
Adapting Pretrained Text-to-Text Models for Long Text Sequences

Wenhan Xiong∗, Anchit Gupta∗, Shubham Toshniwal,
Yashar Mehdad, Wen-tau Yih

Meta AI
{xwhan,anchit,shtoshni,mehdad,scottyih}@fb.com

Abstract

We present an empirical study of adapting
an existing pretrained text-to-text model for
long-sequence inputs. Through a comprehen-
sive study along three axes of the pretraining
pipeline – model architecture, optimization ob-
jective, and pretraining corpus, we propose an
effective recipe to build long-context models
from existing short-context models. Specifi-
cally, we replace the full attention in transform-
ers with pooling-augmented blockwise atten-
tion, and pretrain the model with a masked-
span prediction task with spans of varying
lengths. In terms of the pretraining corpus, we
find that using randomly concatenated short-
documents from a large open-domain corpus
results in better performance than using exist-
ing long document corpora, which are typically
limited in their domain coverage. With these
findings, we build a long-context model that
achieves competitive performance on long-text
QA tasks and establishes the new state of the art
on five long-text summarization datasets, often
outperforming previous methods with larger
model sizes.

1 Introduction

NLP applications like summarization and question
answering often require processing long text se-
quences. While there have been tremendous em-
pirical breakthroughs (Vaswani et al., 2017; Devlin
et al., 2019) from large pretrained language models
(PLMs), most of these successes have been con-
fined to short-context tasks (Rajpurkar et al., 2016;
Wang et al., 2019). On long-context NLP bench-
marks (Kočiský et al., 2018; Zhong et al., 2021;
Pang et al., 2022b), where the input sequences are
often longer than 10,000 tokens, there is still a sig-
nificant gap between human performance and the
state-of-the-art models.

⋆ Equal Contribution.
_ Our code has been released at https://github.

com/facebookresearch/bart_ls.

Extending the success of PLMs to long texts
is nontrivial for the following reasons. First, the
quadratic complexity of self-attention makes it pro-
hibitive to directly apply full-attention to long se-
quences. Any long-range architecture needs to be
computationally efficient and at the same time cap-
ture long-distance dependency.1 Second, the train-
ing objectives used by existing PLMs have largely
focused on short text and have not been well-
studied for long-context scenarios. For instance,
BART (Lewis et al., 2020) pretraining involves re-
constructing the whole corrupted input sequence,
which is impractical for long sequences given the
computational overhead of decoder-side attention.
Additionally, while abundant short documents can
be easily collected from web dumps to pretrain
short-context models that work well across differ-
ent domains, long documents are much scarcer and
are often collected from specific domains as books
or movie scripts (Gao et al., 2021). It is unknown
whether the existing corpora are more effective
for pretraining a versatile long-context model com-
pared to using artificially constructed long texts.

In this work, we conduct a thorough experi-
mental study to find a recipe for building high-
performing long-context models. In contrast to a
recent work (Guo et al., 2022) that pretrains a long-
context model from scratch, we choose to adapt an
existing short-text model for long texts with further
pretraining. Our empirical results demonstrate the
effectiveness of this strategy by achieving stronger
performance on various downstream tasks, while
saving on the high cost of pretraining from scratch.
More specifically, we explore three axes of the
pretraining pipeline, namely efficient long-range
model architectures, long text corpora creation and

1While there exists a long list of efficient attention vari-
ants (Tay et al., 2020), their efficacy is only validated in syn-
thetic or small-scale experiments and it is unknown whether
these variants are scalable and suitable for large-scale pre-
training for natural language (Xiong et al., 2022; Tay et al.,
2022).

https://github.com/facebookresearch/bart_ls
https://github.com/facebookresearch/bart_ls


the choice of pretraining objectives. Our main find-
ings are summarized as follows:

1) Among long-range mechanisms, such as
global tokens and sliding-window attention, we
find a simple pooling-augmented blockwise atten-
tion to be the most effective choice for various
tasks.

2) For the pretraining corpus, we surprisingly
find that using randomly concatenated documents
from a large open-domain corpus (CommonCrawl)
performs better than using existing long-document
corpora such as book collections.

3) We experiment with various pretraining ob-
jectives including standard masked-span predic-
tion (Raffel et al., 2020), primary sentence predic-
tion (Zhang et al., 2020), and a novel model-based
span prediction objective. While we find all of
these objectives can bring gains over models that
are not pretrained on long texts, we consider the
masked-span prediction objective (using both short
and long spans) remains as the best choice, thanks
to its simplicity and balanced effectiveness on both
short- and long-output tasks.

Using these findings, we build a strong long-
context text-to-text model that establishes new
state-of-the-art on five long-text summarization
tasks (with > 10% relative ROUGE-2 improve-
ments on three of the datasets) and achieves com-
petitive performance on long-text QA tasks despite
its modest size.

2 Model and Data

2.1 Efficient Models for Long Sequences

Our model is based on a standard transformer with
block-sparse self-attentions (Zaheer et al., 2020)
on the encoder side. While various new architec-
tures (Wang et al., 2020; Choromanski et al., 2021;
Lei, 2021; Gu et al., 2021) have been proposed,
we stick to the simple architecture for the follow-
ing reasons: 1) it makes it easy to reuse existing
pretraining pipelines, which are often highly op-
timized specifically for vanilla transformers, e.g.,
learning rate schedules, normalization layers, opti-
mizers; 2) using local attentions, where each token
attends to only tokens in the local context, allows
our model to reuse all the model parameters from
existing PLMs, while other attention variants use
different parameterizations that prohibit inheriting
the weights of an existing pretrained model.

In addition to block attention, we investigate
three mechanisms that enable long-range connec-

Figure 1: The pooling augmented self-attention layer.
The pooling attention parameters marked separately are
newly introduced and randomly initialized.

tions in the encoder:
1) Global-token mechanism: Previous work

(Guo et al., 2022; Zaheer et al., 2020; Beltagy et al.,
2020) has proposed augmenting block-sparse atten-
tion with a small set of “global tokens” that attend
to the entire sequence and hence enable long-range
interactions in the encoder. Specifically, we mark
the first 64 tokens in each attention block as global
tokens and share the projection matrices for both
the global and regular tokens. This mechanism
has proven effective in encoder-only models, espe-
cially for question answering tasks as shown by the
aforementioned methods.

2) Overlapping (strided) attention windows:
Sliding-attention with overlap is a straightforward
way to introduce long-range connections in local
attention models. As we stack the layers in the
encoder, the receptive field of each token would in-
crease exponentially. For example, (Beltagy et al.,
2020) use the stride of one token and each token
attends to an equal number of tokens from both
sides. We develop a simpler and faster block-wise
version which makes the parallelization easier to
implement; namely, tokens in each block will at-
tend to all the tokens inside the block, and half of
the tokens from its immediate left and right blocks.

3) Pooling layers: Recent work (Zhang et al.,
2021; Pang et al., 2022a) has explored using pool-



ing operations to reduce the number of key and
value states in transformers. We implement a sim-
pler version that only requires standard average
pooling operations. All illustration of the pooling-
augmented attention layer is shown in Figure 1.
Specifically, in the top n layers of the transformer
encoder, we add a second attention module which
takes as input the hidden states output by the ith
block self-attention layer Xi ∈ RL×h, where L is
the sequence length and h is the size of the hidden
states. As in the vanilla attention layers, Xi is first
projected to create the key, query, value matrices
Qp

i ,K
p
i ,V

p
i ∈ RL×h.2 We first average pool the

Kp
i and Vp

i sequences, with a fixed kernel/stride
size, into smaller lengths Ṽp

i , K̃p
i ∈ RL̃×h, where

L̃ ≪ L. We then apply standard attention using
Qp

i , K̃p
i and Ṽp

i resulting in O(L× L̃) complexity.
The output of the pooling layers is added with Xi

to form a residual connection.

We compare these variants via the performance
on downstream long-sequence tasks in Sec 3.2.

2.2 Pretraining Corpus

The choice of the corpus has a significant impact
on the downstream results. We consider long
documents from formal text domains, including
Books3 (Gao et al., 2021), STORIES (Trinh and Le,
2018), RealNews (Zellers et al., 2019); and long
dialogues including MediaSum (Zhu et al., 2021)
and OpenSubtitles (Tiedemann, 2016). While col-
lecting a long-document corpus seems to be a nat-
ural choice for long-sequence downstream tasks,
as they are more likely to include long-range de-
pendencies than common short texts on the inter-
net, pretraining only on these datasets also brings
the risk of overfitting to specific domains, instead
of achieving consistent gains on a range of tasks.
Thus, we also consider a general-domain corpus
– C4 as used by T5 (Raffel et al., 2020). Addi-
tionally, instead of using randomly concatenated
sequences, we also tried to concatenate semanti-
cally similar C4 documents (using similarity metric
learned by dense retrieval models) with the hope
that the model can learn to capture more long-range
dependencies across relevant documents. We dis-
cuss the effects of these corpus variants in Sec 3.3.

2The projection layers to create these matrices are not used
in existing pretrained models and will be randomly initialized
before further pretraining

2.3 Pretraining Objectives

A variety of self-supervised pre-training objectives
have been proposed for sequence-to-sequence mod-
els (Lewis et al., 2020; Raffel et al., 2020; Guo
et al., 2022). In the long document setting, we
ideally seek an objective that promotes long-range
reasoning ability in the model. We investigate the
following different pretraining objectives and the
effect of input length during pretraining.

1) T5 Span Denoising: Applying BART’s de-
noising objective to long sequences is computa-
tionally expensive as it requires reconstructing
the entire input and incurs significant computa-
tion overhead on the decoder-side attention. More-
over, reconstructing the entire input would be at
odds with most downstream tasks such as question-
answering and summarization, which require gener-
ating shorter text. Thus, we adopt T5-style denois-
ing for pretraining our model, i.e., we randomly
pick a set of spans in the input sequence as the de-
coding target and mark them with special sentinel
tokens. The model is then trained to generate the
uncorrupted spans. This objective is readily appli-
cable to long documents as we can control both the
length and the number of spans. We experiment
with both fixed span lengths as in (Raffel et al.,
2020), and also mixed span lengths with both short
and long spans, with which we hope the model is
able to perform well on a range of tasks requiring
differing output lengths.

2) Pegasus – Primary Sentence Prediction:
Originally proposed for summarization pretrain-
ing in (Zhang et al., 2020) and recently used for
long documents by Guo et al. (2022), this objective
identifies and masks out a set of principle sentences,
i.e., sentences with a high ROUGE score with the
rest of the document. The model is then trained
to generate these principle sentences. The output
length can be controlled by choosing the number
of principle sentences to mask.

3) Model-based Denoising: Apart from ran-
domly selecting the decoding targets, we also ex-
plore a novel model-based objective. Here we use
a separate encoder-only model (with local atten-
tion) to select decoding targets for the sequence-
to-sequence model. This approach is inspired by
ELECTRA (Clark et al., 2020) and we hope the
prediction loss of the encoder-only model can be
a good proxy to select spans that require long-
range dependencies to predict. Specifically, we
first mask a larger number of tokens (5,120 tokens



instead of 1,024) in the input sequence. We then
apply an encoder-only masked language model to
recover the masked spans. Based on the losses of
the masked language model, we only keep the top
20% hard spans to train the text-to-text model. The
encoder-only model can either be frozen or jointly
trained with the sequence-to-sequence model.

3 Experiments

3.1 Downstream Tasks & Finetuning Setup

We evaluate the models on six summarization
datasets and four QA datasets. The summariza-
tion datasets are from formal domains, includ-
ing GovReport (Huang et al., 2021), ArXiv &
PubMed (Cohan et al., 2018) and BookSum Chap-
ters (Kryściński et al., 2021); or informal conver-
sational domains , such as TVMegaSite & Forever-
Dreaming (Chen et al., 2022). For QA, we consider
Qasper (Dasigi et al., 2021), which contains ques-
tions over NLP papers; QMSum3 (Zhong et al.,
2021), longform QA over meeting scripts, and two
QA datasets on books: QuALITY (Pang et al.,
2022b) and NarrativeQA (Kočiský et al., 2018).

We finetune the model with a maximum of
16,384 tokens. For long-sequence QA tasks, we
adopt the input format as used by the state-of-the-
art open-domain QA system (Izacard and Grave,
2021). Specifically, we repeat the question/query
at the start of each attention block. We also utilize
the robust finetuning technique proposed by Agha-
janyan et al. (2021). We conduct a grid search over
finetuning hyperparameters, such as learning rate
and dropout rate, the details of which are presented
in Table 8 in Appendix A. We report ROUGE4

scores for summarization datasets. For QA, we
report Exact Match (EM) scores for datasets with
short answers and F1 scores for datasets with long
answers.

3.2 Effect of Architectures

To study the effectiveness of different model
choices with modest computation cost, we initialize
a base-size block-attention model using BART’s
weights. We augment the model with three ad-
ditional long-range mechanisms, as described in
Sec 2.1. Note that only the pooling layers introduce
additional parameters that will be randomly initial-

3QMSum is proposed as a "query-based summarization"
dataset. We consider it as a special case of QA as our model
uses the same input format for QMSum and other QA datasets.

4https://github.com/pltrdy/files2rouge

ized. Table 1 shows the results on both QA and
summarization tasks. For the global-token mecha-
nism, we mark the first 64 tokens of each block as
global tokens. We see that pooling layers produce
the most consistent improvements even for Gov-
Report, where the baseline already achieves strong
numbers. Consistent with a prior study on encoder-
only models (Xiong et al., 2022), attention win-
dow overlaps fail to produce further improvements
over the disjoint block-attention layers. Adding
global tokens consistently helps on QA tasks but
not on summarization tasks. We hypothesize that
in encoder-decoder models, the cross-attention can
offset the effect of global tokens, as each decoding
position has access to all input tokens’ representa-
tions. When finetuning our final pretrained model,
we also try to combine global tokens with pooling
layers for QA tasks, but we did not observe further
improvements.

3.3 Effect of Pretraining Corpus

With the assumption that models should be exposed
to as many long dependencies as possible at pre-
training time, we initially tried to only pretrain
the model with natural long documents that are
collected from sources like books, news, and TV
dialogues. However, we did not achieve consis-
tent improvements with this corpus alone. Instead,
we found it is important to include sufficient doc-
uments from diverse domains, even if those docu-
ments are mostly short sequences. We present our
ablation analysis in Table 2. We reported results on
small summarization datasets where the gaps are
more visible. Note that the sizes of long-document
corpora are usually smaller than open-domain cor-
pus. To remove the size factor that affects model
performance, we limit the pretraining steps such
that the model does not see repeated examples from
each corpus. The length statistics of document
sources can be found in the Appendix.

We see that pretraining on corpora that only have
long documents, which are often from specific do-
mains, hurts the downstream performance for most
of the datasets, except for NarrativeQA, which is
from a very close domain. On the other hand, pre-
training on randomly concatenated C4 documents
brings visible gains for most of the tasks. In addi-
tion to directly using concatenations of random C4
documents, we tried to assemble long sequences
using semantically similar C4 documents, with the
hope of creating more long-range connections in

https://github.com/pltrdy/files2rouge


Models GovReport ArXiv QMSum Qasper QuALITY
R-1 R-L R-1 R-L R-1 R-L Ans F1 Ans EM

block-attn baseline. 60.5 57.5 49.0 44.2 35.2 30.4 28.0 31.6

+ attn window overlaps 60.6 57.6 49.0 44.3 34.8 30.2 28.0 31.6
+ global tokens 60.3 57.3 49.1 44.3 35.4 30.7 29.8 32.5
+ pooling layers 61.0 58.1 49.1 44.3 35.9 31.2 30.6 32.9

Table 1: Ablation of different long-range mechanisms using base-size models.

Models QMSum Qasper QuALITY NarrativeQA
R-1 Ans F1 Ans EM Ans F1

non-pretrain 35.9 30.6 32.9 20.4

Long corpus 34.7 29.9 31.3 21.2
C4 36.3 32.8 32.8 21.6
C4-linked 35.7 32.1 32.8 21.3

Table 2: Effects of pretraining corpus. Base size models pretrained for 20k steps to avoid repetitions. Long corpus:
Books3 + RealNews + STORIES + MediaSum + OpenSubtitles; C4: randomly concatenated documents to form
long sequences.; C4-linked: concatenate related short documents using a retriever model.

Models QMSum Qasper
R-1 Ans F1

no-pretraining 35.9 30.6

+ T5 avg span_len 5 - 8k 36.7 32.9
+ T5 avg span_len 5 - 16k 37.0 34.6
+ T5 mixed span_len 37.0 35.4
+ pegasus 37.4 34.4
+ model-based 37.0 32.5

Table 3: Ablation of different pre-training objectives on
C4 corpus

the pretraining sequences. For each document, we
use a dense retrieval model (Izacard et al., 2021)
to find similar documents and concatenate them as
long pretraining sequences. We denote this corpus
as “C4-linked". However, this new corpus is either
similar or worse compared to directly using C4.
We conjecture that it is because the retrieved doc-
uments may contain redundant information, mak-
ing some of the masked spans trivial to predict —
the training perplexity after 100k updates on “C4-
linked" is significantly lower than that on the origi-
nal C4 corpus (10.5 vs 12.2).

3.4 Effect of Pretraining Objectives
We compare the effects of different pretraining ob-
jectives in Table 3. The generation targets are usu-
ally paragraph-length for QMSum, while Qasper
expects the model to predict spans or single sen-
tences most of the time. All the models are pre-
trained for 100k updates on the C4 corpus. To in-
vestigate the effect of pretraining sequence length,
we compare the 16k model with a model pretrained
with 8k sequence length. We double the batch size

for the 8k length pretraining such that the input to-
kens in each batch stays the same. We also increase
the masking ratio for the 8k model to 1/8 so that
the decoding sequence length remains 1,024. Note
that under this setting, pretraining with 8k-length
batches is a bit slower compared to the 16k batches
due to the decoder-side self-attention.

Pretraining with longer sequences is useful.
While a prior work (Guo et al., 2022) pretrains their
model with sequences shorter than downstream
tasks, we find it is generally better to directly pre-
train with longer sequences. In terms of conver-
gence rate, we find pretraining with 8k and 16k
sequences are similar (the loss curves can be found
in Appendix A). For downstream results, we find
that training with longer sequences lengths is in-
deed helpful for low-resource datasets — QMSum
and Qasper are both small with a few thousand ex-
amples (T5 avg span_len 5 - 8k vs T5 avg span_len
5 - 16k). We find using a range of short spans
(mixed span_len) tends to give more gains on QA
tasks.

Alternative objectives works similar as random
masking. While the Pegasus objective is effec-
tive for summarization, we do not find it to be
consistently better than T5 denoising. It also in-
curs more data processing costs compared to T5’s
random masking. We also find that model-based
denoising fails to yield better performance than ran-
dom denoising, even though it introduces a harder
pretraining task, i.e., larger training losses. We
conjecture that, while this objective might provide



Model # Param GovReport BookSum ArXiv PubMed
R-1 R-2 R-L R-1 R-2 R-L R-1 R-2 R-L R-1 R-2 R-L

BigBird 580M - - - 31.8 6.5 14.2 46.6 19.0 41.8 46.3 20.7 42.3
LED 460M 59.4 26.5 56.6 32.8 7.5 14.6 46.6 19.6 41.8 47.0 20.2 42.9
PageSum 440M 59.9 27.2 57.1 - - - 49.7 21.1 44.7 48.2 21.1 44.3
BART-Hepos 440M 56.9 22.6 53.8 - - - 48.2 20.3 41.8 48.1 21.1 42.7
DYLE 525M 61.0 28.8 57.8 - - - 46.4 18.0 41.5 - - -
LongT5-large 750M - - - - - - 48.3 21.6 44.1 50.0 24.7 46.5
LongT5-xl 3B - - - - - - 48.4 21.9 44.3 50.2 24.8 46.7
Top-down (AvgP) 460M - - - 37.9 9.1 18.0† 48.7 20.7 43.9 48.3 21.4 44.2
Top-down (AdaP) 660M∗ - - - 38.3 9.2 18.1† 51.0 21.9 45.6 51.1 23.3 46.5

BART-LS 440M 62.0 30.9 59.2 38.5 10.3 36.4 50.2 22.1 45.4 50.3 24.3 46.3

Table 4: Results on long-document summarization. Pipelined approaches are highlighted in gray. LED’s results
on GovReport are from PageSum (Liu et al., 2022). ∗: The AdaPool version of the Top-Down model requires an
additional encoder model to predict the weights in its pooling layers. †: The baseline R-L scores on BookSum are
taken from Pang et al. (2022a) and may not be rigorously comparable due to the unknown ROUGE script version
used in their paper.

more training signals that are related to long-range
dependencies, it can also introduce noisy supervi-
sion, which is harmful for the model to learn a wide
range of language understanding skills.

3.5 Main Results
Best Model Configuration. Following the anal-
ysis of base-size models, we pretrain a large-size
model with the best configuration, which consists
of (a) block attention and pooling layer augmen-
tations applied to the vanilla Transformer archi-
tecture, (b) long-sequence training data batches
formed by randomly concatenating the documents
from C4 corpus, and (c) T5 denoising loss with a
mix of short and long spans as the training loss. We
pretrain the model for 100K steps. Our model is
denoted as “BART-LS" in the following sections.

3.5.1 Summarization
Table 4 shows results of formal long-document
summarization. We first compare our model with
models that directly reuse existing models’ weights
without further pretraining and newly introduce
parameters. Apart from BigBird and LED that
simply use encoder-side local attention to allow
existing PLM to take longer context, we also
consider more recent baselines including Page-
Sum (Liu et al., 2022) which investigates the local-
ity bias on both encoder and decoder side; BART-
Hepos (Huang et al., 2021) which applies head-
wise cross-attentions; DYLE (Mao et al., 2022)
which combines a context extractor with a gen-
erator that only takes short text as input, and uses
a complex training pipeline to provide supervision
for the extractor. Our model outperforms BigBird,
LED, and BARTHepos by a large margin. With
simple sequence-to-sequence finetuning, our model

also consistently outperforms PageSum and DYLE
which are specifically designed for summarization
tasks. Note that PageSum proposes the idea of us-
ing a weighted combination of multiple decoder
predictions (corresponding to taking the encodings
of different parts of the input sequences as inputs),
which could be orthogonal to our method.

Compared to LongT5 (large and xl), our model
achieves stronger performance on ArXiv and is
on-par on PubMed, even with much fewer param-
eters. The recently proposed Top-Down Trans-
former (Pang et al., 2022a) applies a similar pool-
ing operation at the finetuning stage. Our model
architecture is similar to their “Average Pooling“
variant but conceptually simpler. With the pro-
posed pretraining method, our model outperforms
“Top-down (AvgP)" on all tasks. Besides“Top-
down (AvgP)", the authors also proposes a more
advanced pooling layer that uses the token impor-
tance predicted by another encoder-only model to
aggregate the hidden states for each pooling opera-
tion, i.e., “Top-down (AdaP)". While this method
should be orthogonal to our model during finetun-
ing, we find the model-based adaptive pooling hard
to replicate. Our model matches the performance
of “Top-down (AdaP)" performance on ArXiv and
PubMed in terms of R-2/R-L, and surpass their
results on BookSum.

In contrast to formal documents, dialogue texts,
especially multi-person conversations, can be nois-
ier, more unstructured, and cover more diverse top-
ics within each document. We test our model on
two summarization datasets collected from popu-
lar TV series (Chen et al., 2022). As shown in
Table 5, our model achieves even stronger relative
gains compared to gains on formal-domain datasets.



Model TVMegaSite ForeverDreaming
R-1 R-2 R-L R-1 R-2 R-L

BART-large 43.5 10.3 41.4 33.8 7.5 29.1
DialogLM 45.6 10.8 43.3 35.8 8.3 30.8
Top-down (AvgPool) 49.3 14.4 47.5 35.8 8.9 31.1
Top-down (AdaPool) 51.0 14.7 49.0 36.8 9.2 31.1

BART-LS w/o pretrain 50.9 14.5 48.9 37.1 9.6 32.5

BART-LS 51.8 17.2 50.0 39.1 10.7 33.5

Table 5: Results of on long dialogue (scripts from TV series) and narrative summarization.

Model QMSum
R-1 R-2 R-L

BART-large 32.2 8.0 27.7
DialogLM 34.0 9.2 30.0
DYLE 34.4 9.7 30.1
LED 34.2 10.3 30.0
SecEnc 37.1 13.0 32.6
SecEnc-W 37.8 13.4 33.4

Block-BART (ours) 36.6 12.1 32.4

BART-LS 37.9 12.1 33.1

Table 6: Results on query-based meeting summarization
(QMSum). The highlighted row indicates additional
data has been used for training.

Model Qasper NarrativeQA QuALITY
F1 EM EM-T/H

LongT5-base 46.6 23.0 37.9/36.6
LongT5-large 53.3 27.2 40.6/38.6
LongT5-3B 53.1 29.3 46.0/42.1

Block-BART (dev) 38.1 24.1 35.7
BART-LS (dev) 40.6 25.4 37.6

BART-LS 48.7 26.2 37.8/34.0

Table 7: Test results on QA tasks. LongT5’s num-
bers are taken from the Scrolls benchmark (Shaham
et al., 2022). We also compare our model with a block-
attention baseline that reuses BART’s weights on the
dev set, as shown in gray rows. Note that our model’s
size is in between LongT5-base and LongT5 large.

Note that DialogLM (Zhong et al., 2022) is specif-
ically designed for the dialog domain and further
pretrained a PLM checkpoint on dialog corpus. The
large improvements over their results again suggest
the importance of open-domain pretraning corpus.

3.5.2 QA and Query-Based Summarization

As mentioned in Sec 3.1, we use the same input
format for finetuning QA tasks and query-based
summarization. As there are no existing baselines
of long models that reuse the weights of short-
sequence models, we also report the performance
of our implementation of block-attention BART. As
shown in Table 6, our model outperforms all previ-

ous methods that do not apply data augmentation.
SecEnc (Vig et al., 2022) is also a block-attention
version of BART – it distribute overlapped texts (in-
stead of disjoint text blocks) into each self-attention
window and reuses the position embeddings of the
first 1,024 tokens. On long-document QA datasets
(as shown in Table 7), our best model is consis-
tently better than our block-attention baseline and
is aligned with LongT5 in terms of scaling effect
– our model’s size is between the base and large
versions of LongT5.

3.6 Performance Analysis on Input Lengths

To further investigate the performance gains of
our proposed model, we compare the performance
of the proposed model against the base model
as a function of source document length for two
summarization datasets, namely SummScreen and
TVMegaSite. To conduct our analysis, we divide
the validation split of both the datasets into short
and long documents. The cutoff length to separate
the two groups is chosen such that approximately
75% of the documents are classified as short doc-
uments. Figure 2 presents the results of this com-
parison. For both the datasets: (a) there’s a perfor-
mance drop for both the best and the base model for
longer documents, and (b) the best model is better
than the base model on all data splits. For Summ-
Screen the performance gap between the best and
the base model is bigger for long documents than
for short documents – relative ROUGE-L increase
of 0.80% and 3.96% for short and long documents
respectively. This suggests that the performance
gains for the best model can be attributed to better
long-context modeling. For TVMegaSite this trend
of increasing performance gap between the best
and the base model with an increase in document
length still holds true, though the increase in perfor-
mance gap is modest in comparison to the increase
observed for SummScreen – relative ROUGE-L
increase of 2.43% and 2.75% for short and long
documents respectively.



(a) SummScreen (b) TVMegaSite

Figure 2: ROUGE-L scores as a function of source document length for the base model and the best model for two
dialogue summarization datasets.

4 Related Work

4.1 Efficient Transformer Architectures
A long list of works has been proposed to reduce
the complexity of the attention layers of transform-
ers. The simplest paradigm is to restrict each to-
ken’s attending context to a subset of the whole
sequences, e.g., Reformer (Kitaev et al., 2020)
and the Routing transformer (Roy et al., 2021)
proposes hashing or clustering based attention,
where each token only attends to tokens of a sin-
gle bucket/cluster. Our model architecture is influ-
enced by previous work like Longformer (Beltagy
et al., 2020), BigBird (Zaheer et al., 2020) and
ETC (Ainslie et al., 2020) that demonstrate strong
downstream performance. These models assume
strong locality bias in language data and restrict
each token’s attending context to nearby tokens.
In contrast, we augment the block attention with
pooling layers and study the effect of additional
pretraining on long sequences. Other approaches
tackling the efficiency bottleneck includes kernel-
based (Choromanski et al., 2021; Peng et al., 2021)
and low-rank approximation (Wang et al., 2020) of
the N×N attention matrix. However, in contrast
to local attention transformers, the effectiveness of
these approximation approaches is yet to be vali-
dated in downstream tasks.

4.2 Generation from Long Text Inputs
To apply pretrained models to long-sequence tasks,
early studies (Zaheer et al., 2020; Beltagy et al.,
2020) reuse parameters from models pretrained on
short sequences and replaces the encoder full atten-
tion with sparse local attentions. While the mod-
els are not exposed to long sequences at pretrain-
ing time, they demonstrates consistent improve-
ments over previous models that can only take trun-
cated inputs. Complementary to local attentions,
Zhang et al. (2021) show that pooling layers can

be inserted into a pretrained transformer at finetun-
ing time and bring additional performance gains
on summarization. Instead of relying on a sin-
gle model that directly processes the whole input,
Mao et al. (2022) proposes a two-stage extract-and-
generate approach, where the extractor can lever-
age the supervision signal learned by the generator.
However, despite the complicated training recipe, it
does not bring consistent gains and underperforms
our non-pretrain baselines. The most relevant work
to ours is LongT5 (Guo et al., 2022), which adopts
both global tokens as well as local attention, and
pretrains the model with 4k text sequences from C4.
Compared to LongT5, we augment local attentions
with pooling layers and present a more compre-
hensive study on pretraining strategies. Without
pretraining from scratch, we achieve stronger sum-
marization performance. Concurrent to our work,
Phang et al. (2022) also present an empirical study
on adapting short-text models for long document
summarization. While their study mostly focuses
on architectures, we present additional analysis on
the choices of pretraining corpus and learning ob-
jectives.

5 Conclusion

Through a comprehensive study on the effects of
model architectures, training losses and pretraining
dataset, we present an effective recipe to adapt
existing pretrained text-to-text models for long-
sequence NLP tasks. The resulting model sets new
state-of-the-art on five long-sequence summariza-
tion tasks and achieves consistent gains on QA over
local-attention models that simply reuse BART’s
parameters. Apart from presenting a stronger
checkpoint for finetuning on downstream tasks, we
hope our findings in the study can provide insights
for future works that aim to develop stronger long-
sequence models for downstream tasks.



6 Limitations

Pretraining language models is a costly endeavor,
and even more so in the case of long-context PLMs.
Because of computational budget constraints, we
only explored a limited space of the hyperparame-
ter search space.

• We experiment with training on either just
long document corpora or a pseudo long doc-
ument corpora formed by concatenating short
documents. Future work can investigate using
a combination of the two.

• We have a surprising empirical finding that
pretraining on pseudo long documents formed
by concatenating random documents of a
short-document corpora (C4) outperforms
both: (a) pretraining on actual long documents
from a long-document corpora, and (b) pre-
training on pseudo long documents formed
by concatenating related documents from the
same short-document corpora. Future work
can investigate in more detail the reasons for
these empirical gains, and also test these mod-
els on their discourse understanding.

• Due to the human evaluation cost for long-
context summarization tasks, we rely on au-
tomatic metrics which can be unreliable as
suggested by prior work (Kryscinski et al.,
2019; Fabbri et al., 2021).

References
Armen Aghajanyan, Akshat Shrivastava, Anchit Gupta,

Naman Goyal, Luke Zettlemoyer, and Sonal Gupta.
2021. Better fine-tuning by reducing representational
collapse. In 9th International Conference on Learn-
ing Representations, ICLR 2021, Virtual Event, Aus-
tria, May 3-7, 2021. OpenReview.net.

Joshua Ainslie, Santiago Ontañón, Chris Alberti, Va-
clav Cvicek, Zachary Fisher, Philip Pham, Anirudh
Ravula, Sumit Sanghai, Qifan Wang, and Li Yang.
2020. ETC: encoding long and structured inputs in
transformers. In EMNLP (1), pages 268–284. Asso-
ciation for Computational Linguistics.

Iz Beltagy, Matthew E. Peters, and Arman Cohan.
2020. Longformer: The long-document transformer.
abs/2004.05150.

Mingda Chen, Zewei Chu, Sam Wiseman, and Kevin
Gimpel. 2022. SummScreen: A dataset for abstrac-
tive screenplay summarization. In Proceedings of the

60th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
8602–8615, Dublin, Ireland. Association for Compu-
tational Linguistics.

Krzysztof Choromanski, Valerii Likhosherstov, David
Dohan, Xingyou Song, Andreea Gane, Tamás Sar-
lós, Peter Hawkins, Jared Quincy Davis, Afroz Mo-
hiuddin, Lukasz Kaiser, David Benjamin Belanger,
Lucy J. Colwell, and Adrian Weller. 2021. Rethink-
ing attention with performers. In ICLR. OpenRe-
view.net.

Kevin Clark, Minh-Thang Luong, Quoc V. Le, and
Christopher D. Manning. 2020. ELECTRA: pre-
training text encoders as discriminators rather than
generators. In ICLR. OpenReview.net.

Arman Cohan, Franck Dernoncourt, Doo Soon Kim,
Trung Bui, Seokhwan Kim, Walter Chang, and Nazli
Goharian. 2018. A discourse-aware attention model
for abstractive summarization of long documents. In
Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 2 (Short Papers), pages 615–621, New Or-
leans, Louisiana. Association for Computational Lin-
guistics.

Pradeep Dasigi, Kyle Lo, Iz Beltagy, Arman Cohan,
Noah A. Smith, and Matt Gardner. 2021. A dataset of
information-seeking questions and answers anchored
in research papers. In NAACL.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Alexander R. Fabbri, Wojciech Kryściński, Bryan Mc-
Cann, Caiming Xiong, Richard Socher, and Dragomir
Radev. 2021. SummEval: Re-evaluating summariza-
tion evaluation. Transactions of the Association for
Computational Linguistics, 9:391–409.

Leo Gao, Stella Biderman, Sid Black, Laurence Gold-
ing, Travis Hoppe, Charles Foster, Jason Phang,
Horace He, Anish Thite, Noa Nabeshima, Shawn
Presser, and Connor Leahy. 2021. The pile: An
800gb dataset of diverse text for language modeling.
arXiv, abs/2101.00027.

Albert Gu, Karan Goel, and Christopher Ré. 2021. Effi-
ciently modeling long sequences with structured state
spaces.

Mandy Guo, Joshua Ainslie, David Uthus, Santiago On-
tanon, Jianmo Ni, Yun-Hsuan Sung, and Yinfei Yang.
2022. LongT5: Efficient text-to-text transformer for
long sequences. In Findings of the Association for

https://openreview.net/forum?id=OQ08SN70M1V
https://openreview.net/forum?id=OQ08SN70M1V
http://arxiv.org/abs/2004.05150
https://doi.org/10.18653/v1/2022.acl-long.589
https://doi.org/10.18653/v1/2022.acl-long.589
https://doi.org/10.18653/v1/N18-2097
https://doi.org/10.18653/v1/N18-2097
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.1162/tacl_a_00373
https://doi.org/10.1162/tacl_a_00373
https://aclanthology.org/2022.findings-naacl.55
https://aclanthology.org/2022.findings-naacl.55


Computational Linguistics: NAACL 2022, pages 724–
736, Seattle, United States. Association for Compu-
tational Linguistics.

Luyang Huang, Shuyang Cao, Nikolaus Parulian, Heng
Ji, and Lu Wang. 2021. Efficient attentions for long
document summarization. In Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 1419–1436, Online.
Association for Computational Linguistics.

Gautier Izacard, Mathilde Caron, Lucas Hosseini, Se-
bastian Riedel, Piotr Bojanowski, Armand Joulin,
and Edouard Grave. 2021. Towards unsupervised
dense information retrieval with contrastive learning.
arXiv, abs/2112.09118.

Gautier Izacard and Edouard Grave. 2021. Leveraging
passage retrieval with generative models for open do-
main question answering. In Proceedings of the 16th
Conference of the European Chapter of the Associ-
ation for Computational Linguistics: Main Volume,
pages 874–880, Online. Association for Computa-
tional Linguistics.

Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya.
2020. Reformer: The efficient transformer. In ICLR.
OpenReview.net.

Tomáš Kočiský, Jonathan Schwarz, Phil Blunsom, Chris
Dyer, Karl Moritz Hermann, Gábor Melis, and Ed-
ward Grefenstette. 2018. The NarrativeQA reading
comprehension challenge. Transactions of the Asso-
ciation for Computational Linguistics, 6:317–328.

Wojciech Kryscinski, Nitish Shirish Keskar, Bryan Mc-
Cann, Caiming Xiong, and Richard Socher. 2019.
Neural text summarization: A critical evaluation. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pages 540–551, Hong
Kong, China. Association for Computational Linguis-
tics.

Wojciech Kryściński, Nazneen Rajani, Divyansh Agar-
wal, Caiming Xiong, and Dragomir Radev. 2021.
Booksum: A collection of datasets for long-form
narrative summarization.

Tao Lei. 2021. When attention meets fast recurrence:
Training language models with reduced compute.
In Proceedings of the 2021 Conference on Empir-
ical Methods in Natural Language Processing, pages
7633–7648, Online and Punta Cana, Dominican Re-
public. Association for Computational Linguistics.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020.
BART: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and com-
prehension. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,

pages 7871–7880, Online. Association for Computa-
tional Linguistics.

Yixin Liu, Ansong Ni, Linyong Nan, Budhaditya Deb,
Chenguang Zhu, Ahmed H Awadallah, and Dragomir
Radev. 2022. Leveraging locality in abstractive text
summarization. arXiv preprint arXiv:2205.12476.

Ziming Mao, Chen Henry Wu, Ansong Ni, Yusen Zhang,
Rui Zhang, Tao Yu, Budhaditya Deb, Chenguang
Zhu, Ahmed Awadallah, and Dragomir Radev. 2022.
DYLE: Dynamic latent extraction for abstractive
long-input summarization. In Proceedings of the
60th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
1687–1698, Dublin, Ireland. Association for Compu-
tational Linguistics.

Bo Pang, Erik Nijkamp, Wojciech Kryściński, Sil-
vio Savarese, Yingbo Zhou, and Caiming Xiong.
2022a. Long document summarization with top-
down and bottom-up inference. arXiv preprint
arXiv:2203.07586.

Richard Yuanzhe Pang, Alicia Parrish, Nitish Joshi,
Nikita Nangia, Jason Phang, Angelica Chen, Vishakh
Padmakumar, Johnny Ma, Jana Thompson, He He,
and Samuel Bowman. 2022b. QuALITY: Question
answering with long input texts, yes! In Proceedings
of the 2022 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 5336–5358,
Seattle, United States. Association for Computational
Linguistics.

Hao Peng, Nikolaos Pappas, Dani Yogatama, Roy
Schwartz, Noah A. Smith, and Lingpeng Kong. 2021.
Random feature attention. In ICLR. OpenReview.net.

Jason Phang, Yao Zhao, and Peter J Liu. 2022.
Investigating efficiently extending transformers
for long input summarization. arXiv preprint
arXiv:2208.04347.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. J. Mach. Learn. Res., 21:140:1–140:67.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ questions for
machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2383–2392, Austin,
Texas. Association for Computational Linguistics.

Aurko Roy, Mohammad Saffar, Ashish Vaswani, and
David Grangier. 2021. Efficient content-based sparse
attention with routing transformers. Transactions of
the Association for Computational Linguistics, 9:53–
68.

Uri Shaham, Elad Segal, Maor Ivgi, Avia Efrat, Ori
Yoran, Adi Haviv, Ankit Gupta, Wenhan Xiong,
Mor Geva, Jonathan Berant, and Omer Levy. 2022.

https://doi.org/10.18653/v1/2021.naacl-main.112
https://doi.org/10.18653/v1/2021.naacl-main.112
https://doi.org/10.18653/v1/2021.eacl-main.74
https://doi.org/10.18653/v1/2021.eacl-main.74
https://doi.org/10.18653/v1/2021.eacl-main.74
https://doi.org/10.1162/tacl_a_00023
https://doi.org/10.1162/tacl_a_00023
https://doi.org/10.18653/v1/D19-1051
http://arxiv.org/abs/2105.08209
http://arxiv.org/abs/2105.08209
https://aclanthology.org/2021.emnlp-main.602
https://aclanthology.org/2021.emnlp-main.602
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2022.acl-long.118
https://doi.org/10.18653/v1/2022.acl-long.118
https://aclanthology.org/2022.naacl-main.391
https://aclanthology.org/2022.naacl-main.391
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.1162/tacl_a_00353
https://doi.org/10.1162/tacl_a_00353


Scrolls: Standardized comparison over long language
sequences.

Yi Tay, Mostafa Dehghani, Samira Abnar, Hyung Won
Chung, William Fedus, Jinfeng Rao, Sharan Narang,
Vinh Q. Tran, Dani Yogatama, and Donald Met-
zler. 2022. Scaling laws vs model architectures:
How does inductive bias influence scaling? CoRR,
abs/2207.10551.

Yi Tay, Mostafa Dehghani, Dara Bahri, and Donald Met-
zler. 2020. Efficient transformers: A survey. arXiv,
abs/2009.06732.

Jörg Tiedemann. 2016. Finding alternative translations
in a large corpus of movie subtitle. In Proceedings
of the Tenth International Conference on Language
Resources and Evaluation (LREC’16), pages 3518–
3522, Portorož, Slovenia. European Language Re-
sources Association (ELRA).

Trieu H. Trinh and Quoc V. Le. 2018. A simple method
for commonsense reasoning. arXiv, abs/1806.02847.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

Jesse Vig, Alexander Fabbri, Wojciech Kryscinski,
Chien-Sheng Wu, and Wenhao Liu. 2022. Exploring
neural models for query-focused summarization. In
Findings of the Association for Computational Lin-
guistics: NAACL 2022, pages 1455–1468, Seattle,
United States. Association for Computational Lin-
guistics.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R. Bowman. 2019.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In ICLR
(Poster). OpenReview.net.

Sinong Wang, Belinda Z. Li, Madian Khabsa, Han Fang,
and Hao Ma. 2020. Linformer: Self-attention with
linear complexity. arXiv, abs/2006.04768.

Wenhan Xiong, Barlas Oguz, Anchit Gupta, Xilun Chen,
Diana Liskovich, Omer Levy, Scott Yih, and Yashar
Mehdad. 2022. Simple local attentions remain com-
petitive for long-context tasks. In Proceedings of
the 2022 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 1975–1986,
Seattle, United States. Association for Computational
Linguistics.

Manzil Zaheer, Guru Guruganesh, Kumar Avinava
Dubey, Joshua Ainslie, Chris Alberti, Santiago On-
tañón, Philip Pham, Anirudh Ravula, Qifan Wang,
Li Yang, and Amr Ahmed. 2020. Big bird: Trans-
formers for longer sequences. In NeurIPS.

Rowan Zellers, Ari Holtzman, Hannah Rashkin,
Yonatan Bisk, Ali Farhadi, Franziska Roesner, and
Yejin Choi. 2019. Defending against neural fake
news. In NeurIPS, pages 9051–9062.

Hang Zhang, Yeyun Gong, Yelong Shen, Weisheng Li,
Jiancheng Lv, Nan Duan, and Weizhu Chen. 2021.
Poolingformer: Long document modeling with pool-
ing attention. In ICML, volume 139 of Proceedings
of Machine Learning Research, pages 12437–12446.
PMLR.

Jingqing Zhang, Yao Zhao, Mohammad Saleh, and Pe-
ter J. Liu. 2020. Pegasus: Pre-training with extracted
gap-sentences for abstractive summarization. In Pro-
ceedings of the 37th International Conference on
Machine Learning, ICML’20. JMLR.org.

Ming Zhong, Yang Liu, Yichong Xu, Chenguang Zhu,
and Michael Zeng. 2022. Dialoglm: Pre-trained
model for long dialogue understanding and summa-
rization. AAAI.

Ming Zhong, Da Yin, Tao Yu, Ahmad Zaidi, Mutethia
Mutuma, Rahul Jha, Ahmed Hassan Awadallah, Asli
Celikyilmaz, Yang Liu, Xipeng Qiu, and Dragomir
Radev. 2021. QMSum: A new benchmark for query-
based multi-domain meeting summarization. In Pro-
ceedings of the 2021 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
5905–5921, Online. Association for Computational
Linguistics.

Chenguang Zhu, Yang Liu, Jie Mei, and Michael Zeng.
2021. MediaSum: A large-scale media interview
dataset for dialogue summarization. In Proceedings
of the 2021 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 5927–5934,
Online. Association for Computational Linguistics.

A Additional experiment/data info

Build the linked C4 corpus We attempt to use
text retrieval techniques to assemble long text se-
quences with the hope that the model can learn
more long-range dependencies from linked rele-
vant documents. We first encode all the documents
into dense vectors with the Contriver (Izacard et al.,
2021) encoder. For documents that have more than
512 tokens, we use primary sentences (Zhang et al.,
2020) as the input to the encoder. Directly retriev-
ing documents from the whole index (340M vec-
tors) is prohibitive in terms of computation cost.
We follow the idea inverted indices, we first k-
means to get 256 clusters of documents and then
assemble long sequences within each cluster. Start-
ing from each documents, we concatenate it with
its top-k nearest neighbors until the length exceeds
certain threshold. To avoid repeated documents,

http://arxiv.org/abs/2201.03533
http://arxiv.org/abs/2201.03533
https://doi.org/10.48550/arXiv.2207.10551
https://doi.org/10.48550/arXiv.2207.10551
http://arxiv.org/abs/2009.06732
https://aclanthology.org/L16-1559
https://aclanthology.org/L16-1559
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://aclanthology.org/2022.findings-naacl.109
https://aclanthology.org/2022.findings-naacl.109
https://aclanthology.org/2022.naacl-main.144
https://aclanthology.org/2022.naacl-main.144
https://doi.org/10.18653/v1/2021.naacl-main.472
https://doi.org/10.18653/v1/2021.naacl-main.472
https://doi.org/10.18653/v1/2021.naacl-main.474
https://doi.org/10.18653/v1/2021.naacl-main.474


OpenSub
6G

Stories
20G

MediaSum
2.4G

RealNews
22G

C4
460G

0

2500

5000

7500

10000

12500

15000

17500
(To

ke
ni

ze
d)

 d
oc

um
en

t l
en

gt
h

Document length distribution of each corpus

Figure 3: Document length distribution of each source
corpus. The sizes of each corpus (file sizes of tokenized
texts) are also shown in the x-axis. The median and
mean lengths are denoted via the while line and the
triangle. We did not show the statistics of the Books3
corpus (60G) here as it has much longer documents with
mean/medium over 100k tokens.

we enforce that each documents can appear in at
most 2 sequences.

0 2500 5000 7500 10000 12500 15000 17500
Training update steps

10

20

30

40

50

60

70

80

Pe
rp

le
xi

ty

sequence_length = 16k
sequence_length = 8k

Figure 4: Training curves with 8k/16k sequence lengths.
Pretraining with different sequence lengths shows simi-
lar level of data efficiency.

Hyperparameters We use a fixed set of hyperpa-
rameters for pretraining: we set the learning rate to
be 1e− 4, the weight decay coefficient to be 0.01
and applies polynomial decay with 500 warm up
steps; we use a batch size of 256 (16,384 tokens
per sample) and fix the random seed to 42. The
hyperparameter grids for the downstream tasks are
shown in Table 8.



Downstream Task learning rate batch size max epoch dropout warmup steps (polynomial lr decay)

arXiv 1e-4, 3e-4, 4e-4 128 8 0, 0.1 200

GovReport 5e-5, 3e-4, 4e-4 128 70 0, 0.1 200

PubMed, BookSum 3e-4, 4e-4 64 60 0, 0.1 200

SummScreen 5e-5, 3e-5, 1e-4 64 130 0, 0.1 200, 500, 1000

Qasper, QMSum, Quality 1e-4, 5e-5, 3e-5 32, 64 150 0, 0.1 100, 200

NarrativeQA 5e-5, 3e-5 64 8 0, 0.1 200

Table 8: Hyperparamter grid for downstream task finetuning. We use Adam optimizer (β = (0.9, 0.999), ϵ = 1e-6)
for all tasks.

Downstream Task generation parameters

arXiv beam: 4, max_len: 300, min_len: 50, length_penalty: 5.0, no_repeat_ngram: 3

GovReport beam: 4, max_len: 740, min_len: 50, length_penalty: 4.0, no_repeat_ngram: 3

PubMed beam: 4, max_len: 400, min_len: 40, length_penalty: 4.0, no_repeat_ngram: 3

BookSum beam: 4, max_len: 550, min_len: 20, length_penalty: 4.0, no_repeat_ngram: 3

SummScreen-FD beam: 4, max_len: 300, min_len: 50, length_penalty: 4.0, no_repeat_ngram: 3

SummScreen-TVM beam: 4, max_len: 640, min_len: 50, length_penalty: 5.0, no_repeat_ngram: 3

Qasper beam: 4, max_len: 80, length_penalty: 1.0, no_repeat_ngram: 3

NarrativeQA beam: 4, max_len: 20, length_penalty: 3.0, no_repeat_ngram: 3

QMSum beam: 4, max_len: 256, min_len: 40, length_penalty: 4.0, no_repeat_ngram: 3

QuALITY beam: 4, max_len: 50, length_penalty: 3.0, no_repeat_ngram: 3

Table 9: Generation parameters for each task.


