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Abstract
Despite progress in multimodal large language001
models (MLLMs), the challenge of interpret-002
ing long-form videos in response to linguistic003
queries persists, largely due to the inefficiency004
in temporal grounding and limited pre-trained005
context window size. In this work, we intro-006
duce Temporal Grounding Bridge (TGB), a007
novel framework that bootstraps MLLMs with008
advanced temporal grounding capabilities and009
broadens their contextual scope. Our frame-010
work significantly enhances the temporal capa-011
bilities of current MLLMs through three key012
innovations: an efficient multi-span temporal013
grounding algorithm applied to low-dimension014
temporal features projected from flow; a multi-015
modal length extrapolation training paradigm016
that utilizes low-dimension temporal features017
to extend the training context window size;018
and a bootstrapping framework that bridges019
our model with pluggable MLLMs without re-020
quiring annotation. We validate TGB across021
seven video benchmarks and demonstrate sub-022
stantial performance improvements compared023
with prior MLLMs. Notably, our model, ini-024
tially trained on sequences of four frames, ef-025
fectively handles sequences up to 16× longer026
without sacrificing performance, highlighting027
its scalability and effectiveness in real-world028
applications. Our code is publicly available.029

1 Introduction030

A fundamental aspect of human intelligence is to031

effortlessly perceive, memorize, and comprehend032

daily multi-modal information such as events, ob-033

servations, and videos that span hours and days.034

Such capacity of long-form multi-modal under-035

standing, seamlessly integrating prolonged visual036

dynamics with textual cues, poses considerable037

challenges for contemporary machine perceptual038

systems. A wide range of research works in com-039

puter vision and multi-modal tasks has extensively040

delved into real-life videos, including video ques-041

tion answering (VideoQA) (Yu et al., 2018, 2019),042
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Figure 1: Training Efficiency and Length Extrapola-
tion of TGB. A. Our method demonstrates the best per-
formance with less trainable parameters. B. Results of
frame extrapolation on EgoSchema (Mangalam et al.,
2023) under zero-shot setting. T-num indicates the num-
ber of training context window size. By training with
four-frame videos, our model shows consistent perfor-
mance on extended video length.

text-to-video retrieval (Hendricks et al., 2017), 043

video captioning (Xu et al., 2016; Krishna et al., 044

2017), etc. Despite the prominent advancements in 045

many video-language benchmarks (Yu et al., 2018, 046

2019; Hendricks et al., 2017; Xu et al., 2016; Kr- 047

ishna et al., 2017), understanding long-form videos 048

with task-oriented linguistic queries still suffers 049

from the significant computational overhead (Buch 050

et al., 2022; Gao et al., 2023a; Yu et al., 2023; 051

Song et al., 2023; He et al., 2024) imposed by high- 052

dimensional video data and the disparity between 053

language and spatial-temporal visual cues (Lei 054

et al., 2022; Xiao et al., 2023a). 055

Some researchers have proposed scaling up 056

the amount of vision data fed into larger mod- 057

els(Bai et al., 2023; Liu et al., 2024a), follow- 058

ing the scaling law observed in LLMs. However, 059
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the scarcity of high-quality, long video-language060

datasets makes this approach difficult. Others have061

explored sampling-based methods to reduce input062

overhead by selecting relevant frames at either the063

frame level(Lei et al., 2021; Wang et al., 2023; Bain064

et al., 2021; Buch et al., 2022) or token level (Gao065

et al., 2023a). These methods have three main lim-066

itations: first, they are computationally inefficient067

with slow training and inference speeds due to068

the large number of tunable parameters; second,069

the sampling strategy may miss important motion070

features, especially when there’s misalignment be-071

tween the video segment and the language query;072

and third, the complexity of the specialized vision073

encoder complicates the adaptation to long-video074

understanding.075

To address these challenges, we present a novel076

framework, Temporal Grounding Bridge, which077

enriches image-language models with temporal pri-078

ors, significantly improving the understanding of079

long videos. TGB distinguishes itself in the follow-080

ing key aspects:081

Efficient and Adaptable Video Compression:082

TGB features a Bridge that is both lightweight and083

adaptable. To achieve this, we introduce a learnable084

multi-span algorithm capable of simultaneously085

extracting multiple relevant segments from low-086

dimension motion features. Subsequently, we can087

compress the entire video into several keyframes.088

This method efficiently balances performance and089

resource consumption when processing long-form090

videos, as demonstrated by our results on the091

AGQA (Grunde-McLaughlin et al., 2021), with a092

relatively low parameter count (see Fig. 1A).093

Temporal Extrapolation Preserving Motion094

Features: A significant advantage of the TGB095

lies in its ability to preserve the continuity of video096

content, thereby maintaining the temporal dynam-097

ics discarded by previously extracted keyframes. To098

achieve this, we retain the low-dimensional motion099

features extracted by the TGB to supplement these100

keyframes. Additionally, we utilize extrapolative101

position encoding to ensure that these features re-102

main extendable. This approach allows our method103

to extrapolate to longer sequences in a zero-shot104

setting (see Fig. 1B).105

Bootstrapping Framework without Annota-106

tion: Due to the high cost of manual annota-107

tions and the limited availability of video data108

compared to image data, we developed a frame-109

work that leverages MLLMs without requiring110

them to be pretrained on videos. Our approach em-111

ploys a bootstrapping strategy to refine TGB using 112

MLLMs, eliminating the need for explicit temporal 113

grounding annotations. This strategy also allows 114

for joint training with MLLMs by incorporating the 115

Gumbel-Softmax trick. Additionally, our bootstrap- 116

ping framework, when integrated with the afore- 117

mentioned mechanism, can be trained on standard 118

video data and still achieve strong performance on 119

much longer sequences (see Fig. 1B). 120

To validate the effectiveness of TGB, we con- 121

ducted experiments on long-form video question 122

answering with seven datasets: AGQA 2.0 (Grunde- 123

McLaughlin et al., 2021), NExT-QA (Xiao et al., 124

2021), Egoschema (Mangalam et al., 2023), 125

MSVD (Xu et al., 2017), MSRVTT (Xu et al., 126

2016), and ActivityNet (Yu et al., 2019). Ad- 127

ditionally, we tested temporal question ground- 128

ing on video using the NExT-GQA dataset (Xiao 129

et al., 2023a). Consistent improvements across 130

these datasets confirm the efficacy of our approach. 131

TGB has shown strong generalization capabili- 132

ties across five MLLMs (across encoder, encoder- 133

decoder, and decoder-only) and two LLMs. Further 134

enhancements include the incorporation of a gen- 135

eral multimodal instruction-tuning dataset, which 136

shows promise for video chat agent applications. In 137

comparison to other leading-edge methods, TGB 138

provides substantial efficiency and efficacy bene- 139

fits. 140

2 Related Work 141

Long-form Video Understanding The com- 142

putational demands of processing long-form videos 143

have led to research exploring various methods 144

to address the challenge. A common approach in- 145

volves sampling-based techniques that aim to re- 146

duce the computational load by selectively choos- 147

ing relevant frames. Research (Lei et al., 2021; 148

Wang et al., 2023; Bain et al., 2021) integrate sparse 149

sampling within the framework of video-language 150

pretraining. (Buch et al., 2022) introduce an atem- 151

poral probe (ATP) model that seeks to distill a sin- 152

gle image representation from a video clip for more 153

details. Despite these advancements, there’s a risk 154

that sparse sampling may lead to an insufficient 155

representation of visual information, which may 156

not be relevant to corresponding language queries. 157

MIST (Gao et al., 2023a) attempts to address this 158

by leveraging the inherent structure of videos to 159

iteratively select and sample spatial-temporal infor- 160

mation within a Transformer architecture. Nonethe- 161
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less, these methods often suffer from reduced com-162

putational efficiency and prolonged training and163

inference times due to the extensive tunable pa-164

rameters required for processing either spatial or165

temporal dimensions. More recent studies are ex-166

ploring the utilization of LLMs for enhancing long-167

form video understanding. These approaches in-168

clude a range of techniques such as incorporating169

temporal embeddings (Qian et al., 2024), apply-170

ing prompt-based strategies (Yu et al., 2023; Ren171

et al., 2023), condensing video frames through a172

similarity metric (Song et al., 2023), compressing173

visual tokens with resampling methods (Korbar174

et al., 2023; Ma et al., 2023; Liu et al., 2024b),175

and employing retrieval-based methods that inte-176

grate visual features (He et al., 2024). To over-177

come the constraints of current methods, which178

usually depend on human-provided annotations for179

time alignment or require intricate encoding of con-180

text, our proposed approach employs a novel boot-181

strapping framework. This framework enhances a182

temporal grounding bridge, using MLLMs. This183

bridge is designed to simultaneously capture multi-184

ple granular pieces of key information by leverag-185

ing multi-span sampling, which it then integrates186

with low-dimensional motion features for a more187

efficient and effective representation.188

Bootstrapping Large Language Models for189

Visual Tasks Capitalizing on the success of large190

language models (LLMs) in NLP, there is a grow-191

ing trend of applying them to computer vision tasks,192

such as VQA (Lu et al., 2022; Chen et al., 2023;193

Fu et al., 2023; Liu et al., 2023b; Li et al., 2023a),194

image generation (Ku et al., 2023; Zhang et al.,195

2023b), and visual instruction following (Xu et al.,196

2022; Li et al., 2023c). The research mainly pro-197

gresses along three avenues: (i) leveraging LLMs’198

reasoning for visual tasks (Huang et al., 2023;199

Wu et al., 2023; Driess et al., 2023; Surís et al.,200

2023); (ii) adapting Transformer or linear net-201

works to equip LLMs with visual perception (Li202

et al., 2023b; Dai et al., 2023; Zhu et al., 2023;203

Xu et al., 2023; Gao et al., 2023b; Liu et al.,204

2023a); (iii) merging LLMs with video and au-205

dio inputs (Zhang et al., 2023a; Maaz et al., 2023;206

Lyu et al., 2023). Recently, Sevila’s (Yu et al.,207

2023) self-chained VideoQA framework uses a two-208

step approach: selecting keyframes with a tailored209

prompt and applying them to tasks. However, it210

faces three issues: time-consuming keyframe lo-211

calization, static frames missing motion details,212

and incomplete video representation by sampled213

frames. Addressing these, we introduce a TGB that 214

incorporates both static and dynamic features for 215

video-language understanding. 216

3 Methodology 217

In the subsequent sections, we begin with a detailed 218

formulation of the video-language understanding 219

problem in Section §3.1. Next, in Section §3.2, we 220

outline the core components for efficient length 221

extrapolation of our TGB. Section §3.3 explains 222

the process of jointly tuning TGB with pluggable 223

MLLMs on new video-language datasets within our 224

Bootstrapping framework. The overall architecture 225

of TGB is illustrated in Figure 2. 226

3.1 Problem Definition 227

We formalize the open-ended video-text under- 228

standing problem. The input video V is de- 229

noted as a sequence of image frames V = 230

{fr1, fr2, · · · , frT }, where T is the total num- 231

ber of frames. The input language L, denoted as 232

a sequence of N tokens starting with [CLS], is a 233

task-relevant prompt or question related to interac- 234

tions among objects, relationships, or events that 235

occur within a few frames of the video. Our goal 236

is to identify the keyframes that relate to the query 237

as grounded moments and generate an open-ended 238

answer in the form of natural language response y, 239

incorporating time priors. In the following sections, 240

we use f(·) to indicate trainable parameters or neu- 241

ral networks and f(·) to indicate frozen pre-trained 242

models. 243

3.2 Temporal Grounding Bridge 244

Previous Video-Language Understanding models 245

commonly extract temporal features from video- 246

text data using offline video encoders or image 247

encoders (Carreira and Zisserman, 2017; Jiang 248

et al., 2017; Xie et al., 2017; Feichtenhofer et al., 249

2019; Liu et al., 2021a; Tong et al., 2022), causing 250

the model to be time-consuming and lack gener- 251

ality. To address these limitations, we propose a 252

novel mechanism that combines high-dimension 253

key visual cues with low-dimension motion fea- 254

tures, ensuring efficiency without compromising 255

visual information. We further contend that tem- 256

poral grounding does not necessitate dense frame- 257

level features. To support this claim, we introduce 258

a Temporal Grounding Bridge that incorporates 259

optical flows (Jiang et al., 2019; Feichtenhofer 260

et al., 2019; Pfister et al., 2015; Feng et al., 2023; 261

Zhang et al., 2018) during the temporal grounding 262
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Figure 2: Overview of TGB framework (BLIP-based). The Temporal Grounding Bridge (§3.2) is designed to
capture temporal priors as well as the specific moments in a video that are grounded by language. We further develop
a pluggable bootstraping framework (§3.3) that incorporates TGB-MLLM alignment, utilizing a joint optimization
strategy.

stage through a dimensionality reduction. By in-263

jecting language queries, this approach generates264

parameter-efficient, language-guided temporal fea-265

tures. A key distinction of our work is that we266

do not use optical flow merely as supplemen-267

tary information to enhance frame-based per-268

formance. Instead, our framework employs flow269

as a low-dimensional bridge, which can be di-270

rectly or indirectly applied to infuse motion de-271

tails into MLLMs. Importantly, the flow feature272

can be substituted with other types of features273

if needed.274

Feature Extraction We denote the optical275

flow for each pair of video frames as OF =276

{of1, of2, · · · , ofT } The low-dimension visual en-277

coding is then computed over these extracted op-278

tical flows with a simple convolutional layer fol-279

lowed by a multi-layer perceptron (MLP) Eof =280

MLP(CNN(of)). For language queries, we use281

a trainable embedding layer to represent the soft282

query prompt, i.e., El = Embedding(Q), where283

Q is the language query.284

Temporal Feature Length Extrapolation De-285

spite the impressive efficacy of Transformer-based286

models within the sphere of deep learning, their op-287

erational capacity is inherently constrained by the288

length of the input. In the context of our research,289

the bridge is meticulously devised to identify the290

most salient portions of an entire video, the dura-291

tion of which may potentially exceed the predeter-292

mined limit and differ significantly across various293

instances. Current literature employs a sampling 294

strategy to condense the video, a process that unfor- 295

tunately results in the loss of substantial temporal 296

information inherent in the video. To mitigate this 297

challenge, inspired by rotary position embedding 298

(RoPE) (Su et al., 2021), we add multimodal ex- 299

trapolative position encoding to our TGB(Fig. 2). 300

Specifically, we compute the position-encoded fea- 301

tures using RoPE mechanism for each optical flow 302

and language token, respectively. Formally, the 303

position-encoded features can be denoted as 304

ER
of = RoPE(WofEof , Posof ), (1) 305

ER
l = RoPE(WlEl, Posl), 306

where Wof ,Wl are transformation matrices, 307

Posof , Posl are corresponding position indices 308

of OF and L. 309

Given the temporal features, we adopt the cross- 310

attention (Vaswani et al., 2017) mechanism, which 311

is computed using optical flow rotary encoding as 312

query QR = ER
of , rotary language embedding as 313

key KR = ER
l , and language embedding as value 314

V = WV El. 315

The final language-guided temporal feature ER 316

is calculated by the standard cross-attention mech- 317

anism, i.e., ER = Softmax(
QRKT

R√
dk

)V. 318

Multi-Span Keyframe Selection Based on 319

the flow-language encoding, we formulate the tem- 320

poral question grounding video task as multi-span 321

reading comprehension (RC) problem, where an 322
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RC head is to predict the label of fused encod-323

ing {eR1, eR2, . . . , eRT } as one of {“<BEGIN>”,324

“<END>”, “<NONE>”} of the grounded video spans.325

The selection can be formulated as:326

h = Fθ(eR1, eR2, . . . , eRT ), (2)327

index = argmax(Softmax(h)),328

where Fθ denotes the RC head for span selection,329

index is the prediction of the start or end index.330

The objective is computed as the cross-entropy be-331

tween the prediction and pseudo labels. During In-332

ference, we can obtain an arbitrary number of k seg-333

ments of grounded video by predicting k <BEGIN>334

s and k <END> s with the RC Head. Finally, we335

union these segments to eliminate the overlap be-336

tween these extracted spans. Appendix D demon-337

strates commonly used methods for temporal sen-338

tence grounding on video tasks. Compared with339

other span-fixed methods, our method could obtain340

multiple grounded video spans with the least time341

complexity and space complexity.342

Bridge with MLLMs For each selected343

keyframe frk, we utilize a frozen pre-trained vi-344

sual encoder to capture its spatial information, i.e.,345

Efr = Encv(frk). In line with contemporary346

research, we adapt the visual feature via a pre-347

trained Q-former and obtain q query representa-348

tions. Ẽq = Encq(Eq, Efr) , where Eq represents349

the learnable query, Ẽq = {eq} is the spatial vi-350

sual feature output of the MLLM. The final output351

is produced by feeding obtained spatial-temporal-352

language information in to a forzen LLM, i.e.,353

y = LLM(Er, Ẽq, El).354

3.3 Joint Training Bootstrapping Framework355

Bootstraping Algorithm Due to the scarcity356

of video-language datasets with temporally357

grounded annotations and the high cost of acquir-358

ing human labeling, we have developed a self-359

improvement algorithm to enhance TGB using360

the capabilities of MLLM. There are two primary361

types of video-language understanding tasks: close-362

ended and open-ended. We have tailored algorithms363

to address both types. For close-ended tasks, we364

employ an iterative method in which each video365

frame is evaluated using the MLLM. Frames that366

lead to correct MLLM predictions are marked with367

positive labels, while those with incorrect predic-368

tions receive negative labels. For open-ended tasks,369

which often lack temporal labels, we introduce370

an innovative approach to generate pseudo labels371

for open-ended datasets. We analyze the MLLM- 372

generated results of uniformly sampled frames and 373

compute the sentence similarity between these re- 374

sults and the ground truth. We then apply a mono- 375

tonic stack algorithm to identify the span with the 376

highest similarity scores. These pseudo labels are 377

used to optimize the TGB. Detailed information 378

about the this algorithm can be found in the Ap- 379

pendix A. 380

Joint Optimization Despite the utilization of 381

pseudo labels in the training process, in many 382

videos, there is implicit alignment between query 383

and videos. In addition, the fixation of the pre- 384

trained bridge within the bootstrapping framework 385

inevitably leads to the introduction of exposure 386

bias. To mitigate this we suggest a joint training 387

approach that extends the Gumbel-Softmax tech- 388

nique. We implement Gumbel-Softmax sampling 389

K times to sample K spans: 390

GumbelSoftmax(Fθ(eR1, . . . , eRT ), τ), (3) 391

where τ is the scaling term for reparameterizing. 392

Consequently, our methodology is employed to fa- 393

cilitate a connection between TGB and MLLMs, 394

thereby enabling our framework to be jointly opti- 395

mized on domain-specific datasets. 396

4 Experiments 397

In this section, we utilize the TGB on 5 MLLMs, 398

across encoder, encoder-decoder, and decoder- 399

only three types of architectures. We demonstrate 400

the effectiveness of our approach on three tasks: 401

long-form videoQA and zero-shot open-domain 402

videoQA (Section 4.1), temporal question ground- 403

ing on video (Section 4.2). Furthermore, We pro- 404

vide a detailed analysis to showcase the effec- 405

tiveness of our framework in length extrapolation 406

(Fig. 1B), the effectivness of different components 407

(Section 4.3), and compare its computational effi- 408

ciency with other state-of-the-art models on a simi- 409

lar scale (Section 4.4). 410

4.1 Long-form Video Question Answering 411

Setups We take three long-form VideoQA 412

benchmarks AGQA (Grunde-McLaughlin et al., 413

2021), NExTQA (Xiao et al., 2021), and 414

EgoSchema (Mangalam et al., 2023) for evalua- 415

tion. We use two types of baselines: retrieval-based 416

models and open-ended models focusing on recent 417

SOTA temporal priors learning models for compar- 418

ative analysis. For the retrieval-based models, in 419
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Model Object-
relation

Relation-
action

Object-
action Superlative Sequencing Exists Duration

comparison
Action

recognition Overall

Retrieval-based Video-Language Models
HME (Fan et al., 2019) 37.42 49.90 49.97 33.21 49.77 49.96 47.03 5.43 39.89
PSAC (Li et al., 2019) 37.84 49.95 50.00 33.20 49.78 49.94 45.21 4.14 40.18
HCRN (Le et al., 2020) 40.33 49.86 49.85 33.55 49.70 50.01 43.84 5.52 42.11
AIO (Wang et al., 2023) 48.34 48.99 49.66 37.53 49.61 50.81 45.36 18.97 48.59
ATP (Buch et al., 2022) 50.15 49.76 46.25 39.78 48.25 51.79 49.59 18.96 49.79
MIST-AIO (Gao et al., 2023a) 51.43 54.67 55.37 41.34 53.14 53.49 47.48 20.18 50.96

ALBEF 50.53 49.39 49.97 38.22 49.79 54.11 48.01 10.40 50.68
ALBEF + TGB (Ours) 51.05 51.11 51.66 38.36 51.33 58.10 49.20 11.78 51.73
SINGULARITY (Lei et al., 2022) 50.87 50.67 49.70 40.47 40.79 55.34 48.20 11.59 51.11
SINGULARITY + TGB (Ours) 52.33 54.12 55.07 40.71 54.49 57.88 48.35 12.24 53.13
VIOLET (Fu et al., 2021) 50.89 50.24 50.93 40.76 50.51 58.07 38.97 6.53 51.03
VIOLET + TGB (Ours) 51.59 54.54 56.96 40.94 55.61 59.12 42.81 9.02 52.59

Open-ended Video-Language Models
SeViLA∗ (Yu et al., 2023) 51.15 48.93 62.08 42.24 55.96 53.02 38.91 0.00 51.70
BLIP2 (Li et al., 2023b) 53.72 48.64 62.1 43.84 55.94 55.14 40.39 0.28 54.00
TGB-BLIP2 (Ours) 62.27 51.74 66.09 53.67 60.11 60.85 36.99 0.00 61.45
∗ Re-implementation result. We removed prior information from QVHighlights (Lei et al.) used in SeViLA for fair comparison.

Table 1: Comparison accuracy of different sampling-based SOTA models on AGQA 2.0.

Model Temporal Causal Description All

Retrieval-based Video-Language Models
CLIP (Radford et al., 2021) 46.3 39.0 53.1 43.7
HGA (Jiang and Han, 2020) 44.2 52.5 44.1 49.7
AIO (Wang et al., 2023) 48.0 48.6 63.2 50.6
VQA-T (Yang et al., 2021) 49.6 51.5 63.2 52.3
MIST-AIO (Gao et al., 2023a) 51.6 51.5 64.2 53.5
ATP (Buch et al., 2022) 50.2 53.1 66.8 54.3
VGT (Xiao et al., 2022) 52.3 55.1 64.1 55.0
MIST-CLIP (Gao et al., 2023a) 56.6 54.6 66.9 57.1

Open-ended Video-Language Models
BLIP2 (Li et al., 2023b) 64.9 69.7 79.4 69.6
SeViLA∗ (Yu et al., 2023) 66.4 71.9 80.8 71.5
TGB-BLIP2 (Ours) 66.5 72.8 81.2 72.1

∗ We removed prior information from QVHighlights used in SeViLA for fair comparison.

Table 2: Comparison accuracy of long-form video
QA on NExT-QA.

addition to traditional methods (Fan et al., 2019; Li420

et al., 2019; Le et al., 2020; Wang et al., 2023; Li421

et al., 2021; Lei et al., 2022; Fu et al., 2021), we422

use recent SOTA temporal learning models, specif-423

ically ATP (Buch et al., 2022) and MIST (Gao424

et al., 2023a). For the open-ended models, we use425

BLIP2 (Li et al., 2023b) and SEVILA (Yu et al.,426

2023). For the number of keyframes, we sample 4427

frames for TGB and 6 frames for TGB-augmented428

methods (where we don’t incorporate the motion429

feature to the input directly) in all experiments. For430

more implementation details, please refer to Ap-431

pendix F.1.432

Results on AGQA 2.0 Our TGB framework,433

compared with prior works that integrate keyframe434

localization into video-language tasks, shows that435

BLIP2, despite its 4.1B parameters pre-trained on436

129M images, offers only a slight improvement437

over smaller models, as demonstrated in AGQA438

Methods Base Model # of Frames Accuracy

Sevila BLIP2 32 25.7
mPLUG-Owl LLaMA-7b 5 33.8
Video-LLaVA LLaVA-7b 8 40.2
TGB-BLIP2 BLIP2 4 41.2

Table 3: Zero-shot Result on subset of EgoSchema

2.0 results. BLIP2 even falls short of the state-of- 439

the-art MIST-CLIP, which has a parameter count 440

comparable to BERT (Devlin et al., 2019). This 441

indicates that simply adapting videos for LLMs is 442

inadequate for complex video question-answering 443

tasks. However, when enhanced with our TGB 444

framework, BLIP2’s accuracy increases by 7.45 445

points, underscoring the framework’s ability to 446

learn spatial-temporal video features effectively. 447

We believe this is due to our framework’s superior 448

temporal information capture, which other meth- 449

ods miss. Nonetheless, it still lags behind MIST- 450

CLIP on certain question types, stemming from 451

the inherent differences in how retrieval-based and 452

open-ended models produce answers. For exam- 453

ple, open-ended models struggle with “Duration 454

comparison" questions because they are limited to 455

generating answers from a specific set of 171 words 456

or phrases, which are infrequently found in genera- 457

tive models’ pre-training data, posing a challenge 458

for exact match generation. 459

Results on NExTQA Table 2 presents the 460

results on the NExTQA dataset. Generally, our 461

method outperforms a variety of baselines, par- 462

ticularly SeViLA, a recent model using LLM for 463

keyframe selection. However, the performance im- 464
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Methods LLM size MSVD-QA MSRVTT-QA ActivityNet-QA
Accuracy Score Accuracy Score Accuracy Score

FrozenBiLM 1B 32.2 - 16.8 - 24.7 -
VideoChat 7B 56.3 2.8 45.0 2.5 - 2.2
LLaMA-Adapter 7B 54.9 3.1 43.8 2.7 34.2 2.7
Video-LLaMA 7B 51.6 2.5 29.6 1.8 12.4 1.1
Video-ChatGPT 7B 64.9 3.3 49.3 2.8 35.2 2.7
TGB (BLIP2) 3B 66.0 3.6 53.5 3.1 41.3 3.1
TGB (Vicuna7B) 7B 71.4 3.9 57.3 3.3 43.9 3.3

Table 4: Zero-shot Open Domain Video QA.

provement of our framework on NExTQA is not as465

significant as on AGQA. This is because NExTQA466

places more emphasis on causality, and videos in467

NExTQA, sourced from VidOR (Shang et al., 2019;468

Thomee et al., 2016), a dataset focused on video ob-469

jects and relation recognition, exhibit more "static470

appearance bias" (Lei et al., 2022) than AGQA.471

Results on EgoSchema We evaluated our472

model’s performance on the EgoSchema (Man-473

galam et al., 2023), one of the longest videoQA474

datasets available. We apply this experiment un-475

der the zero-shot setting, thereby trained on video476

instruction dataset from VideoLLaVA (Lin et al.,477

2023). As shown in Table 3, our model outperforms478

other models that use similar pretraining data. This479

superior performance is particularly notable given480

that our base model is smaller and processes fewer481

input instances compared to the others. We believe482

our approach is highly effective for understanding483

long-form video content.484

Impact of TGB-grounded frames We as-485

sessed the influence of TGB on different MLLMs486

by testing them with alternative MLLMs and TGB-487

grounded frames, excluding optical flow features.488

For MLLMs using single-image input, we merged489

multiple images using an early fusion approach.490

Our experiments on the AGQA 2.0 dataset in Ta-491

ble 1 revealed: ➊ TGB matters in temporal learn-492

ing over different MLLMs. TGB-augmented meth-493

ods significantly enhances MLLMs’ ability in solv-494

ing temporal question (i.e., “Relation-action495

", “Sequencing ", “Exists ") compared to the496

uniform sampling strategy. ➋ Absence in temporal497

priors hinders the performance of ensemble meth-498

ods. The improvement gained on SINGULARITY499

is better than ALBEF, despite they have similar500

objectives but SINGULARITY is pre-trained with501

video corpora. ➌ Temporal features of optical flow502

can compensate for the information loss caused503

by frame sampling. The marginal improvement of504

our TGB-augmented models on “Superlative "505

suggests that the sampling strategy cannot enhance506

the model’s overall video understanding ability. In507

contrast, our BLIP2-based framework with opti-508

Method Vision Encoder mIoU IoU@0.3 IoU@0.5

VGT RCNN 3.0 4.2 1.4
VIOLETv2 VSWT 3.1 4.3 1.3
Temp[Swin] SWT 4.9 6.6 2.3
Temp[CLIP] ViT-B 6.1 8.3 3.7
Temp[BLIP] ViT-B 6.9 10.0 4.5
FrozenBiLM ViT-L 7.1 10.0 4.4
IGV ResNet 14.0 19.8 9.6
TGB OF+CNN 19.9 23.3 11.2

Table 5: Comparison results of Temporal Question
Grounding task on NExT-GQA (Xiao et al., 2023b).

cal flow improves from 43.84 to 53.67 (a relative 509

increase of 22.42%). indicating that optical flow 510

features can reduce the temporal information loss 511

caused by the sampling strategy. 512

Analysis of Pluggable MLLMs We substitute 513

the BLIP2 with three popular types of MLLMs, 514

mainly encoder-based models, i.e., VIOLET (Fu 515

et al., 2021) as a representative of video-language 516

models, ALBEF (Li et al., 2021) as an image- 517

language model, SINGULARITY (Lei et al., 2022) 518

as a pre-trained model on a single frame of video 519

and image corpus. It’s noteworthy that we did not 520

incorporate the learned optical flow feature into 521

these MLLMs’ input. In this part, we also apply 522

all the experiments on AGQA 2.0 dataset. Table 1 523

(ALBEF + TGB, VIOLET + TGB, SIGULAR- 524

ITY + TGB) validates the efficacy of our TGB 525

and the versatility of our framework. On average, 526

the solver achieves a 3.68% accuracy improvement 527

after replacing the uniform sampled frames with 528

keyframes extracted by the TGB. These results con- 529

sistently demonstrate the effectiveness of our TGB 530

framework across various MLLMs. 531

Generality of TGB To demonstrate the gen- 532

erality of our approach, we applied our model to 533

visual instruction datasets (Lin et al., 2023). We 534

also adapted the LLM using LoRA (Hu et al., 535

2022) to ensure a fair comparison with current 536

SOTA methods. As shown in Table 4, our method’s 537

performance on the videoQA dataset in a zero- 538

shot setting is presented. Unlike VideoLLaVA, our 539

method was not pretrained on additional datasets; it 540

was only fine-tuned on the same visual instruction 541

datasets. The results demonstrate that our method 542

can match the performance of the latest state-of- 543

the-art (SOTA) MLLMs, even though the LLM of 544

our model is less than half their size. This high- 545

lights the considerable promise of our framework 546

in this domain. 547
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Model Object-
relation

Relation-
action

Object-
action Others All

TGB 62.27 51.74 66.09 57.04 61.45
w/o optical flow 59.13 15.06 50.79 51.29 55.00
w/ fixed bridge 62.28 47.84 50.68 53.47 59.88
w/ uniform sampling 53.72 48.64 62.10 50.68 54.00
w/ zero-shot 23.60 17.09 29.37 40.72 25.54

Table 6: Ablation study of our method on reasoning
questions from AGQA 2.0. We list the major outputs
of complicated relationships and summarize the rest;
see SM for complete results.

4.2 Temporal Question Grounding on Video548

Setup We use the Temporal Question Ground-549

ing on Video (TQGV) dataset NExT-GQA (Xiao550

et al., 2023a) to evaluate the efficacy of our TGB.551

We select a wide range of MLLMs as baselines:552

VGT (Xiao et al., 2022), Temp (Buch et al., 2022;553

Xiao et al., 2023b), FrozenBiLM (Yang et al.,554

2022), IGV (Li et al., 2022), and SeViLA (Yu et al.,555

2023). These baseline models encompass a variety556

of architectures, text encoders, and vision encoders.557

In contrast, our method does not depend on heavy558

offline vision feature extractors. We obtain the opti-559

cal flow using a fixed RAFT (Teed and Deng, 2020),560

a model with only 5.26 million parameters. This561

comparison highlights the efficiency and simplicity562

of our approach.563

Main Results and Analysis As shown in Ta-564

ble 5, our method outperforms baselines using addi-565

tional feature extractors (Ren et al., 2015; Liu et al.,566

2021b,a; Radford et al., 2021). Our TGB with opti-567

cal flow effectively learns temporal priors for video-568

language tasks. We suggest that discrete frames569

may introduce irrelevant visual cues, increasing the570

computational load for temporal learning. Despite571

this, all methods struggle with temporal grounding,572

with most mIoU values under 0.20, indicating a573

significant gap in current temporal modeling. Con-574

versely, our TGB’s temporal features could miti-575

gate these issues. We posit that our approach could576

significantly advance spatial-temporal research for577

extended videos. Qualitative results are presented578

in Appendix G.579

4.3 Ablation Study580

We apply ablation study on TGB to investigate581

the effects of our joint training framework. All the582

experiments are performed on AGQA 2.0 (Grunde-583

McLaughlin et al., 2021). As shown in Table 6,584

the framework incorporating motion feature sig-585

nificantly improved performance by 11.72%, un-586

derscoring its effectiveness in tackling spatial-587

Model FLOPs
(GFLOPs)

↓ MACs
(GMACs)

↓ Acc. ↑

BLIP2 (ViT-G) 2,705 1,350 69.6
Sevila (ViT-G) 13,720 14,357 71.5
TGB (ViT-G) 19,620 9,840 72.3
TGB (OFs) 2,950 1,474 72.1

Table 7: Computational Efficiency of TGB.

temporal problems. We also found that fixing 588

the pre-trained TGB during training notably af- 589

fected performance on temporal questions like 590

“Relation-action ", suggesting that joint train- 591

ing can further optimize the bridge. Lastly, com- 592

paring with zero-shot and fine-tuned BLIP2 (Li 593

et al., 2023b) with uniformly-sampled frames, our 594

method showes significant improvements, demon- 595

strating its overall effectiveness. In Appendix C.1, 596

we provide detailed ablation study about the TGB- 597

augmented models. 598

4.4 Time Efficiency 599

We evaluated the average inference time efficiency 600

of our method against BLIP2 using calflops (xi- 601

aoju ye, 2023) on the NExT-QA dataset, as shown 602

in Table 7. Our method outperformed the current 603

SOTA model SeViLa, which uses the LLM to se- 604

lect keyframes, both in terms of performance and 605

efficiency. While replacing the OFs with features 606

from ViT-G (Zhai et al., 2021) resulted in minor im- 607

provements, it significantly increased computation 608

costs due to the offline feature extractor. Compared 609

to BLIP2, our method required minimal additional 610

computation. The major computation costs were as- 611

sociated with the LLMs from BLIP2 and the offline 612

feature extractor. We believe our method strikes a 613

balance between being effective and computation- 614

ally efficient. Further details on the composition of 615

the inference time of TGB are provided in SM. In 616

addition, we investigate the composition of infer- 617

ence time of TGB and offline demo in Appendix B. 618

5 Conclusion 619

In this work, we propose a pluggable framework 620

TGB for long Video-Language Understanding 621

tasks, which comprises a TGB and a spatial prompt 622

solver to combine spatial-temporal-language align- 623

ment and temporal grounding. Experiments on 624

long-form video question answering and temporal 625

question grounding on video demonstrate a consis- 626

tent improvement over various types of MLLMs. 627

Comprehensive analysis verifies the effectiveness, 628

efficiency, and generality of our framework. 629
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Limitations630

Our study has one primary limitation: i.e. Limited631

Temporal Grounding Capability As shown in632

Section 4.2, our method outperforms existing ap-633

proaches but still has restricted temporal grounding634

capabilities, a common issue in current research.635

We suspect that this limitation may be due to the636

constraints of the lightweight 6-layer transformer-637

based TGB. In future work, we aim to enhance this638

aspect of our method without sacrificing efficiency.639

Ethics Statement and Broad Impact640
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A Self-Improvement Algorithm1054

Algorithm 1 shows our self-improvement algorithm1055

of automatically generating pseudo labels by the1056

MLLM, which is used to optimize the TGB.1057

B Inference Time Analysis1058

Feature Extractor
Qformer
LLM
Sampler
OF Extractor

Figure 3: Inference time Analysis

We further investigate the composition of inference1059

time of TGB on the NExT-QA dataset. We find1060

most computation costs come from LLM and the1061

Algorithm 1: Pseudo Label Algorithm
Input: frames (V = {fr1, fr2, · · · , frT }),

query (q), answer (a)
Output: temporal grounded span
scorebest← 0
start← 0
end← T − 1
stack← empty list
scores← empty list
for fr in V do

prediction = LLMMLLM (fr, q)
scores.add(SIM(prediction, a))

end
for i in scores.length do

while stack is not empty and
stack.get(score.top) > score.get(i)
do

tmp = stack.pop()
scoretmp = (i− stack.top− 1)×
score.get(tmp)

if scoretmp > scorebest then
scorebest = scoretmp

start = 0
end = i− 2

else
end

end
stack.push(i)

end

offline feature extractor. Compared with other com- 1062

ponents, the computation cost is trivial, indicating 1063

the strong efficiency of our method. The offline 1064

demo is presented in the supplementary material. 1065

C More Analysis Experiments 1066

C.1 Ablated TSP-augmented models 1067

TGB MLLM # of frames
(Train)

# of frames
(Infer.) Acc.

OF SING-17M 1 6 53.13
OF SING-17M 1 1 51.36
OF SING-17M 6 6 53.85
OF SING-5M 1 6 51.10
Swin. SING-17M 1 6 53.76

Table 8: Detailed Analysis on the TGB.

In Table 8, we analyzed TSP+SINGULARITY to 1068

evaluate the TSP-augmented paradigm. Our study 1069

revealed that increasing the number of frames dur- 1070

13



ing inference improved performance by 3.4%, but1071

further increases did not proportionally enhance1072

results. We also found that MLLM benefits more1073

from the sampling strategy when adequately pre-1074

trained (i.e., 17M denotes the model is pretrained1075

on 17M video corpora). Additionally, we proposed1076

two TGB variants, replacing optical flow with fea-1077

tures extracted by the video SwinTransformer (Liu1078

et al., 2021b) for pre-training. The comparable re-1079

sults suggest that our TSP can effectively reason1080

over time without any prior perception information.1081

C.2 Influence of the number of frames on1082

solver1083

2 4 6 8 10 12

# of sampled frames

49
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55

A
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u
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Uniform

Keyframe

Figure 4: Further study on the number of sampled
frames.

We trained the solver with different numbers of1084

sampled frames. Results are shown in Figure 4.1085

The fewer sampled frames the better performance1086

of the keyframe strategy, and after a certain point,1087

the uniform strategy performs close to the keyframe1088

strategy. This is because the average duration of1089

videos in AGQA is around 30 seconds, 12 frames1090

are close to dense sampling which covers almost all1091

visual cues. In other words, video-language tasks1092

require bountiful frame inputs that have high com-1093

putational complexity, but our method efficiently1094

learns near-complete video information.1095

C.3 Detailed Ablation Study Results 1096

TGB w/o Optical Flow fixed TGB Uniform Sample Zero-Shot

Obj-rel 62.27 59.13 62.28 53.72 23.60
Rel-act 51.74 15.06 47.84 48.64 17.09
Obj-act 66.09 50.79 50.68 62.10 29.37
Superlative 53.67 59.79 52.12 43.84 28.39
Sequencing 60.11 35.04 49.43 55.94 48.79
Exists 60.85 60.92 60.96 55.14 48.79
Duration 36.99 26.48 40.18 40.39 26.99
Action 0.00 0.00 0.00 0.28 0.28
All 61.45 55.00 59.88 54.00 25.54

Table 9: Ablation study of our method on reasoning
questions from AGQA 2.0 (Grunde-McLaughlin et al.,
2021).

In Table 9, we demonstrate the details of the abla- 1097

tion study of TGB on AGQA 2.0. Specifically, we 1098

demonstrates the ablation study results of different 1099

question types. 1100

D Details of Multi-span Prediction 1101

RC
Head

Start

End

Proposal Detector
SW 1

Proposal 1 Proposal 2 Proposal K

Proposal 2

Proposal K

Proposal 1

(a) Sliding Window Method: T(N*K), O(K)

SW 2

SW K

(b) Proposal Method: T(N), O(K)

(c) Anchor-based Method: T(N*K), O(K) (d) Multi-span Prediction (Ours): T(N), O(1) 
and not limited to granularity

Video

Video

Video

Video

Figure 5: Comparison of multi-span RC prediction
(d) and other methods (a-c) in terms of time and space
complexity.

In Fig. 5, we compare our proposed multi-span 1102

reading comprehension prediction algorithm and 1103

other commonly used methods for temporal sen- 1104

tence grounding on video tasks, including the slid- 1105

ing window method, proposal method, and anchor- 1106

based method. 1107

E Implementation Details 1108

F Details of Datasets 1109

Long-form VideoQA. AGQA is specially de- 1110

signed for compositional spatial-temporal reason- 1111

ing1 including 1,455,610/669,207 question answer- 1112

ing for train/test splits. NExTQA is a multiple 1113

choice VideoQA benchmark for causal, temporal, 1114

1We use AGQA 2.0 which has more balanced distributions.

14



and descriptive reasoning, including 52K ques-1115

tions.1116

Temporal Question Grounding on Video.1117

NExT-GQA is an extension of NExT-QA (Xiao1118

et al., 2021) with 10.5K temporal grounding labels1119

tied to questions, which contains 3,358/5,553 ques-1120

tions for val/test splits. We report mean Intersec-1121

tion over Union (mIoU), IoU@0.3, and IoU@0.51122

as metrics following (Xiao et al., 2023a).1123

F.1 Implementation Details of TGB on1124

Downstream Tasks1125

The TGB is a 6-layer transformer with RoPE (Su1126

et al., 2021). For TGB, We use BLIP2-flant5-xl (Li1127

et al., 2023b) as TGB. For the TGB-augmented1128

framework, we take three vison-language pre-1129

training models as the solver: ALBEF (Li et al.,1130

2021), SINGULARITY (Lei et al., 2022), and VIO-1131

LET (Fu et al., 2021) For the number of keyframes,1132

we sample 4 frames for TGB and 6 frames for TGB-1133

augmented methods to keep consistent with base-1134

lines. We take K = 2 for Gumbel-Softmax tricks1135

in practice. We extract the dense optical flow from1136

the video by RAFT (Teed and Deng, 2020). For1137

the BLIP2-based model, the total trainable parame-1138

ters are 195M, thus our framework is lightweight1139

and can be easily adapted to any LLM. All the ex-1140

periments are performed on NVIDIA A100 80G1141

GPU.1142

F.2 Prompt for Multiple-choice Task on1143

BLIP21144

Following (Yu et al., 2023), we construct addi-1145

tional prompts to adapt the generative model to the1146

multiple-choice task.1147

Question: why did the boy pick up one present 
from the group of them and move to the sofa ? 
Option A: share with the girl 
Option B: approach lady sitting there 
Option C: unwrap it 
Option D: playing with toy train 
Option E: gesture something 
Considering the information presented in the 
frame, select the correct answer from the options.

Figure 6: Additional prompt for NExT-MC task

G Qualitative Studies on NExTGQA 1148

Q: Why did the girl bend forward at the beginning of the video?   
A: Pick up leash.

0.3s 1.5s

Q: Why is the lady leaning forward slightly as she walked?   
A: Exert more force.

0.0s 4.5s

Figure 7: Qualitative results on temporal grounding

Fig. 7 presents two random outputs from TGB on 1149

the TQGV task. The first example demonstrates 1150

how our method can ground video using the se- 1151

mantic information from the question, specifically, 1152

the phrase “at the beginning ". The second ex- 1153

ample demonstrates the efficacy of our method in 1154

temporal reasoning, as evidenced by the phrase “as 1155

she walked ". 1156

H Qualitative Studies on AGQA 2.0 1157

15



V
id

eo
O

F

Question: Before holding a book but after sitting in a bed, what did they undress?
Ground Truth: shoe TGB: shoe BLIP2: dish SEVILA: clothes

V
id

eo
O

F

Question: Which object did the person grasp after watching a book?
Ground Truth: doorknob TGB: doorknob BLIP2: NA SEVILA: doorway

Figure 8: Case Studies. OF: Optical Flow. Green and red boxes indicate correct and wrong keyframe predictions,
respectively. In these cases, our method could correctly localize the keyframes and predict the right answer. “NA"
indicates the BLIP2 can’t generate an answer hitting the answer vocabulary.
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F

Question: Between putting a book somewhere and tidying something on the floor, which object
were they undressing?
Prediction: shoe Ground Truth: clothes

V
id

eo
O

F

Question: What was the person taking between putting a cup somewhere and holding a book?
Prediction: box Ground Truth: food

Figure 9: Filure Cases. OF: Optical Flow. Green and red boxes indicate correct and wrong keyframe predictions,
respectively. For complicated situations involving more than one event, e.g., “between putting a cup and holding a
book", our method could fail to localize the keyframes and thus print the wrong answer.
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