple search strategies, and that there is huge potential to design
more intelligent approaches, e.g. including crossover operations in the evolutionary search, using
hierarchical Bayesian optimisation [40] or directly learning the probabilities of the CFG [11]. In this
work, we focus on the properties of our search space and investigatewhether simple search strategies
are able to find good architectures, and leave investigations on more complex search strategies for
future work.

C.2 Networks

Baseline networks
We use the convolutional baselines of ResNet18 [17] andWideResNet-16-4 [53]. Both stems use a 3×
convolution instead of the standard 7×7 as most input shapes in the datasets we use are small. The
former contains a max-pooling layer in the stem, which for simplicity we decide to not represent in
our search space. Instead we modify the pooling operation and replace it with a 3x3 convolution
with stride 2. This has been shown to be equally powerful [42] and in our experiments we find that it
performs similarly. Our ViT model is a small 4-layer network with a patch size of 4, model width of
512, and 4 heads. TheMLP-Mixer shares the same patch embedding stemwith a patch size of 4. It has
8 layers and, similarly, a model width of 512. The channel mixer expands the dimension by 4 and the
token mixer cuts it in half. The models have the following number of parameters (given an input
image of shape [3, 64, 64]): Resnet18: 11.2M,WRN16-4: 2.8M, ViT: 4.4M andMLP-Mixer: 6.5M.

We compare our experimental results to PC-DARTS [50], DrNAS [7] and Bonsai-Net [13] with
results transcribed from [14]. We also compare to the performance of a trained ResNet18 (RN18).

20

Network head
Every network that is instantiated contains a few common operations. For classification tasks, the
network head looks like this: the output features of the sampled backbone are reduced to their
channel dimension via reduce(’B C H W -> B C’, ’mean’) or reduce(’B C H -> B C’, ’mean’),
depending on if the features are in Im or Colmode. Second, a final linear layer that maps the channel
dimension to the target dimension (i.e., the number of classes) is appended. For dense prediction
tasks: the head contains an adaptive average pooling layer that upsamples the two final dimensions
of the backbone features to the target image size. If the features are in the Colmode, we the insert a
new dimension after the batch size. Then regardless of mode, a linear layer adjusts the number of
channels to the target channel number.
Network training
Each network is trained and evaluated separately with no weight sharing. During the search phase
we minimise the loss on a train split and compute the validation metric on a validation set. To
evaluate the final chosen module, we retrain on train+val splits and evaluate on test. To speed up
our experiments, the inner loop optimisation of architectures uses fewer epochs compared to the
evaluation phase. All networks are trained using the SGD optimizer with momentum of 0.9. The
values for learning rate, weight decay, batch size and more can be found in Tab. 4.

Table 4: Hyperparameters for each dataset.

Dataset Metric Baseline Epochs Epochs Batch Learning Weight Mom-
name type model (search) (eval) size rate decay entum

AddNIST Accuracy ResNet18 8 64 256 0.04 3×10−4 0.9
Language Accuracy ResNet18 8 64 256 0.04 3×10−4 0.9
MultNIST Accuracy ResNet18 8 64 256 0.04 3×10−4 0.9
CIFARTile Accuracy ResNet18 8 64 256 0.04 3×10−4 0.9
Gutenberg Accuracy ResNet18 8 64 256 0.04 3×10−4 0.9
Isabella Accuracy ResNet18 8 64 256 0.04 3×10−4 0.9
GeoClassing Accuracy ResNet18 8 64 256 0.04 3×10−4 0.9
Chesseract Accuracy ResNet18 8 64 256 0.04 3×10−4 0.9

CIFAR100 0-1 error WRN16-4 25 200 128 0.1 5×10−4 0.9
Spherical 0-1 error WRN16-4 25 200 128 0.1 5×10−4 0.9
NinaPro 0-1 error WRN16-4 25 200 128 0.1 5×10−4 0.9
Darcy Flow relative ℓ2 WRN16-4 25 200 4 0.001 5×10−4 0.9
Cosmic 1 - AUROC WRN16-4 25 200 8 0.001 5×10−4 0.9

C.3 Datasets

We followed the official instructions of Unseen NAS [14] to setup the datasets. The information of
each dataset is listed in the following:

AddNIST
This dataset is derived from the MNIST dataset. Specifically, each RGB image is computed by
stacking three MNIST images in the channel dimension. It has a total of 20 categories; the class
label is computed by summing the MNIST labels in all three channels. Among the 70,000 images,
45,000 are used for training, 15,000 are used for validation, and 10,000 images are used for testing.

Language
Language consists of six-letter words extracted from dictionaries of ten Latin alphabet languages:
English, Dutch, German, Spanish, French, Portuguese, Swedish, Zulu, Swahili, and Finnish. Words

21

containing diacritics or the letters ’y’ and ’z’ are excluded. The dataset is split into 50,000 training
samples, 10,000 validation samples, and 10,000 test samples.

MultNIST
MultNIST is a dataset designed similarly toAddNIST, originating from the same research objective.
Each channel of the 3 channel images contains an image from the MNIST dataset. The dataset
is divided into 50,000 training images, 10,000 validation images, and 10,000 test images. Unlike
AddNIST, MultNIST comprises ten classes (0-9), the label for eachMultNIST image is computed
using the formula 𝑙 = (𝑟×𝑔×𝑏)mod10, where 𝑟 ,𝑔 and𝑏 are theMNIST labels of the red, green, and
blue channels, respectively.

CIFARTile
CIFARTile is a dataset where each image is a composite of four CIFAR-10 images arranged in a
2x2 grid. The dataset is divided into 45,000 training images, 15,000 validation images, and 10,000
test images. CIFARTile has four classes (0-3), determined by the number of distinct CIFAR-10
classes in each grid, minus one.

Gutenberg
Gutenberg is a dataset sourced from Project Gutenberg. It includes texts from six authors, with
basic text preprocessing applied: punctuation removal, diacritic conversion, and elimination of
structural words. The dataset contains consecutive sequences of three words (3-6 letters each),
padded to 6 characters and concatenated into 18-character strings. These strings are converted
into images with size 1×27×18, with the x-axis representing character positions and the y-axis
representing alphabetical letters or spaces. The task is to predict the author of each sequence.
The dataset is split into 45,000 training, 15,000 validation, and 6,000 test images.

Isabella
Isabella is a dataset derived frommusical recordings of the Isabella Stewart Gardner Museum,
Boston. It includes four classes based on the era of composition: Baroque, Classical, Romantic,
and 20th Century. The recordings are split into five-second snippets and converted into 64-band
spectrograms, resulting in images with dimensions 1 × 64 × 128. The dataset is divided into
50,000 training images, 10,000 validation images, and 10,000 test images, ensuring no overlap of
recordings across splits. The task is to predict the era of composition from the spectrogram.

GeoClassing
GeoClassing is based on the BigEarthNet dataset. It uses satellite images initially labeled for
ground-cover classification but reclassified by the European country they depict. The dataset
includes ten classes: Austria, Belgium, Finland, Ireland, Kosovo, Lithuania, Luxembourg, Portugal,
Serbia, and Switzerland. Each image is of size 3×60×60. The dataset is split into 43,821 training
images, 8,758 validation images, and 8,751 test images. The task is to predict the country depicted
in each image based on topology and ground coverage.

Chesseract
Chesseract is a dataset derived from public chess games of eight grandmasters. The dataset
consists of the final 15% of board states from these games. Each position is one-hot encoded by
piece type and color, resulting in 12×8×8 images. The dataset is divided into 49,998 training
images, 9,999 validation images, and 9,999 test images, ensuring no positions from the same game
appear across splits. Each image is classified into one of three classes: White wins, Draw, or Black
wins. The task is to predict the game’s result based on the given board position. We pad the input
with 5 zero-valued pixels to make a 12×18×18 tensor.

22

Table 5: Lower is better. Our results from performing random sampling, random search and regularised
evolution in einspace on NASBench360 [46]. We compare to the results from [46], where the
DARTS search space is used. RE(WRN) refers to initialising the regularised evolution search
algorithmwithWRN architecture. Best and second best performance per dataset.

WRN DARTS
(GAEA) Expert RE(WRN)

einspace

CIFAR100 25.61 24.02 19.39 21.47
Spherical 76.32 48.23 67.41 66.37
NinaPro 10.32 17.67 8.73 6.37
Darcy Flow 0.032 0.026 0.008 0.014
Cosmic 0.245 0.229 0.127 0.73

Average rank ↓ 3.60 2.60 1.60 2.20

We follow the official instructions of NASBench360 [46] to setup the datasets. The information
of each dataset is listed in the following (noting that we are using a subset of all the datasets):

CIFAR100
CIFAR100 is a widely known image classification dataset, comprised of 100 fine-grained classes.
Each image is of size 3×32×32. The dataset is split into 40,000 training images, 10,000 validation
images and 10,000 testing images. Wepreprocess the images by applying randomcrops, horizontal
flips, and normalisation.

Spherical
Spherical dataset consists on classifying spherically projected CIFAR100 images. Specifically,
CIFAR images are projected to the northern hemisphere with a random rotation. Each image is of
size 3×60×60. Spherical dataset uses the same split ratios as CIFAR100. In this case, there is no
data augmentation nor pre-processing steps.

NinaPro
NinaPro is a dataset for classifying hand gestures given their electromyography signals. EMG
data signals are collected with twoMyo armbands as wave signals. Wave signals, along with their
wavelength and frequency, are processed 2D signals of shape 1×12×52. Classes are imbalanced,
with the neutral position amounting for 65% of all gestures. The dataset is split into 2,638 training
samples, 659 validation samples, and 659 testing samples. No further data augmentation is applied.

Darcy Flow
Darcy Flow is a regression task for predicting the solution of a 2D PDE at a predefined later stage
given some 2D initial conditions. The input is a 1×85×85 image describing the initial state of
the fluid. The output should match the same dimensions. The dataset is split into 900 images for
training, 100 for validation, and 100 for test. Input data is normalised.

Cosmic
Cosmic dataset contains images from the F435W filter collected from the Hubble Space Telescope.
It aims to identify cosmic rays (corrupted pixels) in the images. Inputs are images of 1×256×256,
and outputs are pixel binary predictions (artifact vs. no-artifact). The dataset is split into 4,347
images for training, 483 for validation, and 420 for test.

23

C.4 Compute Resources

All our experiments ran on our two internal clusters with the following infrastructure:

• AMD EPYC 7552 48-Core Processor with 1000GB RAM and 8×NVIDIA RTX A5500 with 24GB of
memory (dedicated use)

• AMD EPYC 7452 32-Core Processor with 400GB RAM and 7×NVIDIA A100 with 40GB of memory
(shared use)

Each experiment used a single GPU to train each architecture. Running 1000 iterations of
RE(Scratch) on the quickest datasets (Language and Chesseract) took around 2 days, while the
slowest (GeoClassing) took 4 days. We had very similar training times for RE(RN18) and RE(Mix)
which ran for 500 iterations.

D Additional Results

D.1 NAS-Bench-360

Wetesteinspaceona selectionof datasets fromNAS-Bench-360 [46] to further showcase its potential.
These results can be found in Tab. 5. In this setting the baseline network is aWideResNet-16-4 (WRN).
Wesee that our regularisedevolutionwith thebaseline as the initial seed, RE(WRN), again consistently
finds architectural improvements. It also outperforms the GAEA search strategy on the DARTS
search space on all but the Cosmic task. OnNinaPro, it even beats the Expert architecture, specifically
designed for this task. Note that theWRN baseline network on its own does not achieve as low an
error as reported in [46]. However, our einspace architecture beats even this number and to the best
of our knowledge sets a new state-of-the-art.

D.2 Empirical Architecture Complexity

For our experiments we set the computation module probability to 𝑝 (M→ C | M) = 0.32 using the
branching rate method described in B.5. We now report some empirical results for the architecture
complexities as we vary this value. In Tab. 6 we can see that the complexity, as measured by the count
of terminals and non-terminals in the derivation trees, grows as the probability decreases.

When searching for an architecture on a new unknown task, the flexibility of the search space is
key. During our random searching on einspacewe found that we sampled networks with parameter
counts ranging from zero up to 1 billion, and as few as two operations to asmany as 3k. The frequency
of all functions in einspace that appear in these networks can be found in Table 7.

se
qu

en
tia

l_
m

od
ul

e
br

an
ch

in
g_

m
od

ul
e

ro
ut

in
g_

m
od

ul
e

co
m

pu
ta

tio
n_

m
od

ul
e

cl
on

e_
te

ns
or

2
cl

on
e_

te
ns

or
4

cl
on

e_
te

ns
or

8
gr

ou
p_

di
m

2s
1d

gr
ou

p_
di

m
2s

2d
gr

ou
p_

di
m

2s
3d

gr
ou

p_
di

m
4s

1d
gr

ou
p_

di
m

4s
2d

gr
ou

p_
di

m
4s

3d
gr

ou
p_

di
m

8s
1d

gr
ou

p_
di

m
8s

2d
gr

ou
p_

di
m

8s
3d

do
t_

pr
od

uc
t

sc
al

ed
_d

ot
_p

ro
du

ct
ad

d_
te

ns
or

s
ca

t_
te

ns
or

s1
d2

t
ca

t_
te

ns
or

s2
d2

t
ca

t_
te

ns
or

s3
d2

t
ca

t_
te

ns
or

s1
d4

t
ca

t_
te

ns
or

s2
d4

t
ca

t_
te

ns
or

s3
d4

t
ca

t_
te

ns
or

s1
d8

t
ca

t_
te

ns
or

s2
d8

t
ca

t_
te

ns
or

s3
d8

t
id

en
tit

y
pe

rm
ut

e2
1

pe
rm

ut
e1

32
pe

rm
ut

e2
13

pe
rm

ut
e2

31
pe

rm
ut

e3
12

pe
rm

ut
e3

21
im

2c
ol

1k
1s

0p
im

2c
ol

1k
2s

0p
im

2c
ol

3k
1s

1p
im

2c
ol

3k
2s

1p
im

2c
ol

4k
4s

0p
im

2c
ol

8k
8s

0p
im

2c
ol

16
k1

6s
0p

co
l2

im
lin

ea
r1

6
lin

ea
r3

2
lin

ea
r6

4
lin

ea
r1

28
lin

ea
r2

56
lin

ea
r5

12
lin

ea
r1

02
4

lin
ea

r2
04

8
no

rm
le

ak
yr

el
u

so
ftm

ax
po

si
tio

na
l_

en
co

di
ng

Node type

10
2

10
4

Fr
eq

ue
nc

y

Distribution of node types

Figure 7: Frequency of each module/function in 8k sampled architectures with 𝑝 (M→C | M)=0.32.

24

Table 6: The distribution of terminal and nonterminal symbols as well as average branching factors
in 2000 sampled architectures with varying values for the computation module probability
𝑝 (M→C | M). For probability values 0.2 and 0.1 there is no data, as the sampling process is too
time-consuming.

Type 𝑝 (M→C | M) Min Mean Median Std Max

te
rm

in
al
s

0.9 2 3.87 3.00 2.84 28
0.8 2 5.34 4.00 6.32 54
0.7 2 6.72 4.00 11.22 118
0.6 2 8.65 4.00 16.73 202
0.5 2 40.22 5.00 303.65 4779
0.4 2 100.15 8.00 749.61 12026
0.3 2 6070.77 9.00 64863.45 878122

no
n-
te
rm

in
al
s

0.9 2 3.63 3.00 3.45 42
0.8 2 5.04 3.00 6.91 64
0.7 2 6.00 3.00 9.21 81
0.6 2 7.74 4.00 13.61 165
0.5 2 39.03 5.00 325.18 5219
0.4 2 88.58 8.00 649.44 10417
0.3 2 4588.13 8.00 50203.87 734497

br
an
ch
in
g
fa
ct
or

0.9 1 1.75 1.00 1.63 7.61
0.8 1 2.05 1.00 1.95 7.73
0.7 1 2.05 1.00 1.91 7.83
0.6 1 2.17 1.00 1.96 7.73
0.5 1 2.34 1.00 2.00 7.88
0.4 1 2.81 1.75 2.14 7.87
0.3 1 2.80 1.75 2.13 7.96

25

Figure 8: The top architectures found by RE(Mix) in einspace on Unseen NAS. From left to right, row by
row: AddNIST, Language, MultNIST, CIFARTile, Gutenberg, Isabella, GeoClassing, Chesseract.

26

	Introduction
	einspace: A Search Space of Fundamental Operations
	Fundamental Operations
	Macro Structure
	Search Space as a Context-Free Grammar

	Experiments
	Random Sampling and Search
	Evolutionary Search from Scratch
	Evolutionary Search from Existing SOTA Architectures

	Discussion
	Background
	Search Space Details
	Prior Choices
	Feature Mode
	Parameterising the Grammar
	Balancing Architecture Complexity
	Branching Rate of the CFG
	Sampling
	Mutation
	Fundamental Operations
	Patch Embeddings and Convolutions

	Implementation and Experimental Details
	Search strategies
	Networks
	Datasets
	Compute Resources

	Additional Results
	NAS-Bench-360
	Empirical Architecture Complexity

