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Prediction over heterogeneous data attracts much attention in urban computing. Recently, satellite imagery provides a new
chance for urban perception but raises the problem of how to fuse visual and non-visual features. So far, the practice is to
concatenate the multimodal features into a vector, which may suppress important features. Therefore, we propose a new
ensemble learning framework: (1) An estimator is developed for each predictor to score its confidence, which is input adaptive.
(2) By applying the output of each predictor to the input of the corresponding estimator as feedback, the estimator learns the
performance of the predictor in the input-output space. When a new input is applied to produce a prediction, the similar
situations will be recalled by the estimator to score the confidence of the prediction. (3) Using end-to-end training, the
estimator learns the weights automatically to minimize the total loss of the neural networks. With the proposed method, data
mining based urban computing and computer vision rendered urban perception can be bridged at the task of commercial
activeness prediction, where the prediction based on satellite images and social context data are fused to yield better prediction
than those based on single view data in the experiments.
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1 INTRODUCTION
Prediction over heterogeneous data has been becoming increasingly important in the context of urban computing
since urban big data could be acquired from multiple sources of multimodality. In [6], the heterogeneous data
including POIs, population, and human mobility encoded in Foursquare check-in logs are combined to predict
regional demands of bikes. The work is further extend to predict spatio-temporal over-demands based on dynamic
clustering of bike stations and incorporating opportunistic contextual factors like social and traffic events in
addition to the common contextual features such as date, time, weather, and temperature [7]. In [13], user opinions
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and check-in positions in social media, taxi traces, and bus distribution and running information are incorporated
into a statistical model to predict house prices. In [26], spatio-temporal POI demand prediction is solved using
Latent Factor Model over the heterogeneous data of taxi trips, POIs, Foursquare check-ins, and Demographic
data. In [5], nonnegative tensor factorization is performed on the tensors representing human mobility in terms
of both bike trips and Foursquare check-ins for anomaly detection to aware unusual events. In the recent urban
computing studies, economic and commercial issues have been attracting increasingly more attention. In [33],
mobile communication records, short messages, and Bluetooth scan-enabled social networking are analyzed to
form a couple of statistical variables so as to predict the categories of users in terms of money spending. In [2],
communication patterns from mobile phones such as social networking, human mobility, and communication
frequency as well as targets, along with the population distribution are used to predict richness. In [36], human
mobility, transportation, web reviews, locations of restaurants, and road closing notifications are collected from
FourSquare, Twitter, OpenTable, and Yelp so as to predict the reservation rate of restaurants using a predictive
model developed in the context of economics. In [27], the rise and decay of the POIs in association with small
business are predicted in a statistical framework referred to as Conditional Random Fields by taking into account
the historical performance of such POIs as well as the contextual features extracted from the perspective of
socioeconomics, human mobility, demographics, energy consumption, environment-health, and safety.

The aforementioned researches involve prediction over heterogeneous data. So far, however, the most widely
adopted scheme is information fusion at the feature level, that is, concatenate the features of multimodality
directly to form a single vector, and then, normalization or feature selection is applied [2, 6, 33]. However, due to
the different dynamic scales and semantics, feature concatenation may favor some features with big dynamic
range while suppress the features with relatively small but important difference. In contrast, ensemble at the
decision level could be more promising, that is, a predictor is established for the homogeneous data of each
modality and the prediction results are fused through a weighted voting strategy to yield the final prediction.
Although whether model-level fusion or feature-level fusion should be applied is subject to applications due to
the variety of the existing scenarios, for the scenario of this study, say, commercial activeness prediction over
multimodal data, the experimental demonstration shows that ensemble learning is more rational. It has been
demonstrated that the social context data can be fitted into the commercial activeness using a linear predictor
[35] while the correlation from satellite images to commercial activeness is much more complex, where the
nonlinearity can be captured using Convolutional Neural Network (CNN) followed by Gradient Boosting Decision
Tree (GBDT) [15]. Due to the incompatible natures between the visual and non-visual features in terms of fitting
into commercial activeness, one identical predictor applied to both features as a whole is demonstrated leading
to obviously lower precision in comparison with the ensemble learning scheme in the experiments. Besides,
model-level fusion gains advantage over feature-level fusion in that it has a broader spectrum of applications in
case heterogeneous representations of data do not allow feature-level fusion. Although there is a strong trend to
call for ensemble learning in terms of urban computing, the topic has been rarely visited in the literature.

The state-of-the-art works on prediction over heterogeneous data are mostly focused on spatiotemporal data.
Recently, satellite imagery brings in a new chance for urban perception as city infrastructures are visually
straightforward in satellite images. For example, land use can be perceived from satellite images using deep
learning [1]. Moreover, the night lights reflected in satellite images can be used to predict regional properties
based on deep neural networks and transfer learning [20]. In some urban computing tasks such as commercial
hotness prediction, in fact, both satellite images and social context data can be applied. In [35], human mobility
reflected in taxi trajectories, local population and house prices, POIs, and rating scores of customers are fused to
predict regional commercial activeness. In [15], visual features of satellite images extracted by using deep neural
networks are used to predict land use categories in the sense of statistics so as to infer regional commercial hotness.
Due to the gap between data mining based urban computing and computer vision rendered urban perception,
yet, commercial activeness prediction based on both satellite images and social context data has remained a
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missing topic so far. Furthermore, due to the lack of knowledge regarding the impact of city infrastructures as
well as social contexts on commercial activeness, city planning from the economic point of view has been an open
problem for a long time. Moreover, it is crucial for business owners to get recommendations on choosing suitable
locations for their business so as to maximize the profits, for which an operational way is to establish a predictor
revealing the relation between urban big data and commercial activeness. In the past, the studies on commercial
activeness prediction are based on either social context data [35] or satellite images [15], either of which figures
out the urban commercial profile from a single view only. The goal of this study is to discover the relation between
urban big data and commercial activeness in terms of fusing social context data and visual patterns of satellite
images. Once a predictor from social contexts and satellite images to commercial hotness is established by mining
the correlation between them, city planning as well as business planning can be conducted in a rational way on
the basis of referring to the map of commercial hotness over regions, which is a byproduct turned out from the
predictor. Such a map leads to an integral profile in terms of commercial activeness over city infrastructures and
social contexts throughout the city, which visualizes the city from the economic perspective for city planners.
Moreover, for newly developed regions with short history and few data, the predicted commercial hotness over
city maps becomes an important clue to foresee the future in terms of business planning.
This study aims to bridge the gap between urban computing and urban perception at the task of commercial

hotness prediction based on multimodal data by introducing a new framework of ensemble learning. Here, we
develop a new model for neural network ensemble. The mechanism is different from the previous ones in that
the weighting of each predictor is subject to the input on the fly and furthermore the output is also applied as
feedback to distinguish the context of decision making by recalling the historical performance of each predictor
under similar situations, where a bigger weight is generated for the predictor that has better performance in
similar contexts. The computing architecture is specific in that a neural network based estimator is constructed
accompanying each neural network based predictor, the mission of which is learning to score the confidence of
the predictor with regard to each input by recalling its performance on similar samples, where the output of
the predictor is applied as feedback to the input of the estimator such that what the estimator learns is not the
input only but the input-output pair. It has been experimentally demonstrated that the performance of ensemble
learning can be obviously improved by introducing such weight estimator with the feedback mechanism in
comparison with the non-feedback ones.

The contribution of this work is summarized as follows: (1) Multi-view commercial hotness prediction based
on satellite images and social context data is studied. This bridges the gap between data mining based urban
computing and computer vision rendered urban perception at the task of commercial hotness prediction. (2) A
novel framework of neural network ensemble to deal with multimodal prediction tasks is established. Except
for the two-channel neural network structure, namely, a predictor along with an estimator for weighting its
confidence, the structure of the proposed ensemble framework is unique in that both the input (data example)
and the output (prediction result) of each predictor are applied to the corresponding estimator to weight the trust
degree of each predictor, where the estimator learns to remember the reactions of the corresponding predictor
on given data samples to produce the trustable degrees of such reactions. Moreover, the ensemble learning
mechanism is implemented in an end-to-end manner, which learns the parameters of predictors and those of
estimators simultaneously. The weight of each predictor is not fixed but subject to the input as well as the reaction
of the predictor.

2 RELATED WORKS
For retail stores, the primary issue is location planning. In [21], geographical information is combined with
human mobility reflected in FourSquare check-in data to infer the commercial hotness of different categories of
business. In [35], commercial activeness prediction from social context data including visitors, local population,
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POIs, and user rating is considered by applying sparse representation to reveal the key influential factors as
well as the linear relation to render prediction. In [15], commercial hotness perceiving is performed by using
deep learning based visual feature extraction and gradient based decision tree for prediction. The goal of this
study is to fuse the visual as well as social context information at the decision level to achieve better prediction,
which has never been investigated before in the sense of multimodal data based urban computing. Although
mobile communication records, population, and satellite images are combined to predict spatiotemporal poverty
indices [30], only night lights reflected in satellite images are considered, which do not allow revealing the richer
information regarding city infrastructures. In this sense, this paper is the first effort devoted to introducing visual
pattern analysis for urban computing.

As for neural network ensemble, the key issue is how to weight the confidence of each predictor. The previous
works do not allow dynamic weighting subject to input but this is promised by the proposed framework. To
achieve neural network ensemble, expanding the diversity of neural networks is a common practice [23]. The
most basic way is to generate different training data using the methods like bagging [3] and boosting [31].
Although boosting is proven effective in increasing the generalization ability of predictors, it degrades when
dealing with hard examples [23]. In [11], Adaboosting is introduced to reallocate different weights for training
samples, which will enhance the stability of neural network ensemble [32]. Besides bagging and boosting, the
work in [22] changes the training data by using cross validation to obtain different proportion of the origin data.
The work in [29] utilizes an artificial synthetic method. The work in [4] randomizes the target values to increase
the prediction accuracy of neural network ensembles. Additionally, changing the structure of individual neural
networks is also effective, such as the number of the hidden neurons [4], as well as the number of the neural
networks [19]. For classification, majority vote is usually adopted as the method of combining different neural
networks to form the conclusion. For regression, the simple average and weighted average [24, 25] methods are
both effective.
In sum, the aforementioned works ensemble neural network predictors based on fixed weights. The reason

is that such works do not employ an estimator as proposed in this study to evaluate the performance of each
predictor on the fly. By applying the output of the predictor as feedback to the input of the estimator and train
the ensemble model in an end-to-end manner as done in this study, the weight of each predictor is in reference to
the input-output pair, which learns the contextual situations of varying cases and recalls similar situations to
weight each predictor when a new input is fed to produce a prediction. By means of such a scheme, the predictor
performing better in similar situations will possess higher weight, vice versa.

3 METHODOLOGY
In terms of urban computing, the data are usually collected from different sensors of different modalities.
Correspondingly, they figure out different views of a region of interest. In the case of commercial hotness
prediction, on one hand, the satellite imagery promises pervasive perception of city infrastructures [28, 34], to
which commercial activities are more or less subject to [15]. On the other hand, taxi trajectories reflect the inflow
and outflow into and out of a region of interest to some extent, which characterize somewhat the hotness of
a region. In addition, the local population of a region is a notable factor to affect the commercial activeness.
Moreover, the statistics resulting from the online comments available on web portals of social media, for example,
the average price and rating score of a commercial entity, are obviously correlated to commercial activities.
Due to the multimodality of the data, although a great deal of endeavor has been made, how to combine the
heterogeneous data for urban computing applications including commercial hotness prediction has remained a
missing topic so far. In this paper, we propose a novel ensemble learner in terms of neural networks to fuse the
decisions from different views for commercial activeness prediction.
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Specifically, we adopt two views of the data. We define view A as the data of satellite imagery. It describes
cities in a visual manner and reflects the city infrastructures in a visible way. We define the non-visual data
as view B, which is the social context data consisting of population, buying power of local residents, number
of visitors, region functions, and rating scores of commercial entities in a given district. In the following, we
first introduce the clustering method used to discover the urban commercial districts (UCDs) in a city. Then, we
describe the features of view A and view B of a given district in detail. Finally, we present the context-aware
neural network ensemble method used to predict commercial hotness, which leads to context-aware weighting
in an automatic manner by learning the performance of the neural network predictor on different input-output
(IO) spaces of either view. In addition, we introduce the baseline methods for comparison.

3.1 Locating UCDs in a City
Following [35], we use a simple clustering method to find all the UCDs in a city. Given all the commercial entities
marked as commercial centers and streets, our goal is to aggregate them into UCDs. First, we initialize some
seeds as the original clustering centers. Then, we repeat the following steps until all the clusters have converged:

• For each commercial entity, we assign it to the nearest clustering center if the distance between them does
not exceed a predefined threshold. Otherwise, a new clustering center is created.

• If the commercial entities of a cluster have changed, recalculate the position of the center of that cluster.

The obtained UCDs are denoted asU (1),U (2), ...,U (n). The motivation behind this algorithm is simple. A UCD
is usually a set of some POIs such as shopping centers and commercial streets. If two shopping centers is close to
each other, it is likely that they belong to the same UCD. So, we merge the close POIs to be a unified UCD until
all UCDs have a relatively far inter distance.

3.2 Constructing View A: Perceiving Land Use in Satellite Images
Satellite imagery can be used to trace urban land use. However, traditional computer vision methods do not work
well when applied to satellite images as the images obtained from satellite sensors are in a highly unstructured
form. Following [15], we construct view A by applying a deep learning-based model to recognize land use in raw
satellite images. The detailed steps are as follows:

• First, we gather satellite images from Google Map. All the images are in the same resolution with the shape
of square.

• Second, we use OpenStreetMap to label each image tile. Nodes and ways are two fundamental elements in
OpenStreetMap data. A single node is defined as a geographical point consisting of a latitude, longitude
and a node id. A way is an ordered list of nodes, which is usually labeled with a corresponding tag. A way
can be open or closed. A closed way is a way where the first node and last node are shared to represent a
certain area. In this paper, we utilize closed ways to generate labels for satellite images. We calculate the
proportion of the area in each satellite tile. If it exceeds a threshold, then, we assign the tag of the way to
this image as its label. In total, we make use of 6 classes: Farmlands, water areas, woods, business areas,
residential areas, and industrial areas.

• Third, we train Google Inception V3, which is a deep learning-based model usually used to provide a strong
baseline, to classify labeled images. The input of the model is a single satellite tile, and the output is the
class-belonging probabilities over the 6 categories of land use.

• Finally, we construct view A by generating features for a given district using the trained deep model. To
guarantee generality, the images used for training and generating features are in different cities. The feature
of view A of a district is the average of the predicted class probabilities of all the satellite images in this
district.
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ALGORITHM 1: The Clustering Method
Input:
Xk = (xk ,yk ),k = 1, 2, ...,N ; // The coordinate values (xk ,yk ) of seed Xk
d ; // A distance threshold.

Output: C ; // A set containing a couple of clusters

for k = 1 to N do
Ck = {Xk } andUk = Xk ; // Initialize a cluster and the center per seed

end
C = {C1,C2, ...,CN };
while true do

for i = 1 to (|C | − 1) do
for j = i + 1 to |C | do

di j = | |Ui −Uj | | ; // Compute the distance between two cluster centers

end
end
dmin =mini, j {di, j };
(I , J ) = arдmini, j {di, j };
if dmin < d ; // The distance between cluster centers is below the threshold.

then
C = C −CI −C J ; // Remove cluster CI and C J from C

CNew = CI ∪C J ; // Merge the two clusters

C = C +CNew ; // Add the new cluster into C

UNew =
|CI |

|CI |+ |C J |
UI +

|C J |

|CI |+ |C J |
UJ ; // Update the center of the cluster

end
else

return C;
end

end

The main framework to construct view A is illustrated in Fig. 1. It is built by the satellite map of a city. Thus, it
reflects the visual aspect of the region of interest. We denote view A of districtU (i) as A(i) = (A(i)

1 ,A
(i)
2 , ...,A

(i)
6 )T .

Note that what is revealed by the visual features is the portion of the area for each category of land use. Here,
the portion of the land use for each category is obtained by averaging the class probabilities output by the deep
neural network over the image tiles in a UCD. As demonstrated experimentally in [15], land use is somehow
correlated to commercial activeness. For instance, farmlands, water, and woods usually dominate the regions in
countryside, which correspond to relatively low commercial activeness, while in city centers, the other categories
of land use dominate the regions in general, which correspond with relatively high commercial activeness. Thus,
the land use probabilities resulting from the CNN features can act as an indicator of commercial activeness.
Accordingly, we inherit such features from [15] in this study.

3.3 Constructing View B: The Social Contexts
Intuitively, the social context surrounding a UCD should affect the commercial hotness of it. Following [35], we
consider 4 factors of the surrounding environment: The local residents and their buying power, the number of
visitors, the region functions, and the rating scores from customers. They are combined to build view B, which
represents the social context feature of a given district. The details are described as follows.
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Fig. 1. Constructing view A. The class probabilities of 6 categories of land use are estimated by a deep learning-based model.
The view A of a given UCD is the average of all the probability vectors in this district.

3.3.1 Local Population and Buying Power. In this paper, we refer to the index of commercial hotness as the
number of people who have interacted with the commercial entities of interest. Intuitively, the number of the
local residents should be an important factor to affect commercial activeness as they are potential customers.
Also, the richness of those residents should affect the commercial hotness since it reflects the buying powers
targeted by different types of commercial entities. We measure the number of local population and their buying
power using the number of and the average price of the houses around this district, respectively. To be specific,
we count the number of the houses as NH (i), and denote the average price of the houses as APH (i). We only
consider the houses within 5 kilometers to the center of the UCD of interest. Here, the number of the houses
refers to the number of the units in the buildings of interest, where each unit is for one family, and the units with
2 or 3 rooms dominate the data as the number of the persons in a family is usually 2˜3 in China.

3.3.2 Visitors. Despite the local residents, the visitors to the district of interest should also affect the commercial
hotness. In this paper, we measure the visitors to a given region by calculating the OD (Origin-Destination) flow
with regard to the district, which are denoted as OV (i) and DV (i).

3.3.3 Region Functions. To better characterize the functions of the regions surrounding a UCD, we utilize the
BOW (Bags of Words) method to quantify the POI distributions. We take into account all the POIs in the range of
5 kilometers to the UCD center and count the number of the POIs of each category. Then, the region functions of
district U (i) are formulated as (RF (i)1 ,RF

(i)
2 , ...,RF

(i)
m )T , wherem is the number of the POI categories taken into

account. In this paper, we letm = 13.

3.3.4 Average Price and Rating of Commercial Entities. The attributes related to commercial entities themselves
should also be related issues. Thus, we collect web comments from Dianping.com, which is the largest online
service to make reviews on commercial entities in China, to retrieve the average price and the rating score of
each district, which is the average of the rating scores regarding all the commercial enities in a UCD. We denote
them as AP (i) and AR(i), respectively.
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Fig. 2. Constructing view B. We consider 4 factors of the surrounding social contexts: The local residents and their buying
power, the number of visitors, the urban functions, and the statistical attributes of the commercial entities.

In all, we combine all the above factors to construct view B. We denote view B of districtU (i) as

B(i) = (B(i)
1 ,B

(i)
2 , ...,B

(i)
19 )

T = (NH (i),APH (i),OV (i),DV (i),RF (i)1 ,RF
(i)
2 , ...,RF

(i)
13 ,AP

(i),AR(i))T (1)

which reflects the social context information near a UCD in a non-visual manner. Fig. 2 shows all the related
factors in view B.

3.4 Proxy of Commercial Hotness
In terms of commercial activeness, since the true transaction data are private for commercial entities, which are
mostly unavailable for public, a couple of measures can be applied as proxy such as human mobility in the form
of origin-destination (OD) flows, and the number of web comments on commercial entities. Here, we prefer the
later one, since the users who dropped comments on a commercial entity are true customers. Therefore, such
a variable reflects how much attention has been attracted with regard to each commercial entity or UCD, and
can be counted explicitly. In contrast, OD flows correspond with potential customers. Although higher values
of OD flows correspond with greater chances of transactions, as occasional behaviors, it is not easy to obtain
the transfer rate from potential customers to true customers. On account of the straightforward perspective in
counting how each commercial entity or UCD attracts true customers’ attention, we prefer to use the number of
web comments on commercial entities as the proxy of commercial activeness. In this study, we treat the total
number of the comments made by customers on a UCD as the proxy of commercial hotness. The data are also
collected from Dianping.com. The reason to use this proxy is that Dianping.com is the primary web service to
leave comments on commercial entities in China. The number reflects how many customers have participated in
commercial activities to some extent. Thus, it is a sound measure for commercial hotness.

3.5 Preliminaries
For the aforementioned terms and definitions, we present them in Table 1.
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Table 1. Terms and Definitions

Terms Definition

Pi The ith point of interest (POI).
U (i) The ith urban commercial district (UCD). It usually consists of some POIs.
A(i) The feature of view A for the ith UCD. A(i) = (A(i)

1 ,A
(i)
2 , ...,A

(i)
6 )T

NH (i) The number of the houses in the ith UCD.
APH (i) The average price of the houses in the ith UCD.
OV (i) The outflow from the ith UCD.
DV (i) The inflow to the ith UCD.
RF (i)j The jth region functions of the ith UCD.
AP (i) The average price of the commercial services in the ith UCD.
AR(i) The average rating score of the commercial services in the ith UCD.
B(i) The feature of view B for the ith UCD. B(i) = (B(i)

1 ,B
(i)
2 , ...,B

(i)
19 )

T =

(NH (i),APH (i),OV (i),DV (i),RF (i)1 ,RF
(i)
2 , ...,RF

(i)
13 ,AP

(i),AR(i))T

3.6 Context-aware Neural Network Ensemble
We propose a novel context-aware neural network ensemble method (CNNE for short) to fuse decisions based on
different views , which promises better prediction than using the data of a single view. A neural network [14] is
usually a feed forward system, which takes the raw features as input, and produces the prediction directly. The
weights in a neural network are learned by backpropagation [16]. It has been demonstrated that a multilayer
neural network is a universal approximator [18]. When considering multi-view data, a single neural network
could be insufficient to deal with the different dynamic scales as well as the varying semantics of multimodality. In
such a case, neural network ensemble is a natural choice, where a couple of neural network models are combined
to make final decision and each model deals with a certain view of the data. Regarding neural network ensemble,
the challenge lies in how to determine the weight of each individual neural processor in the final decision,
especially for the regression problem. The existing methods assign fixed weights to all the predictors, which does
not comply with the practical situations. In practice, each predictor performs differently on different samples
in different contexts. In this study, we propose a new neural network ensemble model, where the weighting of
each predictor is adaptive to the input sample, learnt from the historical performance of each predictor over
different samples by using another neural network to compute the weight, where the weight decision component
is referred to as estimator. By applying the output of the predictor on each sample as a feedback to the input,
the estimator functions to remember the performance of the corresponding predictor on each sample as well
as the resulting prediction, say, context. By aggregating the predictor and the estimator of each view into a
neural network ensemble system, the weight of each predictor can be determined in an automatic manner by
conducting end-to-end training. When each neural processor performs to predict, its weight varies with the input
as well as the output since the estimator computes the weight by recalling the performance of the corresponding
predictor on similar situations, obtained by applying the output as the feedback to the input of the estimator. For
the commercial hotness prediction problem, since the predictive power of different views of the data may vary
from region to region, we apply the estimator to produce a "confidence score" to weight the prediction. Thus,
we can refer to the weighting scores to see how different views contribute to the prediction in each case. For
example, view A is more suitable for predicting commercial hotness than view B in some areas in the experiments.
Correspondingly, the output of the CNNE should produce a larger weighting score when applying the data of
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view A than those of view B, and the final result will be biased to view A, resulting in more accurate prediction.
In our model, the weighting scores are learned automatically given the supervised data of different views and the
targeted prediction.

Fig. 3. The 2-channel structure used for generating prediction and the corresponding weighting score for a single view, where
fc layer means fully connected layer in the neural network.

The network structure used for generating the prediction and the weighting score for single view is shown in
Fig. 3, taking view A as an example. The network has a 2-channel structure:

• We perform traditional neural transformation to obtain prediction in the upper channel. In this paper, we use
two fully-connected layers to produce the predicted value oA from the input feature A = (A1,A2, ...,A6)

T .
Here, we omit the notation i for simplicity. The hidden layer is composed of a linear transform with
an element-wise activation function, which can be formulated as HA = f (W1A + b1), where W1 is a
matrix of k1 × 6, k1 the size of this hidden layer, and f the activation function. In this paper, we use
ReLU as the activation function if not otherwise specified. The final prediction of view A is produced as
oA = f (W2HA + b2), whereW2 is a 1 × k1 matrix.

• The lower channel in Fig. 3 is used for calculating the weighting score of view A. We not only utilize
the features of view A, but also take the prediction oA into consideration when computing the weighting
score. Here, information from the raw input and the prediction resulting from it are combined to generate
the confidence score. First, we concatenate the feature of view A and the resulting prediction to form a
new input vector A′ = (oA,A1,A2, ...,A6)

T . The hidden layer is calculated similarly and we denote it as
I = f (U1A

′ + c1). The weighting scorewA is formulated aswA = д(U2I + c2), where g is a special activation
function:

д(x) =
tanh(x) + 1

2
(2)

We use this activation function because it guarantees that the weight is in the range of (0, 1).
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It is worth mentioning that the structure to produce the prediction and the weight here can be replaced by any
other networks. This feature gives our model enough freedom that can be expanded in the future.

Fig. 4. The context-aware neural network ensemble system.

The network that fuses different views to form the final prediction is shown in Fig. 4. We use the 2-channel
networks shown in Fig. 3 to generate oA andwA for view A, and oB andwB for view B with the same structure.
The final prediction o is defined as:

o =
wAoA +wBoB
wA +wB

(3)

We define the L2 loss function of each view to guide the training of the networks, denoted as LossA and LossB ,
respectively. To learn the weight of each view, we also give an L2 loss for the output o, which is marked as
Losscombined . The final loss to be optimized is the sum of these losses:

Loss = LossA + LossB + Losscombined (4)

The model promises adaptive weighting since it can not only produce prediction based on the data of each
view, but also gives the weighting score of the prediction. The weighting scores reflect the confidence of the
predicting model on each view and is learned automatically in an end-to-end manner. By combining the decision
from multiple views, more reasonable prediction can be promised.
Provided the input and the corresponding output of predictor FA is (A,OA), what the estimator (weight

decision component) learns is the confidence when A produces OA through FA, namely,WA = P{OA = FA(A)},
where P denotes the probability. By learning the performance of FA over {(A,OA)} via the weight estimator,
the ensemble learning scheme gains advantage over the existing ones focused on either P{OA} or P{A} only.
Besides,WA = P{OA = FA(A)} andWB = P{OB = FB (B)} result directly from the end-to-end learning in terms of
minimize the total Loss as defined in Eq. 4 in the neural network ensemble framework.

3.7 Models for Comparison
To validate the proposed model, we compare it with the following baseline methods:

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 2, No. 4, Article 168. Publication date: December 2018.



168:12 • Z. He and S. Yang

• Linear Regression: Linear regression is the most basic regression model in the field of machine learning.
Given the input features xi and the output scalar yi , linear regression is formulated as y ′

i =W
Txi + b. The

loss function is Loss =
∑

i | |yi − y ′
i | |

2
2 .

• Ridge Regression: Ridge regression [17] is a traditional regression model. It introduces a Gaussian prior of
the parameter matrixW in standard linear regression, and the loss function becomes Loss =

∑
i | |yi − y ′

i | |
2
2+

λ | |W | |22 , where λ is a hyperparameter to be adjusted.
• Support Vector Regression (SVR): SVR [10] is a non-linear regression method developed from the support
vector machine (SVM) [9]. It is designed to minimize

1
2
| |w | |22 , s .t . yi − ϵ ≤ wTϕ(xi ) + b ≤ yi + ϵ (5)

where ϕ stands for a kernel function, ϵ a predefined hyperparameter for thresholding, andwTϕ(xi ) + b the
model prediction.

• Gradient Boosting Decision Tree (GBDT): GBDT takes advantage of the technique of gradient boosting [12].
It combines multiple weak regressors such as decision trees to form a more powerful and stable predictor.
In this paper, we use XGBoost [8], a more complex implementation, as the experimental tool for GBDT.

• Neural Network (NN): Our method can be regarded as the model-level fusion of two neural networks. It
produces the prediction on view A and view B, respectively, and then leverages two dynamic weights
to obtain the final prediction. Here, we compare it with the feature-level fusion neural network: We
concatenate the features of view A and view B directly, and then employ a single neural network for the
final prediction. Since our model-level fusion method has only one hidden layer for each view, we use one
hidden layer for feature-level fusion network too. Besides, the NN model is also applied to single view
based prediction, namely, view A and view B, respectively.

4 EXPERIMENTS

4.1 The Data
We download satellite images of Beijing and Shanghai with Google Map API 1. Only a rectangle area that covers
the main urban area and contains the most commercial districts in either city is taken into account. 2. We randomly
sample 48,000 images in Beijing to train the deep learning model for visual feature extraction. The training set
contains 6 classes and 8,000 images for each class. Then, we use the trained model to generate the features of
view A with the satellite images in Shanghai for testing to guarantee generality of the model.

Using the clustering method of Algorithm 1, we find 385 UCDs in Shanghai. The distribution of the found
UCDs are shown in Fig. 5. We construct view A using the satellite images of Shanghai, where the deep model
learned from Beijing is utilized to compute the features of Shanghai UCDs. To construct view B, we use POI
data and house data obtained from http://map.baidu.com and http://www1.fang.com. Besides, we collect the
comments and ratings from customers at http://www.dianping.com, which is the most widely used web service to
make reviews on commercial entities in China. Additionally, we gather the GPS trajectories of about 30,000 taxis
in Shanghai to calculate the visiting flows to the UCDs. The GPS position is recorded 1-2 times per minute for a
taxi. We treat the total number of the online reviews on the entities in a UCD as the target to be predicted, say,
the proxy of commercial hotness, as this reflects how many users have interacted with the commercial entities
inside the UCD of interest. Details of the data are presented in Table 2.

1https://developers.google.com/maps/
2For Beijing, it is 40◦ 09’ 24” N, 116◦ 09’ 27” E to 39◦ 44’ 01” N, 116◦ 40’ 18” E. For Shanghai, the area is 31◦ 25’ 45” N, 121◦ 07’ 57” E to 30◦ 49’
21” N, 121◦ 59’ 22” E.
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Fig. 5. The found 385 UCDs in Shanghai using the clustering method. Each UCD is marked as a red solid circle.

Table 2. Description of the data

GPS trajectories

GPS trajectories of 50,000 taxis in Shanghai with 1-2 times sampling per minute
collected fromDec. 28, 2014 to Jan.10, 2015, for each ofwhich taxi ID, longitude, latitude,
time stamp of sampling, and the state of taking passenger or not is continuously
recorded.

POIs

1,340,000 POIs, each of which includes name, longitude, latitude, and annotation of one
of the 13 categories: Restaurant, Transportation Facility, Scenic Spot, Corporation &
Business, ShoppingMall & Commercial Street, Financial Service, Education & Training,
Motor Service, Life Service, Fitness Center, Hospital, Government & Organization,
Residence & Hotel.

Local Population
andHouse Prices

Prices and household information of 14,000 houses in Shanghai from Fang.com ,
where the name, address, longitude, latitude, average house price, and number of
householders are recorded for each residential district.

Rating Scores of
Customers

Number of comments, rating scores, and average prices of 110,000 commercial entities
in Shanghai collected at Dianping.com from Dec. 9, 2014 to Feb. 11, 2015.

Satellite Images
48,000 satellite images of Beijing to train the deep learning-based model. 191,020
satellite images whose centers fall within the UCDs of Shanghai obtained from the
clustering algorithm.

4.2 Evaluation and Parameter Settings
We randomly divide the data into a training set, an evaluation set, and a test set. The proportion for such data
partition is 8:1:1. We train each model on the training set and use the evaluation set to select the best parameter.
Finally, the performance on the test set is evaluated. To alleviate the influence of data partition and other random
factors, we repeat the above process 50 times, and report the average performance for each model. In this paper,
we use the coefficient of determination, denoted as R2, as the metric for performance evaluation on the regression
models. In a general form, given the observed data y1,y2, ...,yn and the predicted values f1, f2, ..., fn , R2 is:
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R2 = 1 −
∑n

i=1 (fi − yi )
2∑n

i=1 (ȳ − yi )2
(6)

where ȳ stands for the average value of the observed data:

ȳ =

∑n
i=1 yi

n
(7)

There is no parameters to be decided in the model of linear regression. For the other models, since the prediction
of commercial hotness is a brand new problem, we do not know the exact range of the parameters in different
models. Therefore, we adopt the grid search method to find the best parameters, and widen the search range
to a relatively large scope. For ridge regression, λ is selected from {0, 0.5, 1, 2, 5, 10, 15, 20}. We apply a linear
kernel and an RBF kernel for SVR model. The penalty parameterC in SVR is chosen from {1, 5, 10}. For the GBDT
model, the max tree depth is selected from {3, 4, 5} and the number of trees from {10, 50, 100, 150}. For the the
neural networks for feature-level fusion, we choose the hidden layer size from {10, 20, 30, 40} for single-view
evaluation and {20, 40, 60, 80} for multi-view scenario.

For the CNNE, we use the batch size of 32, and the initial learning rate is 0.1. We set the max number of epochs
to be 100. Thereafter, an early stop mechanism is adopted: We evaluate the model after the training of every
epoch. If the performance is not improved compared with that of the last time, the learning rate will be set to be
one quarter of the present value. If the performance is not improved for 5 epochs, we will stop the training. The
model that has the best performance on the evaluation set will be tested on the test set. We set the hidden size of
the weighting channel to be 10.

4.3 Model Performance on Single Views
Before conducting multi-view learning, we try to predict commercial hotness from single view with traditional
regression methods. The results are shown in Table. 3. It can be concluded that view B has better predictive
performance than view A in terms of commercial hotness prediction, since the best model on view B achieves the
accuracy of 62.45%, while the value for view A is only 50.87%. The best model is not the same on view A and
view B because of the different statistical natures of the data. The results suggest that such models on single view
do not perform well. In the following, we will evaluate these models on multiple views.

4.4 Model Performance on Multiple Views
We predict commercial hotness from multi-view data using both the traditional methods and the proposed
approach. The results are shown in Table 3. For the traditional methods, namely, linear regression, ridge regression,
SVR, GBDT, and feature-level fusion neural networks, we concentrate the features of the two views to form the
input for these regressors. Our approach is denoted as CNNE(na , nB ), where na is the hidden size of the network
to perform the prediction based on view A, and nb is that for view B.

We can find in the table that CNNE outperforms all the traditional methods. The best result of the traditional
methods is 61.90%, while CNNE achieves 70.39%. Generally, the performances become better when na and nb
become larger. We also provide the performance for each view in Table 4, which is the output based on either
independent view as a byproduct of the overall prediction using the proposed method, say, OA and OB in Fig. 4.
It is notable that the performance based on multi-view prediction is much better than that based on single-view
prediction, which verifies that our model can combine multi-view predictions appropriately to render better
prediction. Moreover, it is notable that the performance based on feature-level fusion improves little or even gets
worse compared with that of the corresponding single view based prediction, in accordance with the results in
Table 3.
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Table 3. First, we evaluate the traditional models on view A and B, separately. Then, prediction over feature-level fusion is
conducted using Linear Regression, Ridge Regression, SVR, GBDT, and NN, respectively, where NN stands for the feature-level
fusion neural networks. The best model for view A is Ridge Regression, which has an R2 value of 50.87%. The best model on
view B is GBDT. Its R2 score is 62.45%. Then, the traditional methods and the proposed approach are both evaluated on the
multi-view data combining view A and view B. We denote the proposed approach as CNNE_nf(na , nB ) and CNNE(na , nB ),
where we do not feedback the prediction result to the weighting channel in CNNE_nf, while CNNE is the standard model.
na stands for the hidden size of the network to perform prediction based on view A, and nb is that for view B.

Model R2 based on View A R2 based on View B

Linear Regression 50.53% 46.15%

Ridge Regression 50.87% 46.28%

SVR 48.16% 60.47%

GBDT 47.73% 62.45%

NN 49.12% 61.15%

R2 based on View A and view B

Linear Regression 51.71%

Ridge Regression 53.07%

SVR 59.89%

GBDT 61.90%

NN 61.23%

CNNE_nf(10, 10) 60.86%

CNNE(10, 10) 62.56%

CNNE_nf(20, 20) 65.83%

CNNE(20, 20) 66.78%

CNNE_nf(30, 30) 67.06%

CNNE(30, 30) 69.51%

CNNE_nf(40, 40) 68.10%

CNNE(40, 40) 70.39%

Notably, to evaluate our contribution in network structure design, we remove the feedback denoted as oA
in the network model shown in Fig. 3, which is denoted as CNNE_nf in Table 3 to check the effect. Here, we
compare the modified model with the original model in Fig. 3 and from Table 3, we can see that the performance
drops down obviously once the feedback from the output of the predictor to the input of the weight estimator is
removed. We attribute this to the mechanism of the proposed neural network ensemble model, that is, what the
weight estimator learns is the performance of the predictor on different contexts, which is encoded by the IO
values. The weight estimation component remembers the contextual situation in terms of not only the input
sample but also its effect, say, the resulting output.
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Table 4. To verify the generalization ability on multi-view data of our model, we provide the results for each view and the
overall performance. It is notable that, although the performance on single view is not good enough, our model is able to
combine these two views appropriately to perform much better.

Data Model R2 based on View A R2 based on View B R2

View A and View B

CNNE(10, 10) 51.63% 61.97% 62.56%
CNNE(20, 20) 52.37% 62.21% 66.78%
CNNE(30, 30) 53.98% 63.06% 69.51%
CNNE(40, 40) 54.32% 65.50% 70.39%

(a) The ground truth (b) The predicted commercial hotness

Fig. 6. Visualization of the commercial activeness in Shanghai. Figure (a) represents the ground truth commercial hotness
counted as the total number of the reviews on the commercial entities. Figure (b) results from the predicted commercial
hotness using the best model.

One of the interesting things is that the performances of SVR and GBDT are worse than their performances on
a single view. The reason might be that these models can not treat the multi-view data well, and the additional
dimension of features only make the models behave worse, due to the nonlinear nature of such models, which is
subject to overfitting. In contrast, the simple models such as linear regression and ridge regression perform a
little bit better when using the multi-view data.

4.5 Visualization of the Prediction and the Weights Over the City
Finally, we visualize the predicted commercial hotness in the form of a heatmap for Shanghai. To visualize the
heatmap at city scale, we divide the whole dataset into 10 folds. Every time, we employ 8 folds for training and 1
fold for validation. The best model on the validation fold will be used to produce prediction on the remaining
fold. We repeat the process for 10 times to get the model prediction for the whole city, as shown in Fig. 6. It is
clear that the predicted commercial hotness map is similar to the ground truth. Such a map is very useful to trace
the development of the whole city, and provides a valuable reference for city regulation and business planning.
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(a) The learned weighting scores of view A (b) The learned weighting scores of view B

Fig. 7. Visualization of the weighting scores of the learned model in Shanghai. Figure (a) represents the scores of view A and
Figure (b) is the case for view B. Generally, view B is more important than view A. View A is useful when used for UCDs in
the countryside, while the model prefers view B when predicting commercial hotness in the city center.

In addition to visualizing the predicted commercial hotness map, we can also visualize the learned weights
of different views to analyze the confidence scores over different views and different districts quantitatively. In
the best model of CNNE, the average weight score of view A is 0.340, while the value of view B is 0.660. So, it
suggests that the features of view B are more powerful than those of view A. The visualization of the weights of
view A and view B are shown in Fig. 7, respectively. We can conclude from the figure that the model prefers
view B when predicting commercial hotness in the city center, while view A is more important for UCDs at the
edge of the city. The main reason might be that the city center is filled with too many objects to be classified in
satellite images, so the model favors the data of view B in predicting the commercial hotness. At the edge of the
city, satellite imagery becomes useful to distinguish man-made constructions from natural landscapes, where the
model can perform to improve its accuracy.

5 CONCLUSION
In this paper, we have investigated predicting commercial hotness of a whole city with multi-view heterogeneous
data. We develop a novel context-aware neural network ensemble method to fuse the decisions from different
views, which achieves better prediction performance.

We use two views of urban data. One is from the satellite images, which describe the visual patterns of
the city. The other view is formed by the social contexts surrounding the UCDs such as taxi trajectories and
online comments from social media. Then, we compare our model with 4 traditional regression methods. The
experimental results show that our model outperforms all the traditional methods with the accuracy of 70.39%
against 62.45%, the best one of the traditional models.
The contribution lies in the following aspects: (1) This research aims to bridge the gap between data mining

based urban computing and computer vision rendered urban perception in the context of commercial activeness
prediction across a city. Here, the visual features resulting from deep learning over satellite images and the social
context features are combined at the decision level to promise better prediction. To the best of our knowledge, this
should be the first endeavor in this direction. (2) Prediction from heterogeneous data is becoming an increasingly
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important issue for urban computing as urban big data are in general from different sources with multimodality.
So far, there are not effective means to fuse heterogeneous data to promise better decision. Here, we propose a
novel neural network ensemble model to tackle such challenging problem. The novelty is that an estimator is
developed to evaluate the confidence of the corresponding predictor with the output applied to the input of the
estimator as feedback such that the weight of each predictor varies with the input on the fly, which is recalled
from its historical performance on similar situations.
Yet, we are at the very beginning and future effort to improve the model is really needed. As this study is

focused on the commercial activeness of a region, we take into account all the commercial entities in a region as
a whole and omit the categorical difference between such commercial entities. For example, we use the average
price of all the services in a region as one variable to characterize such region. In future works, investigation into
category-sensitive commercial activeness prediction merits further endeavors.
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