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ABSTRACT

In this paper, we study the problem of uncertainty estimation and calibration for
LLMs. We begin by formulating the uncertainty estimation problem, a relevant yet
underexplored area in existing literature. We then propose a supervised approach
that leverages labeled datasets to estimate the uncertainty in LLMs’ responses.
Based on the formulation, we illustrate the difference between the uncertainty
estimation for LLMs and that for standard ML models and explain why the hid-
den neurons of the LLMs may contain uncertainty information. Our designed
approach demonstrates the benefits of utilizing hidden activations to enhance un-
certainty estimation across various tasks and shows robust transferability in out-
of-distribution settings. We distinguish the uncertainty estimation task from the
uncertainty calibration task and show that better uncertainty estimation leads to
better calibration performance. Furthermore, our method is easy to implement
and adaptable to different levels of model accessibility including black box, grey
box, and white box.

1 INTRODUCTION

Large language models (LLMs) have marked a significant milestone in the advancement of nat-
ural language processing (Radford et al., 2019; Brown et al., 2020; Ouyang et al., 2022; Bubeck
et al., 2023), showcasing remarkable capabilities in understanding and generating human-like text.
However, their tendency to produce hallucinations—misleading or fabricated information—raises
concerns about their reliability and trustworthiness (Rawte et al., 2023). The problem of whether
we should trust the response from machine learning models is critical in machine-assisted decision
applications, such as self-driving cars (Ramos et al., 2017), medical diagnosis (Esteva et al., 2017),
and loan approval processes (Burrell, 2016), where errors can lead to significant loss.

This issue becomes even more pressing in the era of generative AI, as the outputs of these models
are random variables sampled from a distribution, meaning incorrect responses can still be produced
with positive probability. Due to this inherent randomness, the need to address uncertainty estima-
tion in generative AI is even greater than that in other machine learning models (Gal & Ghahramani,
2016; Lakshminarayanan et al., 2017; Guo et al., 2017; Minderer et al., 2021), and yet there has
been limited research in this area (Kuhn et al., 2023; Manakul et al., 2023; Tian et al., 2023).

In this work, we aim to formally define the problem of uncertainty estimation for LLMs and propose
methods to address it. As shown in Figure 1, uncertainty estimation for LLMs can be broadly defined
as the task of predicting the quality of the generated response based on the input. In this context,
“quality” typically refers to aspects such as confidence, truthfulness, and uncertainty. Assuming
access to a universal metric for evaluating the confidence of the output, the goal of uncertainty
estimation is to produce a confidence score that closely aligns with this metric. Given the inherent
randomness in LLMs, where incorrect responses can still be generated with positive probability,
uncertainty estimation serves as a crucial safeguard. It helps assess the reliability of responses,
enhance the trustworthiness of the model, and guide users on when to trust or question the output.

It is also worth noting that calibration is closely related and can be viewed as a subclass of uncer-
tainty estimation, where the metric corresponds to the conditional probability in the individual level.
Most studies on uncertainty estimation or calibration in language models focus on fixed-dimensional
prediction tasks (i.e., the output of the LLM only has one token limited in a finite set), such as senti-
ment analysis, natural language inference, and commonsense reasoning (Zhou et al., 2023; Si et al.,
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What’s the capital of France?

Ans 1:   It’s Paris —— w.p. 0.5
Ans 2:   Paris       —— w.p. 0.4
Ans 3:   London  —— w.p. 0.1

User’s question: LLM

Randomly 
generate answers

Uncertainty 
estimation module

Analyzing input 
and output

Answer Confidence

It’s Paris 0.999

Paris 0.999

London 0.1

input outputactivations

Figure 1: An example to illustrate the uncertainty estimation task. The LLM randomly generates
an answer to the question (It’s Paris, Paris, or London). The goal of the uncertainty estimation is
to estimate a confidence score to the question-answer pair, where a higher score indicates a higher
confidence to believe that the answer is correct.

2022; Xiao et al., 2022; Desai & Durrett, 2020). However, given the structural differences in how
modern LLMs are used, alongside their proven capability to handle complex, free-form tasks with
variable-length outputs, there is a growing need to address uncertainty estimation and calibration
specifically for general language tasks in the domain of LLMs.

This work explores a simple supervised method motivated by two ideas in the existing literature on
LLMs. First, prior work on uncertainty estimation for LLMs primarily focused on designing uncer-
tainty metrics in an unsupervised way by examining aspects like the generated outputs’ consistency,
similarity, entropy, and other relevant characteristics (Lin et al., 2023; Manakul et al., 2023; Kuhn
et al., 2023; Hou et al., 2023; Lin et al., 2022; Kuhn et al., 2023; Chen et al., 2024). The absence
of the need for knowledge of the model’s weights enables their application to some black-box or
gray-box models. Second, a growing stream of literature argues that hidden layers’ activation values
within the LLMs offer insights into the LLMs’ knowledge and confidence (Slobodkin et al., 2023;
Ahdritz et al., 2024; Duan et al., 2024). It has shown success in other fields of LLMs, like hallucina-
tion detection (CH-Wang et al., 2023; Azaria & Mitchell, 2023; Ahdritz et al., 2024). Based on this
argument, white-box LLMs, which allow access to more of LLMs’ inner values, such as logits and
hidden layers, are believed to have the capacity to offer a more nuanced understanding and improved
uncertainty estimation results (Verma et al., 2023; Chen et al., 2024; Plaut et al., 2024).

Both of the above approaches, however, have key limitations. For the unsupervised metrics, given
the complexity of LLMs’ underlying architectures, semantic information may be diluted when pro-
cessing through self-attention mechanisms and during token encoding/decoding. For the second
idea, the requirements of hidden layer features restrict its application to close-source/black-box
LLMs. In this paper, we combine the strengths of these two ideas by proposing a general super-
vised learning method and pipeline design that address these limitations. Specifically, to incorporate
more features (e.g., hidden layers) in estimating the uncertainty, we train an external uncertainty es-
timation model in a supervised way to estimate the uncertainty/confidence of the response generated
from an LLM (target LLM). As the quality of the response reveals to what extent we should believe
the response is correct, we formulate this supervised uncertainty estimation problem as a regression
task and prepare the labels in the training dataset by measuring the response’s quality. To extend our
method to black-box LLMs, we allow the semantic features of the question-response pair to come
from another language model (tool LLM). The overall pipeline of this method is shown in Figure 2.

Our contributions are four-fold:

- First, we formally define the task of uncertainty estimation, while some of the existing literature ei-
ther does not distinguish uncertainty estimation and uncertainty calibration or misuses and confuses
the terminologies of uncertainty and hallucination.

- Second, we adopt a supervised method for uncertainty estimation that is intuitive, easy to imple-
ment, and executable even on black-box LLMs. Leveraging supervised labels from the uncertainty
metric, our approach sets an upper bound for the performance of all unsupervised methods, repre-
senting the highest achievable performance for these approaches.
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What’s the capital of 
France?

It’s Paris.

Probability/entropy features

Hidden layers

Query � Target LLM Generated response �

Paris

Reference response

Rouge-L/BLEU
Quality metric

�(�, �true)

Uncertainty 
estimator

Input

Predict

Tool LLM

Figure 2: Illustration of our proposed supervised method. The tool LLM is an open-source LLM and
can be different from the target LLM. In the training phase, where the reference response is available,
we train the uncertainty estimator using the quality of the response as the label. In the test phase, the
uncertainty estimator predicts the quality of the generated response to obtain an uncertainty score.

- Third, we systematically discuss the relationship and the difference between deep learning and
LLM in uncertainty estimation. Formally, we give an explanation to see why the method for the
traditional deep learning model may fail in LLM, and why the hidden layer is useful in estimating
the uncertainty in our context.

- Finally, numerical experiments on various natural language processing tasks demonstrate the su-
periority of our methods over existing benchmarks. The results also reveal several insightful obser-
vations, including the role of neural nodes in representing uncertainty, and the transferability of our
trained uncertainty estimation model.

1.1 RELATED LITERATURE

The uncertainty estimation and calibration for traditional machine learning is relatively well-studied
(Abdar et al., 2021; Gawlikowski et al., 2023). However, with the rapid development of LLMs,
there is a pressing need to better understand the uncertainty for LLMs’ responses, and measuring
the uncertainty from sentences instead of a fixed-dimension output is more challenging. One stream
of work has been focusing on unsupervised methods that leverage entropy (Malinin & Gales, 2021),
similarity (Fomicheva et al., 2020; Lin et al., 2022), semantic (Kuhn et al., 2023; Duan et al., 2023),
logit or hidden states’ information (Kadavath et al., 2022; Chen et al., 2024; Su et al., 2024; Plaut
et al., 2024) to craft an uncertainty metric that helps to quantify uncertainty. For black-box models,
some of the metrics can be computed based on multiple sampled output of the LLMs (Malinin &
Gales, 2021; Lin et al., 2023; Manakul et al., 2023; Chen & Mueller, 2023); while for white-box
models, more information such as the output’s distribution, the value of the logit and hidden layers
make computing the uncertainty metric easier. We also refer to Desai & Durrett (2020); Zhang
et al. (2021); Ye & Durrett (2021); Si et al. (2022); Quach et al. (2023); Kumar et al. (2023); Mohri
& Hashimoto (2024) for other related uncertainty estimation methods such as conformal prediction.
We defer more discussions on related literature, in particular, on the topics of hallucination detection
and information in hidden layers of LLMs, to Appendix A.

2 PROBLEM SETUP

Consider the following environment where one interacts with LLMs through prompts and responses:
An LLM is given with an input prompt x = (x1, x2, ..., xk) ∈ X with xi ∈ V representing the i-th
token of the prompt. Here V denotes the vocabulary for all the tokens. Then the LLM randomly
generates its response y = (y1, y2, ..., ym) ∈ Y following the probability distribution

yj ∼ pθ(·|x, y1, y2, ..., yj−1).

Here the probability distribution pθ denotes the distribution (over vocabulary V) as the LLM’s out-
put, and θ encapsulates all the parameters of the LLM. The conditional part includes the prompt x
and all the tokens y1, y2, ..., yj−1 generated preceding the current position.

We consider using the LLM for some downstream NLP tasks such as question answering, multiple
choice, and machine translation. Such a task usually comes with an evaluation/scoring function that
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evaluates the quality of the generated response s(·, ·) : Y × Y → [0, 1]. For each pair of (x,y),
the evaluation function rates the response y with the score z := s(y,ytrue) where ytrue is the true
response for the prompt x. The true response ytrue is usually decided by factual truth, humans, or
domain experts, and we can assume it follows a distribution condition on the prompt x. It does not
hurt to assume a larger score represents a better answer; z = 1 indicates a perfect answer, while
z = 0 says the response y is off the target.

We define the task of uncertainty estimation for LLMs as the learning of a function g that predicts
the score

g(x,y) ≈ E [s(y,ytrue)|x,y] (1)
where the expectation on the right-hand side is taken with respect to the (possible) randomness
of the true response ytrue, and for notational clarity, we omit the dependence of ytrue on x. We
emphasize two points on this task definition: The uncertainty function g takes the prompt x and y
as its inputs. This implies (i) the true and predicted uncertainty score can and should depend on the
specific realization of the response y, not just x (Zhang et al., 2021; Kuhn et al., 2023), and (ii) the
uncertainty function g does not require the true response ytrue as the input.

We note that a significant body of literature explores uncertainty estimation and calibration in lan-
guage models (Zhou et al., 2023; Si et al., 2022; Xiao et al., 2022; Desai & Durrett, 2020). They
primarily focus on classification tasks where outputs are limited to a finite set of tokens (i.e., y con-
tains only one element). In contrast, our work extends this to allow free-form responses, and the
ability to handle variable-length outputs aligns more closely with current advancements in LLMs.

3 UNCERTAINTY ESTIMATION VIA SUPERVISED LEARNING

3.1 OVERVIEW OF SUPERVISED UNCERTAINTY ESTIMATION

We consider a supervised approach of learning the uncertainty function g : X × Y → [0, 1], which
is similar to the standard setting of uncertainty quantification for ML/deep learning models. First,
we start with a raw dataset of n samples

Draw = {(xi,yi,yi,true, s(yi,yi,true))}ni=1 .

Draw can be generated based on a labeled dataset for the tasks we consider. Here xi = (xi,1, ..., xi,ki)
and yi = (yi,1, ..., yi,mi) denote the prompt and the corresponding LLM’s response, respectively.
yi,true denotes the true response (that comes from the labeled dataset) of xi, and s(yi,yi,true) assigns
a score for the response yi based on the true answer yi,true.

The next is to formulate a supervised learning task based on Draw. Specifically, we construct
Dsl = {(vi, zi)}ni=1

where zi := s(yi,yi,true) ∈ [0, 1] denotes the target score to be predicted. The vector vi summarizes
useful features for the i-th sample based on (xi,yi). With this design, a supervised learning task on
the dataset Dsl coincides exactly with learning the uncertainty estimation task defined in (1).

Getting Features. When constructing vi, a natural implementation is to use the features of (x,y)
extracted from the LLM (denoted as target LLM) that generates the response y as done in Duan et al.
(2024) for hallucination detection and Burns et al. (2022) for discovering latent knowledge. This
method functions effectively with white-box LLMs where hidden activations are accessible. We
note that obtaining hidden layers’ activations merely requires an LLM and the prompt-response pair
(x,y), and the extra knowledge of uncertainty can come from the hidden layers of any white-box
LLM that takes as input the (x,y) pair, not necessarily from the target LLM.

Another note is that our goal is to measure the uncertainty of the input-output pair (x,y) using
the given metric, which is independent of the target LLM that generates the output from input x.
Therefore, due to the unique structure of LLMs, any white-box LLM can take (x,y) together as
input, allowing us to extract features from this white-box LLM (referred to as the tool LLM).

This observation has two implications: First, if the target LLM is a black-box one, we can rely on
a white-box tool LLM to extract feature; Second, even if the target LLM is a Which-box one, we
can also adopt a more powerful white-box tool LLM) that could potentially generate more useful
feature. In Algorithm 1, we present the algorithm of our pipeline that is applicable to target LLMs
of any type, and we provide an illustration of the algorithm pipeline in Figure 2.
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Algorithm 1 Supervised uncertainty estimation

Input: Target LLM pθ (the uncertainty of which is to be estimated), tool LLM qθ (used for uncer-
tainty estimation), a labeled training dataset D, a test sample with prompt x

1: %% Training phase:
2: Use pθ to generate responses for the samples in D and construct the dataset Draw
3: For each sample (xi,yi) ∈ Draw, extract features (hidden-layer activations, entropy- and

probability-related features) using the LLM qθ, and then construct the dataset Dsl
4: Train a supervised learning model ĝ that predicts zi with vi based on the dataset Dsl
5: %% Test phase:
6: Generate the response y for the test prompt x
7: Extract features v using qθ

Output: Associate the response y with the uncertainty score ĝ(v)

3.2 FEATURES FOR UNCERTAINTY ESTIMATION

A bunch of features that can be extracted from an LLM show a potential relationship to the mea-
surement of uncertainty in the literature. Here we categorize these features into two types based on
their sources:

White-box features: LLM’s hidden-layer activations. We feed (xi,yi) as input into the tool LLM,
and extract the corresponding hidden layers’ activations of the LLM.

Grey-box features: Entropy- or probability-related outputs. The entropy of a discrete distribution
p over the vocabulary V is defined by H(p) := −

∑
v∈V p(v) log (p(v)) . For a prompt-response

pair (x,y) = (x1, ..., xk, y1, ..., ym), we consider as the features the entropy at each token such
as H(qθ(·|x1, ..., xj−1)) and H(qθ(·|x, y1, ..., yj−1)) where qθ denotes the tool LLM. We defer the
detailed discussions on feature construction to Appendix D.

There can be other useful features such as asking the LLM “how certain it is about the response”
(Tian et al., 2023). We do not try to exhaust all the possibilities, and the aim of our paper is more
about formulating the uncertainty estimation for the LLMs as a supervised task and understanding
how the internal states of the LLM encode uncertainty. To the best of our knowledge, our paper
is the first one to do so. Specifically, the above formulation aims for the following two outcomes:
(i) an uncertainty model ĝ(vi) that predicts zi and (ii) knowing whether the hidden layers carry the
uncertainty information.

3.3 THREE REGIMES OF SUPERVISED UNCERTAINTY ESTIMATION

In Section 3.1, we present that our supervised uncertainty estimation method can be extended to a
black-box LLM by separating the target LLM and tool LLM. Next, we formally present our method
for white-box, grey-box, and black-box target LLMs.

White-box supervised uncertainty estimation (Wb-S): This Wb-S approach is applicable to a white-
box LLM where the tool LLM coincides with the target LLM (i.e., pθ = qθ).

Grey-box supervised uncertainty estimation (Gb-S): This Gb-S regime also uses the same target
and tool LLMs (pθ = qθ) and constructs the features only from the grey-box source, that is, those
features relying on the probability and the entropy (such as those in Table 5 in Appendix D), but it
ignores the hidden-layer activations.

Black-box supervised uncertainty estimation (Bb-S): The Bb-S regime does not assume the knowl-
edge of the parameters of pθ but still aims to estimate its uncertainty. To achieve this, it considers
another open-source LLM denoted by qθ. The original data Draw is generated by pθ but then the
uncertainty estimation data Dsl is constructed based on qθ from Draw as illustrated in the following
diagram

Draw
qθ−→ Dsl.

For example, for a prompt x, a black-box LLM pθ generates the response y. We utilize the open-
source LLM qθ to treat (x,y) jointly as a sequence of (prompt) tokens and extract the features of
hidden activations and entropy as in Section 3.2. In this way, we use qθ together with the learned
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uncertainty model from Dsl to estimate the uncertainty of responses generated from pθ which we do
not have any knowledge about.

4 INSIGHTS FOR THE ALGORITHM DESIGN

4.1 UNCERTAINTY ESTIMATION V.S. UNCERTAINTY CALIBRATION

So far in this paper, we focus on the uncertainty estimation task which aims to predict the quality of
the response to reveal whether the LLM makes mistakes in its response or not. There is a different but
related task known as the uncertainty calibration problem. In comparison, the uncertainty calibration
aims to ensure that the output from the uncertainty estimation model for (1) conveys a probabilistic
meaning. That is, g(x,y) is defined as the probability that y is true. This is compatible with our
method by replacing the quality s(y,ytrue) with 1 {y ∈ Ytrue}, where Ytrue is a set containing all the
possible true responses. Another aspect of the relation between our uncertainty estimation method
and uncertainty calibration is that our method can be followed by any recalibration methods for ML
models to form a pipeline for calibration. And intuitively, a better uncertainty estimation/prediction
will lead to a better-calibrated uncertainty model, which is also verified in our numerical experiments
in Appendix C.

4.2 WHY HIDDEN LAYERS AS FEATURES?

In this subsection, we provide a simple theoretical explanation for why the hidden activations of
the LLM can be useful in uncertainty estimation. Consider a binary classification task where the
features X ∈ Rd and the label Y ∈ {0, 1} are drawn from a distribution P. We aim to learn a model
f : Rd → [0, 1] that predicts the label Y from the feature vector X , and the learning of the model
employs a loss function l(·, ·) : [0, 1]× [0, 1] → R.
Proposition 4.1. Let F be the class of measurable function that maps from Rd to [0, 1]. Under the
cross-entropy loss l(y, ŷ) = y log(ŷ) + (1− y) log(1− ŷ), the function f∗ that minimizes the loss

f∗ = argmin
f∈F

E [l(Y, f(X))]

is the Bayes optimal classifier f∗(x) = P(Y = 1|X = x) where the expectation and the probability
are taken with respect to (X, Y ) ∼ P. Moreover, the following conditional independence holds

Y ⊥ X | f∗(X).

The proposition is not technical and it can be easily proved by using the structure of f∗(X) so
we refer the proof to Berger (2013). It states a nice property of the cross-entropy loss that the
function learned under the cross-entropy loss coincides with the Bayes optimal classifier. Note that
this is contingent on two requirements. First, the function class F is the measurable function class.
Second, it requires the function f∗ learned through the population loss rather than the empirical
loss/risk. The proposition also states one step further on conditional independence Y ⊥ X | f∗(X).
This means all the information related to the label Y that is contained in X is summarized in the
prediction function f∗. This intuition suggests that for classic uncertainty estimation problems, when
a prediction model f̂ : Rd → [0, 1] is well-trained, the predicted score f̂(X) should capture all the
information about the true label Y contained in the features X , without relying on the features of
X . This indeed explains why the classic uncertainty estimation and calibration methods only work
with the predicted score f̂(X) for re-calibration, including Platt scaling (Platt et al., 1999), isotonic
regression (Zadrozny & Elkan, 2002), temperature scaling (Guo et al., 2017), etc.

When it comes to uncertainty estimation for LLMs, which is different from calibration and LLMs’
structure is much more complex, we will no longer have conditional independence, and that requires
additional procedures to retrieve more information on Y . The following supporting corollary states
that when the underlying loss function l̃ does not possess this nice property (the Bayes classifier
minimizes the loss point-wise) of the cross-entropy loss, the conditional independence will collapse.

Corollary 4.2. Suppose the loss function l̃ satisfies

P

(
f∗(x) ̸= argmin

ỹ∈[0,1]

E
[
l̃(Y, ỹ)|X = x

])
> 0,

6
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where f∗ is defined as Proposition 4.1, then for the function f̃ = argminf∈F E
[
l̃(Y, f(X))

]
,

where the expectation is with respect to (X, Y ) ∼ P, there exists a distribution P such that the
conditional independence no longer holds

Y ̸⊥ X | f̃(X).

Proposition 4.1 and Corollary 4.2 together illustrate the difference between uncertainty estimation
for a traditional ML model and that for LLMs. In this task, the output f̃(X) of the model (traditional
ML model or LLM) is restricted in [0,1] to indicate the confidence of Y = 1. For the traditional
ML models, the cross-entropy loss, which is commonly used for training the model, is aligned
toward the uncertainty calibration objective. When it comes to uncertainty estimation for LLMs,
the objective can be different from calibration, and the LLMs are often pretrained with some other
loss functions (for example, the negative log-likelihood loss for next-token prediction) on diverse
language tasks besides binary classifications. These factors cause a misalignment between the model
pre-training and the uncertainty estimation task. Consequently, the original features (e.g., the output
logits) may and should (in theory) contain information about the uncertainty score Y that cannot
be fully captured by f̃(X). This justifies why we formulate the uncertainty estimation task as the
previous subsection and take the hidden-layer activations as features to predict the uncertainty score;
it also explains why we do not see much similar treatment in the mainstream uncertainty estimation
literature (Kuhn et al., 2023; Manakul et al., 2023; Tian et al., 2023).

5 NUMERIAL EXPERIMENTS AND FINDINGS

5.1 LLMS, TASKS, BENCHMARKS, AND PERFORMANCE METRICS

Here we outline the general setup of the numerical experiments. Certain tasks may deviate from the
general setup, and we will detail the specific adjustments as needed.

LLMs. For our numerical experiments, we mainly consider three open-source LLMs, LLaMA2-
7B (L-7B) (Touvron et al., 2023), LLaMA3-8B (L-8B)(AI@Meta, 2024) and Gemma-7B (G-7B)
(Gemma Team et al., 2024) as pθ defined in Section 2. For certain experiments, we also employ the
models of LLaMA2-13B and Gemma-2B. We also use their respective tokenizers as provided by
Hugging Face. We do not change the parameters/weights θ of these LLMs.

Tasks and Datasets. We mainly consider three tasks for uncertainty estimation, question answer-
ing (the CoQA and TriviaQA (Joshi et al., 2017) datasets), multiple choice (the MMLU dataset
(Hendrycks et al., 2020)), and machine translation (the WMT 2014 dataset (Bojar et al., 2014)). All
the labeled datasets for these tasks are in the form of {(xi,yi,true)}ni=1 where xi can be viewed as
the prompt for the i-th sample and yi,true the true response. We adopt the few-shot prompting when
generating the LLM’s response yi, and we use 5 examples in the prompt of the multiple-choice task
and 3 examples for the remaining natural language generation tasks. This enables the LLM’s in-
context learning ability (Radford et al., 2019; Zhang et al., 2023) and ensures the LLM’s responses
are in a desirable format. We defer more details of the few-shot prompting to Appendix D.1.

Benchmarks. We compare our approach with a number of the state-of-the-art benchmarks for the
problem. Manakul et al. (2023) give a comprehensive survey of the existing methods and compare
four distinct measures for predicting sentence generation uncertainty. The measures are based on
either the maximum or average values of entropy or probability across the sentence, including Max
Likelihood, Avg Likelihood, Max Ent, and Avg Ent (denoted as MaxL, AvgL, MaxE, AvgE) defined
in Table 5. We note that each of these measures can be applied as a single uncertainty estimator, and
they are all applied in an unsupervised manner that does not require additional supervised training.
In particular, in applying these measures for the MMLU dataset, since the answer only contains one
token from {A, B, C, D}, we use the probabilities and the entropy (over these four tokens) as the
benchmarks which represent the probability of the most likely choice and the entropy of all choices,
respectively. Kuhn et al. (2023) generate multiple answers, compute their entropy in a semantic
sense, and define the quantity as semantic entropy. This semantic-entropy uncertainty (SU) thus can
be used as an uncertainty estimator for the LLM’s responses. Tian et al. (2023) propose the approach
of asking the LLM for its confidence (denoted as A4U) which directly obtains the uncertainty score
from the LLM itself.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Our methods. We follow the discussions in Section 3.3 and implement three versions of our pro-
posed supervised approach: black-box supervised (Bb-S), grey-box supervised (Gb-S), and white-
box supervised (Wb-S). These models have the same pipeline of training the uncertainty estimation
model and the difference is only on the availability of the LLM. For the Bb-S method, we use the
Gemma-7B as the model qθ to evaluate the uncertainty of LLaMA2-7B/LLaMA3-8B pθ (treated as
a black-box), and reversely, use LLaMA2-7B to evaluate Gemma-7B. The supervised uncertainty
model ĝ is trained based on the random forest model (Breiman, 2001). Details on the feature con-
struction and the training of the random forest model are deferred to Appendix D.2.

Performance metrics. For the model evaluation, we follow Filos et al. (2019); Kuhn et al. (2023)
and compare the performance of our methods against the benchmark using the generated uncertainty
score to predict whether the answer is correct. The area under the receiver operator characteristic
curve (AUROC) metric is employed to measure the performance of the uncertainty estimation. As
noted in Section 4.1, AUROC works as a good metric for uncertainty estimation whereas for uncer-
tainty calibration, we follow the more standard calibration metrics and present the results in Section
C.

5.2 PERFORMANCE OF UNCERTAINTY ESTIMATION

5.2.1 QUESTION ANSWERING AND MACHINE TRANSLATION

The question answering and machine translation tasks can all be viewed as natural language genera-
tion tasks so we present their results together. Table 1 summarizes the three versions of our proposed
supervised method against the existing benchmarks in terms of AUROC.

Table 1: Out-of-sample AUROC performance for benchmarks and our methods on natural language
generation tasks.

Dataset LLM Benchmarks Ours
MaxL AvgL MaxE AvgE SU A4C Bb-S Gb-S Wb-S

TriviaQA
G-7B 0.857 0.862 0.849 0.854 0.847 0.534 0.879 0.866 0.882
L-7B 0.565 0.761 0.761 0.773 0.678 0.526 0.925 0.811 0.897
L-8B 0.838 0.851 0.849 0.853 0.826 0.571 0.843 0.861 0.874

CoQA
G-7B 0.710 0.708 0.725 0.708 0.674 0.515 0.737 0.737 0.762
L-7B 0.535 0.600 0.603 0.580 0.541 0.502 0.848 0.667 0.807
L-8B 0.692 0.697 0.716 0.699 0.684 0.506 0.745 0.737 0.769

WMT-14
G-7B 0.668 0.589 0.637 0.811 0.572 0.596 0.863 0.829 0.855
L-7B 0.606 0.712 0.583 0.711 0.513 0.506 0.792 0.724 0.779
L-8B 0.554 0.685 0.616 0.729 0.510 0.502 0.700 0.724 0.745

We make several remarks on the numerical results. First, our methods generally have a better per-
formance than the existing benchmarks. Note that the existing benchmarks are mainly unsupervised
and based on one single score, and also that our method proceeds with the most standard pipeline
for supervised training of an uncertainty estimation model. The advantage of our method should
be attributed to the supervised nature and the labeled dataset. While these unsupervised benchmark
methods can work in a larger scope than these NLP tasks (though they have not been extensively
tested on open questions yet), our methods rely on the labeled dataset. But in addition to these
better numbers, the experiment results show the potential of labeled datasets for understanding the
uncertainty in LLM’s responses. In particular, our method Gb-S uses features including the bench-
mark methods, and it shows that some minor supervised training can improve a lot upon the ad-hoc
uncertainty estimation based on one single score such as MaxL or MaxE.

Second, our method Wb-S has a clear advantage over our method Gb-S. Note that these two methods
differ in that the Wb-S uses the hidden activations while the Gb-S only uses probability-related (and
entropy-related) features. This implies that the hidden activations do contain uncertainty information
which we will investigate more in Appendix B. Also, we note from the table that there is no single
unsupervised grey-box method (under the Benchmarks columns) that consistently surpasses others
across different datasets/NLP tasks. For example, among all these unsupervised benchmark methods
for grey-box LLMs, AvgE emerges as a top-performing one for the Gemma-7B model when applied
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to the machine translation task, but it shows the poorest performance for the same Gemma-7B model
when tested on the question-answering CoQA dataset. This inconsistency highlights some caveats
when using the unsupervised approach for uncertainty estimation of LLMs.

Lastly, we note that the Bb-S method has a similar or even better performance as the Wb-S method.
As discussed in Section 3.3, the performance of uncertainty estimation relies on the LLM that we
use to evaluate the prompt-response pair. Therefore, it is not surprising to see that in the question-
answering task, for answers generated by LLaMA2-7B, Bb-S features better uncertainty estimation
than Wb-S, possibly because Gemma-7B, the LLM that is used as the “tool LLM” in Algorithm 1,
encodes better knowledge about the uncertainty of the answers than LLaMA-7B. We also note that
the performance of Bb-S is not always as good as Wb-S, and we hypothesize that it is because LLMs’
output distribution differs, which could result in evaluating the uncertainty of different answers.
Despite these inconsistencies, the performance of Bb-S is still strong, and these results point to a
potential future avenue for estimating the uncertainty of closed-source LLMs.

5.2.2 MULTIPLE CHOICE (MMLU)

Table 2 presents the performance of our methods against the benchmark methods on the MMLU
dataset. For this multiple choice task, the output is from {A,B,C,D} which bears no semantic mean-
ing, and therefore we do not include the Semantic Uncertainty (SU) as Table 1. The results show the
advantage of our proposed supervised approach, consistent with the previous findings in Table 1.

Table 2: Out-of-sample AUROC performance for benchmarks and our methods on the MMLU
dataset. The column Probability represents using the probability of the most likely choice as the
uncertainty metric. The column Entropy represents the entropy of the distribution over the choices.

Model Benchmarks Ours
Probability Entropy A4C Bb-S Gb-S Wb-S

Gemma-7B 0.712 0.742 0.582 0.765 0.776 0.833
LLaMA2-7B 0.698 0.693 0.514 0.732 0.698 0.719
LLaMA3-8B 0.781 0.791 0.516 0.766 0.793 0.830

We defer more numerical experiments and visualization to Appendices B and C where we investigate
more on (i) the effect of the choice of layers; (ii) the scale of the LLMs used; (iii) the uncertainty
neurons of the LLMs; and (iv) the calibration performance.

5.3 TRANSFERABILITY

In this subsection, we evaluate the robustness of our methods under the OOD setting.

Setup for the OOD multiple-choice task. We split the MMLU datasets into two groups based
on the subjects: Group 1 contains questions from the first 40 subjects while Group 2 contains the
remaining 17 subjects, such that the test dataset size of each group is similar (around 600 questions).
Note that these 57 subjects span a diverse range of topics, and this means the training and test set
can be very different. To test the OOD robustness, we train the proposed methods on one group and
evaluate the performance on the other group.

Setup for the OOD question-answering task. For the QA task, since we have two datasets (CoQA
and TriviaQA), we train the supervised model on either the TriviaQA or CoQA dataset and then eval-
uate its performance on the other dataset. While both datasets are for question-answering purposes,
they diverge notably in two key aspects: (i) CoQA prioritizes assessing the LLM’s comprehension
through the discernment of correct responses within extensive contextual passages, while TriviaQA
focuses on evaluating the model’s recall of factual knowledge. (ii) TriviaQA typically contains an-
swers comprising single words or short phrases, while CoQA includes responses of varying lengths,
ranging from shorter to more extensive answers.

Table 3 summarizes the performance of these OOD experiments. As expected, for all the methods,
there is a slight drop in terms of performance compared to the in-distribution setting (reported by
the numbers in the parentheses in the table). We make the following observations based on the
experiment results. First, based on the performance gap between in-distribution and OOD evalua-
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Table 3: Transferability of the trained uncertainty estimation model across different groups of sub-
jects in MMLU and question-answering datasets. For our proposed Bb-S, Gb-S, and Wb-S methods,
values within the parentheses (·) represent the AUROCs where the uncertainty estimation model is
trained and tested on the same group of subjects or dataset, while values outside the parentheses rep-
resent models trained on another group of subjects or dataset. The Best GB and Best BB columns
refer to the best AUROC achieved by the unsupervised grey-box benchmarks and black-box bench-
marks (fully listed in Table 1 and Table 2), respectively.

LLMs Test data Ours Best of benchmarks
Bb-S Gb-S Wb-S Best GB Best BB

Transferability in MMLU

G-7B Group 1 0.756(0.768) 0.793(0.799) 0.846(0.854) 0.765 0.538
Group 2 0.738(0.760) 0.755(0.754) 0.804(0.807) 0.721 0.616

L-7B Group 1 0.733(0.749) 0.715(0.713) 0.726(0.751) 0.719 0.504
Group 2 0.700(0.714) 0.676(0.677) 0.685(0.692) 0.679 0.529

L-8B Group 1 0.763(0.773) 0.796(0.795) 0.836(0.839) 0.799 0.524
Group 2 0.729(0.761) 0.786(0.785) 0.794(0.818) 0.782 0.507

Transferability in Question-Answering Datasets

G-7B TriviaQA 0.842(0.879) 0.861(0.866) 0.861(0.882) 0.862 0.847
CoQA 0.702(0.737) 0.722(0.737) 0.730(0.762) 0.725 0.674

L-7B TriviaQA 0.917(0.925) 0.801(0.811) 0.881(0.897) 0.773 0.678
CoQA 0.825(0.848) 0.623(0.667) 0.764(0.807) 0.603 0.541

L-8B TriviaQA 0.813(0.843) 0.859(0.861) 0.863(0.874) 0.853 0.826
CoQA 0.710(0.745) 0.714(0.737) 0.725(0.769) 0.716 0.684

tion, it is evident that although incorporating white-box features such as hidden activations makes
the model more susceptible to performance decreases on OOD tasks, these features also enhance
the uncertainty estimation model’s overall capacity, and the benefits outweigh the drawbacks. It is
also noteworthy that even in these scenarios of OOD, our Wb-S and Bb-S method almost consis-
tently outperform corresponding benchmarks. Overall, the robustness of our methods shows that the
hidden layers’ activations within the LLM exhibit similar patterns in encoding uncertainty informa-
tion to some extent. The performance drop (from in-distribution to OOD) observed in the MMLU
dataset is notably less than that in the question-answering dataset, which may stem from the larger
disparity between the CoQA and TriviaQA datasets compared to that between two distinct groups
of subjects within the same MMLU dataset. This suggests that in cases of significant distributional
shifts, re-training or re-calibrating the uncertainty estimation model using test data may be helpful.

6 CONCLUSIONS

In this paper, we study the problem of uncertainty estimation and calibration for LLMs. We follow
a simple and standard supervised idea and use the labeled NLP datasets to train an uncertainty
estimation model for LLMs. Our finding is that, first, the proposed supervised methods have better
performances than the existing unsupervised methods. Second, the hidden activations of the LLMs
contain uncertainty information about the LLMs’ responses. Third, the black-box regime of our
approach (Bb-S) provides a new approach to estimating the uncertainty of closed-source LLMs.
Lastly, we distinguish the task of uncertainty estimation from uncertainty calibration and show that
a better uncertainty estimation model leads to better calibration performance. One limitation of our
proposed supervised method is that it critically relies on the labeled data. For the scope of our paper,
we restrict the discussion to the NLP tasks and datasets. One future direction is to utilize the human-
annotated data for LLMs’ responses to train a supervised uncertainty estimation model for open-
question prompts. We believe the findings that the supervised method gives a better performance
and the hidden activations contain the uncertainty information will persist.
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A MORE RELATED LITERATURE

Hallucination detection. Recently, there is a trend of adopting uncertainty estimation approaches
for hallucination detection. The rationale is that the information of the value of logits and the hid-
den states contain some of the LLMs’ beliefs about the trustworthiness of its generated output. By
taking the activations of hidden layers as input, Azaria & Mitchell (2023) train a classifier to predict
hallucinations, and Verma et al. (2023) develop epistemic neural networks aimed at reducing hal-
lucinations. Slobodkin et al. (2023) demonstrate that the information from hidden layers of LLMs’
output can indicate the answerability of an input query, providing indirect insights into hallucination
occurrences. Chen et al. (2024) develop an unsupervised metric that leverages the internal states
of LLMs to perform hallucination detection. More related works on hallucination detection can be
found in CH-Wang et al. (2023); Duan et al. (2024); Xu et al. (2024). While there is a lack of a
rigorous definition of hallucination, and its definition varies in the above-mentioned literature, the
uncertainty estimation problem can be well defined, and our results on uncertainty estimation can
also help the task of hallucination detection.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Leveraging LLMs’ hidden activation. The exploration of hidden states within LLMs has been
studied to better understand LLMs’ behavior. Mielke et al. (2022) improve the linguistic calibration
performance of a controllable chit-chat model by fine-tuning it using a calibrator trained on the
hidden states, Burns et al. (2022) utilizes hidden activations in an unsupervised way to represent
knowledge about the trustfulness of their outputs. Liu et al. (2023) show that LLMs’ linguistic
outputs and their internal states can offer conflicting information about truthfulness, and determining
whether outputs or internal states are more reliable sources of information often varies from one
scenario to another. By taking the activations of hidden layers as input, Ahdritz et al. (2024) employ
a linear probe to show that hidden layers’ information from LLMs can be used to differentiate
between epistemic and aleatoric uncertainty. Duan et al. (2024) experimentally reveal the variations
in hidden layers’ activations when LLMs generate true versus false responses in their hallucination
detection task. Lastly, Li et al. (2024) enhance the truthfulness of LLMs during inference time by
adjusting the hidden activations’ values in specific directions.

We also remark on the following two aspects:

• Fine-tuning: For all the numerical experiments in this paper, we do not perform any fine-
tuning with respect to the underlying LLMs. While the fine-tuning procedure generally
boosts the LLMs’ performance on a downstream task, our methods can still be applied for
a fine-tuned LLM, which we leave as future work.

• Hallucination: The hallucination problem has been widely studied in the LLM literature.
Yet, as mentioned earlier, it seems there is no consensus on a rigorous definition of what hal-
lucination refers to in the context of LLMs. For example, when an image classifier wrongly
classifies a cat image as a dog, we do not say the image classifier hallucinates, then why
or when we should say the LLMs hallucinate when they make a mistake? Comparatively,
the uncertainty estimation problem is more well-defined, and we provide a mathematical
formulation for the uncertainty estimation task for LLMs. Also, we believe our results
on uncertainty estimation can also help with a better understanding of the hallucination
phenomenon and tasks such as hallucination detection.

B INTERPRETING THE UNCERTAINTY ESTIMATION

Now we use some visualizations to provide insights into the working mechanism of the uncertainty
estimation procedure for LLMs and to better understand the experiment results in the previous sub-
section.

B.1 LAYER COMPARISON

For general LLMs, each token is associated with a relatively large number of hidden layers (32 layers
for LLaMA2-7B for example), each of which is represented by high-dimensional vectors (4096 for
LLaMA2-7B). Thus it is generally not a good practice to incorporate all hidden layers as features
for the uncertainty estimation due to this dimensionality. Previous works find that the middle layer
and the last layer activations of the LLM’s last token contain the most useful features for supervised
learning (Burns et al., 2022; Chen et al., 2024; Ahdritz et al., 2024; Azaria & Mitchell, 2023).
To investigate the layer-wise effect for uncertainty estimation, we implement our Wb-S method
with features different in two aspects: (i) different layers within the LLM architecture, specifically
focusing on the middle and last layers (e.g., LLaMA2-7B and LLaMA3-8B: 16th and 32nd layers
out of 32 layers with 4096 dimensions; Gemma-7B: 14th and 28th layers out of 28 layers with
3072 dimensions); and (ii) position of token activations, including averaging hidden activations
over all the prompt/answer tokens or utilizing the hidden activation of the last token. The second
aspect makes sense when the output contains more than one token, so we conduct this experiment
on the natural language generation tasks only. Figure 3 gives a visualization of the comparison
result. While the performances of these different feature extraction ways are quite similar in terms
of performance across different tasks and LLMs, activation features from the middle layer generally
perform better than the last layer. This may come from the fact that the last layer focuses more on
the generation of the next token instead of summarizing information of the whole sentence, as has
been discussed by Azaria & Mitchell (2023).
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Figure 3: Performance comparison of using hidden activations from different tokens and layers as
features in the Wb-S method. The bars filled with ‘/’ and ‘.’ represent the activations averaged over
the answer tokens and the hidden activation of the last token, respectively. And the green and orange
bars denote the activations from the middle and the last layer, respectively.

B.2 SCALING EFFECT

In Figure 4, we investigate whether hidden activations from larger LLMs enhance our uncertainty
estimation method. For a fair comparison, we fix the target LLM that generates the output in Algo-
rithm 1 and vary the tool LLM used for analysis. For example, in the left plot of Figure 4, we use
Gemma-7B to generate the outputs, and LLaMA2-7B, LLaMA2-13B, and Gemma-7B to perform
uncertainty estimation.
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Figure 4: (Left) Using the hidden activations of LLaMA2-7B and LLaMA2-13B to estimate the un-
certainty of the answer provided by Gemma-7B. (Middle) Using the hidden activations of Gemma-
2B and Gemma-7B to estimate the uncertainty of the answer provided by LLaMA2-7B. (Right)
Using the hidden activations of Gemma-2B and Gemma-7B to estimate the uncertainty of the an-
swer provided by LLaMA3-8B

We find that larger LLM does encode better knowledge about the uncertainty, which is attributed
to their improved knowledge in answering the questions. We also note that in the case of using
Gemma to predict LLaMA2-7B, even a small tool LLM (Gemma-2B) is capable of achieving better
performance than the Gb-S that only uses the entropy- and probability-related features from the
target LLM. This result also underscores the benefits of adopting the internal state in estimating the
uncertainty, even from an LLM different from the one generating the answers.

B.3 HISTOGRAM OF CORRELATIONS

Figure 5 plots the histograms of the pairwise correlations between the neuron activations and the
labels (whether the LLM’s response is correct). We make two observations here: First, for both
LLMs, some neurons have a significantly positive (or negative) correlation with the label. We can
interpret these neurons as the uncertainty neuron for the corresponding task. When these neurons are
activated, the LLMs are uncertain about their responses. Second, Gemma-7B and LLaMA3-8B have
more significant neurons than LLaMA2-7B, and this is consistent with the better performance of
Gemma-7B and LLaMA3-8B in Table 1 and Table 2. Also, this reinforces that the hidden activations
of the LLMs contain uncertainty information about the LLM’s output.
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Figure 5: The histograms of the pairwise correlations on the TriviaQA task between the neuron
activations and the labels (whether the LLM’s response is correct), where the neural values are the
last-token hidden activations of answers from the middle layer (upper) and the last layer (lower) of
two models respectively.

Figure 6 plots some example neurons’ activation by selecting the neurons with the largest absolute
correlations in Figure 5. More neurons from the last layer can be found in Figure 7. These neurons as
an individual indicator exhibit different distributional patterns when the response is correct compared
to when the response is incorrect, and thus reflect the uncertainty of the LLM’s responses.

B.4 PROOF OF PROPOSITION 4.1

The proof of Proposition 4.1 follows from the definition of f∗.

C CALIBRATION PERFORMANCE

In Section 4.1, we distinguish the two tasks of uncertainty estimation and uncertainty calibration.
Throughout the paper, we have been focused on improving the performance on the task of uncer-
tainty estimation – to predict when the LLM is uncertain about its response. Generally, a better
uncertainty estimation model leads to one with better calibration performance. The calibration (or
recalibration) of the uncertainty estimation model can be indeed reduced to the classic ML setting
which does not involve the LLM. Table 4 gives the calibration performance and we see an advan-
tage of our supervised methods over benchmark methods consistent with the AUROC performance
in Table 1. We adopt the histogram binning method here because we find that the temperature scal-
ing method and the Platt scaling method will give all predicted scores concentrated within a small
range such as [0.2, 0.6]. We also do not exclude the possibility that the other calibration methods can
give even better performance. The point to make here is that uncertainty estimation and uncertainty
calibration are two closely related tasks. Note that (i) a better uncertainty estimation model leads to
a better calibration performance and (ii) the LLMs are pretrained and not designed for these NLP
tasks in the first place (see Section 4.2) so that there is no uncertainty score readily available (as the
predicted probabilities for the image classifiers); we emphasize the importance of an extra uncer-
tainty estimation procedure as our supervised one so to extract the uncertainty information from the
inside of the LLMs.
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Figure 6: Distribution of values from particular neurons of mid-layers on TriviaQA dataset.

D DETAILS FOR THE NUMERICAL EXPERIMENTS

We ran all of our experiments on an AMD EPYC 7452 128-core processor with 4×48G NVIDIA
A6000 GPUs.

D.1 DATASET PREPARATION

In the following we provide more information for the three tasks considered in our numerical exper-
iments.

• Question answering. We follow Kuhn et al. (2023) and use the CoQA and TriviaQA (Joshi
et al., 2017) datasets. The CoQA task requires the LLM to answer questions by under-
standing the provided text, and the TriviaQA requires the LLM to answer questions based
on its pre-training knowledge. We adopt the scoring function s(·, ·) as Rouge-1 (Lin & Och,
2004b) and label a response yi as correct if s(yi,yi,true) ≥ 0.3 and incorrect otherwise.

• Multiple choice. We consider the Massive Multitask Language Understanding (MMLU)
dataset (Hendrycks et al., 2020), a collection of 15,858 questions covering 57 subjects
across STEM. Due to the special structure of the dataset, the generated output yi and the
correct answer ytrue,i ∈ {A, B, C, D}. Therefore, this task can also be regarded as a clas-
sification problem for the LLM by answering the question with one of the four candidate
choices.

• Machine translation. We consider the WMT 2014 dataset (Bojar et al., 2014) for estimating
LLM’s uncertainty on the machine translation task. The scoring function s(·, ·) is chosen
to be the BLEU score (Papineni et al., 2002; Lin & Och, 2004a) and the generated answer
yi is labeled as correct if s(yi,yi,true) > 0.3 and incorrect otherwise.
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Figure 7: More distribution of values from specific neurons of last layers on the TriviaQA dataset.
The plots are obtained in the same way as Figure 6.
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Table 4: Calibration performance on natural language generation tasks after histogram binning. The
base models are from Table 1. The original uncertainty scores from the base models are first scaled
into [0, 1] and then a histogram binning is performed with 20 bins of equal length.

Metric Dataset Model Benchmarks Ours
MaxL AvgL MaxE AvgE SU A4C Bb-S Gb-S Wb-S

NLL

TriviaQA
G-7B 0.478 0.500 0.428 0.472 0.739 8.710 0.414 0.467 0.392
L-7B 1.155 0.551 0.575 0.600 1.481 21.119 0.338 0.580 0.388
L-8B 0.483 0.407 0.383 0.401 0.719 8.515 0.423 0.467 0.365

CoQA
G-7B 0.778 0.474 0.469 0.476 0.632 8.106 0.474 0.497 0.457
L-7B 1.047 0.620 0.637 0.649 1.358 11.708 0.417 0.607 0.457
L-8B 0.823 0.502 0.508 0.499 0.762 8.007 0.551 0.535 0.507

WMT-14
G-7B 9.674 1.266 0.809 0.618 0.701 17.933 0.454 0.463 0.449
L-7B 1.204 1.150 0.718 0.809 0.796 16.913 0.553 0.622 0.583
L-8B 1.490 0.752 0.652 0.676 0.722 21.340 0.649 0.673 0.612

ECE

TriviaQA
G-7B 0.152 0.138 0.066 0.115 0.275 0.253 0.056 0.075 0.067
L-7B 0.437 0.068 0.048 0.146 0.188 0.616 0.043 0.087 0.049
L-8B 0.171 0.082 0.046 0.081 0.196 0.283 0.107 0.087 0.075

CoQA
G-7B 0.356 0.054 0.112 0.064 0.221 0.237 0.121 0.129 0.113
L-7B 0.397 0.065 0.105 0.073 0.174 0.494 0.052 0.071 0.038
L-8B 0.339 0.031 0.071 0.033 0.196 0.312 0.156 0.110 0.122

WMT-14
G-7B 0.499 0.464 0.234 0.197 0.072 0.521 0.097 0.063 0.073
L-7B 0.164 0.389 0.065 0.269 0.127 0.491 0.045 0.090 0.101
L-8B 0.318 0.192 0.051 0.142 0.029 0.618 0.145 0.201 0.137

Brier

TriviaQA
G-7B 0.282 0.221 0.224 0.215 0.344 0.279 0.266 0.288 0.282
L-7B 0.431 0.241 0.271 0.259 0.322 0.645 0.334 0.322 0.315
L-8B 0.262 0.192 0.204 0.188 0.291 0.373 0.258 0.265 0.255

CoQA
G-7B 0.318 0.174 0.188 0.171 0.232 0.241 0.207 0.218 0.212
L-7B 0.395 0.233 0.242 0.230 0.265 0.464 0.296 0.256 0.276
L-8B 0.338 0.197 0.201 0.191 0.255 0.359 0.258 0.242 0.248

WMT-14
G-7B 0.505 0.454 0.330 0.319 0.247 0.606 0.327 0.287 0.309
L-7B 0.313 0.413 0.271 0.334 0.275 0.502 0.296 0.277 0.288
L-8B 0.343 0.279 0.250 0.263 0.246 0.620 0.282 0.300 0.284

Prompt dataset generation. For all the tasks studied in this paper, we adopt the few-shot prompt-
ing for the LLM. Specifically, in the prompt, we provide r examples to make the LLM learn the
format of the response, as illustrated in the following. For the question-answering task, we construct
the prompt without using any question-answering sample repeatedly in the original dataset. For ex-
ample, Prompt 1 includes the 1st to r-th question-answering samples in the original dataset as the
examples and the (r+1)-th sample as the target question-answering pair for the LLM; next, Prompt
2 uses the (r+2)-th to (2r+1)-th samples as the examples and the (2r+2)-th sample as the target
question-answering pair. However, as the test datasets of MMLU and WMT used for evaluation are
not sufficiently large, we generate the prompt in a convolution-like manner: Prompt 2 includes the
2nd to (r+1)-th question-answering samples as the examples and the (r+2)-th sample as the target
question-answering pair.

Dataset split. After generating the prompt-answering dataset, we split this dataset into two parts for
training the calibration model and evaluation/test. For the MMLU and WMT datasets, we take the
dataset generated from the original validation/test dataset. For the question-answering task, as the
answer of TriviaQA in the original test dataset is vacant, we take the first 2000 generated prompt-
answering pairs from the training dataset as the test dataset, and the remaining for training.

Prompting format. Here we give the different prompting templates used for different tasks. We use
few-shot prompting and the templates can always be roughly divided into four parts: introduction
(empty only for WMT), examples, question, and answer, where examples are just r distinct question-
answer pairs in the same form as the question and answer parts. We feed the model with the template
string except for the reference answer as inputs.
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COQA
Reading the passage and answer given questions accordingly.
Passage: {a passage in COQA}
Examples:
{r distinct QA pairs related to the given passage}
Q: {a new question related to the given passage}
A: {reference answer}

TriviaQA
Answer the question as following examples.
Examples:
{r distinct QA pairs}
Q: {a new question}
A: {reference answer}

MMLU
You would be given a multiple-choice question paired with
4 choices (A-D). Choose one of them using letter A, B, C,
or D as the correct answer to the question. Here are some
examples:
{r distinct QA pairs}
Now answer the question:
{a new question}
A: {answer sentence A}
B: {answer sentence B}
C: {answer sentence C}
D: {answer sentence D}
Answer: {reference answer (a letter)}

WMT
{r distinct QA pairs}
Q: What is the English translation of the following
sentence? {a French sentence}
A: {reference answer (an English sentence)}

D.2 DETAILS OF THE TRAINING PROCEDURE

For the three regimes of our supervised approach presented in Section 3.3, the details of the super-
vised training procedure are as below:

Gb-S. For the natural language generation tasks (question-answering and machine-translation), we
train a random forest model with the input features listed in Table 5 (20 features in total). For the
multiple-choice task, as the answer has only one token from {A, B, C, D}, we take the output logits
of these 4 tokens (denoted as αA, αB, αC, and αD) after inputting the question prompt x to the LLM.
Then, we get the probability of each choice as follows:

pθ(y|x) =
exp(αy)∑

y′∈{A,B,C,D} exp(αy′)
, ∀y ∈ {A,B,C,D}.

Then we use 5 features as the input to Gb-S: the entropy of this distribution, and the sorted proba-
bility values in descending order.

Wb-S. The dimension of a hidden layer from LM is typically high (e.g., 4096 for LLaMA2-7B),
which may prevent the calibration model from capturing the effective uncertainty information re-
vealed from the activations, especially with limited training samples. Thus, before training a model,
we do the feature selection first. We maintain all the features used in the Gb-S and select another 300
features (neural nodes): (i) We use all the features to train a Lasso model and select 100 neural nodes
with the highest absolute coefficient values; (ii) By calculating the mutual information between any
neural node and the label (correct or not), we select another 100 features possessing top absolute
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Table 5: Grey-box features used for the supervised task of uncertainty estimation for LLMs.

Name Features from the response/answer Features from the prompt/question

Max Ent maxj∈{1,...,m} H(pθ(·|x,y1:j−1)) maxj∈{1,...,n} H(pθ(·|x1:j−1))
Min Ent minj∈{1,...,m} H(pθ(·|x,y1:j−1)) minj∈{1,...,n} H(pθ(·|x1:j−1))
Avg Ent 1

m

∑m
j=1 H(pθ(·|x,y1:j−1))

1
n

∑n
j=1 H(pθ(·|x1:j−1))

Std Ent
√∑m

j=1(H(pθ(·|x,y1:j−1))−Avg Ent)2

m−1

√∑n
j=1(H(pθ(·|x1:j−1))−Avg Ent)2

n−1

Max Likelihood maxj∈{1,...,m} − log pθ(yj |x,y1:j−1) maxj∈{1,...,n} − log pθ(xj |x1:j−1)
Min Likelihood minj∈{1,...,m} − log pθ(yj |x,y1:j−1) minj∈{1,...,n} − log pθ(xj |x1:j−1)
Avg Likelihood 1

m

∑m
j=1 − log pθ(yj |x,y1:j−1)

1
n

∑n
j=1 − log pθ(xj |x1:j−1)

Std Likelihood
√∑m

j=1(− log pθ(yj |x,y1:j−1)−Avg Likelihood)2

m−1

√∑n
j=1(− log pθ(xj |x1:j−1)−Avg Likelihood)2

n−1

Avg Prob 1
m

∑m
j=1 pθ(yj |x,y1:j−1)

1
n

∑n
j=1 pθ(xj |x1:j−1)

Std Prob
√∑m

j=1(pθ(yj |x,y1:j−1)−Avg Prob)2

m−1

√∑n
j=1(pθ(xj |x1:j−1)−Avg Prob)2

n−1

mutual information; (iii) We select another 100 features with top absolute Pearson correlation coef-
ficient. After the feature selection, we train a random forest model to predict whether the response
is correct based on the selected features.

In the experiment section of the main text, the features in the Wb-S for natural language generation
tasks include (i) all the features used in the Gb-S, (ii) the hidden activations of the last token of the
question from the middle layer (LLaMA2-7B or LLaMA3-8B: 16th layer; Gemma-7B: 14th layer),
and (iii) the hidden activations of the last token of the answer from the middle layer. Therefore, in
these natural language generation tasks, the dimension is 8212 for LLaMA2-7B/LLaMA3-8B and
6164 for Gemma-7B.

The features in the Wb-S for the multiple-choice task include (i) all the features used in the Gb-S
and (ii) the hidden activations of the last token of the answer (letter A, B, C, or D) from the middle
layer. The dimension is 4101 for LLaMA2-7B/LLaMA3-8B and 3077 for Gemma-7B.

Notably, there are many choices of the hidden activations employed in the Wb-S. Besides what has
been shown in Section B, we provide further discussion in Section E.

Bb-S. The idea of building a supervised calibration model for a black-box LLM is to use the hidden
layers and output distributions from another open-source LLM model by feeding it with the question
and the provided response. Therefore, the features available for the Wb-S are also available for the
open-source LLM, so we just take the corresponding features from the open-source LLM in the Bb-
S. Hence, in the natural language generation tasks, the input dimension of the calibration model is
4196 (including hidden activations of the question and answer and 20 entropy and likelihood-related
features, 2×2048+20) for Gemma-2B, 6164 for Gemma-7B, 8212 for LLaMA2-7B/LLaMA3-8B,
and 10260 for LLaMA2-13B. In the multiple-choice task, the dimension is 2053 for Gemma-2B
(including the hidden activations of the answer and 5 entropy- and probability-related features used
in the Gb-S), 3077 for Gemma-7B, 4101 for LLaMA2-7B/LLaMA3-8B, and 5125 for LLaMA2-
13B.

For all these methods, we employ the random forest (Breiman, 2001) using the implementation from
the scikit-learn package (Pedregosa et al., 2011) to estimate the uncertainty. The hyperparameters are
set as [n_estimators=150, random_state=0, max_depth=8, verbose=2, max_features=45] if the num-
ber of selected features is no less than 100 and [n_estimators=100, random_state=0, max_depth=4,
verbose=2] otherwise.

E ADDITIONAL RESULTS AND VISUALIZATIONS

In Section B, we show the advantage of utilizing the hidden activations of the answer from the
middle layer of the LLM to estimate the uncertainty in Wb-S. In this section, we further discuss the
impact of employing the hidden activations from the question in the Wb-S.
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The motivation stems from the observation that within the transformer architecture, although the
hidden activation of a question’s last token (referred to as the question’s activation) is forwarded
to obtain the hidden activation of the answer’s last token (referred to as the answer’s activation),
implying that the answer’s activation incorporates the question’s activation information, it has been
discovered that concatenating the question’s activation with the answer’s activation offers additional
insights into the answer’s uncertainty (Duan et al., 2024). We would like to further investigate the
effectiveness of incorporating the question’s activation along with the answer’s activation into the
supervised setting.

We experiment with three feature combinations in our supervised setting: (i) Question: we use
the hidden activation of the last token of the question from the middle layer, incorporated with the
entropy- or probability-related features of the question (10 features in total listed in the right column
of Table 5) if it is a natural language generation task, otherwise incorporated with all the features
in Gb-S; (ii) Answer: we use the hidden activation of the last token of the answer from the middle
layer incorporated with all the features used in Gb-S; (iii) Question-Answer: we use the last-token
hidden activation of both the question and answer from the middle layer and all the features in Gb-S.
We compare their performance with Gb-S in Figure 8 and present the following observations.

Question itself cannot capture enough uncertainty information. From Figure 8, we observe
that the method Bb-S consistently outperforms Question across all these tasks. This implies that
incorporating the features relating to the question only cannot provide enough information about the
uncertainty of the answer. This aligns with the inferior performance of the sample-based method
(Kuhn et al., 2023) we tested in the earlier sections. In these methods, the uncertainty score is used
to estimate the language model’s uncertainty about the question. This result implies that uncertainty
cannot be captured in the question by the language model without generating the answer.

Question’s hidden activation cannot help to generate more uncertainty information Again from
Figure 8, by comparing the performance of Answer and Question-Answer, we find that the inclu-
sion of question’s activation has little impact on improving the performance. This shows that the
uncertainty from the question might have already been well encoded in the last token activation of
the answer.

MMLU TriviaQA CoQA WMT-14
0.60

0.65

0.70

0.75

0.80

0.85

0.90

AU
RO

C

Features from Gemma-7B

MMLU TriviaQA CoQA WMT-14

Features from LLaMA2-7B

MMLU TriviaQA CoQA WMT-14

Features from LLaMA3-8B

Gb-S Question Answer Question-Answer

Figure 8: Performance comparison of using last-token middle layer hidden activations of the answer
(Answer) or the concatenation of the question and answer (Question-Answer) as features in the Wb-
S, where the features in Gb-S are also included in Wb-S. In the natural language generation tasks, the
dimensions of Gb-S, Question, Answer, and Question-Answer for Gemma-7B are 20, 3082, 3092,
and 6164, while for LLaMA2-7B or LLaMA3-8B they are 20, 4106, 4116, and 8212, respectively.
In the MMLU task, for Gemma-7B they are 5, 3077, 3077, and 6149, while for LLaMA2-7B or
LLaMA3-8B, they are 5, 4101, 4101, and 8197, respectively.

The middle layer is still better than the last layer. In Section B, Figure 3 shows that when using
the hidden activation of the answer in the Wb-S, the middle layer of the LLM is a better choice
than the last layer. The next question is: Does this conclusion still hold for using the concatenated
hidden activations of the question and answer? We depict the experiment result in Figure 9, which
is consistent with the conclusion drawn from Figure 3.
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Figure 9: Performance comparison of using question-answer concatenated hidden activations from
different tokens and layers as features in the Wb-S method. Scores are normalized in [0,1], where a
lower value indicates larger uncertainty. For Gemma-7B, the dimension of the Wb-S input is 6164
(3072 from the question, 3072 from the answer, and 20 from the grey-box features). For LLaMA2-
7B/LLaMA3-8B, it is 8212.

Our method better characterizes the uncertainty. We find that the grey-box and white-box fea-
tures enhance the ability to characterize the dataset so that the distribution of the generated output’s
uncertainty score is better correlated with the output’s correctness. According to Figure 10, we
observe that with black-box features, the distributions of the uncertainty score for true and false
answers are not very distinguishable, and the true answer’s distribution is even similar to a uniform
distribution. With grey-box and white-box features, the distributions of the uncertainty scores are
more separated between the true and false answers. The results show the supervised learning ap-
proach not only achieves better AUROC but also learns to better separate the distribution of the
uncertainty scores.
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Figure 10: Uncertainty scores of different methods on the MMLU dataset for answers provided by
the Gemma-7B model, where scores are normalized in [0,1], and US is short for uncertainty score.
False answer refers to the sample where the choice assigned with maximum probability by the LLM
is false, while true answer represents the sample answered correctly.

F EXAMPLES

In this section, we show some examples of the wrong answers the LLM generated and explore how
different methods understand the LLM’s uncertainty. The wrong answers are selected from those
samples where the LLM makes wrong predictions.

Since we let the LLM output the greedy answer, which could be wrong, we expect an ideal un-
certainty estimation model to output a high confidence score when the LLM generates the correct
answer, and give a low confidence score when the LLM outputs the wrong answer. By looking at
different wrong answers generated by the LLM, we note that although our approach sometimes gives
a high confidence score on a wrong answer generated by the LLM, at other times it shows desirable
properties such as giving higher uncertainty scores to better answers, and giving low confidence
score when LLM does not know the answer.
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Our illustrative examples are generated as follows: For questions where the LLM’s greedy response
is incorrect, we also extract the correct answer from the dataset and additional answers randomly
generated by the LLM with lower probabilities than the greedy answer. Along with these answers,
we also compute the answers’ corresponding metrics and features so that we can observe how they
behave with different outputs. We conduct this experiment in the test dataset of TriviaQA, in which
both the question and answer are short. We summarize the ways that our uncertainty estimation
model behaves as follows:

• Confidently support a wrong answer. The LLMs are confident that the wrong greedy
answer is true and assign a high confidence score. Moreover, the LLMs give low uncer-
tainty scores to the correct answers, suggesting a lack of knowledge about these questions.
We give an example of LLaMA2-7B and Gemma-7B in Figure 11 and 12. Note that in
both examples, our method assigns a low uncertainty score to the correct answer and a
much higher uncertainty score to the wrong answer. In contrast, the unsupervised grey-box
methods assign higher uncertainty scores to the correct answer.

• Confidently reject a wrong answer. We give examples from LLaMA2-7B and Gemma-
7B in Figure 13 and 14. The uncertainty estimation model gives a higher score to the true
answer or answers that are better than the wrong answer. This means that for these ques-
tions, our model actually knows which answer is better and can assign uncertainty scores
accordingly. In contrast, the unsupervised methods tend to assign much higher uncertainty
scores to the greedy (wrong) answer.

• Unconfident about any answer. Due to the lack of knowledge, the LLM may not know
the true answer. We show the examples in Figure 15 and 16. From these examples, we can
see that the model assigns almost the same uncertainty scores to these generated answers,
including the true answer. In this scenario, the uncertainty estimation model is uncertain
about the correctness of any answer. Furthermore, it is interesting to note that the unsuper-
vised methods exhibit similar behavior, assigning almost similar scores to other answers
as well, albeit with much higher uncertainty scores. This differs from the previous two
cases, where the unsupervised method behaved differently from our uncertainty estimation
model.

An example of a confidently wrong answer (LM: LLaMA2-7B)
• Question: Who had a 70s No 1 hit with Billy, Don't Be A Hero?
• Ref answer: Bo Donaldson & The Heywoods
• Greedy answer: Paper Lace
• Answer 1: Bo Donaldson
• Answer 2: Paperchaser
• Answer 3: Paper Moon

Rouge-1 Max 
Prob

Avg 
Prob

Max 
Ent

Avg Ent Gb-S Wb-S Bb-S SU Ask4-
conf

Ref answer 1 0.13 0.94 0.82 0.94 0.21 0.31
Greedy 
answer 0 0.79 0.99 0.86 0.94 0.82 0.83 0.72 0.31 0
Answer 1 0.67 0.13 0.9 0.82 0.9 0.1 0.25
Answer 2 0 0 0.81 0.7 0.82 0.08 0.12
Answer 3 0 0 0.82 0.86 0.89 0.1 0.2

Figure 11: An example of LLaMA2-7B assigning a confidently wrong answer in the TriviaQA
dataset. Scores are normalized in [0, 1], where a lower value indicates a larger uncertainty. The
score of the greedy answer provided by any uncertainty estimation method is higher than that of
the true answer, but the greedy answer is incorrect. The UK band Paper Lace did indeed release
a version of “Billy, Don’t Be A Hero” in 1974, the same year as the version of Bo, but it was Bo
Donaldson & The Heywoods (a band in the U.S.) whose version topped the charts as a No.1 hit.
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An example of a confidently wrong answer (LM: Gemma-7B)
• Question: Which sitcom starred Leonard Rossiter in the role of a supermarket manager?
• Ref answer: Tripper's Day
• Greedy answer: Rising Damp
• Answer 1: Rising Damp.
• Answer 2: The Rise and Fall of Reginald Perrin

Rouge-1 Max 
Prob

Avg 
Prob

Max 
Ent

Avg Ent Gb-S Wb-S Bb-S SU Ask4-
conf

Ref 
answer 1 0.00 0.66 0.70 0.74 0.14 0.15 0.24

Greedy 
answer 0 0.76 0.99 0.90 0.94 0.93 0.86 0.89 0.46 1

Answer 1 0 0.02 0.87 0.81 0.88 0.60 0.40 0.86
Answer 2 0 0.05 0.91 0.89 0.93 0.68 0.46 0.64

Figure 12: An example for Gemma-7B that assigns a high confidence score to a wrong answer.
Leonard Rossiter starred in “Rising Damp” as a landlord, not as a supermarket manager.

An example that the LM  identifies the better answer (LM: LLaMA2-7B)
• Question: Which musical featured the songs A Secretary is Not A Toy, and The Company Way?
• Ref answer: How to Succeed in Business Without Really Trying
• Greedy answer: The Pajama Game
• Answer 1: How to Succeed In Business Without Really Trying
• Answer 2: The Company Way

Rouge-1 Max 
Prob

Avg 
Prob

Max 
Ent

Avg Ent Gb-S Wb-S Bb-S SU Ask4-
conf

Ref 
answer 1 0.12 0.96 0.43 0.93 0.23 0.33

Greedy 
answer 0 0.12 0.9 0.37 0.82 0.09 0.14 0.33 0.08 0

Answer 1 1 0.08 0.93 0.43 0.94 0.14 0.22
Answer 2 0 0.01 0.78 0.37 0.6 0.08 0.13

Figure 13: An example that LLaMA2-7B can successfully identify the better answer (by attaching
a higher score). Scores are normalized in [0,1], where a lower value indicates larger uncertainty.
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An example that the LM  identifies the better answer (LM: Gemma-7B)
• Question: The behavior of sound in rooms and concert halls is a separate science. what is its 

name?
• Ref answer: Acoustics 
• Greedy answer: Acoustical 
• Answer 1: Acoustical Engineering 
• Answer 2: Acoustiics

Rouge-1 Max 
Prob

Avg 
Prob

Max 
Ent

Avg Ent Gb-S Wb-S Bb-S SU Ask4-
conf

Ref 
answer 1 0.45 0.96 0.86 0.88 0.64 0.73 0.93

Greedy 
answer 0 0.41 0.95 0.79 0.84 0.50 0.51 0.29 0.28 1

Answer 1 0 0.28 0.94 0.79 0.83 0.39 0.44 0.33
Answer 2 0 0.04 0.86 0.69 0.80 0.16 0.25 0.39

Figure 14: An example that Gemma-7B can successfully identify the better answer (by attaching a
higher score). Scores are normalized in [0,1], where a lower value indicates larger uncertainty.

An example that the LM does not know the answer (LM: LLaMA2-7B)

• Question: Who played Sandy Richardson in the British tv series ‘Crossroads’?
• Ref answer: Roger Tonge
• Greedy answer: Noel Clarke
• Answer 1: Mike Pratt
• Answer 2: Lucy Carless

Rouge-1 Max 
Prob

Avg 
Prob

Max 
Ent

Avg Ent Gb-S Wb-S Bb-S SU Ask4-
conf

Ref answer 1 0.01 0.78 0.28 0.71 0.08 0.09
Greedy 
answer 0 0.16 0.89 0.28 0.75 0.08 0.09 0.23 0 0
Answer 1 0 0.01 0.82 0.28 0.73 0.08 0.09
Answer 2 0 0 0.71 0.28 0.63 0.08 0.08

Figure 15: An example that LLaMA2-7B does not know the true answer. Scores are normalized in
[0,1], where a lower value indicates larger uncertainty. The LM does not know the true answer and
attempts to guess it by generating different names with low confidence scores, but the score is also
low even when the LM faces the true answer.
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An example of the failure in estimating the uncertainty (LM: Gemma-7B)
• Question: What is the name of the colliery in the 1939 film ‘The Stars Look Down’?
• Ref answer: Neptune Colliery
• Greedy answer: The Black Diamond
• Answer 1: Oakwood Colliery
• Answer 2: Northmoor Colliery

Rouge-1 Max 
Prob

Avg 
Prob

Max 
Ent

Avg Ent Gb-S Wb-S Bb-S SU Ask4-
conf

Ref 
answer 1 0 0.62 0.19 0.65 0.10 0.13 0.23

Greedy 
answer 0 0.02 0.72 0.18 0.20 0.10 0.10 0.12 0 1

Answer 1 0 0 0.73 0.18 0.57 0.10 0.11 0.18
Answer 2 0 0 0.73 0.18 0.53 0.10 0.12 0.19

Figure 16: An example that Gemma-7B does not know the true answer. Scores are normalized in
[0,1], where a lower value indicates larger uncertainty.
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