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I'm trying to think the future and not be sad.

Pre-training on Our Large-scale Dataset Zero-shot Inference

The 38th NeurIPS will be held in Vancouver Canada.

Figure 1: Our CoCoGesture framework pre-trained on the large-scale dataset can generate coherent
and diverse 3D co-speech gestures corresponding with unseen zero-shot human audios.

ABSTRACT

Deriving co-speech 3D gestures has seen tremendous progress in virtual avatar
animation. Yet, the existing methods often produce stiff and unreasonable gestures
with unseen human speech inputs due to the limited 3D speech-gesture data. In this
paper, we propose CoCoGesture, a novel framework enabling coherent and diverse
gesture synthesis from unseen human speech prompts. Our key insight is built upon
the custom-designed pretrain-fintune training paradigm. At the pretraining stage,
we aim to formulate a large generalizable gesture diffusion model by learning the
abundant postures manifold. Therefore, to alleviate the scarcity of 3D data, we first
construct a large-scale co-speech 3D gesture dataset containing more than 40M
meshed posture instances across 4.3K speakers, dubbed GES-X. Then, we scale
up the large unconditional diffusion model to 1B parameters and pre-train it to be
our gesture experts. At the finetune stage, we present the audio ControlNet that
incorporates the human voice as condition prompts to guide the gesture generation.
Here, we construct the audio ControlNet through a trainable copy of our pre-
trained diffusion model. Moreover, we design a novel Mixture-of-Gesture-Experts
(MoGE) block to adaptively fuse the audio embedding from the human speech and
the gesture features from the pre-trained gesture experts with a routing mechanism.
Such an effective manner ensures audio embedding is temporal coordinated with
motion features while preserving the vivid and diverse gesture generation. Ex-
tensive experiments demonstrate that our proposed CoCoGesture outperforms the
state-of-the-art methods on the zero-shot speech-to-gesture generation. The dataset
will be publicly available at: https://anonymous.4open.science/w/GES-X/ .

1 INTRODUCTION

Co-speech gesture generation aims to synthesize vivid and diverse human postures coordinated with
the input speech audio. These non-verbal body languages greatly enhance the delivery of speech
content in daily conversations (Qi et al., 2024; 2023a; Liu et al., 2024a). Meanwhile, synthesizing
co-speech gestures of human avatars plays a significant role in wide applications like robotics (Farouk,
2022), virtual/augmented reality (AR/VR) (Fu et al., 2022), and human-machine interaction (Koppula
& Saxena, 2013; Liu et al., 2023a).
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Conventionally, recent researchers deal with speech-to-gesture tasks by modeling human upper-
body dynamics with consistent speech voice (Liu et al., 2024a; 2022a; Yi et al., 2023; Chen et al.,
2024; Liu et al., 2024b; Qi et al., 2024). Most of them address this task by conducting end-to-
end mapping through the pre-defined corpus (Liu et al., 2022a; 2024a; Yi et al., 2023). However,
they usually heavily rely on the paired audio-gesture data covering limited speaker identities, re-
sulting in insufficient diversity of gestures. Moreover, the narrowed corpus data may lead to the
model falling short of generalizing to unseen out-of-domain audio inputs, as shown in Figure 2(a).

GES-X (ours)
80,720

TalkSHOW
18,322

BEAT2
5,390

(a) Word Corpus Comparison (b) Visualization of Motion Degree

0.2
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0.4
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0.0 0.2 0.4 0.6 0.8 1.0

Figure 2: Dataset statistical comparison between
our GES-X and existing meshed co-speech ges-
ture datasets (i.e.BEAT2 (Liu et al., 2022a), Talk-
SHOW (Yi et al., 2023)). Our GES-X has a much
larger word corpus and a more widely uniform dis-
tributed gesture motion.

In this work, we introduce the task of coher-
ent and diverse co-speech 3D gesture genera-
tion from in-the-wild human voices, depicted
in Figure 1. To achieve this goal, there are two
main challenges: 1) The existing 3D meshed
co-speech gesture datasets (Liu et al., 2024a; Yi
et al., 2023) are insufficient to train a general-
izable model. Creating such a dataset through
accurate motion capture systems is extensively
labor-consuming. 2) Modeling the coherent and
diverse co-speech gestures from unseen human
audio in an end-to-end fashion is difficult, espe-
cially in long sequences.

To overcome the issue of data scarcity, we first
newly construct a large-scale 3D meshed co-
speech whole-body dataset that contains more
than 40M posture instances across about 4.3K
aligned speaker audios, dubbed GES-X. Specif-
ically, thanks to the advanced pose estimator (Zhang et al., 2023a), we can obtain high-quality 3D
postures (i.e., SMPL-X (Pavlakos et al., 2019) and FLAME (Li et al., 2017)) from in-the-wild talk
show videos. Then, by employing WhisperX (Bain et al., 2023) for automatic speech recognition, we
ensure the acquired text transcript and phoneme consistency with speaker audio. In this fashion, our
GES-X provides the most comprehensive co-speech gestures with diverse modalities. As reported in
Figure 2 (b), the posture motion degree of the GES-X dataset displays a much more widely uniform
distribution against others, indicating our dataset contains more diverse gestures. Meanwhile, the
common mesh standards in our dataset also support other downstream human dynamics-related tasks,
e.g., talking head generation (Tian et al., 2024), human motion generation (Ao et al., 2023).

Along with this dataset, we propose CoCoGesture, a novel framework that enables the generation
of coherent human gestures from the unseen voice. Our key insight is built upon the custom-
designed pretrain-fintune training paradigm. To ensure the generalization of the pre-trained model,
we leverage our large-scale co-speech gesture dataset GES-X as the source training set. Specifically,
we first conduct the pre-training phase based on the large unconditional diffusion transformer
backbone (Peebles & Xie, 2023). This diffusion model serves as a gesture expert and is scaled up to
1B parameters, thereby enabling the training model to build the sufficiently inherent motion manifold
from massive gesture dynamics. In this manner, our pre-trained model ensures the realism of the
generated gestures while preserving vividness and diversity.

Moreover, to incorporate the human speech as the conditional prompt coordinately, inspired by
(Zhang et al., 2023b), we present the audio ControlNet for fine-tuning. Concretely, we refactor a
trainable copy of our pre-trained unconditional large model for adapting various audio conditions.
Then, we propose a novel block, named Mixture-of-Gesture-Experts (MoGE), to fuse the audio
embedding from the human voice and the gesture features from pre-trained gesture experts through a
routing mechanism. Here, the routing mechanism adaptively balances the input audio signal features
with the retained original motion clues. Meanwhile, the learned temporal-wise soft weight of the
routing mechanism greatly guarantees generated results to maintain the coherence rhythm with
input human speeches. Extensive experiments conducted on the out-of-domain datasets (Liu et al.,
2024a; Yi et al., 2023) demonstrate our fine-tuned framework synthesizes vivid and diverse co-speech
gestures, outperforming the state-of-the-art counterparts. Our GES-X dataset will be open-sourced
soon to facilitate the research on the relevant community.

Overall, our contributions are summarized as follows:
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• We introduce the task of co-speech gesture generation from in-the-wild human speech incorporating
the large 3D meshed whole-body human posture dataset, named GES-X. It includes more than 40M
high-quality gesture instances with 4.3K speakers, significantly facilitating research on diverse
gesture generation.

• We propose a novel framework named CoCoGesture that leverages the Mixture-of-Gesture-Experts
(MoGE) blocks to adapt various unseen audio signals with pre-trained highly generalizable gesture
experts effectively. The presented MoGE greatly enhances the temporal coherence between
generated results and conditional prompts.

• Extensive experiments show that our CoCoGesture produces vivid and diverse co-speech gestures
given unseen human voices, outperforming state-of-the-art counterparts.

2 RELATED WORK

Co-speech Gesture Generation. Generating vivid and diverse co-speech gestures has witnessed
impressive progress in recent years due to its practical value in wide-range applications (Qi et al.,
2023c; Liu et al., 2023a; Zhu et al., 2023; Liang et al., 2024; Tian et al., 2024). Conventionally,
researchers utilize the rule-based workflow to bridge the gap between human speech and gestures
via the pre-defined corpus by linguistic experts (Marsella et al., 2013; Poggi et al., 2005). Other
works generate the results relying on mapping the audio signals to manually defined gesture features
through machine learning (Cassell et al., 1994; Huang & Mutlu, 2012). Nevertheless, these two
approaches both need much more effort in preliminary dataset design, causing them to be limited by
the size and quality of the datasets.

Recently, thanks to the advanced deep learning methods and 3D human body modeling tech-
niques (Loper et al., 2023; Zhang et al., 2023a; Pavlakos et al., 2019; Boukhayma et al., 2019;
Li et al., 2017), many works are proposed to generate the continuous 3D upper body postures. Speech-
gesture-aligned datasets (Liu et al., 2022b; Yi et al., 2023; Yoon et al., 2020; Liu et al., 2024a; 2022a)
are also proposed to address this challenging task. They involve multi-modality clues to promote
the generated gestures to be much more reasonable and diverse, like emotion (Liu et al., 2022a; Qi
et al., 2023a; 2024; Bhattacharya et al., 2021), identity (Yi et al., 2023; Liu et al., 2022b; 2024b), text
transcript (Liu et al., 2022b; Cheng et al., 2024). To be specific, Ao et. al (Ao et al., 2022)propose
a rhythm-based segmentation pipeline to boost the harmony between speech and gestures. Yang
et. al (Yang et al., 2023) leverage emotion as guidance to produce various stylized gestures with
the specifically designed diffusion model. Ahuja et. al (Ahuja et al., 2020) mix the disentangled
gesture styles as an ensemble to guide the gesture generation. However, they overlook that directly
generating the gesture from an in-the-wild human voice is much more practical in real-world scenes.
Considering the previous datasets are restricted to a limited scale, we thus propose a large-scale
meshed 3D co-speech dataset to facilitate the research on audio-driven gesture generation from
in-the-wild human speeches.

Zero-shot Human Motion Generation. Human motion generation strives to generate natural
sequences of human poses. Recent advancements in motion data collection and generation methods
have sparked growing interest in this field. Existing research primarily revolves around generating
human motions using conditional signals like text (Tevet et al., 2022b; Chen et al., 2023; Dabral
et al., 2023), audio (Tseng et al., 2022; Ao et al., 2023; Zhu et al., 2023), and scene contexts (Araujo
et al., 2023; Huang et al., 2023). Currently, open-set human motion generation focuses on zero-shot
text-driven generation (Reed et al., 2016; Lin et al., 2023), which creates new content from text
prompts without relying on pre-defined data. MotionCLIP (Tevet et al., 2022a) enhances zero-shot
generation by employing a Transformer-based autoencoder to align the motion manifold with the
latent space of pre-trained vision-language model CLIP (Radford et al., 2021). However, without
sufficient high-quality 3D motion data, current approaches still face challenges in generating fine-
grained motions from unseen audio prompts. Therefore, we propose a novel framework to generate
vivid and diverse gestures based on zero-shot human speech.

Mixture-of-Experts. Mixture-of-Experts (MoE) refers to combining the strengths of multiple
expert models to improve model generalization performance (Fedus et al., 2022; Jacobs et al., 1991;
Shazeer et al., 2017). Recently, MoE has been extensively applied to various research areas (Gale
et al., 2023; Pini et al., 2023), demonstrating their versatility and effectiveness. In computer vision,

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Table 1: Statistical comparison of our GES-X with existing ones. The dotted line separates whether
the posture in the dataset is built based on the mesh. Among meshed whole body co-speech gesture
datasets, the scale of our GES-X is 15× larger than the existing ones (i.e.BEAT2).

Attributes
Dataset Duration

(hours) Speakers Facial Mesh Phoneme Text Body Hand
Joint

Annotation

Trinity (Ferstl & McDonnell, 2018)IV A 4 1 ✗ ✗ ✗ ✓ 24 38 mo-cap
TED (Yoon et al., 2020)TOG 106.1 1,766 ✗ ✗ ✗ ✓ 9 ✗ pseudo
SCG (Habibie et al., 2021)CV PR 33 6 ✗ ✗ ✗ ✗ 14 24 pseudo
TED-Ex (Liu et al., 2022b)CV PR 100.8 1,764 ✗ ✗ ✗ ✓ 13 30 pseudo
ZeroEGGS (Ghorbani et al., 2023)CGF 2 1 ✗ ✗ ✗ ✓ 27 48 mo-cap
BEAT (Liu et al., 2022a)ECCV 35 30 ✓ ✗ ✓ ✓ 27 48 mo-cap
TalkSHOW (Yi et al., 2023)CV PR 26.9 4 ✓ ✓ ✗ ✗ 24 30 pseudo
BEAT2 (Liu et al., 2024a)CV PR 27 25 ✓ ✓ ✓ ✓ 24 30 mo-cap

GES-X (ours) 450 4,370 ✓ ✓ ✓ ✓ 24 30 pseudo

researchers employ the MoE paradigm to facilitate the multi-modal alignment tasks (Feng et al.,
2023; Wang et al., 2023). Concretely, Shen et. al (Shen et al., 2023b) specifically investigates
the scalability of MoE in vision-language models and showcases its potential to outperform dense
models with equivalent computational cost. Regarding the human motion task, Liang et. al (Liang
et al., 2024) propose a mixture-of-controllers mechanism that adaptively recognizes various ranges
of the sub-motions with the text-token-specific experts, resulting in significant improvement on the
text2motion research. Moreover, we notice that Mixture-of-Modality-Experts achieve promising
performance in long-sequence modeling tasks (Liu et al., 2023b; Puigcerver et al., 2023; Shen et al.,
2023a; Zhang et al., 2018). Motivated by this, we introduce Mixture-of-Gesture-Experts in our
framework to enhance long-sequence gesture generation upon human speech guidance.

3 PROPOSED METHOD

3.1 PROBLEM FORMULATION

With the specifically designed generation framework, our goal is to synthesize vivid and diverse 3D
human gestures X = {x1, ..., xN} of the upper body through the given unseen continuous human
speech audio A = {a1, ..., aN} as input. Here, N denotes the number of the generated human
postures coordinated with speech audio A. We leverage J joints with 3D representation to indicate
each pose xi. Unlike the previous methods (Liu et al., 2024a; 2022a; Yi et al., 2023; Liu et al., 2024b)
that either utilize the text transcripts or speaker ID embedding as auxiliary input, our CoCoGesture
adopts only the human speech as model inputs. It should be noted this single modality input fashion
significantly facilitates the unseen speech-conditioned co-speech gesture generation. Our overall
workflow is displayed in Figure 3.

3.2 GESTURE DIFFUSION MODEL PRE-TRAINING

Large-scale Co-speech Gesture Dataset. To ensure the generalization of our pre-trained trans-
former diffusion model, we newly collect a large-scale high-quality 3D meshed whole-body co-speech
gesture dataset, dubbed GES-X. In particular, we first leverage the advanced 3D pose estimator Pymaf-
X (Zhang et al., 2023a) to obtain the meshed whole-body parameters upon SMPL-X (Pavlakos et al.,
2019). The original raw data is collected from about 4.3K talk show videos including different stances
(i.e., standing or sitting). After data processing1, our GES-X dataset contains more than 40M gesture
frames. To the best of our knowledge, this is the largest-scale whole-body meshed 3D co-speech
gesture dataset, whose duration is 15x the current largest one, as reported in Table 1.

Specifically, the acquired human postures are represented as the unified standard SMPL (Loper
et al., 2023) body model accompanied by the MANO (Boukhayma et al., 2019) hand model. The
facial expression is presented in FLAME (Li et al., 2017) face model. Meanwhile, we leverage the
powerful speech recognition model WhisperX (Bain et al., 2023) to gain accurate word-level text
transcripts and linguistics phoneme (Studdert-Kennedy, 1987) aligned with the extracted motion
dynamics. In this manner, our GES-X not only facilitates the research on co-speech gesture generation

1Please refer to supplementary material for more details.
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Figure 3: The overview of our CoCoGesture. In the Pre-training, we first pre-train a large uncondi-
tional diffusion model upon our large-scale GES-X dataset as the gesture expert. The Finetuning
stage incorporates audio signal as gesture generation guidance. In the Inference stage, our CoCoGes-
ture can generate vivid and diverse 3D co-speech gestures from unseen zero-shot human speeches.

but also supports various other human avatar creation tasks, e.g., talking face (Tian et al., 2024),
human behavior analysis (Qi et al., 2023b). Along with this large-scale dataset, the pretraining of the
unconditional diffusion model is greatly enhanced with generalization and vividness.

Model Scaling-up & Pre-training Inspired by (Guo et al., 2022; Liang et al., 2024), we formulate
the popular diffusion transformer (DiT (Peebles & Xie, 2023)) as our model backbone owing to the
scalability and excellent compatibility of large-scale training data. Here, similar to the foundation
model stable diffusion (Rombach et al., 2022), we scale up the original DiT from 120M to 1B with
different layers and latent dimensions, enabling learning massive gesture features so as to apply to
different downstream applications. During training, we enforce our denoiser to produce continuous
human motions given the diffusion time step t and noised postures xt. The denoising processing is
constrained by the simple objective:

Lsimple = Ex,t,ϵ

[∥∥x−Du(x
t, t)

∥∥2
2

]
, (1)

where Du is our unconditional denoiser, ϵ ∼ N (0, I) is the added random Gaussian noise, xt =
x + σtϵ is the gradually noise adding process at step t. σt ∈ (0, 1) is the constant hper-parameter.
Moreover, we follow the setting of (Tevet et al., 2022b; Guo et al., 2022) to leverage the velocity loss
Lvel and foot contact loss Lfoot for improving generated results more smoothness and physically
reasonable. To this end, the overall objective is

Ltotal = λsimpleLsimple + Lvel + Lfoot, (2)

where λsimple is trade-off weight coefficients.

3.3 AUDIO CONTROLNET FINETUNE

In the finetuning phase, we intend to incorporate the audio condition A into the pre-trained gesture
model. Inspired by text2image ControlNet (Zhang et al., 2023b), we introduce an audio ControlNet
consisting of the trainable copy of the unconditional diffusion model and a novel proposed Mixture-
of-Gesture-Experts (MoGE) block, as shown in Figure 4. The frozen pre-trained model serves as
a strong gesture expert and the MoGE blocks follow a trainable copy to produce the temporally
coordinated joint embedding of the audio signal and gesture features. Then the joint embedding is
adaptively added to the denoised motion features of the next layer through a novel routing mechanism.

Mixture-of-Gesture-Experts. Inspired by MoE (Zhu et al., 2024; Yu et al., 2024; Shazeer et al.,
2017), the key insight of the MoGE is adaptively fusing the information from the gesture expert (i.e.,
pre-trained model) and the speech audio expert (i.e., audio encoder), thereby the generated gestures
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preserving temporal consistent with speech rhythms. To enhance the sequence-aware correspondence
of the fused features, we first leverage the audio embedding fa as the query Q to match the key
feature K and values features V belonging motion embeddings fxl

′′
via cross-attention mechanism:

Ql = faWl,Kl = fxl
′′
Wl, Vl = fxl

′′
Wl. (3)

Here, l represents the index of each attention layer, and W denotes the projection matrix.
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Figure 4: Details of our proposed Mixture-of-
Gesture-Experts (MoGE) block. The pre-trained
transformer layer is frozen and serves as the ges-
ture expert, while the audio embedding is extracted
from the audio expert.

Once we obtain these fused trainable features
f train, we adopt an adaptive instance normal-
ization (Ada-IN) layer conditioned on audio fea-
tures to further boost f train. Then, we utilize a
learnable routing adaptor to combine the output
of the gesture expert and trainable copy branch.
To be specific, we leverage the output of the
frozen original last layer as motion guidance
representation to indicate the soft weight. By
doing so, we derive the blending process as fol-
lows

fxl+1 = Rl ⊙ fxl
′
+ (1−Rl)⊙ f trainl ,

Rl = Softmax(WR,l ⊗ fxl ), (4)

where R is the learnable router, WR,l denotes
the weight matrix, ⊙ indicates the Hadamard
product and ⊗ indicates matrix multiplication.
Afterward, we exploit the zero-initialized con-
volution layers to ensure the audio condition in
the trainable copy branch cannot be impacted by the harmful noise.

Training and Inference. During the training, we leverage the same loss function in Eq. 2 to
constrain the trainable conditional denoiser parameters. In the inference, we utilize the classifier-free
guidance unconditional denoiser and audio-conditioned one Da:

x̂(0) = s · Da(x
(t), t, a) + (1− s) · Du(x

(t), t), (5)

where x̂(0) denotes the denoised gesture motions, and s is the set as 4.0 in practice.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTING AND DATASETS

Implementation Details. In the pretraining phase, we set λsimple = 10, empirically. The total
diffusion time step is 1, 000 with the cosine noisy schedule (Nichol & Dhariwal, 2021). The initial
learning rate is set as 1× 10−4 with AdamW optimizer. Our model is trained on 8 NVIDIA H800
GPUs with a batch size of 256. The total training process takes 100 epochs, accounting for one week
of the largest model version within 1B parameters. We provide three-version models with different
architectures and parameters to explore the dependence of performance on model size.

During the finetuning stage, the audio signal is processed to mel-spectrograms with FFT window size
1, 024, and hop length 512. Similar to (Liu et al., 2022b; Qi et al., 2023a; 2024), we take an advanced
speech recognizer (Chung et al., 2020) as the audio encoder. We train the audio ControlNet with a
batch size of 128 for 100 epochs. The initial learning rate is set as 1×10−5. We take the DDIM (Song
et al., 2020) sampling strategy within 25 denoising timesteps during inference. Temporally, our
CoCoGesture synthesizes the 10-second gesture motions including 43 upper joints (i.e.13 body joints
+ 30 hand joints) in practice. Each joint is converted to the 6D rotation representation (Zhou et al.)
for better modeling in the experiments.

GES-X Dataset. We newly propose a large-scale co-speech gesture dataset, dubbed GES-X, to train
our unconditional diffusion model. Firstly, we leverage 16 NVIDIA RTX 4090 GPUs to extract the
3D human poses from downloaded in-the-wild 4, 370 talk show videos. This process takes more than
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Table 2: Comparison with the state-of-the-art counterparts on BEAT2 and TalkSHOW datasets. ↑
means the higher the better, and ↓ indicates the lower the better. ”-” denotes that the method cannot
be applied to the TalkSHOW dataset due to the lack of text transcripts. The term ”zero-shot” implies
that the dataset contains unseen human voices.

BEAT2 (Liu et al., 2024a) TalkSHOW (Yi et al., 2023) (zero-shot)
Methods FGD ↓ Diversity ↑ BA ↑ FGD ↓ Diversity ↑ BA ↑

Trimodal (Yoon et al., 2020)TOG 13.05 33.54 0.75 - - -
HA2G (Liu et al., 2022b)CV PR 9.37 45.81 0.76 15.25 58.41 0.65
CAMN (Liu et al., 2022a)ECCV 7.12 44.02 0.82 - - -
TalkSHOW (Yi et al., 2023)CV PR 10.59 45.23 0.79 16.41 57.30 0.64
DiffuGesture (Zhu et al., 2023)CV PR 11.82 48.53 0.81 17.03 50.52 0.72
ProbTalk (Liu et al., 2024b)CV PR 6.06 66.03 0.82 11.18 65.95 0.78
EMAGE (Liu et al., 2024a)CV PR 4.09 69.70 0.85 - - -

CoCoGesture (ours) 3.92 70.47 0.87 9.62 69.10 0.83

one month, acquiring more than 88 million raw frames. After filtering the unreasonable gestures,
we obtain 40 million high-quality postures. Then, we resample the FPS as 15, thereby the total
generated gesture frames are 150 in a sequence. Finally, we obtain the 100, 162 motion clips with
corresponding audio/text transcripts/phonemes.

BEAT2 and TalkSHOW Datasets. To fully verify the generalization and effectiveness of our
pr-trained model, we adopt two meshed datasets BEAT2 (Liu et al., 2024a) and TalkSHOW (Yi et al.,
2023) in the evaluation phases. BEAT2 contains 3D meshed whole-body postures with multi-modality
information such as speaker ID and text transcripts. The content of the speech is based on 25 speakers’
answers to predefined questions. All the instances in BEAT2 are standing postures collected by the
motion-capture system. In the TalkSHOW dataset, only sitting postures with 4 speakers are collected
by 3D pose estimator from in-the-wild talk show videos. It is noted that the TalkSHOW dataset does
not provide text transcript annotation.

Evaluation Metrics. To fully evaluate the realism and diversity of the generated co-speech gestures,
we introduce various metrics:

• FGD: Fréchet Gesture Distance (FGD) (Yoon et al., 2020) is leveraged to measure the distribution
distance between the motions of real ones and generated ones.

• BA: Beat Alignment Score (BA) (Liu et al., 2022a;b) measures whether the generated human
motions are rhythmically aligned with the speech beat.

• Diversity: Similar to (Liu et al., 2022b; Zhu et al., 2023; Qi et al., 2024), the same feature extractor
is exploited to acquire feature embeddings of the synthesized gestures. We leverage the average
distance between 500 randomly assembled pairs to indicate the diversity score.

4.2 QUANTITATIVE RESULTS

Comparisons with the State-of-the-art. To fully verify the effectiveness of our method, we
compare our CoCoGesture framework with various state-of-the-art counterparts: Trimodal (Yoon
et al., 2020), HA2G (Liu et al., 2022b), CAMN (Liu et al., 2022a), TalkSHOW (Yi et al., 2023),
DiffuGesture (Zhu et al., 2023), ProbTalk (Liu et al., 2024b) and EMAGE (Liu et al., 2024a). For
a fair comparison, all the models are implemented by the source code released by the authors. We
adopt GES-X in the finetuning stage to train our audio ControlNet. Then, we exploit both BEAT2
and TalkSHOW as testing sets. As for all the other counterparts, we adopt only the BEAT2 as the
training set. The TalkSHOW serves as the out-of-domain testing dataset, measuring the comparison
of the zero-shot ability. Since the TalkSHOW dataset does not provide the text transcript, it cannot be
used by some competitors (Yoon et al., 2020; Liu et al., 2022a; 2024a) that rely on text.

As reported in Table 2, our framework achieves the best results on both datasets. We observe that
both EMAGE and ours generate high-quality results in the FGD metric on the BEAT2 dataset.
However, different from EMAGE trained on BEAT2, our CoCoGesture is directly tested on this
dataset. Meanwhile, since our method only depends on the audio signal input, we can easily apply it
to another dataset. In terms of diversity score, our classifier-free inference strategy enables diverse
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Table 3: Ablation study on model scale and pre-training setting. ‡ denotes without pre-training stage.

Model nlayers dmodel nheads dheads Parms BEAT2 (Liu et al., 2024a)

FGD ↓ Diversity ↑ BA ↑

CoCoGesture-Base 25 512 8 128 120M 6.00 52.73 0.81
CoCoGesture-Medium 25 1024 16 128 480M 4.96 57.75 0.83
CoCoGesture-Large ‡ 50 1024 16 128 1B 4.30 68.33 0.85
CoCoGesture-Large 50 1024 16 128 1B 3.92 70.47 0.87

gestures while preserving the authority and vividness of the results. Considering the zero-shot
inference, our approach outperforms all the counterparts by a large margin. Remarkably, on the
TalkSHOW dataset, our CoCoGesture reduces FGD by a significant amount of 16.22% over the
sub-optimal counterparts. The better performance demonstrates our model’s superior generalization
ability, verifying our insight on pre-training and finetune strategy.

Ablation Study. To further evaluate the effectiveness of our proposed framework, we conduct a
series of ablation studies of different components and training strategies as variations.

Effects on Model scale & Pre-training: To investigate the impact of the model scale and pre-training
stage, we conduct the ablation study on the BEAT2 dataset, as reported in Table 3. We design
three model variants with different architectures. Here, nlayers is the total transformer layers, dmodel

denotes dimension of latent vectors, nheads means number of attention heads, dheads indicates the
dimension of each attention head. It is observed that our model performance is gradually improved
with model scaling up. This aligns our insight on larger models to learn massive gesture manifold.
It is noticed that without pre-training, the model achieves lower performance. This suggests that
pre-training on our GES-X dataset is effective in improving model generalization ability.
Effects of the MoGE Block: To fully analyze the effectiveness of our proposed Mixture-of-
Gesture-Experts (MoGE) blocks, we conduct the ablation study through detailed components.

Table 4: Ablation study of MoGE block on BEAT2 dataset.
BEAT2 (Liu et al., 2024a)

Methods FGD ↓ Diversity ↑ BA ↑

w/o Cross-attn 4.79 62.48 0.86
w/o Routing 4.28 67.14 0.79
CoCoGesture (full) 3.92 70.47 0.87

As reported in Table 4, we demon-
strate the exclusion of cross-attention
and routing mechanisms respectively
from our full large model version
leads to performance degradation. To
be specific, the cross-attention module
effectively models the dependency of
audio signals with generated results,
thus implementation without it leads
to worse performance in all the met-
rics. Meanwhile, the exclusion of the routing mechanisms results in an obvious decrease in the BA
score. This demonstrates that our routing mechanism significantly enhances the temporal coherency
between the audio embeddings w.r.t.gesture features, thus producing vivid and coherency gestures.

4.3 QUALITATIVE EVALUATION

Visualization: To fully demonstrate the superior performance of our CoCoGesture framework, we
show the visualized key frames synthesized by ours compared with various counterparts on BEAT2
and TalkSHOW datasets, respectively. As shown in Figure 5, our method displays vivid and diverse
gestures against others. In particular, we observe the Trimodal tends to synthesize unreasonable
and stiff results (e.g., the red rectangle in the BEAT2 dataset). Although the HA2G and EMAGE
can generate the natural upper body postures, we find that their body movements are of limited
dynamics (e.g., the blue rectangle in the BEAT2 dataset). In terms of the zero-shot inference in the
TalkSHOW dataset, both DiffuGesture and our method produce reasonable gestures. However, the
results generated by DiffuGesture are misaligned with the input audio. This may be caused by the
limited word corpus of the BEAT2 dataset restricting the generalization of the model. In contrast, our
method can synthesize the vivid and synchronous co-speech gestures (e.g., the arms become lifting
while the hands stretch out). This highly aligns with our motivation about the model generalization
improved by pre-training on our large-scale dataset GES-X. For more demo results please refer to our
anonymous website: https://anonymous.4open.science/w/GES-X/ .
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Trimodal

CAMN

EMAGE

HA2G

ProbTalk

TalkSHOW

HA2G

DiffuGesture

CoCoGesture
(ours)

CoCoGesture
(ours)

(a) BEAT2 Dataset (b) TalkSHOW Dataset (zero-shot)

….I’m not anti vaccine. But, and it's what comes….…. So sometimes it feels like almost had two homes….

Figure 5: Visualization of our generated 3D co-speech gestures against various state-of-the-art
methods. The samples on the left are from BEAT2, and the samples on the right are from TalkSHOW.

User Study: To further analyze the quality of results synthesized by various counterparts and
ours, we conduct a user study by inviting 15 volunteers. The statistical mean results are re-
ported in Figure 6. All the volunteers are recruited anonymously from schools with differ-
ent majors. Each participant is required to rate the randomly selected visualization videos
from 0 (worst) to 5 (best) in terms of naturalness, smoothness, and speech-gesture coherency.
Our CoCoGesture framework demonstrates the best performance among all the competitors.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
Naturalness Smoothness Coherency

Figure 6: User study on gesture naturalness, mo-
tion smoothness, and speech-gesture coherency.

Especially, in terms of smoothness and speech-
gesture coherency, our method outperforms oth-
ers with noticeable improvements, verifying the
effectiveness of our Mixture-of-Gesture-Expert.

5 CONCULSION

In this paper, we propose CoCoGesture to gen-
erate vivid and diverse co-speech 3D gestures
from in-the-wild zero-shot human speech. To
fulfill this goal, we first newly collect a large-
scale dataset that contains more than 40M high-
quality 3D meshed postures across 4.3K speak-
ers from in-the-wild talk show videos. Along
with this dataset, we pre-train a large generaliz-
able diffusion model to be our gesture expert in
the first stage. To incorporate human speech as guidance, we further propose a novel audio ControlNet
that adaptively fuses the audio embeddings and the motion clues from the pre-trained gesture expert.
Extensive experiments conducted on two out-of-domain datasets show the superiority of our model.

Limitation: Our framework only takes the audio signal as model input to generate gestures. It
might be possible that our model produces emotionally insensitive cases (e.g., moving faster or more
intensely when angry or happy). Meanwhile, the automated pose extraction and speech techniques
may have an impact on the datasets we newly collect, despite the huge effort we put into data clean
filtering and processing. In future works, we will incorporate our model with emotional conditions
and investigate more stable data processing techniques to improve the quality of generated gestures.
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Figure 7: The overall workflow of our dataset construction. The talk show videos are processed to
obtain high-quality postures through advanced automatic technologies and expert proofreading.

A SUPPLEMENTARY MATERIAL

To demonstrate the effectiveness of our data construction techniques and the proposed method of
coherent co-speech gesture generation, we further elaborate on the detailed data synthesis and vision
perception in the supplementary material.

A.1 DATASET

A.1.1 CONSTRUCTION OF OUR GES-X

In this section, we detail the overall pipeline for creating GES-X, a large-scale dataset that contains
over 40M co-speech gesture frames. The whole procedure consists of four folds: internet video
collection, motion annotation, post-processing, and manual inspection, as summarised in Figure 7.

Internet Videos Collection (Step 1&2): Acquiring the paired speech-gesture 3D data via motion
capture system is expensive and labor-consuming. Consequently, some previous works (Liu et al.,
2022b; Yoon et al., 2020; 2019; Qi et al., 2023a; 2024; Yi et al., 2023) leverage in-the-wild talk show
videos as the source to extract 3D postures via advanced pose estimator. Following this fashion, we
intend to obtain large-scale co-speech 3D gestures from YouTube talk show videos covering diverse
topics and speaker styles. We obtain 4,370 videos and their corresponding text transcripts. Given the
substantial volume of our video data, we employ PySceneDetect to segment lengthy videos into clips.
YOLOv8 is also used for human detection, discarding clips that do not show a person within the first
30 frames. These processes allow us to obtain potential clips containing speakers, with an average
duration of 9.85 seconds of each.

Motion Annotation (Step 3&4): Here, we employ SMPL-X (Pavlakos et al., 2019) to represent
whole-body poses, a widely 3D human representation standard adopted in various downstream tasks.
Then, we exploit the advanced pose estimator PyMAF-X (Zhang et al., 2023a) to extract high-quality
3D postures including body poses, subtle fingers, shapes, and expressions of the speakers. For
audio processing, we use FunASR (Gao et al., 2023) with the Whisper-large-v3 model to generate
transcripts. We then apply eight criteria to filter the clips and motion annotations: clips that are too
short, contain multiple people, involve looking back or sideways, have missing joints, show small or
static individuals, or briefly miss the speakers. Additionally, transcripts with fewer than five words
are discarded, though the corresponding video clips are retained to increase the data scale for certain
audio-to-gesture tasks.
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Post-Processing (Step 5&6): Once we obtain a large amount of raw pose sequences, we conduct
the post-processing to boost the quality of our data. Specifically, we visualize the motion sequences
with render mesh vertices and observe there are some temporal jittering issues. These jitters usually
result from heavy occlusion, truncation, and motion blur caused by changes in camera angles and
large-scale human movements of speakers. To address this, similar to CLIFF (Li et al., 2022), we
utilize SmoothNet (Zeng et al., 2022) for temporal smoothing and jitter motion refinement. In practice,
through manual review, we notice that SmoothNet effectively produces cleaner and more reliable
motion sequences without sacrificing the diversity of postures. Despite that, given the frequent
extreme variations in camera angles, speaker poses, and lighting in talk show videos, some inaccurate
pose estimations from PyMAF-X are inevitable. Therefore, we leverage an automatic abnormal pose
detection method to further improve the pose quality. By representing the arm poses as Euler angles
using the x, y, and z convention, based on findings from (Pavlakos et al., 2019), we focus particularly
on the poses of the wrists. Once the wrist poses exceed 150 degrees on any axis or if the pose changes
by more than 25 degrees between adjacent frames (at 15 fps), we discard these abnormal postures
surrounding 150 frames.

Manual Inspection (Step 7): Finally, we perform the manual review for the processed clips with
a uniform ratio of 10:1. In particular, we follow the order of scenecut and sample one clip from
every ten groups of clips. Since these 10 clips typically originate from the same video, making
this assumption reasonably valid. For all clips, we divide them into ten groups for ten inspectors to
manually review. These inspectors evaluate the visualizations based on obtained SMPL-X parameters
to determine whether they are smooth, jittering, or abnormal. If the motion sequences appear jittering
or abnormal, the entire group of ten clips from which the sample originated is discarded. Through
meticulous evaluation and significant effort, the quality of our GES-X is greatly ensured.

Text Transcript and Phonme Alignment: To acquire accurate semantic annotations from speech,
we transcribe audio files to extract text, phonemes, and their corresponding timestamps. Specifically,
we utilize WhisperX (Bain et al., 2023) as our transcription tool, which employs pyannote (Bredin,
2023) for speaker diarization and the Whisper (Radford et al., 2023) model for automatic speech
recognition (ASR). This tool incorporates a VAD Cut & Merge strategy to address the issue of
inaccurate timestamp predictions in long audio. We configure the system to recognize only one
speaker and utilize the Whisper Large V3 model for ASR. This approach splits long audio into
segments, each with its corresponding text. Subsequently, all data and labels are manually reviewed
by skilled human annotators. Finally, we apply the verified transcriptions and segment results to
perform Forced Phoneme Alignment using the Montreal Forced Aligner (McAuliffe et al., 2017) to
accurately label all phonemes and their respective timestamps.

A.1.2 BEAT2 & TALKSHOW DATASETS

Similar to our GES-X, we first resample the BEAT2 and TalkSHOW datasets with the FPS 15. Then,
we divide datasets into 10s clips. Finally, we obtain 35, 758 clips in BEAT2 and 9, 629 in TalkSHOW.
We follow the convention of (Liu et al., 2024a) to split the train/validation/test with the proportion of
85%, 7.5%, and 7.5% of both datasets.

A.2 ADDITIONAL EXPERIMENTS

A.2.1 METRIC CALCULATION DETAILS

Inspired by (Yoon et al., 2020; Liu et al., 2022b), we leverage the FGD to evaluate whether the
generated gestures preserve realism with the ground truth in the perceptive of distribution. We first
pre-train an auto-encoder as the feature extractor. Then the FGD is calculated among the latent
vectors belonging to sequential prediction and ground truth, respectively. The dimension of the latent
vector is 128, similar to (Yoon et al., 2020; Liu et al., 2022b).

A.2.2 DISCUSSION OF EXPERIMENTAL SETTING

In our experiments, we only take human audio as a condition to guide the gesture generation. Although
current speech-to-text methods can provide high-quality results, it requires an additional module to
obtain word-level transcripts with accurate timestamps before modeling gestures from human speech.
Meanwhile, during our pretraining phases, there are more than 4.3k speaker identities. In this fashion,
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it is difficult to model the speaker’s characteristics. In contrast, our method directly generates the
gestures from speech signals. In this universal manner, our model is more practical in real sence
applications (e.g., outdoor background noise may have a serious impact on speech-to-text). Therefore,
similar to (Yi et al., 2023; Liu et al., 2024b; Zhu et al., 2023), our setting of directly generating
gestures from speech audios without textual information is one of the common methodology streams
in the community.

A.2.3 ADDITIONAL ABLATION RESULTS

We further conduct experiments to train our CoCoGesture on the BEAT2 dataset (de-
noted as CoCoGesture*). Our method attains the best performance against all the counter-
parts, which highly demonstrates the effectiveness of our proposed CoCoGesture framework.

Table 5: Ablation study of pre-training on BEAT2 dataset.
BEAT2 (Liu et al., 2024a)

Methods FGD ↓ Diversity ↑ BA ↑

CoCoGesture* 3.66 71.08 0.87
CoCoGesture† 3.92 70.47 0.87

Although the FGD of our framework
pre-trained on the GES-X dataset (de-
noted by †) is slightly worse than the
one trained on BEAT2 due to cross-
dataset evaluation, it still achieves bet-
ter results than other competitors.

A.2.4 USER STUDY DETAILS

During the user study, we utilize eight
models to randomly generate demo
videos in each of the BEAT2 and TalkSHOW datasets. For each method, we randomly generate
two demo videos from two datasets. For those that can be performed on the Talkshow dataset, the
generated results are guaranteed to come from both datasets. Therefore, each participant needs to
respond to 16 samples from eight methods. Then, all the volunteer students are requested to rate
all videos without any hint about which model produces this video. The higher score means the
better results. 5 points means that the video meets the audience’s requirements perfectly. 0 points
indicates that the video is totally unacceptable. To ensure fairness, each demo video is played on a
PPT slide with a blank background. When all students have completed the grading, their results will
be collected anonymously and the average score will be calculated and announced. For each sample,
the participants are allowed to rate only after watching the entire video. To ensure that participants
will not have biased results due to recency bias, we invite participants to take the test at different
periods and not strictly limit the test duration. Participants can watch each video repeatedly. We
double-check the rating results by randomly selecting 60% of participants to redo the same test one
week later, and there are no significant changes to the final results.

A.2.5 ADDITIONAL VISUALIZATION RESULTS

Here, we provide more visualized results of our CoCoGesture framework and other counterparts in
the anonymous website: https://anonymous.4open.science/w/GES-X/ . Moreover, to fully demonstrate
the effectiveness of our proposed components and different model scales, we visualize the key frames
of the generated results in Figure 8 and Figure 9.
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w/o Cross-attn 

w/o Routing 

CoCoGesture

(full version)

….there are many books that I find interesting such…. 

Figure 8: Visual comparisons of ablation study on BEAT2. We show the key frames of the generated
motions given the human speech. Best viewed on screen.

CoCoGesture ‡
(Large)

CoCoGesture

(Large)

CoCoGesture

(Medium)

CoCoGesture

(Base)

….to be heathier and the energy and the last thing I like to do…. 

Figure 9: Visual comparisons of ablation study on BEAT2. We show the key frames of the generated
motions given the human speech. Best viewed on screen.
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