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Abstract

The Schrédinger bridge (SB) has evolved into a universal class of probabilistic generative
models. In practice, however, estimated learning signals are innately uncertain, and the
reliability promised by existing methods is often based on speculative optimal case scenarios.
Recent studies regarding the Sinkhorn algorithm through mirror descent (MD) have gained
attention, revealing geometric insights into solution acquisition of the SB problems. In this
paper, we propose a variational online MD (OMD) framework for the SB problems, which
provides further stability to SB solvers. We formally prove convergence and a regret bound
for the novel OMD formulation of SB acquisition. As a result, we propose a simulation-
free SB algorithm called Variational Mirrored Schrodinger Bridge (VMSB) by utilizing the
Wasserstein-Fisher-Rao geometry of the Gaussian mixture parameterization for Schrédinger
potentials. Based on the Wasserstein gradient flow theory, the algorithm offers tractable
learning dynamics that precisely approximate each OMD step. In experiments, we validate
the performance of the proposed VMSB algorithm across an extensive suite of benchmarks.
VMSB consistently outperforms contemporary SB solvers on a wide range of SB problems,
demonstrating the robustness as well as generality predicted by our OMD theory.

1 Introduction

The Schrodinger bridge (SB;|Schrodinger, [1932)) has emerged as a universal class of probabilistic generative
models. Nevertheless, the methodologies used in SB algorithms remain somewhat atypical, as each algorithm
involves a series of sophisticated approaches to derive a solution. The excessive specialization in existing
algorithms arises from the absence of a unified perspective, which has led contemporary studies to rest on
overly idealized or unrealistic assumptions. To address the issue, a formal discussion of the SB algorithms’
robustness, akin to discussions in classical optimization theory (Xu et al. 2008; Duchi & Namkoong), 2021))
is beneficial for ensuring the stability and reliability of their solutions against uncertainty, thereby improving
overall performance. Considering the problem as an instance of ordinary optimization opens avenues for
progress, particularly for improving stability.

We draw inspiration from the rich geometric properties of the Schrédinger bridge problem (SBP; Léonard,
2013) induced by entropy regularization (Nutz, 2021), which is closely related to the field of information
geometry (Amari, [2016). In this type of geometry, mirror descent (MD; Nemirovsky & Yudin, [1983)
provides a natural methodology for discrete updates, which has proven effective in various scenarios (Beck
& Teboullg, 2003b; [Shalev-Shwartz et al. 2012} [Amid & Warmuth| [2020ab} [Ghai et al, [2020; [Han et al.
2022). For example, given a strictly convex function € : R¥ — RU{+occ} on the Euclidean space, an update
of classical MD with respect to a cost function F : R¥ — R U {+oco} is formulated as

VQ(wit1) = VQ(we) — e VE (wy), (1)

where the gradient operator VQ(-) defines an injective mapping from the parameter space to the dual space.
Recent studies have shown that the Sinkhorn algorithm for training SB models can be reinterpreted as
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mirror descent using log-Schrédinger potentials as dual parameters (Peyré et al., 2019} [Léger], {2021} |Aubin-
Frankowski et al],2022)). These prior analyses have predominantly focused on the optimal-case scenario with
a fixed F for simplicity. However, theoretical improvements for worst-case scenarios remain underexplored,
particularly with respect to online convex learning methods (Zinkevich| [2003) for unknown sequences of cost
functions {F;}2,, a setting known as online mirror descent (OMD:; |Srebro et al.|[2011} Lei & Zhoul [2020)).
Since the SBP is an infinite-dimensional optimization (Karimi et al.| [2024) within optimal transport (OT),
applying general OMD arguments to the SB context requires theoretical development and a computational
strategy to ensure practical performance improvements. Leveraging the Wasserstein gradient flow discovered
by Jordan, Kinderlehrer, and Otto (JKO; |Jordan et al., [1998), this work proposes to solve these iterative
optimization problems of OMD updates via gradient dynamics endowed with the Wasserstein metric which
has been canonically used in solving OT, replacing standard Euclidean gradients flows (Santambrogiol |2017)).
We further establish a fundamental insight that OMD acts as the informational counterpart of gradient
descent in Wasserstein geometry, thus providing a core theoretical rationale for our algorithm.

In this paper, we present a novel algorithm for SB acquisition through the lens of information geometry
to further enhance stability in the learning process. As illustrated in Fig. [I] we leverage primal and dual
geometries (C, D) under the Bregman potential Q(-) = KL(+|[e” % u ® v), where the transformations between
the coupling 7; and the dual potential ¢; @ v, are uniquely defined by first variation operators (¢, dp)
(Aubin-Frankowski et al., |2022)). For online learning, we account for the solvers optimization errors due
to uncertainty (gray region), and we propose an online mirror descent framework to minimize the regret
resulting from these errors. We show that this framework enables a complete form of online learning that
tolerates unreliable empirical estimates from arbitrary data-driven SB solvers. To this end, we propose a
robust, simulation-free SB algorithm, called variational mirrored Schrédinger bridge (VMSB), with
a new parametric update rule that we call variational online mirror descent (VOMD). We seek an
exact and computationally feasible MD update mechanism by narrowing down the solution space to a subset
of tractable distributions, which is often referred to as taking a variational form (Paisley et al., |2012; Blei
et all;|2017)). To solve the SBP in a computationally viable manner, our VOMD method utilizes a variational
approach (Lambert et al.l [2022)) based on the Wasserstein gradient flow with respect to the Wasserstein-
Fisher-Rao (WFR) geometry. The proposed VMSB offers closed-form mirror descent updates by formulating
the dynamics of iterative subproblems using Wasserstein gradient flows, and our experiments indicate that
VMSB generally outperforms existing simulation-free methods in various benchmarks.

Our contributions. This work builds a novel algorithm grounded in statistical learning theory, formally
derived from the information geometric perspective for SBPs. Recently, a Gaussian mixture parameterization
of the Schroédinger potentials has been proposed by Korotin et al.|(2024)). The simulation-free LightSB solver
is simple yet general, and its authors proved a universal approximation property for the parameterization.
The expressiveness of the solver aligns with the geometric properties of Gaussian variational inference and
mixture models (Chen et al., |2018; Daudel et all |2021; [Lambert et al., [2022; [Diao et al. |2023). However,
its shortcoming—and that of other simulation-free solvers (Tong et al., |2024b; |Gushchin et al., [2024a)—is
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the uncertainty of data-driven learning signals for non-convex objectives. We argue that this presents an
opportunity for improvement by leveraging the rich geometric properties of the SBP in a variational form.
To the best of our knowledge, VMSB is the first SB algorithm based on VOMD and inherits the theoretical
essence of OMD. Table [I] shows that VMSB is a simulation-free solver that admits a rigorous convergence
analysis in general learning scenarios for probabilistic generative models. We verify the validity of our
core theoretical principles through an extensive suite of SB benchmarks, including real-time online learning,
standard benchmarks in optimal transport, and image-to-image translation tasks. Our main contributions
are summarized below:

e We develop a robust SB learning algorithm built upon the online mirror descent formulation, whose specific
update rules follow Wasserstein-2 dynamics derived from local MD objectives. Under mild assumptions,
we formally prove the convergence of the proposed algorithm in general online learning scenarios (§ .

e We introduce a simulation-free SB method, leveraging the Wasserstein-Fisher-Rao geometry to ensure
asymptotic stability within Wasserstein gradient flows. The resulting VMSB algorithm admits closed-
form dynamics, enabling an accurate and efficient implementation via the LightSB parameterization (§.

o We validate our algorithm across diverse SB problem settings, highlighting the effectiveness of our VOMD-
based framework in various scenarios, including online learning, classical optimal transport benchmarks,
and image-to-image translation tasks. Empirical results consistently demonstrate that our proposed meth-
ods outperform existing simulation-free solvers, validating our theoretical assumptions and corresponding

claims (§16)).

2 Related Work

Simulation-free SB. The Schrodinger bridge problems are originated from a physical formulation for
evolution of a dynamical system between measures (Léonard}, [2012; [Pavon & Wakolbinger} (1991)). The study
of SB has gained popularity due to its connection to entropy-regularized optimal transport (EOT;
Bt all, [2019; [Nutz, [2021]). Its association with optimal transport suggests various applications across various
fields related to machine learning, such as image processing, natural language processing, and control systems
(Caron et al., |2020; Liu et all 2023; |Alvarez-Melis & Jaakkolal 2018; |Chen et al., [2022). Historically, the
most representative algorithm for SBP is Sinkhorn (Kullbackl [1968)), and there has been progress in training
simulation-based SB with nonlinear networks (Vargas et al. 2021} De Bortoli et al., |2021) by “matching”
with simulation data of a half-bridge of forward and backward diffusion at each time. An SB solver is called
as simulation-free (Tong et al. 2024azb) if the solver is trained without samples from the simulation of
SB diffusion processes. LightSB (Korotin et al., [2024) is a special type of simulation-free solver using the
maximum likelihood method of Gaussian mixture models (GMMs). Building upon these advancements, our
approach focuses on enhancing simulation-free SB solvers by leveraging geometric insights derived from the
generalized dual geometry inherent to the SBP.

MD and Sinkhorn. The Bregman divergence is a family of statistical divergence that
is particularly useful when analyzing constrained convex problems (Beck & Teboulle, 2003a} Boyd & Van-
denberghé, 2004; [Hiriart-Urruty & Lemaréchal, [2004). Notably, [Léger| (2021) and Aubin-Frankowski et al.
(2022)) adopted the Bregman divergence into entropic optimal transport and SB problems with probability
measures, and the studies revealed that Sinkhorn can be considered to be mirror descent with a constant
step size 7 = 1. In statistical geometries, the Bregman divergence is a first-order approximation of a Hessian
structure (Shima & Yagi, [1997; Butnariu & Resmerita, 2006, which interprets MD as natural discretization
on a gradient flow. |Deb et al.| (2023) introduced Wasserstein mirror flow, and the results include a geometric
interpretation of Sinkhorn for unconstrained OT, i.e., when € — 0 from the entropic regularization setup.
[Karimi et al.| (2024) formulated a half-iteration of the Sinkhorn algorithm into a mirror flow, i.e., 1, — 0.

Wasserstein gradient flows have attracted considerable attention in machine learning where their intrinsic
geometry is governed by the Wasserstein-2 metric. (Ambrosio et al. 2005a; |Villani, |2009; Santambrogiol,
[2017)). |Otto| (2001)) introduced a formal Riemannian structure to interpret various evolutionary equations as
gradient flows with the Wasserstein space, which is closely related to our variational approach. The mirror
Langevin dynamics is an early work describing the evolution of the Langevin diffusion (Hsieh et al.l 2018)),
and was later incorporated in the geometry of the Bregman Wasserstein divergence (Rankin & Wong], 2023)).




Published in Transactions on Machine Learning Research (01/2026)

We relate our methodology with recent approaches of variational inference on the Bures—Wasserstein space
(Lambert et al.l [2022; Diao et al., [2023). Utilizing Bures—Wasserstein geometry, the Wasserstein-Fisher-Rao
geometry (Liero et al., 2016} |Chizat et al., 2018} Liero et al.||2018; |Lambert et al.,[2022) additionally provides
“liftings,” which yield an interaction among measures.

Learning theory and Robustness. Suppose we have time-varying costs {F;}:2,. We generally referred
to learning through these signals as online learning (Fiat & Woeginger} |1998]). Our interest lies in temporal
costs defined in a probability space, where following the ordinary gradient may not be the best choice due to
the geometric constraints (Amari, [2016; /Amari & Nagaoka, 2000)). In this sense, we primarily relate our work
to OMD, an online learning form of mirror descent (Srebro et al., 2011} |Raskutti & Mukherjee, [2015} [Lei &
Zhou, [2020)). The OMD algorithm provides a generalization of robust learning by seeking solutions that are
optimal in a worst case sense, ensuring performance guarantees under adversarial or uncertain conditions
(Xu et al., 2008} |Zinkevich, 2003} [Madry et al., [2017)). Another relevant design of the online algorithm is the
follow-the-regularized-leader (FTRL; McMahan| 2011). OMD focuses on scheduling proximity of updates
through {n;}7_,, whereas FTRL minimizes historical losses with a fixed proximity term. Meanwhile, there
have been several notions of robustness. Distributionally robust optimization (DRO; Kuhn et al.| [2025)
addresses robustness by solving a minimax objective under adversarial distributions, a concept originating
from Knightian uncertainty. Our work addresses this via regret minimization, which is aligned with the core
argument of Wasserstein distributionally robust regret optimization (DRRO; [Fiechtner & Blanchet] [2025]).
The main difference of our work from DRRO is the premise of the ambiguity sets: whereas DRRO relies on
Wasserstein balls, we model uncertainty in the dual geometry under statistical assumptions.

3 General Properties of Schrodinger Bridge Problems

Borel probability measures on S C R¢ (with a finite second moment). For
marginals u, v € Pa(S), (i, v) denotes the set of couplings (Peyré et al.
2019)). For a coupling m, we often use a shorthand notation 7 (7¥) to
denotes a conditional distribution for a sample data 7(-|z) (or T(-|y); see
Fig.[2). We use KL(-||-) to denote the KL functional (e.g., formally defined
at Eq. ) and assume +oo if an argument is not absolutely continuous.
We employ a notation P([0,1],S) to denote a set of path measures from
the time interval [0, 1]. Figure 2: The SB problem.

Notation. Let P(S) (P2(S)) denote the set of (absolutely continuous) (SD\I/\I e (W9)
olse

The static SB problem and Sinkhorn. We first introduce a problem definition of a static variant of
Schrédinger bridge problems. For a regularization coefficient € € R, the static SB problem, or the entropic
optimal transport problem with a quadratic cost function c¢(z,y) = %HZE — y||?, is defined as optimization of
finding a unique minimizer of optimal coupling 7* with repect to the following objective

OT.(u,v) == inf // c(z,y)dr(z,y) + eKL(7||u @ v) (2)
mell(p,v) SxS

where p ® v denotes, the product of marginals and KL(+||-) in the regularization term denotes the Kullback-
Leibler (KL) functional, or relative entropy, defined as

// logidﬁ dr, "< puQUuv
KL(m||jp®@v) = sxs dpev) ’
ij?

TE U V.

It is well studied that the EOT problem can be translated to a singular form of divergence minimization
problem (Nutz, 2021)), i.e., KL(7||R) where the reference measure R is of Gibbs parameterization, satisfying
the Radon-Nikodym derivative of % = e % with ¢. = ¢/e. We are particularly interested in its dual
aspect, which contains a pair of log-Schridinger potentials as an alternative representation for EOT solutions.
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Lemma 1 (Duality; [Nutz, 2021). Suppose ezistence of optimal coupling m* € II(u,v) and log-Schridinger
potentials (p*,¢*) € L' (u) x L*(v). Then, the dual problem of is found without gap by

inf KL(r|R)=  sup  u(p) +v(®) — [fg,se#® dR +1, 3)
mell(u,v) weLY (), pEL (V)

where p(p) = fs edu; v(v) = fs W dv; the operator @ indicates the direct sum of two potentials; the symbol
R denotes the reference of Gibbs measure: dR = e~ “=d(u ® v) with c<(z,y) = 5|z — y||*.

By the duality, the Lebesgue integrable functions (p* 1*) € L'(u)x L'(v) represent dual solution of ,
associated with 7* by dn* = ¥ ®¥" ~¢d(u ® v), (1 ® v)-almost surely. Apparently, the result is a general
form of Legendre duality from convex optimization, and the realization that every element of the dual space
can be split into two separate potential functions has inspired a halfway projection method known as the
Sinkhorn algorithm (Cuturi, 2013|). The Sinkhorn algorithm is defined as following alternating updates:

1/}2t+1(y) — _]Og/s e@m(m)—cs(m,y)’u(daj)) 90275-&-2(-1') — _log/s ew2t+1(y)—ca(m,y)y(dy)’ (4)

where each update is called a iterative proportional fitting (IPF; Kullback) [1968]) procedure. Based on the
geometric understanding of Bregman gradient descent and flow (Léger, 2021} [Karimi et al., 2024)), the static
SB problem and Sinkhorn reveal a profound connection to the information geometry incurred by the KL
functional. Of course, this implies that that the Sinkhorn algorithm is not the only way of finding the
solution space. Akin to differential geometry, JKO discovered that each density can be analyzed using the
standard geometry of the Wasserstein-2 distance, defined as (Jordan et al., 1998} |Villani| [2009)

[N

WQ(M) V) = weli_lrgl, ») (E(a:,y)wﬂ'”x - y||2> ) (5)

where 7 is a joint distribution that has p and v as its marginals. In essence, the distance measures the
minimum cost to transform the distribution p into v, and provides an L2-like metric that quantifies the
discrepancy between two marginal distributions by considering the distance that mass must travel. Our
method utilizes the theory of Wasserstein gradient flows whose technical machinery is noted in Appendix [B]

The dynamic SB problem. An alternative perspective on the Schrédinger bridge is the interpretation in
terms of fluid dynamics or diffusion. In this setup, one considers a Wiener process W€ with volatility e € R
to be the reference for SB. The dynamic SBP (Vargas et al.,|2021)) aims to find a process 7* such that

T* = argmin KL(7T||W¢), (6)
TEQ(p,v)

where Q(u,v) C P([0,1],S) is the set of processes with marginals 1 and v. The SB process 7* is uniquely
described by a stochastic differential equation (SDE): dX; = ¢g*(¢t, X;) + dW§ in t € [0,1), governed by a
drift function ¢g* along with noises generated by WF. Addressing 7* involves continuous-time log-Schrédinger
potentials {¢¢}iep0,1], {¥t}eejo,1), and the time-dependent density p;, governed by the following differential
equations for pg = p and p; = v (Gigli & Tamaninil [2020])

7
=0y = S|V P+ SAYy, Orpe + V- (Vhpr) = 5Apy, @)

{ dor = 51V’ + 5 Ay, { —0ipr + V- (Vorpr) = SApy,
where the operators (V, V., A) denote gradient, divergence, and Laplacian, respectively. The pairs on the
left and the right are commonly known as Hamilton-Jacobi-Bellman equations and Fokker-Planck equations,
respectively. The fundamental equivalence between static and dynamic SBPs (Pavon & Wakolbinger) (1991}
Léonard, [2012)) allows us to consider the optimal coupling 7* when finding the SB process T, vice versa.

The Bregman divergence. To advance the discussion, one needs an alternative notion of gradients in
order to generalize the classical Bregman divergence, defined as Dg(z|y) = Q(z) — Q(y) — (VQ(y), = —
y> However, since the domain of  considered in this paper (the measure space of SB solutions) has an



Published in Transactions on Machine Learning Research (01/2026)

empty interior (Aubin-Frankowski et al.l [2022), Gateaux differentiability is not ensured. Consequently, to
discuss OMD here, we adopt the following definitions of directional derivatives (Aliprantis & Border} 2006))
and first variations (Aubin-Frankowski et all |2022)) in order to discuss MD. We also refer the readers to
Definition 7.12 of [Santambrogio| (2015) for alternative description on this topic.

Definition 1 (Directional derivative). Given a locally convex topological vector space M, the directional
derivative of F' in the direction ¢ is defined as d*F(z;&) = limy,_,o+ w

Definition 2 (First variation). Given a topological vector space M and a convex constraint C C M and
a function F : M — R U {oo}, we define the first variation of F' over C evaluated at x € C N dom(F),
as 0. F(x) € M*, where M* is the topological dual of M, such that it holds for all y € C N dom(F') and
v=y—x € M: (6.F(x),v) =d"F(z;v). {(-,-) denotes the duality product of M and M*.

Following |[Karimi et al.[ (2024), this work considers the following generalized divergence defined with a weak
notion of the directional derivative. We explicitly set the Bregman potential Q(-) = KL(:|le"%u ® v) in the
SB problems for the rest of the paper, which enforces the Gibbs parameterization for the OT couplings.

Definition 3 (Generalized Bregman divergence). Let a convex functional Q : M — RU{+o0} be a Bregman
potential. Define the Bregman divergence associated with 2 as

Da(z[ly) = Q(z) — Qy) — d"Qy; z — y), (8)
for every pair of elements in the domain x,y € M.

The above definition preserves the essential role of the Bregman divergence as the first-order Taylor expansion
of 2, allowing us to utilize properties in optimization similar to those used in the classical setting. To account
for smoothness- and convexity-like properties of a functional defined on metric spaces, we employ the notions
of relative smoothness and convexity with respect to the generalized Bregman divergence. These notions
were first introduced by Birnbaum et al.| (2011)) and later popularized by |Aubin-Frankowski et al.| (2022)), who
applied them to spaces of measures to provide a theoretical foundation for the Sinkhorn and EM algorithms.
The formal definitions are given in Definition [6]

Asymptotically log-concave distributions. Lastly, our theoretical analysis works with a certain form
of measure concentration property, and we formally address this property with asymptotically strong log-
concave (alc) distributions. This section rigorously states the resulting assumption which is later used in
address the desired properties of OMD), analougous to strong convexity assumption in the classical literature.
Let us consider the following informal definition of asymptotically strong log-concave distributions

Pate(RY) = { ((dz) = exp(=U(z))dz : U € Cy (Rd), U is asymptotically strongly convex }7 (9)

where Appendix[A]contains a formal version on asymptotical convexity. Note that asymptotically log-concave
functions satisfy a certain form of logarithmic Sobolev inequality (LSI;|Grossl [1975). The condition can be
an extension of Sobolev space (Adams & Fournier} [2003) for informational geometric problems. The simplest
case of such condition for the Gaussian measure is represented as follows.

Remark 1 (LSI for the standard Gaussian). Suppose that f is a nonnegative function, integrable with
respect to a measure -, and that the entropy is defined as Ent, (f) = fRd flog fdvy— (f]Rd fd’y) log(fRd fdv).

the log Sobolev inequality when + is the standard Gaussian measure reads Ent. (f) < 1 Jga %dv.

Historically, the log Sobolev inequality condition arises from the implication of satisfying the Talagrand’s
inequality for bounding the Wasserstein-2 distance, and is closely related to measure concentration (Otto &
Villani, |2000). The important extension of asymptotically strong log-concave distributions for Schrodinger
bridge drr = e?®¥~%d(u @ v), (1 ® v)-a.s. is that induced SB model also satisfies asymptotically strongly
log-concaveness and the LSI condition (Conforti, 2024). For a representative model related to our work,
the Gaussian mixture parameterization (Korotin et al.l 2024]) is a representative model that our theoretical
analysis holds, because Gaussian mixture weights does not alter the asymptotic characteristic.

Remark 2 (Conforti, 2024). Let i, € P..(RY) with finite entropy on Lebesgue measures and m € C
be a coupling in the static Schrédinger bridge problem. Then, for a quadratic cost function, the coupling
distribution is also asymptotically log-concave and satisfies a form of logarithmic Sobolev inequality.
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Figure 3: Learning for an SB model {m;}2°; in the primal space C (see Fig.|l|for the details). Left: Sinkhorn
(Lemma [2). Middle: Wasserstein gradient descent in the distributional space C for fixed F' (Lemma [3).
Right: Variational online mirror descent with sequence of convex costs using uncertain estimates {7y }52;.

Let us suppose that a parameterized SB model dr; = e?*®¥t=¢=d(;u @ v) obeys the following constraints for
marginals and potentials:

Ci={m: () € Po(RY) NPac(RY), (p,9) € LY p) x L' (v), and ¢,% € C*RY)NLip(K)},  (10)

where Lip(K) denotes a set of functions with IC-Lipschitz continuity. Using the disintegration theorem for
probability measures (Léonard, [2014)), we assume the boundedness of Bregman divergence between two trans-
port plans using derivatives of first variations with a positive constraint w > 0 by the following assumption.

Assumption 1 (LSI for couplings). Let us suppose Q(-) = KL(-||R) for a reference measure R. Suppose
that arbitrary m, 7 € C satisfy a type of logarithmic Sobolev inequality for relative entropy (KL divergence)
is upper bounded by the relative Fisher information (Gross, [1975|) for some w € R as

o1 55 ] Vo0 R

R(z,y)
By the equivalence of the first variations of Bregman divergences (detailed in Lemma @, convergence in
KL(r||7) is equivalent to convergence in Dq(7||7). Introducing the relative logarithm logg (7) := log(n/R)
and adopting the framework of |Conforti (2024), we can assume there exists a constant w > 0 such that

Vlog ———=% 7 7(dz, dy), (11)

Do(rl7) < 5[V (0.8(m) - 6007 (12)

Dl
holds for Q = KL(+|[e”% x ® v) and the first variation d.. We call the condition as LSI(w).

Since, as illustrated in Fig. (I} ¢; @ 1y = 6.Q(m;) for arbitrary m, the assumption geometrically enforces a
quadratic upper bound on the Bregman divergence in terms of dual space gradients. In general, the LSI
condition also has often been used to analyze the convergence of partial differential equations (Malrieu), |2001)).
To make our analysis on improvement (Lemma and a solid regret bound of OMD (Lemma , this work
finds that Assumption [I]is necessary to ensure a certain asymptotical type of measure concentration.

4 Learning Schrodinger Bridge via Online Mirror Descent

The goal in this section is to derive an OMD update rule for SB, and analyze its convergence. To accomplish
this objective, we postulate on the existence of temporal estimates and an online learning problem. Our
analysis suggests that applying an MD approach can reduce the uncertainty of these estimates.

4.1 Sinkhorn and Wasserstein descent as mirror descent algorithms

We start with a novel characterization of Sinkhorn as a heuristic form of online mirror descent as illustrated
in the left side of Fig. [3] which will lead to a better understanding of our arguments. OMD updates are
determined by the first order approximation of costs F; and proximity of previous iterate with respect to a
Bregman divergence (Beck & Teboulle, [2003a)). Using the first variation ¢, in Deﬁnition instead of standard
gradient V, the proximal form of generalized OMD over C is derived as (Karimi et al., 2024)

mir = argmind (3cF(m), 7 — 7) + Do)} (13)

TE
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where F; denotes a temporal cost function for SB models in C. In Eq. , the updates are determined
by the first order approximation of F; and proximity of previous iterate m; with respect to the Bregman
divergence (Beck & Teboulle) 2003a). In contrast to the ‘half-bridge’ interpretation provided by [Karimi et al.
(2024), the online MD iteration involves a temporal cost F}, which offers more general reinterpretation
of the Sinkhorn algorithm. Using the feasible model space C in , IPF projections are reformulated
as following subproblems of alternating Bregman projections:

argmin{KL(7||ma) : 7 € C,yom = v}, argmin{KL(7||mo41) : 7 € C, i = p}, (14)
mEIl; mell}

where yy7(z) = [w(z,y)dy and vem(y) = [m(x,y)dx denotes the marginalization operations, and the
symbols (Hf;,l_[,}) denote the Sinkhorn projection spaces that preserve the property of marginals. As a
generalized optimization problem in C, one can consider a temporal cost Fi(r) = a;KL(yi7||p) + (1 —
ay)KL(yom||v) with sequence {a;}2; = {0,1,0,1,...}. By construction, we show that an online form of MD
for F, with a constant step size 1 =1 matches the Sinkhorn.

Lemma 2 (Sinkhorn). For Q(-) = KL(r|le™%p ® v), iterates from 1 = argming co{(0cFi(me), m — ) +
Dq(r||m)} are equivalent to estimates from (¢i, ;) of (@), for every update step t € No.

The proof is in Appendix [A] Consequently, we established that the Sinkhorn algorithm corresponds to an
instance OMD; however, its inherent structure limits flexibility on step sizes and other underlying assump-
tions, making it challenging to analyze directly using standard OMD theoretical arguments. Instead, one
can alternatively consider OMD by recovering a “static” objective, namely F'(-) := KL(-||7*), where the KL
functional is originated from the formal definition of SBP (Vargas et all 2021; |Chen et al., [2022)). The
following lemma shows that the MD updates for the static cost correspond to discretization of a Wasserstein
gradient flow for SB models, a Riemannian steepest descent in the model space of C.

Lemma 3 (MD in the Wasserstein space). Suppose that F(m) := KL(x||7*) for # € C. The MD formulation
of F' corresponds to a discretization of a geodesic flow such that lim,, o+ % = —VF (), where Vy
denotes the Wasserstein-2 gradient operator.

According to Lemma [3] gradients of F' are tangential to the geodesic curve from mp to 7* (green line in the
middle of Fig. [3) in terms of the Wasserstein-2 metric Ws. Hence, the geometric interpretation allows us
to consider the static cost F' as the ground-truth cost for optimization in our variational OMD framework.
However, the ideal case falls short in practice since 7* is inherently unknown. Therefore, we postulate on an
online learning problem that nonstationary estimates {my}¢°, are offered instead of 7* as learning signals,
making an optimization process with Fy(-) :== KL(-||w7). As shown in in the right side of Fig. [3} we focus on
the online learning setting where {n7}22; are fundamentally uncertain with perturbation, since the optimal
coupling 7* is not accessible during the training time.

4.2 Online mirror descent for Schrodinger bridges: theoretical analysis

In this section, we examine the robustness of our OMD algorithm by analyzing its convergence behavior
under statistical uncertainty. From a learning theoretic standpoint, an apparent yet understated premise is
that an SB algorithm does not retain the global target 7 in practice. The global objective F' (also ﬁt) are
fundamentally unknown, but are instead inferred, imposing innate uncertainty of optimization. Instead, we
postulate on an online learning problem that nonstationary ergodic estimates {7y}, are offered instead of
7 (gray region in Fig. . Let Q* be the Fenchel conjugate of Q + i with the convex indicatorﬂ ic. For
the space D = 0.02(C), a directional derivative d, of Q* exists by the Danskin’s theorem (Danskin| 1967}
Bernhard & Rapaport, [1995)), such that

WY (p@Y) = ar;grerréax{@@w,ﬂ} - Q(m)}. (15)

Note that (8.2, 6,02*) form bidirectional maps; a direct sum of potentials ¢ @ 1) € D represent an element
of the generalized dual space. The key assumption is that the learning target ¢ is asymptotically mean

IDefined as ic(z) = 0 if z € C and +oco otherwise.
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Figure 4: Loss landscapes and gradient dynamics in a 2D problem. Left: In an early stage, parameters of
three modalities {my}3_, (mean estimations) for both LightSB (top) and VMSB (bottom) methods approach
the optimality with different costs. Right: When magnified the landscapes in the late stages (10 times),
while LightSB is vibrant, whereas our method emits strictly convex landscape and stable dynamics.

stationary (Gray & Kieffer] |1980)) for the dual space, which have been used to analyze stochastic dynamics.
Since iterates are updated through dual parameters in MD, we refer to the process as being dually stationary.

Assumption 2 (Dually stationary process). Suppose that w3 € C exists, which is the primal representation
of asymptotic dual average g = dp (lims— o0 E¢[0.2(77)]), where the notation E; denotes the time-average.

Plugging a temporal costF;(-) = KL(:||x7) to from § we achieve a dis-
tinct problem setup of online mirror descent. Fig. [f] shows a demonstrative ex-
periment regarding our online learning hypothesis. OMD decomposes the global
problem into local convex problems, and prevented iterates from being vibrant
by stopping at a single point w3. This verifies that OMD stabilizes learning of 7,
even when the reference 77 tends to inherently have some perturbation. Addi-
tionally, we state two conditions for the sequence {n:}$2,, which will be justified
in Theorem [I] and Proposition [[] Fig. [5] shows a plot of harmonic progression Figure 5: A sequence ex-

ﬁ for ¢ € R and d € R* with respect to ¢ which satisfies both conditions. ample of n; and 1 — .

Assumption 3 (Step sizes). Assume two conditions for step sizes {n:}72,. (a) Convergent sequence &
divergent series: im0y = 0 and > ;o my = co. (b) Convergent series for squares: o, n? < 0o.

t

Under the above assumptions, we firstly argue that OMD for the temporal cost KL(:||7f) with respect to
the Bregman potential Q@ = KL(:|le™% u ® v) requires step size scheduling for the sake of convergence. The
following theorem states that convergence in the case of 7* = 73 is assured when 7, follows Assumption )
In contrast to the well-known linear convergence guarantees for the Sinkhorn algorithm under bounded
costs with fixed marginals (Carlier, 2022), our OMD-based analysis establishes sublinear convergence rates,
accommodating scenarios involving unbounded and non-stationary costs.

Theorem 1 (Step size considerations). Suppose the idealized case of 7* = ©g. Then, for {ﬂ't}zl C C we get
limr o0 Er.7[Da(73||7r)] = 0 if and only if Assumption (@a} is satisfied. Furthermore, if the step size is in

the form of ny = t_%l, then Eq.7[Da(n*||m:)] = O(1/T).

Therefore, we can guarantee the ideal convergence in the SB learning when the scheduling of 7, follows the
step size assumptions. Next, we argue that general convergence toward 7p is guaranteed under Assump-
tion ) Given the convex nature of SB cost functionals, we argue that this convergence toward mg is
beneficial as long as 7y is trained to approximate 7* and remain bounded. Therefore, we argue that the
convergence of SB is beneficial and address the following statement.

Proposition 1 (Convergence). Suppose that 7 # 75, hence inf cc E[Fi(m)] > 0. If the step sizes {n:}2,
satisfies Assumption@ then limy—y o0 B1.t[Da (72 ||7¢)] converges to 0 almost surely.

Lastly, assume that the log Sobolev inequality in Assumption [I| holds with continuity of potentials. We
establish an online learning regret bound of O(v/T) for certain instance of step sizes, demonstrating that
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Figure 6: Variational MD with synthetic datasets. (a) A distribution is accessible by finite batch data. (b)
3D surfaces of (72, 7r) trained by Monte Carlo method for KL (top) and variational MD (bottom) show
that the MD results in more stable outcomes. (c) The plots show the estimated KL(7,||7*) with different
step size scheduling (5 runs), with red dashed baselines KL(7¢||7*).

imposing specific measure-theoretic properties in SBPs generalizes classical OMD results
[Srebro et al., 2011; |Orabona & P4l, |2018} [Lei & Zhou, 2020). The analysis on our general online learning
setup is compatible with these results by using the dual norm ||g:||, which represents a distance between the
OMD iterate m; and the empirical estimate 77 in the dual space D, where the generalized notional of duality
comes from the transformation 0.€(+), defined by applying the first variation of Q with respect to C.

Proposition 2 (Regret bound). Assume o, € C?(R%) N Lip(K), Assumptz'on holds, and the given costs
{F}1_, are bounded. For arbitraryu € C and a total step T, define D* = maxi<i<1 Dq(ul|7:). (a) When the

number of time step is known a priori, the regret is bounded to 2D/2w=1KT for a constant step size n = D2‘I§T.

(b) For an adaptive scheduling n, = D/w/ 22::1”@“2 the regret is bounded to 2D4/2w=1! ZtTZIHQtH? where
Gt = 0.Q(my) — 0:(7y).

Note that although our analysis establishes a rigorous connection between SB and OMD, it inherits cer-
tain limitations from classical regret analyses. For instance, sublinear regrets in Proposition [2] relies on an
additional boundedness assumption on costs, and there exist some cases of Assumption [3] that may yield
asymptotically linear regret (Orabona & Pal, 2018). Addressing these limitations may involve advanced
hybrid OMD methodologies which are actively being studied, such as dual averaging (Fang et all [2022) or
FTRL (Chen & Orabonal, [2023)). As exploring (as well as computing) such extensions for SBPs falls beyond
our scope, from now on we focus on practical implementations of OMD that demonstrate theoretical conver-
gence (Proposition [1)) over a relatively long horizon of several hundred steps. Hence, we adopt Assumption
and provide corresponding experimental evidence to substantiate its validity in practical scenarios.

4.3 Online mirror descent updates using Wasserstein gradient flows

The remaining challenge is practicality of our OMD theory, namely the accurate computability of each critical
point for . To resolve this issue, this work newly presents an approximation method using Wasserstein
gradient flows (Jordan et al.l [1998)) through an equivalence property of first variations. Suppose we expand
a subinterval [¢,¢ 4 1) for each OMD step into continuous dynamics of p(7) € C for a 7 € [0,00). By
Otto’s calculus on the Wasserstein space, known as the Otto calculus see Appendix , one
can describe the dynamics of p, for minimizing a strictly convex functional & : C — R as the PDE

a‘rp‘r = _ngt(p)a (16)

where V,, denotes the Wasserstein-2 gradient operator V,, = V- (p V(S‘S—p). In this work, we adopt the
Wasserstein gradient flow theory (Jordan et al. [1998) to efficiently perform OMD where the equilibrium
indicates the subsequent iterate m;1. Note that Wasserstein gradient flows are asymptotically stable by the
LaSalle’s invariance principle (Carrillo et al., [2023). We present a simple and exact closed-form expression
for the VOMD update. Note that the cost F;(-) = KL(-||nf) satisfies the 1-relative-smoothness and 1-strong-
convexity relative to € (see Definition [6} [Aubin-Frankowski et al, [2022). Then, a first variation of the OMD
problem can be decomposed into multiple variations of another problem with similar characteristics (e.g.,
equilibrium, smoothness, and convexity). We present the following theorem for the computation of OMD.

10
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Theorem 2 (Dynamics equivalence in first variation). Consider the Wasserstein gradient dynamics of
which solves a local update of . The gradient dynamics of updates are equivalent to that of a linear
combination of KL functionals such that for any pr € C

m0cE(pr) = Se{mKL(pr | 7?) + (1 =) KL(p-|m:)} Vo, €C, (17)
and the PDE converges to a unique critical point of subsequent OMD iterate (13) as T — oo.

Sketch of Proof. We identify §&; as a dynamics that reaches an equilibrium solution for

o 1
minimize (0 Fy(me),m — ) + EDQ(T(HT{})

< minimize n;, Do(x|x{) + (1 —n,) Do(x|m), (18)
mel N—— N——
empirical estimates proximity

and then the equivalence of first variation for recursively defined Bregman divergences is applied (Lemma @
At a glance, Eq. appears analogous to the interpolation search between two points, where the influence
of m¢ is controlled by 7;. We leave the full version of proof in Appendix O

Theorem [2 holds practical importance for OMD computation, since following the argument allows us to per-
form gradient-based updates without directly constructing a desired Bregman divergence. That is, updates
can be drawn based on a linear combination of gradient flows 7, Vi, KL(p,||75) + (1 — 1) Vw KL(p+||7¢). Note
that, just like ordinary gradients, Wasserstein gradient operators on a measure space allow for this direct
translation of Eq. , where such expression has been extensively studied both theoretically and computa-
tionally (Carrillo et al., |2023} [Lambert et al., |2022)). Therefore, we can utilize interpolation of Wasserstein
gradient flows for performing updates and utilize a certain variational class for reducing the computational
cost. Fig. [6] shows our actual experiments using GMMs. Let a reference estimation be fitted using a Monte
Carlo method, and our model be trained through a variational OMD method which is explained in the
subsequent section. We initially observed that the VOMD method provides stability improvement when
1 < 1. In contrast, the condition of 17 > 1 performed worse than the Monte Carlo method and n = 1 showed
almost equivalent performance. Furthermore, the performance of VOMD was greatly improved by choosing
a harmonic step size scheduling in the interval [1.0,0.05]. All of these results on variational approximation
precisely matches our analysis.

5 Variational Mirrored Schrodinger Bridge

In this section, we propose variational mirrored Schréodinger bridge, a simulation-free method that offers
iterative MD updates for parameterized SB models with mixture models, using the Wasserstein-Fisher-Rao
geometry. We provide a tractable and exact VOMD-based update rule for LightSB models and draw a
practical VOMD updates algorithm that closely resembles ordinary machine learning methods.

5.1 Gaussian mixture parameterization for the Schrodinger bridge problem

In order to translate our theoretical arguments on VOMD into practical algorithm implementation, this
section focuses on a computational implementation of our theory. Recently, Korotin et al.| (2024) proposed
the GMM parameterization, which provides theoretically and computationally desirable models for our
variational OMD approachﬂ The parameterization considers the adjusted Schrodinger potential u*(x) =
exp(¢*(x) — lzlI?/2¢) and v*(y) = exp(1p*(y) — Ivl?/2¢) such that we have a proportional property m* (y|z) o
exp((=:¥)/e)v*(y). With a finite set of parameters 6 = {ay, my, Sx | for weights ay > 0, means m;, € R?
and covariances ¥, € S, , Korotin et al.[(2024) proposed to approximate the adjusted Schrodinger potential
vy and conditional probability density 7y

K K
—T 1 xr x
vo(y) =Y ax N(y|mx,eSy), T (y) = = > g N(y|mi, ), (19)
k=1 0 k=1

2 Adapting the GMM parameterization to our theory is straightforward, achieved by specifying the cost cc (x,y) = 1/2¢||z—y]|?.

11
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ITEkm+(mk,I>)
2e :

2g = Zszl af (see Proposition 3.2 of [Korotin et al.). For this parameterization, the closed-from expression
of SB process Ty is given as the following SDE for ¢ € [0,1):

where GMM component for 75 is conditioned by an input x: m{ = my, + X, of = ay exp(

To : dX; = go(t, X;) At + /e dW,
. (20)
gg(t, .Z‘) = EVIOgN(I | 0, 6(1 — t)[d) Z (6%3 ./\/(mk | 07 Ezk)N(mk(t, .T) |0, Ak(t)),

k=1
where my(t, z) £ o T éE,;lmk and Ax(t) = s(ltift)‘[d + %E;l. Therefore, the LightSB parameterization
represent both static and dynamic SB models and arbitrary SB solvers can be applied without restrictions.
We utilize the GMM parameterization for our computational algorithm for three key reasons. Firstly, the
parameterization induce the universal approximation property for both 7@y and 7y (Korotin et al., |2024).
Secondly, GMMs are asymptotically log-concave (see Lemma [4)), which is a fundamental assumption for
our theory. Lastly, the GMM parameterization makes the computation of Wasserstein gradient flows with
respect to the KL divergence tractable, which in turn enables us to apply a canonical treatment, akin to
solving ordinary convex optimization problems endowed with a Riemannian geometry.

5.2 Computation of VOMD in the Wasserstein-Fisher-Rao geometry

For tractable computation, we formally derive a particular variant of Wasserstein gradient flow for the
GMM parameterization. The space of Gaussian parameters R? x 89, (d-dimensinoal mean vectors and
positive definite, symmetric convariance matrices), endowed with the Wasserstein-2 metric Ws, is formally
recognized as the Bures—Wasserstein (BW) geometry (Bures, [1969; [Bhatia et al. 2019; Lambert et al.
2022) BW(RY) C Py(RY). The Wasserstein-Fisher-Rao (WFR) geometry, equivalently characterized by the
spherical Hellinger—-Kantorovich distance, extends this setting by considering liftings of positive, complete,
and separable measures while preserving total mass (Liero et al., 2018} |Chizat et al., 2018} [Lu et al., |2019).
Building upon the BW space, the Wasserstein-Fisher-Rao geometry of GMMs, namely P, (BW(R?)), naturally
provides liftings of Gaussian particles satisfying distributional consistency. In this work, we introduce the
following proposition, which refines and extends the results from Lambert et al| (2022, § 6) specifically
enhancing their framework through the introduction of freely trainable GMM weights ay.

Proposition 3 (WFR gradient dynamics). Suppose a time-varying GMM model po. with the parameter
0, = {akmmkmEk,T}szl at time 7. Let yp , ~ N(mkyT,Ek,T.) denote a sample from the k-th Gaussian
particle of pg.. Then, the WFR dynamics ViyrnKL(po_. ||p*) wrt 0. = {& +, 70k 7, Ek_,}kK:l are given as

G r = — (IE {log pi’
p

(yk,T)] - Zi iadﬁ“{log pe,: (ye,T)DOék,r,

= P (21)

mk,r =-E |:v IOg pp@; (yk,‘r):|a z.:k,‘r =-E |:V2 IOg p;:(yk-,r)} z)k,‘r - Ek,TE |:v2 IOg p;,:(yk,r)],

for T € [0,00), where z; = Zi{:l ay; V and V? denote gradient and Hessian with respect to Yk,r-

Appendices and [B] contain the complete theory. Proposition [3] argues that the one parameter family 6,
predicts a gradient-based algorithm of VyrrKL(pg_||p*), and thus Eq. can be directly used for training
GMM models. Recall that GMMs have a closed form expression of likelihoods, which means each log
likelihood difference can be calculated without errors. Given that the target has the identical number of
Gaussian particles, both Eq. and its approximation using finite samples strictly induce zero gradients
at the equilibrium. Hence, we argue that the simulation-free algorithm VMSB will result in more robust
and stable outcomes than standard data-driven SB learning. Our VOMD framework can be implemented in
modern deep learning libraries and, when coupled with advanced optimizers that provide inherently more
stable gradient estimates (e.g., adaptive learning rate schedules), the proposed method empirically find
convergence even faster than the conservative rates predicted by theory.

12
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Algorithm 1 Variational Mirrored SB (VMSB).

Input: SB models (7, Ty) parameterized by Gaussian mixtures, step sizes (1,,7r), ny, BEN.
1: fort < 1to T do
2: Acquire ¢; with an external data-driven SB solver.

8 O 0, 1/ (" + (nx' =) (Y1)

4 for n<«+ 1to N do

5 {x;}B | + sample mini batch data from p.

6: ‘g—g — %ZilntWFRgrad(ﬁ; &1, Ti,ny) + (1 — 0 )WFRgrad(6; 0;, x4, ny)
. . oL

7 Update 6 with the gradient &7 .

8 end for

9: end for

Output: Trained SB model 7.

5.3 Algorithmic considerations

Algorithm [T outlines the overall procedure. The proposed VMSB algorithm requires SB parameters 6 and ¢,
which represents 7, and 7y from the theoretical framework in § The target model 7y is independently
fitted using an arbitrary SB solver. By the results of analysis, one can schedule of the step size 1, with a
harmonic progression satisfying Assumption 3} thus, we propose to schedule by the series for 1 > 1y > 7, > 0
as in Line [3| of the algorithm. In our settings, the hyperparameters are set n; = 1 and ny € {0.05,0.01}
which varies depending on each length of training. The algorithm can also put “warm up” steps leveraged
by a existing solver, and start from 6 = ¢; enforcing 7, = 1 for a certain period of the early stage.

The VMSB algorithm is essentially designed to perform the following approximation of the WFR gradient
operation in Proposition approximated by the following equation with finite data samples {z;}2 ; ~ 1

LS P WFRgrad(d; ¢, xi, 1) ~ Vien KL (7| 74),

where each expectation is estimated using n, samples from each Gaussian particle. Following Theorem E
we propose to update the SB model 7y with n,WFRgrad(0; ¢, x;, ny)+ (1 —n)WFRgrad(6; 6,_1, z;, ny) at each
VOMD iteration ¢ (see Line @ When p is a zero-centered distribution, we set B = 1 and & = 0 for the fast
training time. This trick is equivalent to training the adjusted Schrodinger potential (Korotin et all 2024)
vy = Z,If:l ar N(y|mg,eXg) x mo(-|x = 0) directly, which enables the VMSB algorithm to run efficiently for
certain tasks. We argue that our design provides a simple yet faithful realization of OMD updates, yielding a
procedure that closely resembles classical gradient descent in machine learning. Although our methodology
and computational strategy build on well-established ideas (Lambert et all [2022; [Aubin-Frankowski et al.l
[2022} Karimi et al., 2024), we deliberately integrate them into a unified framework to verify our novel online
learning theory for the SB problem. As a result, VMSB emerges as a robust solver that embeds OMD within
a variational formulation, offering both rigorous theoretical guarantees and clear computational advantages.
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Figure 7: Online SBPs for synthetic dataset streams. (a) We designed an online learning problem with a
rotating filter where an algorithm is allowed to observe the data in y ~ v only 12.5% at a time. (b) The
plots show that our VMSB and VMSB-M show consistent improvements from their references regarding the
ED metric with 95% confidence intervals for 5 runs with different seeds.
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Table 2: EOT benchmark scores with cBW3-UvP | (%) between the optimal coupling 7* and the learned
model 7y (5 runs). Results of classical EOT solvers marked with } are taken from (Korotin et al., [2024)), and §
from (Gushchin et al.,|2024al). Additionally, LightSB-EMA indicates a hybrid approach using the exponential
moving average techniques (EMA; Morales-Brotons et al.l 2024)) for LightSB parameters (decay = 0.99). Our
VMSB and VMSB-M results are highlighted in bold when VMSB methods exceed their reference algorithm.

e=0.1 e=1 e=10
d=2 d=16 d=64 d=128 d=2 d=16 d=64 d=128 d=2 d=16 d=64 d=128
Classical solvers (best; [Korotin et al.)f 1.94 13.67 11.74 114 1.04 9.08 18.05 15.23 1.40 1.27 2.36 1.31

Type Solver

Bridge-M DSBM (Shi et al )* 5.2 108 373 35 0.3 11 9.7 31 3.7 105 3557 15000
BridgeM  SF2M-Sink (Tong et al)t 054 3.7 9.5 10.9 0.2 1.1 9 23 0.31 4.9 319 819
rev. KL LightSB (Korotin et al)  0.007  0.040 0.100  0.140  0.014 0.026 0060 0140 0.019 0.027 0.052  0.092
Bridge:M LightSB-M (Gushchin et al)) 0.017  0.088  0.204  0.346  0.020 0.069 0.134 0294  0.014 0.029  0.207  0.747
EMA LightSB-EMA 0.005 0.040 0.078  0.149 0012 0.022 0.051 0127 0017 0.021 0.025 0.042
Var-MD VMSB (ours) 0.004 0.012 0038 0101 0010 0018 0.044 0114 0.013 0019 0021 0.040
Var-MD VMSB-M (ours) 0.015 0.067 0108 0253 0.010 0019 0.094 0222 0.013 0029 0193 0.748

6 Experimental Results

Experiment goals. We aimed to test our online learning hypothesis and verify that the VMSB effectively
induces OMD updates. Since our theoretical claims are intended to be highly versatile, consistent perfor-
mance improvements for each setting coincides with the generality of the proposed VOMD method. We
delineate our objectives as follows: @ We aimed to affirm our online learning hypothesis by demonstrating
consistent improvements. @ We sought to corroborate our theoretical results, aiming for stable performance
that consistently exceeds that of benchmarks. & We aimed to verify that our algorithm effectively induces
OMD by the Wasserstein gradient flow. To achieve these goals, we validate our algorithm across diverse SB
problem settings, including online learning scenarios, classical OT benchmarks, and image translation tasks.

Baselines and VMSB variants. |[Korotin et al.| (2024) proposed a streamlined, simulation-free solver
referred to as LightSB that optimizes ¢ through Monte Carlo approximation of KL(7*||7s). As an alter-
native, LightSB-M (Gushchin et al., 2024a)) reformulated the reciprocal projection from DSBM (Shi et al.
2023) to a projection method termed optimal projection, establishing approximated bridge matching for the
path measure Ty. Applying Algorithm [I} we derived two distinct methods called VMSB and VMSB-M
(7p), trained upon LightSB and LightSB-M solvers (7' ), respectively. Since the theoretical arguments imply
that the algorithm is agnostic to targets, the performance benefits of VMSB variants from their references
support the generality of our claims. Additionally, we adopted VMSB on hybrid settings, leveraging networks
or embeddings for complex problems. We refer readers to Appendix [D] for additional experimental setups.

6.1 Online SB learning for synthetic data streams

To validate our online learning hypothesis, we first considered two-dimensional synthetic SB problems for
data streams depicted in Fig. [7] (a). We applied an angle-based rotating filter, making the marginal as
a data stream where only 12.5% (or 45-degree angle) of the total data is accessible for each step t. We
trained conditional models 7y with VMSB and 74 with other baseline SB solvers for the 2D problem,
respectively. Fig. |z| (b) shows the plots of squared energy distance (ED), which is a special instance of squared
maximum mean discrepancy (MMD), approximating the L? distance between distributions: ED(P,Q) =
J(P(z) — Q(z))*dz (Rizzo & Székely, 2016). In our ED evaluation, the VMSB algorithm achieved a strictly
lower divergence than the LightSB and LightSB-M solvers for various numbers of Gaussian particles K.
Therefore, we conclude that these results aligned with our hypothesis and theory of online mirror descent.

6.2 Quantitative Evaluation

EOT benchmark. Next, we considered the EOT benchmark proposed by |Gushchin et al.| (2024bl), which
contains 12 entropic OT problems with different volatility and dimensionality settings. Table [2] shows
that LightSB and VMSB methods outperforms other EOT methods in terms of the cBW3-UvP metric,
or conditional Bures—Wasserstein unexplained variance percentage, soldifying previous reports by [Korotin
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Table 4: FID and MSD scores in EMNIST-to-MNIST

/ 44
s P il translation tasks. Hyperparameters between LightSB
% d o and VMSB are shared. We examined the scores with
el 4 five runs for the ALAE case.
- ¢ M A
£ 25
2 Method FID MSD
- SF2M-Sink 23.215 0.456
5 i U-net | DSBM-IPF 15.211 0.352
Cg ;l DSBM-IMF 11.429 0.373
< . LightSB-adv 20.017 0.362
-~ B Pixel | \ISB-ad
73 ISB-adv (ours) 15.471 0.356
LightSB 9.183 0.371
Figure 8: Generated MNIST/EMNIST samples. Top:  ALAE | yian’ o g 2000 e snos

Raw pixel SB results. Bottom: Latent SB results.

et al] (2024) and |Gushchin et al.| (2024al). We also observed that a hybrid approach combining LightSB
and the exponential moving average (EMA; [Morales-Brotons et al. [2024)) named as LightSB-EMA was
effective for improving stability. Among 24 different settings, our MD approach exceeded the reference
model and the EMA method in 23 settings in terms of the cBW3-UvP metric (Gushchin et al.| [2024b)).
Our replication of LightSB/LightSB-M achieved better performance than originally reported results, and
our method accordingly reached the state-of-the-art performance in this benchmark with stability, which
represents strong evidence of Proposition [I} Among all cases, the only exception was LightSB-M, which had
the highest dimension and volatility. We suspected that the drift form Eq. , which is proportional to
€, may have violated our assumptions Assumption [2] and the boundedness assumption during the training.
Thus, we conclude that our variational MD training is effective in various EOT setups. Tables[9] and [I0] in
the appendix show comprehensive statistics on this benchmark with a wider range of SB solvers.

SB on single cell dynamics. We evaluated Table 3: Energy distance on the MSCI dataset (95% confi-
VMSB on unpaired single-cell data problems dence interval, ten trials with instances of two setups). Re-
in the high-dimensional single cell dynamics sults marked with I are from (Gushchin et al, [2024a)).

experiment (Tong et all |2024a). The dataset

provided single cell data from four donors on Type | Solver d=50 d =100 d = 1000
days 27 3’ 47 and 7’ describing the gene ex- Sil?khorn Varga‘s’ et al: (2021 ); ’234 2.24 1]864

. e . Bridge-M DSBM (Shi et al)t 246+01  235+0.1  1.36+0.04
pression levels of distinct cells. Given samples Bridge-M | SF?M-Sink (Tong et al.)!  2.66+0.18 2.524+0.17  1.38+0.05
collected on two different dates, the task in- rev. KL LightSB 2314008 2154009 1.264+0.06
volves performing inference on temporal evo- Bridge-M LightSB-M 2.30 +0.08 2.15+0.08 1.267 4+ 0.06
lution, such as interpolation and extrapola- Var-MD VMSB (ours) 2.28+0.09 2.13+0.09 1.260+0.06

Var-MD VMSB-M (ours) 2.26+0.10 2.12+0.09 1.265+0.05

tion of PCA projections with {50,100, 1000}
dimensions. We evaluated the energy distance over ten trials, which were divided into two distinct settings
with five runs each (Tong et al., [2024a). The first setting spanned from Day 2 to Day 4 (evaluated at Day
3), while the second setting considers duration from Day 3 to Day 7 (evaluated at Day 4). The quantitative
results in Table [3|show that our VMSB method exhibited competitive results even for large dimensionalities,
demonstrating its competitiveness as a practical SB solver for real-world problems.

6.3 Unpaired image-to-image transfer

MNIST-EMNIST. We applied VMSB to unpaired image translation tasks for MNIST and EMNIST
datasets. In these tasks, LightSB methods struggled to generate raw pixels due to the limited scalability of
the loss function. To solve this issue, we opted to find a viable alternative to LightSB the raw pixel space,
and we discovered that the capabilities of GMM parameterization can be extended by incorporating the
adversarial learning technique (Goodfellow et al., [2014; see Appendix was effective in providing rich
learning signals for 7. Therefore, we named the adversarial method and the VMSB adaptation LightSB-
adv and VMSB-adv. Also, we pretrained encoder networks using the Adversarial Latent AutoEncoder
(ALAE; [Pidhorskyi et al.| [2020) technique, and applied the LightSB and VMSB algorithms on the 128-
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Figure 9: Image-to-Image translation on a latent space. Left: Generation results for the FFHQ dataset
(1024 x 1024) using our two SB variants. Right: Quantitative results of ED metrics for ALAE embeddings.

dimensional latent space that represent the both of data. Fig.|8|shows that VMSB/VMSB-adv outperformed
Light/LightSB-adv (with identical architecture) in the fidelity of samples and semantics of letters for latent
and pixel spaces. In Table 4] the VMSB method on the ALAE embedding space was able to surpass deep
SB models with a fewer number of parameters of K = 256. Even for raw pixels, our algorithm also achieved
competitive FID and input/output MSD similarity scores for K = 4096. The consistent performance gains
from the LightSB and LightSB-adv algorithms strongly supports our theoretical claims on online learning.

FFHQ. Following the latent SB setting of Korotin et al. (2024)), we assessed our method by utilizing a
pretrained ALAE model for generating 1024 x 1024 images of the FFHQ dataset (Karras et al.| 2019). With
the predefined 512-dimensional embedding space, we trained our SB models on the latent space to solve
four distinct tasks: Adult— Child, Child— Adult, Female— Male, and Male— Female. Fig. [0 illustrates
that our method delivered high-quality translation results. We also conducted a quantitative analysis using
the ED on the ALAE embedding as a metric for evaluation, and the corresponding quantitative results are
reported in Table[I3] The result also verifies that our VMSB and VMSB-M algorithms consistently achieved
lower ED scores than other baselines, demonstrating its applicability for the high dimensional embedding
space. Consequently, the image-to-image transfer results showed that the generality of our online learning
hypothesis and that the proposed algorithm is highly capable of interacting with neural networks of complex
learning dynamics. Considering the significantly higher dimensionality of image domains relative to the batch
sizes used in VOMD, the consistent and stable performance improvements demonstrated in our experiments
strongly validate our theoretical claims regarding the robustness of our approach in online learning scenarios.

7 Conclusion

In this paper, we introduced VMSB, a practical simulation-free Schréodinger bridge algorithm based on the
online learning theory, designed for effectively solving SB problems encountered in real-world scenarios. We
proposed a robust theoretical learning framework applicable to general SB solvers, leveraging a dual geometric
interpretation of convex optimization to construct a robust OMD algorithm with rigorous guarantees on
convergence and regret bounds. Furthermore, we proposed the computational algorithm for our OMD
framework by employing the Wasserstein-Fisher-Rao geometry. Through extensive empirical evaluation,
we validated the effectiveness of VMSB across diverse settings, including high-dimensional spaces, limited-
sample regimes, and online learning environments. The experimental results consistently demonstrated stable
and superior benchmark performance, highlighting the enhanced robustness of our approach. Consequently,
we argue that the proposed VMSB algorithm and our theoretical arguments regarding VOMD provide a
promising and robust methodology for probabilistic generative modeling within learning-theoretic contexts.

Limitations. In this work, we significantly reduced the computational complexity inherent in the MD
framework by adopting the Wasserstein-Fisher-Rao geometry. GMM-based models, due to the lack of deep
structural processing, tend to focus on instance-level associations of images in EOT couplings rather than
the subinstance- or feature-level associations that are intrinsic to deep generative models. As a result, while
VMSB produces statistically valid representations of optimal transportation within the given architectural
constraints, these outcomes may be perceived as somewhat synthetic compared to large neural networks.
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Nevertheless, GMM-based models still hold an irreplaceable role in numerous problems such as latent diffu-
sion and variational methods, due to their simplicity and distinctive properties Korotin et al.| (2024). As we
successfully demonstrated in two distinct ways of interacting with neural networks for solving unpaired image
transfer, we hope our theoretical and empirical findings help novel neural architecture studies. While VMSB
strictly outperforms existing SB solvers across standard numerical benchmarks, the performance gains are
marginal in some scenarios. For instance, the single-cell dynamics experiment utilizes a PCA-based prepro-
cessing pipeline (Tong et all 2024a)), and the transformation into this lower-dimensional space compromises
the biological relevance of the SB objective, consequently narrowing the discernible performance gap.

Future research. One line of future studies in SB is a general understanding of learning in diffusion
models with various regularizations. This includes diffusion models in various problem-specific constraints,
and geometric constraints from manifolds. Another direction is the extension of the theoretical results into
network architecture design. From §[£.2] a pair of Schrédinger potentials represent a dual representation of
SB in a statistical manifold. In|Gigli & Tamanini| (2020)), such potentials satisfy the Hamilton-Jacobi-Bellman
(HJB) equations and, this can be trained with forward-backward SDE (SB-FBSDE) as presented by |Liu et al.
(2022). However, this requires many simulation samples from SDEs, and the requirements for applying VMSB
contain a tractable way of estimating gradient flows, and a guarantee of measure concentration. Therefore,
we expect there will be a new studies of energy-based neural architecture for efficiently representing SB, which
will advance various subfields of machine learning. Lastly, a theoretical generalization of our work can be done
by considering the Orlicz space for EOT studied by |Lorenz & Mahler| (2022)). Since we essentially devised our
theoretical framework to be compatible with arbitrary Bregman potentials, we believe controlling regularity
of Young functionals can find more generalized learning algorithms for a wider range of OT problems.
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Appendices for
Variational Online Mirror Descent for Robust Learning in Schrodinger Bridge

Abbreviation and Notation

Abbreviation Expansion Notation Usage
SB Schrodinger Bridge v marginal distributions
SBP Schrédinger Bridge Problem € volatility of reference measure
EOT Entropy-regularized Optimal Transport Ce cost c.(z,y) = é”z —yI?
MD Mirror Descent T a coupling of p and v
OMD Online Mirror Descent T, conditional distributions
KL Kullback-Leibler Yn n-th marginal
IPF Iterative Proportional Fitting @, log-Schrodinger potential
BW Bures—Wasserstein Q, Dq Bregman potential /divergence
WFR Wasserstein-Fisher-Rao dr directional derivative
SDE Stochastic Differential Equation Ocy Op First variations
PDE Partial Differential Equation Vi Wasserstein-2 gradient operator
FP FokkerPlanck T dynamic stochastic process in SB
GMM Gaussian mixture model g drift function

ic indicator function

. positive definite and symmetric matrices

A Theoretical Details and Proofs

Background on first variation operators. In this paper, we utilize the notation of first variation
operators . and J, to identify the generalized primal and dual spaces in Schrodinger bridge. Since the
problems are classified as an infinite-dimensional optimization (Aliprantis & Border, [2006), we introduce
the essential background supporting the necessity of these operators. We introduce Gateaux and Fréchet
differentiablility (Aubin-Frankowski et al. 2022; [Karimi et al. [2024).

Definition 4 (Gateaux & Fréchet differentiablility). Let M be a topological vector space of measures on a
space X. Define the Gateaux differentiablity of a functional F' : M — R, if there exists a gradient operator
Vaat such that for an arbitrary direction v € M, defined as the limit

VGétF(l‘)[U] = lim Fa + hv) - F(a:)

h—0 h ’ reM

If the limit exists in the unit ball in M, the function F is called Fréchet differentiable with Ve F'(x).

The problem of the Gateaux and Fréchet differentiability in the context of SB is that the limit must be given
in all directions, implying that every neighboring point must be within the domain of the topological space
M. For the case of functionals such as the KL divergence functional F'(-) = KL(:|7*), the domain of F' and
has an empty interior (Aubin-Frankowski et al., [2022]). To resolve this issue, we use directional derivatives
and first variations, defined in Definitions [I] and

First variations of KL. Suppose that we have two distributions p, p’ € Pa(X), X C R%. Let us consider
the log likelihood of p: ¢(z) := logp/(z), and an element of a (topological) tangent space v € T,Pa(X)
(Milnor}, [1964). Then, we can achieve the followings:

KL (pll¢) = / log p(= / ¢(z) dp(a (22)

/ (@) [p(e) + ho(@)] de = / ¢ (@)pla) da + h / ¢ (@)o(x) da (23)
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Given that log(z +¢)(z + ) = log(2)z + [log(z) + 1]e + o(¢), and [, v(x)dz = 0, we achieve

/X log(p(z) + hv(z)) (p(z) + ho(z /Xlogp x) dx + [log p(x) + 1]hv(x) + o(h) dx
/Xlogp x)dx + h/ log p(z)v(x)dx + h/v(m)dm +o(h)

(24)
Combining Egs. , we achieve

Flp+hv) = F(p) + h<log<5/>, v> + o(h). (25)

By Eq. and Definition [2] the first variation 6F, € T*P(X) exists for infinitesimal A > 0. Therefore, the
first variation of KL is derived as éKL(p||p’) = log ﬁ. In machine learning, log likelihoods of probabilistic
models are often given in a closed-form expression, incentivizing development of computational continuous
EOT/SB methods. Generally, identical arguments generally apply to all KL functionals with respect to
distributions (7, @, and marginals) in our setup.

Asymptotically log-concave distributions. For convergence analysis, we assume each marginal distri-
bution is in log-concave distribution, particularly satisfying the log Sobolev inequality of measures, motivated
by relevant literature (Otto & Villanil |2000; (Conforti, 2024). This assumption works a wider range of costs
and marginals beyond popular choices with boundedness and compactness (Nutz & Wiesel, |2023; |(Conforti
et all, 2023)). Suppose that marginals admit densities of the form

p(dz) = exp(—Uu(z))dz and v(dy) = exp(—Uu(y))dy. (26)
We exploit the following definition from (Conforti et all [2023) in order to describe asymptotically log-
concaveness.

Definition 5 (Asymptotically strongly log-concavity; |Conforti et al., |2023). Suppose that marginals
p and v admit a positive density against the Lebesgue measure, which can be written in the
form (26). In particular, consider a collection of functions G = {g € C?((0,+c0),Ry)|r ~
r1/2g(r1/2)is non-increasing and concave, lim, ,o7g(r) = 0}. Accordingly, define a set

G = {g € G bounded and s.t. 11151+ g(r)=0, ¢ >0 and 2¢" +gg <0} CQG.
r—

and convezity profile ky : Ry — R of a differentiable function U as the following

.f{WU(z)—VU(y),x—m : J;—y|=7“}.

ky(r) :==in
[z —yl?

We say a potential is asymptotically strongly convex if there exists oy € Ry and gy € G such that
ku(r) > ay —rtgu(r) (27)
holds for all » > 0. We consider the set of asymptotically strongly log-concave probability measures

Pate(R?) == {¢(dz) = exp(~U(z))dz : U € Co(RY), U is asymptotically strongly convex}.

It is essential to note that a mixture of asymptotically log concave is also asymptotically log concave.

Lemma 4. For positive weights B = {ﬁk}le with Zszl Br = 1 and asymptotically log concave distributions
K K
{prtiey, ™= 241 Bpr-

Proof. Let us reformulate the mixture as logw(z) = log)_, frexp(—Ug(x)) for asymptotically strongly
convex functions U = {U, }X_,. The gradient is

VU
Viegr =3"p, J=- : , p = softmax(log 8 — U)
VUk
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If each Uy of mixture satisfy Eq. with ay, and gy, there exist ay = minj<x<x ay, and gu(r) =
—rlog Zszl exp(—r~1gy,) that satisfies the condition for U = —log 7. By direct calculation, one can
easily see that soft min-like property of r~1gy from {r—1 fJUk}kK:1 does not change the conditions of G. [J

General assumptions and justifications. We additionally need the following general assumptions for
our OMD framework. (@ (Existence) The sequence of MD from Eq. exists {m:}ten C C, and are
unique, @ (Relative smoothness/convexity) For some [, L > 0, the functional F; is L-smooth and I-strongly-
convex relative to Q. @ (Existence of first variations) For each ¢ > 0, the first variation 6.€(m;) exists. @
(Boundedness of estimations) The asymptotic dual mean 73 is almost surely bounded Pr(Dg(m||72) < R) =
1 for some R > 0. ® (Ergodicity) The estimation process of {7f}22; is governed by a measure-preserving
transformation on a measure space (V,%,<) with ¢())) = 1; for every event E € %, ¢(T"Y(E)AE) = 0
(that is, E is invariant), either ¢(E) = 0 or ¢(E) = 1 (Cornfeld et al. 2012) ] For @, the temporal cost
Fi(-) = KL(-|np) is well defined since KL is a strong Bregman divergence with lower semicontinuity, where
the existence of a primal solution in guaranteed as discussed in |Aubin-Frankowski et al| (2022). For @-®,
we can identify | = L = 1 and close-form expression of the first variation that is shown in Definition [f]
and Proposition For the assumptions @-®, we postulate the existence of estimates produced from a
Monte-Carlo method, using a fixed amount of updates on topological vector space. Hence, it is natural to
consider that these estimates will be bounded in a probabilistic sense and yield Markovian transitions, which
are aperiodic and irreducible.

A.1 Proofs of Lemmas 2 and 3]

The EOT in Eq. can be reformulated as a divergence minimization problem with respective to a reference
measure. If a Gibbs parameterization is enforced with the quadratic cost functional c.(z,y) = 5= ||z —y||* for
€ > 0, it is well-known that the problem has the equivalence with the entropy regularized optimal transport
problem (Nutz, [2021))

OT.(n,v) = inf KL(r|le “pe@v). (28)

well(p,v)

Note that the above equation corresponds to the constrained minimization of KL(T||W¢) in Eq. (6) by
the disintegration theorem of Schrodinger bridge (Appendix A of [Vargas et all 2021). While the Bregman
projection formulation of Sinkhorn Eq. are described by the spaces (Hf;, IT}), it is (equally) natural to
think that considering the problem as convex problem with the distributional constraint C (see the primal
space in illustrated in Fig. . As a problem in the constraint C, one can consider a temporal cost functional
Fy(n) = a,KL(y17|| ) + (1 — a; ) KL(yo7||v) with sequences {a,;}2, = {0,1,0,1,...} for y17(z) == [ w(x,y)dy
and Yo7 (y) == [ 7(x,y)dz. By construction, we have the following MD update:

minierrclize<5cﬁt(7rt), m — m¢) + Do (). (29)

The optimization problem is equivalent to having the property for subsequent m;1:

d*Fy(my;m — mp) + Do(r||my) > dFy(my; w1 — ) + Da(mga|m)

~ 30
<~ <5th(7Tt) — 6CQ(7Tt), ™ — 7Tt+1> + (Q(ﬂ') — Q(7Tt+1)) Z O7 VrecC. ( )

Setting the free parameter m = w41 + h(m — m41) and taking the limit A — 07 yields described the time
evolution of the log-Schrodinger potentials for 7; = e?*®¥t—Ced(u @ v):

oy = —log M =« <90t —p"+ log/ 6wtw*V(dy))v (31a)
dv, R

g = —log 22T _ g (wt — 9" +log / e*"t@*u(dx)), (31b)
dyss R

3Here, A denotes the symmetric difference, equivalent to the exclusive-or with respect to set membership.
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fora = a; and g =1— atﬁ Setting a discrete approximation of dynamics Eq. : Vi1 = @ + ¢y and
Yer1 = Y + Yy yields the following alternating updates:

z/J2t+1(y) = —1og/

esozt(x)—cs(x,y)u(dm>7 (P2t+2(x> — —log/ 67/)21+1(ﬂc)—05(x7y)y(dy).
R

Rd
Therefore, the proof of Lemma [2]is complete.

From the dual iteration of KL stated in Eq. (Aubin-Frankowski et al., |2022), the static, idealized MD
cost F(-) = KL(:||7*) yield the following closed-form expression for the first variation:

(5CQ(Wt) — (SCQ(Wt+1) =Mt (6CQ(7Tt) — (5CQ(7T*)),

where the equation implies that setting 7, = 1 for MD yields one-step optimality #* in this idealized
condition. Utilizing the equivalence of first variation stated in Lemma [6] and the disintegration theorem for
the Radon-Nikodym derivatives, we get the first variation of F' with respect to 7 for all x as

drm*

dF(m) = log o

(32)

And by the disintegration theorem (Léonard, 2014|), we also achieve the first variation of f with respect to
7 for all x as
d(7y)”

0f (@) = log — ==,

(33)

where f(7*) = KL(7"||(7*)"). Since this disintegration theorem always hold for every directional derivative,
we can use expression for 7% and 7 interchangeably. It is well-known that MD is a discretization of natural
gradient descent (Gunasekar et al., [2020]), and our setting for Q generates the geometry governed by the
(generalized) Fisher information. In this particular case, one can use Otto’s formalization of Riemannian
calculus (Otto, 2001} § 3.2), and the probability space equipped with the Wasserstein-2 metric (P2 (R9), W3),
is generally represented as a Wasserstein gradient flow

8t7rt = —VWF(W}), Vﬂ't € C, (34)

where V,, denotes the Wasserstein-2 gradient operator Vy, = V- (p V%). In particular, plugging Eq.
yields

Oymy = =V - (7Vlog ™) + Am, (35)

where A denotes the Laplace operator. The foundational results concerning Wasserstein gradients were
initially established by JKO (Jordan et all [1998]), who demonstrated that the formulation in Eq.
corresponds precisely to the FokkerPlanck equation . Consequently, it follows that Wasserstein gradients
characterize the tangential direction of flows on a manifold constrained by distributional properties and
endowed with the Wy metric. O

A.2 Proof of Theorem [

We start with introducing basic properties of the Bregman divergence in Definition [3} First, the idempotence
property states that a Bregman divergence associated with another Bregman divergence Dg(+|y) remains as
the identical divergence with the original. Note that the (global or universal) idempotence initially stated by
Aubin-Frankowski et al.| (2022), but we apply some changes to the statement and only work with localized
version of idempotence for the purpose of this paper.

Lemma 5 (Idempotence). Suppose a convex potential Q : M(X) — R U {+oo}, where M(X) denotes a
topological vector space for X. Assume that for all z € dom(QY), 5.Q(2) exists. Then, Vz,y € C N dom(R):
Dpq 1y (ly) = Da(zly).

4More precisely, one needs to apply Lemma@ for KL, and the disintegration theorem to get Eq. 1'
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Proof of Lemma[5 Both Bregman divergences and Bregman potentials are convex functionals. By definition,
we have Dp,, (|- (z|ly) = Da(z]|2) — Da(yllz) — (0c:2y) — 0.2(2),  — y) for arbitrary z, and setting z = y
completes the proof. Another (informal) point of view is considering the Bregman divergence as a first-order
approximation of a Hessian structure, and Dp,.|.) converges to Dq(-|z) by taking a limit, knowing that
Da(yly) = 0. O

We then proceed to the equivalence property of the family of recursive Bregman divergences. The property
is important for proving the theorem and representing the dual representation of MD. Moreover, it is also
used in Theorem [2| as a key ingredient which constructs our VOMD framework.

Lemma 6 (Equivalence of first variations). Suppose Q : M(X) — R U {400} Assume that for all z €
dom(QY), the first variation 6.€(z) exists, then, for all x,y,y1,y2 € dom(RQ), the first variation taken for
the first argument x of the following Bregman divergences are equivalent: é.Dq(x|y) = deDpg(.jyy)(2|y) =
§CDD52(‘|Z!2)(:E‘:U)'

Proof of Lemma6l First, it can be analytically driven d6.Dgq(z|y) = 0.Q(z) — 6.Q(y). Next, by def-
inition, taking the first variation of Dp(.)(x|y) with respect to x for arbitrary z € dom(f2) yields
deDa(z]|z) — 0 (Qy) — Q(2),z — y). Knowing that the second term d.(Q(y) — Q(2),x — y) is linear, we
achieve dcDpg,(.|2)(x]y) = 0Q(x) — 3c2(2) — (62(y) — 6:2(2)) = 6:Q(z) — 0.2(y), which completes the
proof. O

By an inductive reasoning, we arrive at the basic property of family of Bregman divergences, that all
divergence recursively defined by the Bregman potential €2, has the (local) idempotence and the (global)
equivalence of first variation. To address characteristics for particular Bregman potential €2, we apply the
notions of relative smoothness and convexity with respect to 2, which was first introduced by Birnbaum
et all (2011)).

Definition 6 (Relative smoothness and convexity). Let G : M(X) — R U {400} be a proper convex
functional. Given scalar [, L > 0, we define that GG is L-smooth and [-strongly-convex relative to €2 over C if
for every z,y € dom(G) Ndom(§2) N C, we have

De(zlly) < LDo(zy), Da(zlly) = IDa(zly),
respectively, where Dg and Dg are Bregman divergences associated with G defined in Definition

Applying the idempotence lemma Lemma [5] we immediately recognize that the Bregman divergence Dq
is relatively 1-smooth and 1-strongly-convex for 2. To start our analysis, we reintroduce the well-known
three-point identity for a Bregman divergence.

Lemma 7 (Three-point identity). For all 7., 7, 7. € C Ndom(QY), we have the following identity
<(5cQ(7Ta) —0cQ(mp), e — 7rb> = Dq(m.||m) — Da(me||ma) + Da(my||7a)

when Dq, is the Bregman divergence defined in Definition [3.

Proof of Lemma[] By the definition of Bregman divergence, we have

Da(me||lmy) — Da(me||ma) + Da(m||ma) = Q(me) — Q(ms) — (e (m), 7 — )
= Q(me) + Q(ma) + (0Q(ma), Te — Ta)
+ Q(mp) — Qme) — <5CQ(7ra),7rb — 7Ta>
= <5CQ(7TG) — 0 mp), e — 7rb>
Therefore, the proof is complete. O

Utilizing the three-point identity, we present the following useful lemmas for dealing inequalities regarding
improvements by [Han et al.| (2022)), which we call left and right Bregman differences.
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Lemma 8 (Left Bregman difference). For all mq, mp, 7. € C N dom(R2), the following identity holds.
Dg(wb||7ra) — Dq(m.||m,) = —<5CQ(7TC) — 0 7e), e — 7rb> + Dq(mpl|me)- (36)

Proof of Lemma[8 Using Lemma [7] we have
Daq(mp||ma) — Da(me|ma) = —Da(me|m) + (6Uma) — 6cQ(mp), e — 7).

Utilizing an identity of two Bregman divergences for arbitrary (p, p):

Da(pllp) + Da(pllp) = (3:2(p) — 0:2(p), p — p)- (37)
We separate d.Q(m,) — 0.Q(mp) into 6.Q(mg) — 0.2(me) and 6.Q(m.) — 0.82(mp) and write the rest of the
derivation as follows.
Da(mp||ma) — Da(me|/ma)
= —Daq(mc|lmy) + (5 Q(me) — deU(mp), me — M) +(3e(ma) — S (me), Te — )
Eq.
= Do(my|[me) + (e Q(ma) — defU(me), Te — )

Therefore, we achieve the desired identity. O

Lemma 9 (Right Bregman difference). For all 74, my, 7, the following identity holds.
Dq(7c||mp) — Da(7e||ma) = Da(ma||ms) + <5CQ(7T,1) —0cQ(mp), e — 7Ta> (38)

Proof of Lemma[9 By Lemma[7] we have
Dq(me||m) — Do(mel|lma) = —Da(mp||ma) + (6cU(ma) — 6 Q(mp), e — 7).
We separate w.— mp into m.— m, and 7, — 7, and write the rest of the derivation as follows.

Da(me|lmy) — Da(mel|ma)
= —Dq(mp||7a) + <5CQ(7ra) — 6cQmp), Mo — 7rb> +<(5CQ(7TG) — 6 Qmp), e — 7ra>
Eq.
= Dao(mallm) + (6 Qma) — 6 QUmp), e — Ta )

Therefore, we achieve the desired identity. O

Additionally, we introduce the three-point inequality (Chen & Teboulle] [1993)), which has been a key state-
ment for proving MD convergence for a static cost functional (Aubin-Frankowski et al.| [2022), and OMD
improvement for temporal costs. The proof mostly follows |Aubin-Frankowski et al| (2022) with a slight
change of notation.

Lemma 10 (Three-point inequality). Given m € M(X) and some proper convex functional ¥ : M(X) —
RU{+o00}, if 0: exists, as well as p = argmin, {¥(p) + Da(p||7)}, then for all p € CNdom(2) Ndom(¥):
U(p) +Da(plw) = ¥(p) +Da(pl7) + Dalplp)-

Proof of Lemma[I0, The existence of §.Q implies C N dom(Dgq(-]y)) = € N dom(2) N dom(¥). Set G(-) =
V() + Dq(-||y). By linearity and idempotence, we have for any p € C Ndom(2) N dom (V)

De(pllp) = Du(pllp) + Dalpllp) = Dalpllp)- (39)
By p being the optimality for G, for all z € C,
G((1= W)5+ hp) - G()

d+ =. —n) — 1 >
G(p;p—p) = lim, N >0,
which suggests G(p) > G(p) + Dg(p||p). Applying to this inequality complete the proof. 0O
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The following argument is from the convergence rate of mirror descent for relatively smooth and convex
pairs of functionals, and extend to infinite dimensional convergence results of [Lu et al. (2018) and |Aubin-
Frankowski et all (2022). We aim to reformulate the statements in online learning, addressing one-step
improvement of OMD.

Lemma 11 (OMD improvement). Suppose a temporal cost Fy : M(X) — R which is L-smooth and -
strongly-convex relative to Q and ny < % Then, OMD improves for current cost Fy(miy1) < Fy(mt).

Proof of Lemma[I]] Since F is L relatively smooth, we initially have the inequality
Ft(ﬂ-t—&-l) S Ft(ﬂ't) + d+F(7Tt;7Tt+1 — 7Tt> + LDQ(TFH_1|7Tt) (40)

Applying the three-point inequality (Lemma to Eq. , and setting a linear functional ¥(p) =
nthrFt(’]Tt; ™ — 7Tt), p = T and ﬁ = T¢4+1 ylelds

d'Fy(me; o1 — ) + n*ltDQ(Wt+1|7Tt) < d'Fy(m; p— ) + iDQ(phTt) - WLDQ(PHWH)-

t

Since F; is assumed to be l-strongly convex relative to €2, we also have

d'F(me; p— ) < Fy(p) — Fy(me) — IDo(plm), (41)
Then, by using , Eq. becomes
Fy(mi1) < Fi(p) + (5 = DDal(plme) — o-Da(plmisr) + (L — o) Da(meg||me).- (42)

By substituting p = m, since Dq(p|mi11) > 0 and L — % < 0, this shows Fy(m1) < Fi(my), i.e., Fy is
decreasing at each iteration. This completes the proof. O

A fundamental property with the dual space D induced by the first variation J. holds in our OMD setting.
The existence of such learning sequence—particularly in Sinkhorn—is well discussed by Nutz (2021 and |Aubin-
Frankowski et all (2022). Focusing on the dual geometry, we explicitly call this relationship with arbitrary
step size 7, as “dual iteration.”

Lemma 12 (Dual iteration). Suppose that first variations dc Fy(m) and 6.82(m;) exists fort > 0. Then, online
mirror descent updates Eq. is equivalent to 6.Q(meq1) — 6cQme) = = Fy(mt), for all mp € C,t € N.

Proof of Lemma[I4 The optimization is equivalent to having the property for subsequent m;11:

d+Ft(’/Tt; mw— 7Tt) + %DQ(’H’Hﬂ't) 2 d+Ft(7Tt;7Tt+1— ’R't) + %DQ(Wt+1|7Tt)
— <5th(7Tt) - %(SCQ(Wt)7 ™ — 7Tt+1> + L (Q(ﬂ') - Q(T('t+1)) Z O, Vr e C

e

(43)

Setting the free parameter 7 = w41 + h(m — 7ry1) and taking the limit h — 07T yields the result. O

Remark 3. With applications of Lemma [[2]and Lemma[6] we can achieve a concise form of iteration in the
dual using our temporal cost as:

0eQU(me) — 8 QU meg1) = e (66(—H)(7rt) — (5C(—H>(7T§))

= 0 (6 Q) — 6e(7)), (44)

where H denotes the entropy, i.e., the minus KL divergence with the Lebesgue measure.

Leveraging the aforementioned lemmas, we have systematically introduced and rigorously formalized the
essential concepts necessary to progress with our analysis within the OMD framework. Finally, we are ready
to describe a suitable step size scheduling by the following arguments.

Lemma 13 (Step size I). Suppose that F; = KL(x||77) and Q = KL(7|le”p @ v). If ® limy_oon = 0T
and @ Zfil m =400 ®@n< %, the OMD algorithm converges to a certain w3
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Proof of Lemma[13 From Lemma we have
N (Fe(meg1) — Fi(m)) < —Da(me||[meg1) + (L — 1) Do (mipa|[me). (45)

Taking lim;_,, 17; = 0 ensures improvements; this means for any £ > 0 there exists some 0 < § < 1 such
that Do (m¢||mes1) + Do (meq1]|m) < € whenever 1, < §. Since convexity and the lower semicontinuity of the
Bregman divergence Dgq induced by KL, we conclude that OMD to a certain point upon the assumed step
size scheduling. O

Lemma 14 (Step size II). Assume that inf cc Ei[Dq(me, 70)] > 0 for all t € [1,00). Suppose that ny — 0
and limp_, o E[ 1 ZtT:1 Dq(mi||7)] = 0 if and only if > oy e = +00.

Proof of Lemma[Ij We firstly argue that due to dual iteration , any improvements on KL in Lemma
are also indicates corresponding improvements in the Bregman divergence, i.e. Dq(miq1]|7f) < Dao(me||7y),
and if n; — 0, then the process {m;}$2; is convergent. By the dominated convergence theorem (Royden &
Fitzpatrick, [1988) with the ergodicity assumtion of nonstationary solutions {mg}:2; (Cornfeld et all 2012}
Appendix , there exists a constant € that satisfies

Ert1[Da(mitallmir)] = Ergga[Da(ma||7?)] + € (46)

for t > n for some n as 7, — 0, where an expectation subscripted by the range of “1:¢” indicates a notation
of time-averaging from the time step 1 to ¢t. Consequently, we achieve the following inequality

Ev:i+1[Da(mipr||7i1)]
> Ertp1[Da(megr||mg)] + € Eq.
>Ei [DQ(mHWf) —{(6cQU(mi41) — 6 Q) TE — 7rt>] +E1.411 [DQ(T(-t+1 ||7Tt)] +e Lemma
= By [Do(m¢||7f) — mDa(me||7f) + mDa(nf||me) | + Eregr [Da(migal|me) | + € Eq.
= (1= ne)Er [Da(me|7f)] + Evprr [Da(meqa|me) + neDa(nf||m:)] + e
> (1= 00)Ev [Do(ml|n?)] + ¢’ (47)
for some t and 0 < € < &, where Eq. , Lemma |8 and Eq. are used in order.
Necessity. For big enough t > n where n € N, we can achieve the inequality in Eq. as

Erp41[Do(mesllmgin)] = (1 —ne)Ere [Do(me||7f)], (48)

Since we have assumed that 7, converges to 0, consider a step size sequence 0 < 7; < 52 for k > 0. Denote

2+k
a constant a = # log % and apply the elementary inequality (Lei & Zhoul, [2020)

1—2 >exp(—az), suchthat 0<a < —-.

From Eq. , we achieve

Ei.t41 [DQ(Ft+1||7T§+1)] > eXp(—Cmt)Elzt [DQ(WtHW?)]-
for all t > n. Iteratively applying this inequality iterative for t =n,n+1,--- ,T — 1 gives

Ev.r[Da(me|[77)] = Evn[Da(mnm3)] ]:[ exp(—an)
t=n (49)

_ exp{—ag nt}Em[Danwz)].

From the assumption ©* # m,, Dq(m,||75) > 0 by the property of divergence. Therefore, by Eq. (49), the
convergence lim;_, o E1.4[Dg(m||7f)] = 0 implies the series Y =, n; diverges to +oco so that exp(—a ZtT:_nl M)
converges to 0.
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Sufficiency. Consider a static Schrodinger bridge problem with couplings 7 € II(u, v), which is in a constraint
set
€ = {nl(1,v) € Poy(R?) N Purc(RY), (9, %) € L} (1) x L' (v), and o, € C2(R) N Lip(K)}.

For p,p € C, we can see
Da(pllp) = Q(p) — Qp) — (0cQ(p),p — p) 2 0 = —(0:p), p — p) > Qp) — Ap).
By adding (6.Q(p), p — p), we achieve a property:
(8:9(p) — 8.3), p — 7) > Da(pllp)- (50)

Then, suppose that we have the asymptotic dual mean 7. Using the right Bregman difference Lemma |§|,
the one-step progress from the perspective of dual mean writes as

Dq(ma||mir1) — Da(ma||m) = <5CQ(7rt) — 0 Tpy1), o — 7rt> + Do (i ||7mes1)-
= 77t<5cQ(7Tt) — 6 Umy), T — 7Tt> + Da(m||lmer1)
= nt<§cQ(7rt) —6.Q(m3), 7B — 7Tt> + nt<5CQ(7T§) — 60U, mE — 7Tt> + Dq(me||mes)
< —neD(mp||me) + ne(0cQmp) — 6 Q(nf), 7 — 7e) + Da(mel|mer1)

where the inequality is from Eq. . By applying the definition of 73 and ergodicity of {mf}2,, we can
bound the expectation by finding some ¢ > n such that

Ei441 [DQ(W%HM-H)] < Epy [(1 - nt)DQ(WgHWt)] +E1:441 [DQ(MHM-H)]

< ]El:t[(]- - ﬂt)DQ(WagHWt)] + %ELHJ [HV(&Q(M) - 5cQ(7Tt+1))H2Lz(m)]

2
< Ev[(1 = ne) D3 ||m)] + ;%El:t IV (8 2(me) — 6 QTN | 2 ()]
< Era[(1 — ne) Do (w3 ||me)] + 207w ™K, (51)

where IC is the Lipschitz constant for each log Schrédinger potential in C. For the first inequality, we use
Assumption [2] and we use the log Sobolev inequality LSI(w) from Assumption [1|in the second inequality.
Let {A;}52,, denote a sequence of A; = Eq.+[Dq(ma||7t)]. As a result, we have

Appr < (L—m) Ay + 2n7, ¥Vt >n, (52)

where 2 == 2w 1K. For a constant h > 0, we argue that A;, < h for some t; > n/. Suppose that this
statement is not true; we find some t > t; such that A; > h, Vi > t5. Since lim;_ o, ¢ = 0, there are some
t >tz >ty that n; < %. However, Eq. tells us that for ¢ > t3, for t > t3,

T
h
A1 < (1 —m) Ay +z77t2 < Ay — 1 Z e — —oo  (as t — 00).
k=ts

This results to a contradiction, which verifies A; < h for ¢ > n’. Since lim;_, o, 7 = 0, we can find some 7;
which makes A; monotonically decreasing. Therefore, we conclude the nonnegative sequence {A4;}$2; finds
convergence by iteratively applying the upper bound in Eq. . O

We now prove Theorem [1| under consideration of the particular case of n; = t% Then, Eq. becomes

2 4z
A1 <|(1—— A+ ———, Vt>n.
”1—< t+1) oy e

It follows that recursive relation writes as

tt+ 1A < (t—1)tAy + 4z, Vt>n.
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Iterative applying the relation, we achieve the following inequality:
(T-1)TAr < (n—1)nA,+4z(T —n), VT >n.
Therefore, we finally achieve inequality as follows:

o (n = 1)nEqy.n[Da(nd||lm)] 4z
E;.7[D < —, YT >n. 53
Since we assumed 7 = 73, E1.7[Dq(7*||77)] = O(1/T). Combining this with Lemmas [13|and [14] the proof
of Theorem [I]is complete.

A.3 Proof of Proposition []

The proof is based on the Doob’s forward convergence theorem.

Theorem 3 (Doob’s forward convergence theorem). Let {X:}ien be a sequence of nonnegative random
variables and let {Fi}+ be a random variable and let {Fi}ien be a filtration with Fy C Fiqq for every t € N.
Assume that E[X¢11]|Ft] < X almost surely for every t € N. Then, the sequence {X;} converges to a
nonnegative random variable X, almost surely.

We follow the derivation of Eq. : there exists n € N which satisfies
Ei[Da(7p||mis1)] < Da(ma||m) + 2nfw K, Vt>n

and since the step size is scheduled as lim; ,, 7; = 0, the condition Ztoi 1 77t2 < 00 enables us to define a
stochastic process { Xy }en:

X = Do(mp||m) + 207K " n?. (54)

i=t
It is straightforward that the defined random variable satisfies E;[X;y1] < X; for ¢ > n. Since X; > 0,
the process is a sub martingale. By Theorem [3] the sequence {X;};cn converges to a nonnegative random
variable X, almost surely. Therefore Dq(m3||7:) converges to 0 almost surely. O

A.4  Proof of Proposition 2]
To achieve a meaningful regret bound for our problem setup, we first demonstrate the following.
Lemma 15. For all w = argmin, {(g,y) + %DQ (y|lz)} with n > 0, the following equation.
Vu.(ng, w — u) < Da(ul|2) — Da(ullw) — Do (wl|z) (55)

Proof of Lemma[I5 By the first order optimality of {(g,y) + Da(y||z)} as a function of w, we have
(§+ L8 Da(wl2),u— w) > 0
— (Gow—u) < L(=8.Da(w]2),w - u) = L(Daullz) - Da(ullw) - Da(w])2)).
where used Lemma [§]in the derivation. This completes the proof. O
Next, we derive the one-step relationship for OMD. The result entails that the regret at each step is related to
a quadratic expression of 7;, which is a key aspect of sublinear total regret. From a technical standpoint, we

can see that the assumption for log Sobolev inequality generally works as a premise for Lipschitz continuity
of gradient, i.e., V{2 in classical MD analyses.

Lemma 16 (Single step regret). Suppose a static Schrodinger bridge problem with the aforementioned con-
straint C. Let Dq be the Bregman divergence wrt Q : P(X) — R+ {+o0}. Then,

2
ne(Fe(me) — Fi(u)) < Da(ullme) — Do (ul|m41) + ;%Hﬁt\\%?(m)» VueC (56)

holds, where §; == 6. Fy(m¢) = i(écﬂ(m) —0cQma1)) in an MD iteration for the dual space for a step size
nt, and w > 0 is drawn from a type of log Sobolev inequality in Assumption [1]
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Proof of Lemma[16 Consider single step regrets by the adversary plays of a linearization for g,:
Fy(me) = Fy(u) < (Ge, m — u).
Therefore, we derive a inequality for (g;, 7, — u) as follows.
(Nege, T — w) = Nede, Teg1 — w) + (MeGe, Te — Teg1)
< Da(ul[mt) — Da(ul|me1) — Da(mia|[me) + (mede, 7 — Tiga)
= Da(ul[mt) = Da(ul[me1) — Da(mea|[me) + (0eSUmep1) — 6(m), T — i)
= Da(ullme) — Do(ullmiq1) + Da(me||mesa).

Since we assumed that §; = < (6.Q(m;) — 5. 7rt 1)) by the dual iteration and that Assumption |1| holds, we
Mt +

can achieve the upperbound D (m¢||mi41) < 2= || 9|3 (my) DY direct calculation. O

We now show our upper bound of total regret by utilizing Lemma
Lemma 17. Assume niy1 < ne. Then, u € C, the following regret bounds for fized u € C hold

T
Dg( U”Tl’t
ZFt(m) — Fy(u) < oA Zmllgtllm(m) (57)

where gy = %(&Q(Wt) = 0c(me11))-

Proof of Lemma[17 Define D? = max;<;<1 Dq(ul|m:). We get

T
Regret(u) = Y (Fi(m) — Fi(u))
t=1
T /q 1 T 7
t oA
< 3 Dot = e Patelri) ) + 32 5 e
t=1 n
1 1 1
= fDn(ullm) — —Daq(ul|mr41) + Z —— — — | Do(ulme41) + Z 1960172 )
m r Nt+1 Mt
Uiz Ui
< Lptep? Z( Ik Z gy = 2+ Z QTR
Ne+1 Tt
Therefore, the proof is complete. O

Following Lemma [I7] and Assumption [T} we can have the inequality

D? D? _
ZFt ) (u) < —+ Z L HQtHLz(m) < — 4 2mw KT,
Nr nr
where D? = maxj<;<r Dq(ul|m;). Setting a constant step size 7, = % yields an upper bound of
2DV/2w=1KT which proves the regret bound of O(v/T). Also, recall that the following lemma.
Lemma 18 (Lemma 3.5 of |Auer et all 2002). Let a sequence ay,as,...,ar be non-negative real numbers.

If a1 > 0, then

(58)

Setting a adaptive scheduling n; = \/% yields 2Dy /2w=1! ZtT:lHQtHQ which has a possibility to be
230 a2

lower than O(v/T) depending on {7¢}}_,. Therefore, we have formally expanded the convergence results of
OMD (Lei & Zhou, [2020; [Orabona & Pal, |2018; [Srebro et al.l [2011]) to SBPs. O
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A.5 Proof of Theorem

Since Dq(-||-) == Dkr(.|r)(-||-) for a reference measure R € C, we can apply Lemma |§| and achieve Eq. (17).
We write the following equivalent convex problems, using the equivalence of first variation for recursively
defined Bregman divergences.
(0cFy(my),m—my) + iDQ(’]T”’]Tt) = (6. Do(m||mf), m — m¢) + %DQ(T(HTI})
= (6cUmy) — 0 Q(mf), ™ — ) + n—ltDQ(ﬂ'Hﬂ't)
= Do(r||7?) — Da(r||m) + - Da(x||m)
1 . 1-
= (o) Patalnd) + (2™ Dot
t

Ui

We refer to Appendix [B] for the stability of Wasserstein gradient flows according to the LaSalle’s invariance
principle. We can now interpret 6.&; as a dynamics that reaches an equilibrium solution

TE

minimize (8. Fy(m;),m — m) + = Do(x||m) < minimize 5,  Do(x||7f) +(1 — ;) Do(x|m),
C e mel ——— ———

empirical estimates proximity

At a glance, the above equation appears analogous to the interpolation search between two points, where
the influence of 77 is controlled by 7;. O

A.6 Proof of Proposition [3]

The proof is closely related to the work of Lambert et al.| (2022)) where the difference lies in we correct the
Wasserstein gradient term ¢y, , for suitable for generally unbalanced weight. Suppose take parameterization
0 € (P2(BW(RY)),WFR), the space of Gaussian mixtures equipped with the Wasserstein-Fisher-Rao metric,
over the measure space of Gaussian particles. Following the arguments from Appendix [B:2] and the studies
for this particular GMM problem (Lu et al.| |2019; |[Lambert et al., |2022|) of the Wasserstein-Fisher-Rao of
the KL functional is derived as

VirKL(pol|0) = (VoudKL(o]0"). & (5KL(PG|P*) -/ 6KL<p||p*>dp)), (59)

where we can consider the WFR, gradient is taken with respect to 6 of its first argument. By Eq. ,
we separately consider Wasserstein gradient in the Bures—Wasserstein space and the space of lighting that
controls the amount of each Gaussian particle.

Given a functional F' : Py(X) — RU{+o0}, the Wasserstein gradient Viy F' NT,P2(X) such that all {p; }rer+
satisfy the continuity eqatuion starting from pg (Jordan et al., [1998; [Villani, [2021)). If the functional is the
KL divergence KL(p|7) we can compute the Bures-Wasserstein gradient for the Gaussian distribution with

respect to (m, ¥) using Eq.

Ve F(m, X) = (V, F(m, %), 2V F(m, X))

= (/ Vo Pm,s log pm’zﬂ/vzpm,zlog 'Om’z),
i i

with some abuse of notation for p. Using the following closed-form identities for the Gaussian distributions

1
Ve, Vimpms(@) =—Vapmn(z) and Vsp,n(z) = §V2pm7g(x).

and the equivalence between the Hessian and Fisher information, we achieve the following form:

VeuF(m,3) = (Ep {vﬂ E, |V* log ﬂ ) .
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Define ry, ; = \/ay ~. Since 7, follows the Fisher-Rao metric in Definition [7], by the Proposition A.1 from [Lu
et all] (2019) and specialization of [Lambert et al.| (2022), we can think of dynamics of K Gaussian particles
{ak 7y Mp7y X | such that

K
: 1 Po 1 Po
Thy = —7% E[log = (Yk,r } - — QZE[IOg = (Ye,r Dm,r,
3 (E[1os Brton)] = 2 D s )
. £0.. : 2 £0.. 2 Lo
mg.r = E|:V IOg p* (ykﬂ'):|) Ek’,T - E|:v log p* (yk,T):| 2k,‘r - Ek‘,’TE|:v lOg p* (yk,'r):|7

Since oy, = /T, by previous definition, it is straightforward that

K

. 1

Az = — (E {log ;j;,: (yk,T)] - Zad}?{log Pe (ye,T)Dak,T-
T =1

p*

For o, > 0. This completes the proof. O

B A Riemannian Perspective on Wasserstein Geometries

B.1 An introduction to Otto calculus and the LaSalle invariance principle

In this appendix, we introduce a basic notion of Wasserstein gradient flows in the space of continuous
probability measures. We focus on describing the particular example, the KL cost, initially studied by JKO
(Jordan et al., [1998) and formally generalized by |Otto| (2001) in the context of Riemannian geometry. For
more details and mathematical rigor, we refer the reader to (Ambrosio et al., [2005b; |Carrillo et al., |2023)). For
X C R?, and functions U : R>o = R; VW : X — R. We first consider an energy function £: Po(X) — R:

o) = [ V@) e + [ V@) dpw) +5 [ (V@) dota). pePa). (60)

internal potential 4  external potential £y interaction energy W

For this function, we refer to the solution of the following PDE:
Opr=V-[pVU +V+Wxp)], t>0 (61)

as the Wasserstein gradient flow of £. Following Otto’s formalization of Riemannian calculus on the contin-
uous probability space equipped with the Wasserstein metric (P2(X), W2), the PDE can be interpreted
close to an ODE of Riemannian gradient flow:

Oepr = —Viu€(p), (62)

where V,, denotes the Wasserstein-2 gradient operator V,, := V-(,o V%). Considering the Otto’s Wasserstein-
2 Riemannian metric g (Otto, 2001} [Lott, [2008), under the absolute continuity, we see that

D e o (%0 [ o :
s =5, (5.5 ) == [ |90 +v 4w aplo) <o (63)

which is closely related to the strict Lyapunov condition. As a result, dynamical systems following the
PDE are guaranteed to reach an equilibrium solution, under the LaSalle invariance principle for probability
measures (Carrillo et al., [2023]).

For a representative example, we identify Eq. for the relative entropy (the KL functional) for a target
density p* € Pao(X) writes

E(p) = KL(plp") =/XU(,0($)) d$+/ V(z) dp(z) - C,

X
u Ev
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where U(s) = slogs, V(z) = —logp*(z), and C = U(p*) + Ey(p*). Recall that 6€(p) = log p/()f), then we
have

V() = ;98 (s) = - VOB ()] = V- [V log 2| (64)
where & denotes the metric tensor in matrix form. We can derive the the FokkerPlanck equation
Opr = =V - (pVlog p*) + Apy,

describing the time evolution of the probability density. Combining the convexity of KL and the LaSalle
invariance principle Wasserstein gradient flows, the PDE reaches a unique stationary solution of fei%
X e v

B.2 Background on Wasserstein-Fisher-Rao and other related geometries

The Wasserstein-Fisher-Rao geometry is also known as Hellinger—Kantorovich in some of papers (Liero et al.)
2016} [2018). In this section, we provide an overview of the geometry tailored to meet our technical needs.
Along the way, we also briefly describe various metrics and geometries related to the Wasserstein space.

The Wasserstein space. Let i, € P(R?) be marginal probability densities with respect to the Lebesgue
measure. We define the squared Wasserstein distance by a problem of couplings (Villani), [2009])

Lz - ylPdn(z,y). (65)

Wier) =t [ 2
R4 xRd

Tell(p,v)
The Wasserstein distance offers a principled metric for quantifying the discrepancy between the probability
distributions of random variables X and Y. Moreover, the Wasserstein space admits a fluid-dynamical
formulation, where optimal transport is represented by space-time velocity fields that satisfy the continuity
equation. The Brenier theorem (Villani, 2021)) states that there exists an optimal mapping function that
pushes forward p to v, i.e. v = V{upu, where ¢ : R? — R? U {+00} is a convex and lower semicontinuous
function. The property is formally referred to as an instance of the Monge-Ampére equation (Villani, 2009)

g(VC(Js)) det (V2C(x)) = f(z) zeRY (66)

after identifying the source and target densities with u(x) = f(x)dx and v(y) = g(y)dy, respectively. In
terms of fluid dynamics, the Brenier map 7' = V( internally yields a constant-speed geodesic {p:}+co,1),
time-dependent density evolving from pg to p1, described by the following differential equation

pr = (V)% po, V(i = (1 —t)id +tV(, (67)

where po = p and p; = v. Assuming the existence of such geodesic, we can also understand finding the
optimality of {p;}+cjo,1] with the Benamou-Brenier formulation (Benamou & Brenier} 2000), which involves
a velocity field v; for minimizing the total L? cost of transportation

1
W3 G0) =mind [ [ Shu@lPana)de | o= or=v. 0=~V (o) . (69)
The equation dictates how the fluid should be transported (which shall be controlled by speed v;) while
satisfying the continuity equation of path measure on the right hand side. In the Otto calculus (Otto,
2001), we can understand the Benamou—Brenier formula as a Riemannian geometry with respect to
the Wo metric. In this geometric interpretation, the tangent space at p € Py(X') are measures of the form
§p = —V - (vp) with a velocity field v € L?(p, R?) and the metric is given by

oz =t { [1ol o] 6= - - @)} (69)

The Benamou—Brenier formula exhibits dynamics in the Wasserstein space of probability densities where the
metric generally governed by dynamical mass transportation costs with the continuity equation, implying
the mass of probability is preserved.
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Fisher—Rao metric. The Fisher-Rao metric is a metric on the space of positive measures P with possibly
different total masses. We are interested in the simple case where such measure are represented with a fininte
number of parameters such as exponential families. We use the following definition throughout the paper.

Definition 7 (Fisher-Rao metric). The Fisher-Rao distance between measures pg, p; € M is given by

. dpo dPl
d2.(po. p1) = f / / —wi(z) dpy(z)dt = 2 \ o — A
FR(pO 101) p,ve.}i}po,pl Rd wt pt Rd d)\ dA

where A is an admissible set for a scalar field on positive measures; A is any reference measure such that p
and p’ are both absolutely continuous with respect to A, with Radon-Nikodym derivatives Ci{;f .

The equivalence between the square Fisher-Rao distance and squared Hellinger distance (Liero et al. 2016;
2018) quantifies the similarity between two probability distributions ranging from 0 to 1. The total varia-
tion bounds the squared form and is well-studied in the information geometry (Amari, 2016|). The partial
differential equations of the form d;p; = ayp; are called reaction equations of a;, which describes dynamics
regarding concentration.

Wasserstein-Fisher-Rao. The Wasserstein-Fisher-Rao geometry, or equivalently, spherical Hellinger—
Kantorovich distance, considers liftings of positive, complete, and separable measures while preserving the
total mass. This can be expresses as combining the Fisher-Rao and Wasserstein geometries characterized
by PDE such as (Liero et al., [2016):

w
Orpr +V + (vipr) = ?tpt (70)

One problem, is that the PDE In order to stay the dynamics on the space of probability measures, which
is our interest, we adopt the definition from (Lu et al.l [2019; Lambert et al., [2022)) the equation becomes

Owpr + V- (prvy) = ;(ﬁt —/Rd Bt dpt)ﬂt’ (71)

which satisfies mass conservation. For the geometry, the norm on tangent space is given by

Gl = [{ (o= [ o) + olP (72)

and we define the WFR distance as

dagr(po, p1) = lnf {/ [[(Be, )7, dt ’ {pt; B, vi tiefo,1) satisfies " (73)

Lu et al.| (2019)) demonstrated that Wasserstein-Fisher-Rao gradient dynamics over the Bures—Wasserstein
space can be analytically derived with closed form expressions. In this work, we were able to design a
computational method for OMD iterates in the WFR geometry. Using Proposition [3] this geometry allowed
the VMSB algorithm to perform tractable gradient computation within Wasserstein space.

B.3 The Bures—Wasserstein space and a mixture of Gaussians

The space of Gaussian distribution in the Wasserstein space is known as Bures—Wasserstein space, denoted
as BW(R?). Given 6,6, € BW(R?), we can identify the space with the manifold R? x S¢,, where 8¢, denotes
the space of symmetric positive definite matrices. For 8y = (mg, 3o) and 6, = (mq, %) an affine map from
Do, to pg, is given as a closed-form expression:

V() = my + 55 V2 (2525, S 2 (1 - ).

Note that the constant-speed geodesic also lies in BW(R?), as pushforward of a Gaussian with an affine map
is also a Gaussian. Therefore, it can be said that BW(R?) is a geodesically convex subset of P5(R?). For the
Brenier map, a constant-speed geodesic in BW(R?), for the tangent vector to the geodesic (r, S)

Do, = epreo(t - (r, S)) = ./\/(mo +tr, (8S 4 14) X0 (tS + Id))7 (74)
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and the dynamics at its current position at time ¢ = 0 is represented as

mo =T, (75)
Yo =S¥ + %oS. (76)

Generalizing this geodesic dynamics, the Bures-Wasserstein gradient Vgy f of a function f : R? x S¢, — R
for a tangent vector (r,S) at time 0 |Altschuler et al. (2021)

<VBwf(m07 o), (7, S)>Bw = O f(me, X4)

t=0

Identifying each component, we achieve the following result of Wasserstein gradient flow in Bures—Wasserstein
space as
Veuf = (Vi f,2Vsf), (77)

where V,, and Vy denote Euclidean gradient. We refer readers to Appendix A of |Altschuler et al.| (2021)
and Appendix B of [Lambert et al.| (2022)) for further useful geometric properties of Wasserstein spaces and
dedicated discussions for the Bures—Wasserstein space.

C Background on the Dynamic Schrodinger Bridge Problem

The equivalence between static and dynamic SBPs (Pavon & Wakolbinger| |1991; [Léonard, 2012)) has been
studied, allowing us to consider the both problems interchangeably. This appendix introduces a general
control dynamic formulation for describing SB and SB-FBSDE theory (Gigli & Tamaninil [2020; |Chen et al.|
2022). These formulations establish fundamental links to optimal control theory and diffusion models.

For variable drift and diffusion coefficient, a stochastic process, and its time reversal respectively follow the
forward and backward Kolmogorov (or FokkerPlanck) equations (Fal 2011} |Gigli & Tamaninil [2020):

0
—(% +V. [(ft + Vgat)pt] = % V2. (gtglpt% (78a)
0
LV [+ Vo] = 5V (0l ), (78b)

where f; and g; are time-varying base drift and diffusion coefficients which together determine a reference
measure Rﬂ V- denotes divergence; V2 denotes squared divergence. By subtracting Eq. (78b]) from Eq. (78al),
the continuity equation

dp
el . =0 79
Y (op) (79)
is achieved by v = f + £[V¢ — V¢]. Adding and scaling of Eq. , also derives another identity
(Ve +V)p=V-(99"p), (80)
where we can derive an explicit form of the score function
Vo + VY =gg'Viegp+ V-gg' . (81)
heat fl

The rightmost term of is a heat flux, indicating the amount of diffusion per unit time.

The time-symmetry relation can be considered as a multivariate derivation of the the stochastic mechanics.
Generalizing the Nelson’s notation (Nelson |2001]), let us define the SB drifts and current drifts for continuous-
time path measures P and @ receptively satisfying Eq. with the shared diffusion coefficient:

for=1Tfrt+Vops, [py=—fpi+Vipe, [b,="Ffor+Veqr [fo,=—fort+Vigs (82)

R vQ:@- (83)

5In of §3} base drift is zero and diffusion is v/e.
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Then, we consider the Girsanov theorem (Oksendal, |2003) for the drifts. The theorem formulate Radon-
Nikodym derivatives between path measures of stochastic processes by the fact that potential gradients
reconstruct the score function Vi, + Vi = eV log p;.

Lemma 19 (Girsanov theorem; Theorem 8.6.3 of |Oksendall [2003). For adapted processes with a given time
interval [0,T], let Bs be an Ito process solving SDE

dB, = —a(w, s) + dB. (84)

forwe X, 0<s<T and EO = 0, where « satisfies the Novikovs condition. Then, §S is a Brownian motion
with respect to the path measure Q, satisfying the Radon-Nikodym derivative

g = [ (e s)dB, - / ot SR (85)

Next, we present the disintegration theorem in the context of probability measures (Léonard, 2014} Vargas
et_all, |2021)), which extends the product rule to measures that do not admit the traditional product rule.
Similar to the product rule, these theorems are essential for decomposing and manipulating path measures
for dynamic SBPs, eventually connecting various formulation of Schrédinger bridge problems.

Lemma 20 (Disintegration for continuous probability measures). For a probability space (Z,F,P) where
Z is a product space: Z =X xY and ® X,Y € R? and ¢; : Z — Z; is a measurable function known as the
canonical projection operator (i.e., ¢1(x,-) = x and ¢7 *(x) = {(z,y)|o1(x,y) = x}), There exists a measure

P, (-|z), such that
//XW y)dP(y //XX (z,y)dPy o (ylo)dP (67 (2)) (36)

where Py(-) = P(¢7*(+)) is a probability measure, referred to as a push-forward measure, and corresponds to
the marginal distribution.

The theorem suggests that one way to achieve KL projection between path measures is by matching drifts
with the time reversal drifts of (y*,v~). Under the Girsanov theorem, we observe that

Tl + + |2
KL(PIQ) = KL(1Qu + Br | [ 5152, ~ Ji I
(57)

T 1 - o
~ KL + Bp | [ 5170~ Sl

Let us consider a reference measure Q = R with based drift and diffusion i.e. f+ f- Knowing the
boundary conditions Py = Rg = p and Ry = Qr = v, Eq. (| can be reduce to the followmg problems

KL(P|R) = int / / 25t (z) dadt, (88a)

— inf / / L or (@)1207 () dadt, (88b)
(v=,p7) JoJRd 2

and Eqgs. @ and in the main text represent a simplified case when R = W¢. Furthermore, by combining
Eq. , we get a symmetrized version of relative entropy (KL functional)

T
KL(P||Q) = KL(P0||Q0)+QKL(PT||QT)+EP|:/ i”f;—féHQ"'inﬁ—féHth (89)
0

Finally, using Eq. we get the constrained problem:

inf // (|Utx )NZ + 7||Vlogp(t :c)||ggT+ ||v ggT||2> 5, 1) dt d,
Rd

(p,9)

such that % [(f+0)p] =0, p(0,)=pu, p(T,)=v.
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To solve this problem, we convert the problem to the Lagrangian function:
L 2~ 1 ~ 2 - 1 T 2~
L(p,v) = Rd§llv(t,w)ll p(t,z) + <[ Viog p(t, 2)llggrplt, 2) + LIV - 997 (¢, 2)[°A(t, 2)
o JRd

ap .
+ A(t, x) (6',: + V- ((f+ U)p))dx dt
where A is C12-Lagrangian multiplier. After integration by part, assuming that limits for # — oo are zero,
and observing that the boundary values are constant over II(u, ), we resort to the following problem:

Tr 1 1 A\
inf — |5 24 Z|IVlogp 2 4+ ||V-gq" 2. (22w 5) ) |5 .
(ﬁ’ﬁ;gva/w/o {QIIU(W)II +8||V ng(t,x)l\ggﬁgllv g9’ (t, )] +< 5 VA (f+v))}p(tvw)dtdﬂf
(90)

Pointwise minimization with respect to @ for each fixed flow of probability densities g gives v*(z,t) = VA(z, ).
Plugging this form of the optimal control into Eq. , we get the functional of p € P:

T
o\ 1 1 1
7() = / / O (F o) At SIVAR + LV 10 3t 2) 12, + LIV - 96T (8 2P| (8, 2)dtda
e Jo |0t 2 8 8

Utilizing the existence and uniqueness of SDE solutions (@ksendal, [2003), the optimality of the problem is
uniquely identified by VA being the mean current of SB-FBSDE which is introduced in (Chen et al., [2022; |Liu
et _all, [2022). Therefore, both static and dynamic Schrédinger bridge problems solve identical optimization
problem of KL, minimization, with different appearence by the problem-specific origin of objectives, entropies,
and geometries.
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Table 5: Hyperparameters.

| 2D EOT MSCI MNIST (Pixel) MNIST (Latent) FFHQ
Dimension d 2 {2,16,64,128} {50,100, 1000} 784 128 512
Modality K | {8,20,50} [5,100] 50 {256, 1024, 4096} {256, 1024} 10
Volatility 0.1 {0.1,1,10} 0.1 104 10-3 {0.1,0.5,1.0,10.0}
Total steps (7) | 20,000 30,000 10,000 100,000 30,000 20,000
OMD steps () 400 600 200 1000 375 400

D Experimental Details

D.1 Rationales of the GMM parameterization for VMSB

Our parameterization choice follows LightSB (Korotin et al., 2024]) because of the following two key reasons.
First, GMMs ensure that the model space satisfies certain measure concentration, which is suitable for
analyzing theoretical properties of SB models (Conforti et all [2023). Firstly, we analyzed the regret under
the log Sobolev inequality in Proposition 2} Enforcing the LightSB parameterization will automatically
satisfy Assumption[I] Secondly, VMSB requires tractable gradient computation of Wasserstein gradient flow
in § As shown in Proposition [3] we can perform VMSB using the variational inference in the WFR
geometry of the GMM parameterization.

D.2 Hyperparameters.

The hyperparameters are displayed in Table[5] For step size scheduling, we followed the theoretical result in
Theorem and Proposition and chose 71 = 1 and ny € {0.05,0.1} with harmonic sequences, as illustrated
in Fig. [5| For high dimensional tasks in MSCI (1000d), MNIST-EMNIST (784d), and latent FFHQ Image-
to-Image transfer tasks (512d), the initial warm up steps for 10% of the total learning helped starting a
training sequence from a reasonable starting point as this set 7, = 1 as verified in Fig. |§| (c).

X~y y~vV £ =0.05 £=10

o Fitted distribution

o -24 O Trajectory start (x ~ po)
e Input distribution u @ Trajectory end (fitted)

o Target distribution v —— trajof Ty

32 oA 0 1 2 32 A ] 1 2 A

Figure 10: SB in 2D synthetic datasets. SB processes Ty with different volatility €.

D.3 2D Synthetic datasets and the online learning setup

Fig. demonstrates that our method achieved the SB model for the various volatility . For various
configurations, most of baseline SB algorithms are capable of learning in the 2D space . In order to align
our theoretical arguments for online learning, we selectively offered with a rotating filter that only 12.5%
of the samples to the SB solvers based on the angles measured from the origin. For instance, we provided
data for angle of [0,7/4] for first ¢t € [0,25) steps, and so on. This partial observability is periodically
rotated through the data stream, thereby testing the algorithms ability to learn robustly under sparse and
shifting information. Since this requires 200 batches for the full rotation of the filter, the problem became
substantially more challenging, and LightSB and LightSB-M algorithms oftentimes failed on this online
learning setting.
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D.4 Entropic optimal transport benchmark

Our hyperparameter for the EOT benchmarks choices mostly follow the official repositories of the LightSBﬁ
and LightSB—Mﬂ Since it is known that initial distribution p is the standard Gaussian distribution (Gushchin
et all, |2024b)), we only trained vy using the variational MD algorithm. Due to the huge number of configura-
tions, some hyperparameter settings were not clearly reported. Thus, we conducted our own examination on
these cases; we replicated better performance than the reported numbers by carefully dealing each benchmark
configuration.

D.5 SB learning with adversarial networks

Suppose a discriminator network, denoted as D, is equipped with useful architectural properties for discrim-
inating images. The discriminator outputs a binary classification regarding authenticity through sigmoidal

outputs, i.e., D(z) € [0,1] Vo € R2*28X1 For image samples x = {z',..., 2V} ~ u, we trained the
discriminator D with the logistic regression:
1 X | M
maxlijmize N nz::l log D(y™) + B mzz:l log(1 — D(g3')), (91)

where gg* in the right-hand side denotes a sample from an SB model parameterized by ¢, generated using
an input ™. From our experiment setting, we use the SB distribution ps which is generated by 7y from
samples of the marginal p. This makes the objective of adversarial learning of training the law of SB process
at time ¢t = 1. For a completely separable metric space, it is well known that the discriminator converges at

D(x) = %ﬁl(z) (Goodfellow et al.; 12014). Table 6: Model hyperparameters for D.
In the adversarial learning technique, retaining a fully differen- Layer Type Shape

tiable computation path from the input pixels to the discriminator Input Layer (-1, 28, 28, 1)
outputs is essential. Therefore, we implemented a differentiable Conv Layer 1 | (-1, 14, 14, 64)
inference function using the categorical reparameterization trick Conv Layer 2 | (-1, 7,7, 128)
with Gumbel-softmax (Jang et al., 2016)), as well as the Gaussian Batch Norm | (-1, 7,7, 128)
reparameterization trick. These reparameterization tricks enabled Flatten (-1, 6272)
learning with samples generated through LightSB-adv-K, directly Dense (-1, 1024)

by maximizing Dense (-1, 1)

M
J(¢) = % > log D(yy') —log(1 — D(yy")),

where the term essentially represents the logit function logit(D(y)) = log %. When D approaches the

equilibrium, we can approximate the following KL learning

~ v(y

@)= [108 20, )y = KLipoll),
Pe(y)

where the KL functional directly corresponds to the divergence minimization of the SB problems @ and ,

under the disintegration theorem of Schréodinger bridge (Léonard) [2014)).

In the MNIST-EMNIST image transfer tasks, we set one of the baseline as the aforementioned adversarial
learning as the baseline for training the SB model for the pixel space. Among our attempts, while the
LightSB-adv method successfully generated learning signals to train GMM-based models, the losses proposed
by LightSB (Korotin et al.,|2024) and LightSB-M (Gushchin et al.| 2024al) failed to generate relevant images
with high fidelity. For the discriminator, we used the DCGAN (Radford} 2015) architecture shown in Table@,
and this can be replaced with more complex architecture for more realistic images with high fidelity. We
fixed the covariance after warm-ups in 10,000 steps, and we used the entropy coefficient ¢ = 10~* based on
our hyperparameter search.

Shttps://github.com/ngushchin/LightSB
“https://github.com/SKholkin/LightSB-Matching

42


https://github.com/ngushchin/LightSB
https://github.com/SKholkin/LightSB-Matching

Published in Transactions on Machine Learning Research (01/2026)

Table 7: Training time for the 100-dimension single-cell data problem.

Sinkhorn (IPF) | LightSB | VMSB
8m (GPU) | 66s (CPU) | 32s (GPU) / 22m (CPU)

Table 8: Generation time for the 784-dimension MNIST pixel data.

| K=64 K=256 K=1024 K =4096 | NN (SDE)

GPU 721 ps 726us 739us 740us 1.372s
CPU | 60.140ms 133.333ms  428.433ms 1.527s —

D.6 Latent diffusion experiments

For the latent space, we pretrained ALAE (Pidhorskyi et al., 2020) model using the both MNIST and
EMNIST (first ten letters) datasets. The ALAE is a high-fidelity autoencoder internally use an adversarial
learning to generate high-fidelity images. For the encoder network, as well as decoder network, we mostly
adopt the DCGAN architecture. Therefore, the encoder is mostly identical to Table [f] except the point
the final layer is 128 dimension instead of 1, and the decoder is a convolutional neural network with four
convolutional layers.

Following the latent SB setting (Korotin et al., |2024)), we assessed our method by utilizing the ALAE model
(Pidhorskyi et al.l 2020]) for generating 1024 x 1024 images of the FFHQ dataset (Karras et al., 2019). The
base generative model has a latent embedding layer which represent 512-dimensional embedding space. The
goal is to transport a point latent space to another, performing unpaired image-to-image translation tasks
for four distinct cases: Adult— Child, Child— Adult, Female — Male, and Male — Female. We conducted a
quantitative analysis using the ED on the predefined ALAE embedding as a metric for evaluation.

E Discussion on Implementation of VMSB

Limitations. GMDM-based SB models, due to the lack of deep structural processing, tend to focus on
instance-level associations of images in EOT couplings rather than the subinstance- or feature-level associ-
ations that are intrinsic to deep generative models. As a result, while VMSB produces statistically valid
representations of optimal transportation within the given architectural constraints, these outcomes may
be perceived as somewhat “synthetic.” Nevertheless, GMM-based models still hold an irreplaceable role in
numerous problems such as latent diffusion and variational methods, due to their simplicity and distinctive
properties (Korotin et al.l 2024). As we successfully demonstrated in two distinct ways of interacting with
neural networks for solving unpaired image transfer, we hope our theoretical and empirical findings help
novel neural architecture studies.

Computation. For fast computation, we utilized the JAX automatic differentiation library (Bradbury
et all, 12018) for computing gradients and Hessians in Proposition For each input, the computational
of VMSB requires quadratic time for computing the Wasserstein gradient flow (asymptotically O(K?n,))
and the memory footprint for estimating with internal Gaussian particles is linear (asymptotically O(Kn,)).
There are inherent trade-offs between accuracy and computational efficiency when choosing between LightSB
and VMSB; nevertheless, VMSB remains significantly more manageable and computationally tractable com-
pared to deep learning methods for moderate settings. For instance, we have presented performance regarding
efficiency and scalability up to 1,000 dimensions in the experiments. Driven by parallel nature of Gaussian
particles, we observed that the computation of Proposition [3] favors vectorized instructions, and the ex-
pected speed enhancement from using GPUs is much more evident in neural network cases. In Table [7] we
report the wall-clock time for a 100-dimensional single-cell data problem |Vargas et al.| (2021)); [Korotin et al.
(2024)), where the performance is reported in Table 3| Additionally, training time in the MNIST-EMNIST
translation is reported in Table [11] in the ablation study. This property also holds for generation, allowing
practitioners to deploy the model much faster on GPUs. In Table [§] we also report that generating 100

43



Published in Transactions on Machine Learning Research (01/2026)

MNIST samples from 4096 Gaussian particles, equipped with competitive performance, can be done 1,854
times faster under the same hardware. Since VMSB a simulation-free, the GMM generation process does
not suffer from discretization errors of SDE.

Reproducibility statement. Comprehensive justification and theoretical background are presented in
Appendices [A] and Since the primary contributions of this paper pertain to the learning methodology,
we ensured that all architectures and hyperparameters remained consistent across the LightSB variants.
All datasets utilized in this study are available for download alongside the training scripts. Please refer to
Appendix [D] for more information on the experimental setups.

Table 9: EOT Benchmark scores of BW3-uvp | (%).

=01 -1 c=10
T .
ype Solver q-2 a=16 d=61 d=128 d=2 d=16 d=64 4= 128 ) a=16 d=64 d- 138
Classical solvers (best)’ 0.016 0.05 0.25 0.22 0.005 0.09 0.56 0.12 0.01 0.02 0.15

Bridge-M DSBM (Shi et al.)* 0.03 0.18 0.7 2.26 0.04 0.09 19 7.3 0.26 102 3563 15000
Bridge-M SF2M-Sink (Tong et al.j! 0.04 0.18 0.39 1.1 0.07 0.3 4.5 17.7 0.17 4.7 316
rev. KL LightSB (Korotin et al.) 0.004 £ 0.004 0.009 £ 0.004 0.023 £ 0.003 0.036 £ 0.003 0.004 £ 0.005 0.009 £ 0.003 0.016 £ 0.002 0.035 = 0.003 0.009 = 0.004 0.013 £ 0.007 0.034 £ 0.004 0.066 £ 0.008
Bridge-M  LightSB-M {Gushchin et al.) ~ 0.005 + 0.003 0.012 + 0.004 0.034 =+ 0.003 0.063 = 0.002 0.005 =+ 0.001 0.027 + 0.007 0.057 £ 0.010 0.108 £ 0.004 0.004 £ 0.002 0.017 4 0.007 0.133 £ 0.010 0.409 + 0.042

EMA LightSB-EMA 0.004 £ 0.002 0.014 £ 0.003 0.021 £ 0.003 0.044 £ 0.001 0.004 £ 0.003 0.009 £ 0.004 0.013 £ 0.001 0.032 = 0.004 0.004 £ 0.001 0.008 £ 0.003 0.023 £ 0.013 0.010 £ 0.002
Var-MD VMSB (ours) 0.003 £0.001 0.007 £0.003 0.018£0.002 0.039+0.001 0.002+0.002 0.004+0.001 0.009+0.001 0.023+0.003 0.005=+0.007 0.006+0.004 0.011+0.010 0.011+0.004
Var-MD VMSB-M (ours) 0.002 +0.001 0.010+0.067 0.031+0.004 0.056 +0.005 0.003-+0.004 0.005+0.002 0.032+0.006 0.077+0.018 0.003+0.003 0.011+0.004 0.117+0.012 0.429 +0.748

. 2 :
Table 10: EOT scores of cBW5-UvP | (%), the fully extended version of Table [2
=01 e=1 e=10
T,
pe Solver d=2 4=16 d=61 d=128 i=2 d=16 d=61 d=128 d=2 4=16 d=61 d=128
Classical solvers (best)’ 1.94 13.67 11.74 11.4 1.04 9.08 18.05 15.23 1.40 1.27 2.36

Bridge-M DSBM (Shi et al.)* 5.2 10.8 37.3 35 0.3 11 9.7 31 3.7 105 3557 15000
Bridge-M SF2M-Sink (Tong et al.j? 0.54 3.7 9.5 10.9 0.2 1.1 9 23 0.31 4.9 319
rev. KL LightSB (Korotin et al.) 0.007 + 0.005 0.040 + 0.023 0.100 £ 0.013 0.140 £ 0.003 0.014 -+ 0.003 0.026 + 0.002 0.060 + 0.004 0.140 + 0.003 0.019 4 0.005 0.027 4 0.005 0.052 + 0.002 0.092 + 0.001
Bridge-M  LightSB-M {Gushchin et al.) ~ 0.017 +0.004 0.088 £0.014 0.204 £ 0.036 0.346 £ 0.036 0.020 £ 0.007 0.069 £ 0.016 0.134 £0.014 0.294 £ 0.017 0.014 £ 0.001 0.029 + 0.004 0.207 £ 0.005 0.747 £ 0.028

EMA LightSB-EMA 0.005 + 0.002 0.040 + 0.014 0.078 £ 0.007 0.149 -+ 0.006 0.012 + 0.002 0.022 + 0.003 0.051 + 0.001 0.127 £ 0.002 0.017 4 0.003 0.021 4 0.003 0.025 + 0.002 0.042 -+ 0.002
Var-MD 'VMSB (ours) 0.004 +£0.001 0.012:+0.002 0.038+0.002 0.101+0.002 0.010+0.001 0.018+0.001 0.044-+0.001 0.114:+0.001 0.013+£0.001 0.019+0.001 0.021+0.008 0.040 -+ 0.001
Var-MD VMSB-M (ours) 0.015+0.016 0.067 £0.036 0.108£0.020 0.253+0.107 0.010+0.001 0.019+0.001 0.094 +0.010 0.222+0.033 0.013+0.001 0.029 +£0.003 0.193 £0.015 0.748 £ 0.036

F Additional Experimental Results

F.1 Additional results on the EOT benchmark

We present the full results of EOT benchmark experiments. Tables [9] and [I0] show comprehensive statistics
on the EOT benchmark with more SB solvers. As mentioned in § the VMSB and VMSB-M solvers
consistently brought better performance with low standard deviations of scores for cBW23-uvP and BW3-
UVP measures. We note that the experiment was conducted in a highly controlled setting with identical
model configurations; with all other aspects controlled and outcomes differing only by learning methods, the
consistent performance gains of our work were a well-anticipated result from our theoretical analysis.

F.2 Additional image generation results

In the unpaired EMNIST-to-MNIST translation task for the raw 784 pixel,

we measured FID scores for various K for the SB parameterization. We
considered K € {64,256,1024,4096} with ¢ = 10~ for our VMSB algo- -

rithm. Our observations, both qualitative and quantitative, indicate that

higher modalities yield higher-quality samples. In every case of K, VMSB-adv a

outperformed its counterpart. For instance, Fig.[L1|demonstrates that VMSB =

generates more diverse samples with high fidelity. Notably, we achieved the

competitive FID score of 15.471 using a standard neural network discrimina- oyl |
tor with relatively low MSD similarity scores. As the latent VMSB model 0T

for 128-dimensional embeddings also achieved the considerably low FID score
of 9.558 (Table , we concluded that VMSB showed promising quality im-
provements for the both case, and this supports the generality of our theory.

Number of Gaussian modalities K’

Figure 11: FID vs. modality.
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Figure 12: Generation results of unpaired image-to-image translation in the raw pixel space. We considered
image data from MNIST and EMNIST (containing the first ten letters), sized as 28x28 pixels. For comparison,
we trained GMM-based models with adversarial learning using a simple logistic discriminator (Table @ This
was used as both a benchmark and a tractable target SB model (LightSB-adv-K). VMSB in the raw pixel
domain demonstrate qualitative improvements in terms of diversity and clarity of image samples.

Adult — Child VMSB Male — Female
- - e

Figure 13: Image-to-Image translation on a latent space for the VMSB and VMSB-M algorithms.

Fig. demonstrates that VMSB generated more diverse samples with high fidelity. Note that the pro-
posed method suffers less from mode collapse than LightSB method (especially on the transfer MNIST-
to-EMNIST), with the same Gaussian mixture setting. This result is especially a good point where the
difference only lies in the learning methodology, which aligns with our theory. Tables [11] and [12] effectively
show the statistics and FID scores on both the train and the test datasets. The quantitative results highlight
that the VMSB solver is more performant with less overfitting than its counterpart. Consequently, our claim
regarding the stability of SB solution acquisition is verified by additional experiments involving pixel spaces.

We present Embedding-ED scores (Jayasumana et al.l 2024]) in Table and some qualitative generation
results which is visualized in Fig. [0] For quantitative results, we calculated statistics from ED scores on
embeddings of the ALAE model (Pidhorskyi et al., [2020), for the four different unpaired image-to-image
translation tasks. The results show that VMSB is capable of translating an arbitrary representation, which

Table 11: MNIST transfer statistics. Table 12: FID scores and differences for generated MNIST.
FID Time Parameters FID (Train) FID (Test) Diff. (test — train).

LightSB-256  61.257  30m 0.4M ; )

LightSB-1024  26.487  53m 1.6M LightSB-adv-256 60.746 61.604 0.858

LightSB-4096 20.017  135m 6.4M LightSB-adv-1024 25.934 26.569 0.635
LightSB-adv-4096 19.960 20.196 0.237

VMSB-256  52.634  76m 0.4M

VMSB-1024  24.022  203m 1.6M VMSB-adv-256 51.684 52.283 0.599

VMSB-4096 15.471 44h 6.4M VMSB-adv-1024 23.853 24.053 0.200

DSBM-IMF 11429  49h 6.6M VMSB-adv-4096 15.508 15.496 —0.012
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is closer to target domain than baselines. In Fig. as well as Fig. [0} we can see that VMSB and VMSB-
M algorithms generate FFHQ data with a given translation task. To qualitatively verify these generation
results, we generated images using LightSB and VMSB in Figures and Since these improvements
are purely based on information geometry and learning theory, we anticipate that following works on the
variational principle application across various fields such as image processing, natural language processing,

and control systems (Caron et al., 2020; Liu et al. 2023; Alvarez-Melis & Jaakkolal 2018;|Chen et al., 2022).

Table 13: ALAE Embedding-ED scores. To evaluate the performance, we computed averages and standard

deviations of the ED scores across four different transfer tasks.

e=0.1

e=0.5

e=10

e =10.0

SF2M-Sink
DSBM-IMF

0.02916 £ 0.00145
0.02275 £ 0.00101

0.04112 £ 0.00191
0.03358 £ 0.00142

0.05670 £ 0.00249
0.04866 £ 0.00168

0.06641 £ 0.00441
0.06474 £ 0.00381

LightSB
LightSB-M

0.01086 £ 0.00045
0.01066 £ 0.00055

0.02382 £ 0.00093
0.02366 + 0.00107

0.03462 £ 0.00148
0.03519 £ 0.00153

0.05376 £+ 0.00273
0.05975 £ 0.00298

VMSB
VMSB-M

0.01002 + 0.00055 0.02288 +0.00101

0.03396 +0.00174 0.05315 £ 0.00307
0.00997 +£0.00054 0.02298 +0.00106 0.03391 +0.00140 0.05351 + 0.00241

Figure 14: Generation results of VMSB (Adult — Child) with different volatility settings

L
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Figure 15: Qualitative comparison between LightSB and VMSB for relatively high volatility, e = 1.0. Top
(Male — Female): We find that VSBM has preserved more facial details, such as wearing glasses, than
LightSB. Bottom (Adult — Child): VSBM was stable at retaining facial position even with high e.
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