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ABSTRACT

The ability to improve model performance while preserving structural integrity rep-
resents a fundamental challenge in deep unfolding networks (DUNS5), particularly
when handling increasingly complex black-box priors. This paper presents a novel
Sharpness-Aware Deep Unfolding Networks (SADUNSs), which addresses these
limitations by integrating Sharpness-Aware Minimization (SAM) principles with
the proximal operator theory. By analyzing the gradient landscape of linear inverse
problems, we develop the separable sharpness-aware perturbation and subgradient
calculation modules that maintain original network structures while enhancing
optimization. Our theoretical analysis demonstrates that SADUNSs achieve linear
convergence for sparse coding tasks under common assumptions. Crucially, our
framework reduces training costs through fine-tuning compatibility and preserves
inference speed by eliminating redundant gradient computations via proximal op-
erator properties. Comprehensive experiments validate SADUNSs across multiple
domains. Moreover, we have validated the improvement of our framework on plug-
and-play single image super-resolution tasks, which means that our framework has
the potential to expand to more types of deep unfolding networks.

1 INTRODUCTION

Linear Inverse Problems (LIPs) are a core research direction in science and engineering, focusing
on inferring input information or system characteristics from observable outputs. Unlike well-posed
forward problems, LIPs are typically ill-posed but indispensable in practical scenarios like medical
imaging (Sun et al., 2016) and signal processing (Zheng et al., 2022a).

A major breakthrough in LIPs is compressive sensing (CS), which integrates signal acquisition
and reconstruction efficiently. By exploiting signal sparsity (Baraniuk et al., 2010), CS enables
sub-Nyquist-rate measurements, and original signals can be reconstructed from limited observations
via optimization algorithms, finding wide use in image restoration (Cheng et al., 2022) and HSI
(Zhang et al., 2022c).

CS is often modeled as the /;-norm regularized Least Absolute Shrinkage and Selection Operator
(LASSO) problem (to promote sparsity), with solutions including proximal gradient algorithms like
Iterative Shrinkage-Thresholding Algorithm (ISTA) (Daubechies et al., 2004) and its variants (e.g.,
momentum-enhanced versions (Beck & Teboulle, 2009)). With deep learning advances, studies (e.g.,
(Gregor & LeCun, 2010)) accelerated such iterative algorithms by learning: unfolding ISTA iterations
into "Learned ISTA (LISTA)” layers (like time-unfolded recurrent networks), forming the class of
Deep Unfolding Networks (DUNs).

Among all DUNs, we can simply classify them into interpretability-oriented, application-oriented, and
framework-oriented algorithms. As DUNs are designed from traditional iterative algorithms, some
previous works such as LISTA-CP (Chen et al., 2018), focus on interpretability with sparsity-based
priors. However, in real world applications, people are not satisfied with the [;-norm, as it’s a convex
approximation of /y-norm. As conventional optimization employs non-convex regularizers (Fan & Li,
2001), deep learning admits black-box priors (Zhang & Ghanem, 2018; You et al., 2021; Wang & Gan,
2024; Zhang et al., 2022c; Yang et al., 2025). Moreover, the neural-network modules corresponding
to these black-box priors grow increasingly complexity. The works (Zheng et al., 2022b) and (Li
et al., 2021) have proposed acceleration frameworks of HNO and ELISTA for unfolding networks,
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Figure 1: Illustration of our proposed SADUNSs framework. Specifically, SADUNs unfolds 7'
iterations to learnable layers, D is parameterized proximal mapping, and we use the update rule of
Unified Sharpness-Aware Minimization in SPM. We use dotted arrows to indicate our modifications
to the traditional DUN model. When these connections fail (just set p = 0), our model will degenerate
to the traditional DUN. In other words, to convert a traditional DUN to a SADUN, just restore these
connections. This may help you better understand our tuning strategy.

respectively. HLISTA designed a framework that embeds complex neural networks into simple DUNs
to enhance performance.

Despite their differing starting points, existing unfolding networks have yet to address the refinement
of these intricate black-box priors. Recently, the emergence of Sharpness-Aware Minimization (SAM)
(Zhou et al., 2021) in deep learning has rekindled interest in loss-landscape geometry. Noting that
inverse problems with black-box priors embed deep networks, the landscape geometry of such inverse
problems has not received attention yet. Furthermore, the existing framework research either focuses
on theoretical results or introduces auxiliary points, which makes it difficult to directly generalize to
the latest DUNs without end-to-end training.

To address the aforementioned challenges, we design a deep unfolding framework based on the
well-known SAM algorithm (Zhou et al., 2021), denoted as Sharpness-Aware Deep Unfolding
Networks (SADUNSs). We design separable sharpness-aware and subgradient calculation modules,
which significantly reduce damage to the model, as depicted in Figure 1. The main contributions are
summarized as follows:

* A novel perspective and comprehensive framework for DUNs. We commence from the
gradient landscape of linear inverse problems and explore enhancing model performance by
improving local problem properties, which offers a fresh perspective for designing more
sophisticated DUNs. From the sharpness-aware perspective, we engineered a framework
applicable to most deep unfolding networks (DUNs). By leveraging proximal operators
and subgradients, we eliminate one gradient computation in sharpness-aware perturbation
updates, resulting in virtually no inference speed degradation.

* Linear convergence for sparse coding. The theoretical results demonstrate that our
network achieves linear convergence, which guarantees the applicability of our framework
to scenarios demanding sparse-based priors, such as group-sparsity (Zou et al., 2024),
low-rank (Ke et al., 2021).

* Reduce training costs. By emphasizing local properties, our framework inherently supports
fine-tuning techniques akin to those in LLMs, enabling seamless migration from conven-
tional DUNSs to our SADUN:S. Prior frameworks typically disregard complex priors (and
their neural representations), thus heavily relying on end-to-end training.

* Performance improvement for a variety of experiments. We conduct extensive experi-
ments, including synthetic data experiments, natural image compressive sensing and single
image super resolution. The results show that our SADUNSs architecture can effectively
improve the performance of original networks and is widely applicable to different DUNs.
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2 BACKGROUND AND PRELIMINARIES

2.1 ITERATIVE SHRINKAGE-THRESHOLDING ALGORITHM (ISTA)

For the LASSO problem mentioned above, which is used to model compressed sensing, its form is as
follows:

x

min{ F() = () + Aa(e) = gy — sl + Alel }. m

where y € R™ denotes the observed measurement vector, A € R"™*™ (with m < n) represents the
sensing matrix, x € R™ is the original sparse signal to be reconstructed, and A > 0 is a regularization
parameter balancing the data-fitting term f and regularization term g to promote sparsity.

As one of the commonly used algorithms for solving LASSO, ISTA can be introduced by adopting
the idea of majorize-minimization (MM) optimization (Ortega & Rheinboldt, 2000), which works by
finding a surrogate function that minimizes the objective function.

Definition 1 (Surrogate function) In majorize-minimization, a surrogate function Q(z | x) is
defined as a function that majorizes the original objective function f(x) at the current iterate z®),
satisfying two key conditions:

Qz | 2) < f(2),Yz € dom{f}; Q2" | z)) = f(a™).

This ensures that minimizing the surrogate function Q(z | x(t)) to obtain the next iterate 1) will
be non-increasing in the original objective function f.

A common choice of the surrogate function is obtained by performing a second-order Taylor expansion

on f:
Q| 2) = 1) + (e = )TV F() + 2l 213, @

where L is greater than the upper bound of the eigenvalues of V2f(z) and z is a known point

(usually z(¥)). In compressed sensing problems, this can be directly written as the upper bound of the
eigenvalues of AT A. Then, we have

L 1
2 = argmin @z | #) + Ag(x) = axgmin 3 |z — (2© — 2V F@)[3 + Ag(),
with the following definition:

Definition 2 (Proximal mapping/operator) For any x € R", the proximal operator prox, , is the
unique solution to the optimization problem:

. 1
prox/\g(y) = argmin Ag(z) + §Hx — yH%, 3)

where g is a proper convex lower semi-continuous function, X > 0 is a positive parameter,
denotes the Euclidean norm.

“l2

Then we have 1
2D = prOXA/Lg(I(t) - ZAT(Ax(t) —v)), 4

where prox, , is the soft-thresholding function 7y, () = sgn(z)max{|z| — A\/L,0} for the
LASSO problem (1).

2.2 ISTA-BASED DUNSs

(Gregor & LeCun, 2010) firstly proposed a class of methods to learn the parameters of the algorithm
from training data, called deep unfolding networks (DUNSs), and proposed a Learned ISTA (LISTA)
method for the sparse coding task. Subsequently, by mining the relationships between variables,
(Chen et al., 2018) provided the first linear convergence for DUNand presented the LISTA-CP method,
whose update rule can be formulated as follows:

) =g (21 = WO (A2 —y)), Q)
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where the sequence of learnable parameters {W(t), 6 }tTfl is initialized with « AT and o), respec-
tively, and T represents the total number of iterations (or layers). In recent years, a large number of
deep unfolding networks have emerged with clear convergence guarantees, such as (Wu et al., 2020;
Liet al., 2021; Kong et al., 2022; Liu et al., 2018).

In order to achieve better sparse representation, (Zhang & Ghanem, 2018) proposed a method by
using neural networks to promote sparsity, called ISTA-NET, which firstly introduces conventional
layers to DUNs. By introducing deep models into the regularization term, unfolding networks have
rapidly spread to various application fields, including natural image processing (Zhang & Ghanem,
2018; Wang & Gan, 2024), communication technology (Zheng et al., 2022a), and medical image
processing (Zhang & Ghanem, 2018), and other areas (Han et al., 2020; Zhang et al., 2022a). For
ISTA-based unfolding networks, the regularization term can usually be understood as a hidden
function with parameters, i.e. g(x,®), where © is the set of learnable parameters in the proximal
operator of g(z, ©).

2.3 PROXIMAL OPERATORS AND SUBGRADIENTS

In Definition 2, we have already given the definition of the proximal operator. Here, we give the
definition of the subgradient.

Definition 3 For a convex function f : R™ — R, a vector v € R™ is called a subgradient of f at a
point x € R™ if for all y € R"™, the following inequality holds:

fy) = f(x)+{v,y—2),

where (-,-) denotes the inner product in R™. The set of all subgradients of [ at x is called the
subdifferential of f at x, denoted by O f (z):

Of(@)={veR" | f(y) = f(z)+(v,y—x),Vy € R"}.
Next, we present two useful properties of the proximal operator and subgradients (Beck, 2017):

Property 1 If f(z) = g(ax + b) with a > 0, then
prox,zy,(az +b) = a(prox, ¢(x) + b). (6)

Property 2 According to definitions 2 and 3, for any proper convex lower semi-continuouswith
Sfunction g, with * = proxAg(ac), we define

Vg(z*) =z — z* € \dg(z*). 7

2.4 SHARPNESS-AWARE MINIMIZATION

The Sharpness-Aware Minimization (Foret et al., 2020) aims to improve the sharpness of the loss
function by solving such minimax problems:

min max F(z + e), 8)

T |lellp<p

where F' here means loss function in deep learning, p represents the radius of the exploration area.
(Andriushchenko & Flammarion, 2022; Si & Yun, 2023; Su et al., 2025) suggest that the perturbation
is not required to be normalized, named Unnormalized Sharpness-Aware Minimization (USAM).
Then (Oikonomou & Loizou, 2025) proposed a framework balanced between SAM and USAM:

B

€e\r) = 1— T ————

A O]
where (3 € [0, 1], called Unified SAM, which offers a single, theoretically grounded framework that
generalizes and improves both SAM and USAM by relaxing restrictive assumptions, supporting
arbitrary sampling strategies, and delivering SOTA convergence guarantees for nonconvex and PL.
functions. In particular, when /3 takes the values of 0 and 1, respectively, Eq. (9) corresponds to SAM
and USAM. Although some studies have focused on introducing adaptive gradients (Sun et al., 2024),
their update to = can still be expressed as:

2D — () _ ag(t), (10)

)VE(z), ©
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where g(*) is the perturbation gradient VF (z(*) + ¢(2("))) or its variants. The recently proposed
SAM methods can be mainly divided into three categories: optimizing the perturbation direction
(Zhou et al., 2021; Becker et al., 2024), optimizing the perturbation radius (Oikonomou & Loizou,
2025; Kwon et al., 2021), exploring better perturbation gradients (Sun et al., 2024). Note that, some
variants of SAM (Sun et al., 2024; Mordido et al., 2023) tailored for stochastic optimization are
incompatible with DUNs.

3 OUR SHARPNESS-AWARE MINIMIZATION ARCHITECTURE FOR
ISTA-BASED DEEP UNFOLDING NETWORKS

Before introducing our algorithm, please note that for simplicity in the formula, we use g(z) and
D(x) as a simplification of g(x, ) and D(z, ©).

Unlike previous frameworks, which are designed to solve the problem (1), our framework focuses on
its gradient landscape, by solving the problem:

2 = argmin f(z + €®) + Ag(z + ), (11)

where the perturbation €® is defined as:

e® = argmax f(z) + ¢) + A\g(z +¢). (12)
llell2<p

3.1 SOLVE PROBLEM (11) WITH PROPERTY 1 AND MAJORIZE-MINIMIZATION.

Looking back at ISTA and MM optimization, we first provide the definition of the surrogate function
Q(z 4 € | 2) for Eq. (11) as follows:

1
2at)

FED) 4 (@ e =2 TVFED) 4 oo+ e = 2O,

where o) < 1 /L is the step size of ¢-th iteration. Thus, according to the MM optimization criterion,
we use Q(x + € | 2(V) to replace f(z + €*)), resulting in the following:

2D = argmin Q(z + € | zM) + Ag(z + V). (13)
Next, we will explicitly solve for Eq. (13). Recalling Property 1, we need to construct v, such that
v(z) = g(z + V), that is:

2D = proxgm (@ — oV F(z1))
argmin Q(z + € | z® 4+ e®) + Av(z),

Then, we have: prox,,(2()) = prox,, (z(") + €*), where prox,,(z) = D(z — o)V f(x)). Thus,
we obtain the iterative form corresponding to Eq. (13):

x(t—‘rl) = proxa(t))\g(z(t) - a(t)vf(z(t))) - e(t)a (14)
which is similar to (10), since (10) is actually equivalent to:

20D = (20 4 () g R(e® 4 ®) — (0,

3.2 CALCULATING SUBGRADIENT WITH PROPERTY 2.

For the perturbation sub-problem (12), we continue to use the update strategy of unified SAM,
namely:
£®

et — p(t)(l — ﬁ(t) + W)g(t) (15)
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where g € 9F (z®). However, for ISTA-NET or other complex DUNs, the subgradient of the
regulation term dg(x) is not readily available. Thus, we attempt to estimate the subgradient of v at

2D by:
a®AVp (20D = 20 — oOT f(z(0)) — 0+,
However, we need the subgradient of g rather than v. According to v(z) = g(z + €(*)), we can obtain
aDAT (D) 4 D) = 20 _ Oy (50 _ g+1),

Fortunately, SAM allows for certain variations in the selection of gradients when calculating pertur-
bations (Zhou et al., 2021; Du et al., 2021). Thus, we present the update formula for perturbations:

& — 1 B = () L (t—1)
e\ = p(1 + — Vag(z'\" + € . 16
p(l—p va(x<t>+e<t—1))|\2) 9( ) (16)

3.3 A SUMMARY OF OUR SADUNS FRAMEWORK

To better illustrate our model, we decompose it into four components. First, there are two modules
corresponding to the deep unfolding network: the Data Fidelity Module (DFM), which is derived
from the Taylor expansion of the data fidelity term, and the Proximal Mapping Module (PMM), which
enforces the solution to satisfy the prior knowledge. Additionally, the two modules dedicated to
sharpness awareness include the Sharpness-Aware Perturbation Module (SPM) and the Subgradient
Calculation Module (SCM). The overall structure of our framework is depicted in Algorithm 1.
Figure 1 more intuitively illustrates our model, where solid lines represent the data flow of DUNSs,
and dashed lines denote the interaction between DUNs and SAM.

Algorithm 1 SADUNs

Input: Observation y, basis matrix A, depth 7', scalar parameters {a®, 3, 01 p(*) }thl, initial
point 2(0) = 0 and initial gradient ¢(°) =0
fort =0to7T — 1do
SPM: V) = p()(1 — O 4 By ),
(z®

(t)
DEM: u® — 20 4 (0 _ oy f(0 4 (0,
PMM: z(t+1) = D(u® 40 01) — ),
SCM: g(t+1) = (1) 4 (1) _ 4y (t+1),
end for

3.4 LEARNING STRATEGY

By exploring proximal operator properties, each module in the original model has a direct counterpart
in SADUN. In other words, we can simply regard the original DUN as special SADUN with p = 0,
which means we can reuse the well-trained model. Therefore, one may load trained parameters of the
original DUN and initialize p and 3. Then, you may fine tune SADUN for a few epochs or perform
grid searches on rho and beta to avoid any training. In the experimental section, we used end-to-end
training in sparse coding tasks, fine tune strategy in compressive sensing tasks, and no training in
the final plug-and-play experiment. Our framework yields consistent improvements across these
disparate training strategies.

4 THEORETICAL RESULTS

Since our framework (i.e. Algorithm 1) can be adapted to LISTAs, we prove that our framework can
maintain linear convergence under sparse prior conditions in this section. Firstly, we introduce some
definitions and assumptions from (Chen et al., 2018; Liu et al., 2018). Due to the introduction of
sparsity priors, we make the following assumptions about the set of sparse vectors.

Assumption 1 (Basic Assumption) Sparse signal ©* is sampled from the following set:
x* e {z* | |=zf| < B,VYi,||z]o < s}. (17)

In other words, x* is bounded and s-sparse (s > 2).
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Note that this assumption is a basic assumption for sparse coding. To my knowledge, almost all
LISTAs need to satisfy this assumption. In addition, the matrix W (!)learned in (1) must meet the
following definition.

Definition 4 For given A € R"™*"™, the generalized mutual coherence is defined as

p(A) = inf max WIA; . (18)
WGRNXJM i£j T
WTA;=1,1<i<m \1=6,j<M

Additionally, We define W (A) as the set of W which attains infimum given (18). A weight matrix W
is "good” if
W e {W [ W] Aj| < u(AV) # i, W' A; = 1,Vi}

From Lemma 1 in (Chen et al., 2018), we know W (A) # (. Furthermore, the lower bound of

thresholding 6(*) should be given to make z(**1) satisfies No False Positives. Then, we have the
following theorem.

Theorem 1 Given {W ), 9(“}20 and 20 = 0, let {z*) }:io be generated by Algorithm 1. If As-
sumption I holds and s is suffciently small, then there exists a sequence of parameters {W(t), 6 }ZO
such that, for all t* € X (Bs), we have

12 (@*) — 2*[|2 < sB exp(—ct),

where ¢ > 0 is related to A, s and sufficiently small p for all 5 € [0, 1].

5 EXPERIMENTS

In framework-oriented studies, our framework introduces substantially fewer additional parameters
and computational overhead than other schemes such as ELISTA. We further present a tuning strategy
that enables the first successful application to state-of-the-art DUNSs. In this section, we will adopt
our SADUNS framework to three types of DUNSs to verify the feasibility and effectiveness of our
framework. All experiments are performed on a server with NVIDIA 2080 Ti.

5.1 SYNTHETIC DATA SPARSE CODING (LASSO)

To verify the effectiveness of our Theorem 1, we conducted sparse representation experiments on
the LASSO model on synthetic data. We adopted our SADUNSs framework to LISTA-CP, LISTA-
CPSS(Chen et al., 2018), Analysis LISTA(Liu et al., 2018), named SALISTA-CP, SALISTA-CPSS,
SALISTA-ANA. And we compared those algorithms with three noise levels expressed by SNR
(Signal-to-Noise Ratio), which is the indicator and condition numbers x of ill conditioned matrix
on sparse coding problems. We will use the same experimental setup as (Liu et al., 2018), with
m = 250,n = 100, and T" = 16. All the results are shown in Figure 2, where NMSE is defined as
following:
. Ellz — a* ||%)
NMSE(z,z*) = 101o, —_ 19

(") = 1oty (S ) )
where x represents the output of the networks. Our framework demonstrates substantial improvements
over generic DUNs (e.g., LISTA-CP), while still offering noticeable gains for inherently stronger
models (e.g., LISTA-CPSS).

5.2 NATURAL IMAGE COMPREHENSIVE SENSING

Since our framework being designed for complex priors, we designed the fundamental experiments
on SOTA DUNSs such as UFC-NET (Wang & Gan, 2024) compared to previous frameworks. The
training details such as datasets, optimizers are the same as UFC-NET, and we use a fixed learning
rate. The UFC-NET introduced advanced modules such as Multi-head Attention Residual Block
(MARB) and Auxiliary Iterative Reconstruction Block (AIRB) to achieve SOTA performance. We
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Figure 2: Comparisons of sparse representation with different layers under different SNR and «.

Table 1: Average PSNR(dB) Results for Compressive Sensing on the CBSD68 (Martin et al., 2002)
Dataset.

CS Ratio (%) 1 4 5 10
UFC-NET 2331 2674 2747 30.11

f=1.0 | 2335 2680 27.58 3021
SAUFC-T [ =0.5| 2334 2681 27.60 30.22
£ =0.0 | 2333 2680 27.58 3021

B =10 | 2334 2681 27.57 3022
SAUFC-F [ =0.5 | 23.34 2681 27.57 3022
B=0.0 | 2334 2681 27.57 3022

compare the tuned model with ISTA-NET ™ (Zhang & Ghanem, 2018), MAC-NET (Chen et al., 2020),
AMP-NET (Zhang et al., 2020), LTw-ISTA (Gan et al., 2023) and original UFC-NET, and the results
are shown in Table 2. However, we can not confirm whether the success of our framework comes
from adjusting the structure and parameters. Thu, we further try to use fixed p, 8 as in SAUFC-F, and
the results are shown in Table 1. And, in Table 2, our SAUFC-NET demonstrates nearly consistent
improvements in the SSIM metric, particularly on the Set14 and General100 datasets, where our
method also achieves gains in PSNR.

6 FURTHER THOUGHTS FOR PLUG-AND-PLAY PRIORS

For plug-and-play models (PnP-DUNS), prox, /, ,(z) is often regarded as a well-trained denoiser.
In the section, we take single image super resolution (SISR) as an example to varify our SADUNSs
can be adopted to free-formed priors. The half-quadratic splitting (HQS) algorithm (Geman & Yang,
1995) is often used in PnP-DUNs (Tang et al., 2025; Zhang et al., 2022b; Sinha & Chaudhury, 2025;
Sinha et al., 2025). In order to decouple the data term and prior term of (1), HQS introduces an
auxiliary variable z, which reformulate Problem (1):

min f(x) + Ag(2) + Sl = 2[3,

where p is a penalty parameter. It is obvious that HQS transforms linear inverse problems into
two-step proximal operations:

L+ — prox/\/ug(proxl/uf(z(t))). (20)

According to Definition 2, prox, ,,, ; satisfies 0 € z — z + %3]"’(:10), where & = prox, ;(z). For LIPs,
f is strongly convex, which means 9 f(z) = {V f(x)}. Combining (29) and (30), we derive:

m:z—lVf(x). ©3))
L
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Table 2: Average PSNR (dB) and SSIM comparisons of UFC-Net and competing methods on multiple
datasets with different CS ratios.

Datasets Setl4 (Zeyde et al., 2012) Urban100 (Huang et al., 2015)  General100 (Dong et al., 2016)
CS Ratio (%) 1 4 10 25 1 4 10 25 1 4 10 25

ISTA-NET+ PSNR | 18.20 22.07 2598 30.610| 16.66 19.65 23.48 2889 | 19.00 23.74 2852 3431
SSIM | 0.4012 0.5707 0.7288 0.8699 |0.1450 0.6486 0.7841 0.8944|0.4698 0.6545 0.8100 00.9248

PSNR | 21.55 2542 28.70 33.12 | 19.55 2273 2592 30.79 | 22.68 2691 30.77 35.95
SSIM | 0.5301 0.6996 0.8179 0.9136]0.5016 0.6819 0.8144 0.9188|0.6109 0.7689 0.8712 0.9493

PSNR | 21.48 2544 28.82 3340 | 1946 23.01 2676 31.79 | 22.69 27.53 3191 37.31
SSIM | 0.5190 0.7112 0.8342 0.9241|0.4886 0.7061 0.8463 0.9349(0.5989 0.7935 0.8990 0.9616

UFC-NET

PSNR | 21.79 25.67 29.09 33.81 | 19.68 2336 27.54 32.81 | 23.08 27.92 3231 37.75
SSIM | 0.5323 0.7163 0.8362 0.9259|0.5039 0.7193 0.8581 0.9421|0.6145 0.7988 0.9014 0.9624

PSNR | 21.74 25.70 29.15 3391 | 19.65 23.37 2751 32.81|2294 2790 3231 37.82
SSIM | 0.5323 0.7183 0.8377 0.9273|0.5014 0.7201 0.8575 0.9427 | 0.6147 0.8003 0.9021 0.9631

SAUFC-NET

Table 3: Average PSNR (dB) Results of Different Methods for 2x Single Image Super-Resolution on
the CBSD68 Dataset.

kernel 1 2 3 4 5 6 7 8
DPIR-IRCNN 33.77 33.84 30.80 27.25 2821 2748 2731 26.75

SADUN-IRCNN(S=1.0) | 33.77 33.84 30.80 27.27 28.22 2749 27.32 26.77
SADUN-IRCNN(B=0.5) | 33.77 33.84 30.80 27.26 2821 2749 27.32 26.76
SADUN-IRCNN($=0.0) | 37.77 33.84 30.80 27.26 2821 2748 2731 26.75

From the perspective of ordinary differential equations (An et al., 2022), ISTA (4) and HQS (20) are
solutions to the same differential equation. This means that the subgradient calculated based on ISTA
can be regarded as an approximation of the HQS global gradient.

6.1 SINGLE IMAGE SUPER RESOLUTION (HQS)
The mathematical formulation of classical degradation model is given by
y=(zxk) s +n, (22)

where | s denotes the standard s-fold downsampler, i.e., selecting the upper-left pixel for each distinct
s x s patch and k denotes the blur kernel. The classical SISR model still belongs to the linear inverse
problem. HQS updates the data fidelity term f using a closed-form solution. We use the same setting
with (Zhang et al., 2022b), and we use pretrained IRCNN. With p = 0.01, our SADUN-IRCNN
makes a slight promotion without tuning, the results are shown in Table 3. That is to say, even without
tuning, applying the approximate subgradient SAM to the HQS-based DUNss is still effective, and
only requires very little additional computation.

7 CONCLUSION AND FUTURE WORKS

The sharpness-aware framework can achieve significant performance improvements with the addition
of parameters that are much smaller than those of most unfolding networks. Since the change in
the number of parameters is minimal and the meaning of each component remains unchanged, our
framework does not require full end-to-end training and only needs tuning on existing models. This
means that our framework has better adaptability to large models compared to existing unfolding
network frameworks. For future research, there is hope to further improve methods, such as ap-
plying gradient landscape and subgradient based methods to more types of DUNs and introducing
acceleration mechanisms.
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A APPENDIX

A.1 PROOF FOR SALISTA-CP

Before proving Theorem 1, we give the formulation of SALISTA-CP as following:

= mop (1= 5+ 59/]g2)g", (23)
O = 2@ _w® (A(m(t) + 6(75)) —y), (24)
PGS o ) R Mo (u(t)) — e (25)
gty = O — g, (26)
m = s g, 27)

where 1. represents indicator function of set ¢, and ® means element-wise multiplication. In fields
where traditional priors such as sparsity are employed, Deep Unfolding Networks (DUN5) often need
to learn more information from the data fidelity term f, and the update rule for u(*) (24) is derived
from LISTA-CP (Chen et al., 2018). Moreover, since subgradient g(t) is not sparse, this violates the
no-false-positive assumption. We adopt a strategy similar to SSAM (Mi et al., 2022), where a mask
m(®) is applied to the perturbations to ensure the sparsity of the solution. In this proof, we use the
notion z(*) to replace x(*) (2*) for simplicity. We fix A in the proof, x(D) can be simply written as .

proof:

A.1.1 PROOF FOR SALISTA WITH 5 =0

Step 1: No False Positives.
Let S = support(z*) indicates the non-zero entires. We want to prove by induction that, as long as
all trained W () satisfies the ”good” conditions in Definition 4, xgt)

As we set () = 0, it is satisfied when ¢ = 0 and

= 0,1 ¢ S (no false positives).

t—1
0" = (utpp™) sup {le“)—x*ll by (1+u(s—1)) H p® sup {Hw(“ —a* [},
z*€X(B =1 b=v+1 r*€X(B,s)

(28)
where X(B, s) = {z* | |z}| < B, Vi, ||z||o < s} is defined in the Basic Assumption 1. Fixing ¢ and

assuming x§”> = 0,1 ¢ S,Vv € NT < ¢, then we have

2 = g0 (28 + € — WD (A@® 4 D) — y)) — !
= g0 (WD (Az® + D) —y)),i ¢ S,

where eﬁt) = 0 as the mask in (27). Since w® s good,

t—1
0" > (14 pp) |2 — 2|y + 5> (1 + p(s — 1) H POt — 2|y
v=1 b=v+1

> p(||z® — 2|y + (|7 ]11)

(29)
>3 (WA@Y — o)+ W A
jES
> Z \Wi(f)A:j (x§-t) (t x})], Vi € S,
JjeS
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where we can achieve (29) with the following recursive formula:

€Dy = p@m1 © gtV
< p(t) Z| (t 1) (t) — ) Z W(t 1)A (t 1) tfl) — )|

J
€S j#i,jES
S R R (R D D N )
1€S j#£U,JES (30)
< POVl 4 Jl2® = 2l + pls = (e V[ + 27D =)
t—1 t
_ p(t)Hx(t) _ $*||1 + Z(l + /1'(8 o 1))tfv H p(b)Hx(v) _ 1,*”1.
v=1 b=v+1
For (30), the mask m(®) satisfies ml(-t) =1=i€es.
Step 2: Upper Bound of Recovery Error.
Vi € S, we have
= g @+ 6 =W AR + ) —y) -
= g (2 + €V ZIW”A m+¥ﬂwp—@ﬁww—@»—&
JESjFi
= mpolar— Y WA — %) — e
JES,jFi
SPEEES Wz—(,?A:,j(wE-“ b ) — g0 (afe ) 4 0
JES,jF#i
where Jg denotes the sub-gradient of || - ||; that is defined by
sgn(z), x#0,
= 1
99(x) {[1,1], z=0. 1)
Equation 31 suggests that g(z; () 4 e(t)) has a magnitude not greater than 1. Thus, we obtain for
1€S,
t+1 * t (¢ t)
Y —atl < e+ 30 WA+ — )+
JES jFi
< e YD (e ) e,
JES,jFi
Then, we have
* t t * t
e T B (R R D (A R RO RN

ieS JES, j#i

32
= O s = ) 2+ O 500 Y
= (U p(s = DN+ pls = Djat — o[y + 561
With equation 30, we have
t—1
Hx(t—i-l)_x 1 <p(t)02||m(t)_$*||1+zct v+1 H p(b)||x(u)_x*||1+01”x(t)_x*H 1500,
v=1 b=v+1
(33)

where C; = u(s —1),Cy =1+ C4.
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Step 3: Error Bound For The Whole Data Set.
Finally, we take supremum over z* € X(B, s),

sup {2 — 2|1} <pPCy sup {2 — 21}
z*€X(B,s) *EX(B,S)

+ZCt o H p® sup {2 =21} (34)
b—v+1 x*€X(B,s)

+ sup  {Cq[lz® — 2|1} + s6.
z*eX(B,s)

With equation 28, we have

sup {2 — a1} < pPCy  sup ([l — 21}
z*€X(B,s) * EX( ,8)

+ZCt o H PO sup (|2 — a1}

b=v+1 z*€X(B,s)
+01 sup {[l2® — a1} (35)
z*eX(B,s)
+(p+pp)s  sup {lla® — 2|1}
:IJ*EX(B s)
,USZCt v H pl sup {Ilfc(“ —a*[li}.
b=v+1 zreX(B

Since p*) is a enough small scalar, we rearrange the above equation as follows:

t—1

sup  {[|lzFV — 2|1} < H sup {||$(t)—33*|\ F4pd 05 sup {[la™) =2},
z*€X(B,s) z*eX(B o—1 z*€X(B,s)
(36)

where H = (25 — 1)u(1 + p) + p, C3 = p(1 + Cy), and p is the upper bound of p®) for all ¢. By
induction, with ¢ = —log(H ), we have

sup  {[laY — 2"} < (H' +r(t,m,5,p)  sup {||96(” ="}
z*€X(B,s) z*€X(B,s)

sup  {[la'” — @1} < sB(exp(—ct) +r(t, 1,5, p)),
z*eX(B,s)

IA

where r (¢, 1, s, p) donates the slight influence of the second term of equation 36. Since ||z||2 < ||z||1,Vx € R,
we can get the upper bound for /2 norm:

sup  {[la"F) — a2} < sup {Hw(tﬂ) — |1} < sB(exp(—ct) +r(t, 4, 5, ),
z*€X(B,s) z*eX(B

Aslongas s < ((1—p)/(1+p)r) +1)/2,c = —log(H) > 0, then the error bound holds uniformly for all
z* € X(B,s).

A.1.2 PROOF FOR SALISTA WITH 5 =1

When 8 # 0,
p(t)

llg®1l2
is not small enough, which means something new is needed. Therefore, we need to further explore ||e(t) 1
(®)
O, = P ® o g, = p® > L j® 37
lle™ 12 [m® @g(t)H2H||m ©g 2=p" > \/EHE fl- (37

Step 1: No False Positives.
Let S = support(z*) indicates the non-zero entires. We want to prove by induction that, as long as all trained
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W® satisfies the ”good” conditions in Definition 4, xﬁt) = 0,1 ¢ S (no false positives). As we set 2 =0, it
is satisfied when ¢t = 0 and

60" = p | {2 =" |1} + Vapp'” (38)
x* e

where X' (B, s) = {z* | |z}| < B, Vi, ||z|lo < s} is defined in the Basic Assumption 1. Fixing ¢ and assuming
l(-”) =0,i ¢ S,Vv € Nt < ¢, then we have

2 =g (@ + € = WD A + ) =) = €
= ngen (WD (A" + ) —y))i ¢ S,
where e = 0 as the mask in (27). Since and w® is good, we have

0 > pl|lz® — 2|1 + Vspp'®
> p(llz® =2l + [le{]1)

>3 (WA — )|+ WAL (39)
JES

>3 WA (@) + € — )] Vi € 8,
JES

where we can achieve (39) with Eq. (37).
Step 2: Upper Bound of Recovery Error.

Since Eq. (37) has no impact on the update rule (24), we can follow the conclusion of (32), and thus we have

2 — 2 < (U s = D)Wl + puls = D™ = a1 + 56

(®) ®) * ®) (40)
< (L4 als — D)Vsp® + p(s = Dlle® — 2*[|s + 500,
Step 3: Error Bound For The Whole Data Set.
Finally, we take supremum over z* € X(B, s),

swp (e iy S pls = 1) swp (e a4 (1 s = D)VE 450

z*€X(B,s) z*eX(B

With equation 38, we have

sup {Ilaﬁ“+l —a* |1} < pPn(2s - 1) sup, {Hw(t) — |} (L4 p(2s = 1))Vsp'.

z*€X(B,s) z*eX(B
(42)
In this case, we have H = (2s — 1), C = (1 + (25 — 1))+/sp, and p is the upper bound of p'*) for all t. By
induction, with ¢ = —log(H ), we have

sup {Hflc(t+1 —a' i} < H sup {Ja"TY —2f 1} +C

z*€X(B,s) z*€X(B,s)
k41
< sBexp(—ct) + CZ(H )
7=0
C
< B —ct) + ——.
=~ S eXp( C ) + 1— H

Since ||z]|2 < ||z||1, Vz € R, we can get the upper bound for 2 norm:

* * 1+H —
sup  {[|lz"Y — 2"} < sup {Hm(t“) —a"|lh} < sBexp(—ct) + T V/sp,
z*€X(B,s) z*€X(B,s) 1-H

Aslongas s < (1/p+1)/2, ¢ = —log(H) > 0, then the error bound holds uniformly for all z* € X(B, s).

A.1.3 PROOF FOR SALISTA WITH g € (0, 1)

When 3 € (0, 1), each update of u can be devide to 5 = 1 and 8 = 0. Therefore, its convergence property lies
between the two cases mentioned above.
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A.2 ADDITIONAL EXPERIMENT AND DETAILS

In some fields, such as synthetic aperture processing (Li et al., 2025), the DUNs paradigm based on ISTA-NET
(Zhang & Ghanem, 2018) still attracts considerable attention. Therefore, we apply the SADUN framework
proposed in this paper to ISTA-NET to ensure the universality of our framework. For the convenience of
characterizing the model, we denote a single convolution operator as c(x) and some composite operations
cr(z) = relu(e(x)), cbr(z) = relu(bn(c(z))).

A.2.1 NATURAL IMAGE COMPREHENSIVE SENSING

In this subsection, we perform a natural image compressive sensing task to evaluate ours and many other
methods. We use the training set, sampling matrix, and initialization matrix provided by ISTA-NET, and tune

our model using the same strategy. The proximal operator is defined as D(u, ©) = F(ngo(F(u,©1)), O2),

where © = {©1, 0,02} And, the recovery transform F satisfying the symmetry constrain F ® F = T, where
7 represent the identity mapping. The network structure is defined as following:

F(no(F(x,02)),01) = c(cr(mo(c(cr(x)))))-

To guarantee the symmetry constrain F ® F = T, the loss function is defined as:

T
L=z =2} +7 ) IF(F@, 02),01)|3,

t=1
where ~y is set to 0.01.

The results with different CS ratios are reported in Table 4, compared with TVAL3 (Li et al., 2013), D-AMP
(Metzler et al., 2016), IRCNN (Zhang et al., 2017), SDA (Mousavi et al., 2015) and ReconNet (Kulkarni et al.,
2016b). From all the results, we know that our SADUN-ISTA-NET architecture can effectively improve the
performance of ISTA-NET. Moreover, our SADUN-ISTA-NET outperforms the other methods.

Table 4: Comparisons of average PSNR (dB) performance on Setl1 (Kulkarni et al., 2016a) with
different CS ratios.

CS Ratio (%)
1 4 10 25 30 40 50

TVAL3 16.43 18.75 22.99 27.92 29.23 31.46 33.55
D-AMP 521 18.40 22.64 28.46 30.39 33.56 35.92
IRCNN 7.70 17.56 24.02 30.07 31.18 34.06 36.23
SDA 17.29 20.12 22.65 25.34 26.63 27.79 28.95
ReconNet 17.27 20.63 24.28 25.60 28.74 30.58 31.50
ISTA-NET 17.45 21.38 26.11 30.80 33.29 35.49 37.46
Ours 17.40 21.46 26.18 31.96 33.34 35.63 37.57

Algorithms

A.2.2 DETAILS OF SPARSE CODING TASK

In sparse coding task, we choose m = 250,n = 500. We sample the entries of A i.i.d. from the standard
Gaussian distribution, Aij ~ N(0,1/m) and then normalize its columns to have the unit /> norm. We fix a
matrix A in each setting where different networks are compared. To generate sparse vectors x*, we decide each
of its entry to be non-zero following the Bernoulli distribution with pb = 0.1. The values of the non-zero entries
are sampled from the standard Gaussian distribution. A test set of 1000 samples generated in the above manner
is fixed for all tests in our simulations. And we use multi-stage training strategy (Chen et al., 2018; Liu et al.,
2018) to train our SALISTA-CP, SALISTA-CPSS and SALISTA-ANA. Moreover, LISTA-CPSS, LISTA-ANA
and our SADUNSs version all use the support selection technique:

(k)
@i, ie s (@)
(t)
Ty (#5) = Y 0, jai] < 6 43)
New) (zi),  otherwise,

(k) . . . .
where SP°  (z) includes the elements with the largest pk% magnitudes in vector z.
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Figure 3: Comparisons of sparse representation between our approximation and real subgradient

A.2.3 DETAILS OF SISR TASK

For the SISR problem (22) and other model contains conventional operator, the fourier transform is usually used
in its closed-form solution. For model (22), the closed-form solution is defined as:

—1 L T ]:(t)d ils
F (a(t) <d F(t) @s FOF0) L. +am>> ,

where d = F(t)F(y 1) + o F(2!) and ©, denotes distinct block processing operator with element-
wise multiplication, {}s denotes distinct block downsampler, T means the conjugate transpose of x. And the
architecture of IRCNN is defined as

Prox, ,,, () = x + cbr(cbr(cbr(cbr(cr(z))))).

A.3 DISCUSSION ON THE PROPOSED MODULES

For deep unfolding networks, the data fidelity term f is often determined by downstream tasks. Therefore, more
emphasis is placed on designing a well-performing regularization term g, or rather, the proximal operator of
the regularization term. In our SADUNSs framework, these two components are defined as DFM and PMM
respectively, to facilitate their application in different scenarios.

For simple optimization problems, such as sparse coding, it is actually unnecessary to use (16) for approximation;
instead, the subgradient can be used directly for calculatio by

g(t) = Vf(x(t)) + )\sign(x<t)) (44)

where sign(z®) € dg(z®). We compare this strategy of directly using SAM with our proposed scheme,
as shown in Figure 3. We also compared the number of parameters and running speed between SADUNs
and SAM+LISTA, as shown in Table 5.However, for complex application problems, the subgradient of the
regularization term is difficult to calculate directly, which means that the improvement of SCM is relatively
challenging. Finally, in this paper, the SPM adopts the update form of Unified SAM to achieve a balance between
SAM and USAM. In addition, other SAM variants can also be adopted, such as ASAM. We further attempted to
use the update form of ASAM in SPM:

® _ ® (I(t+1))2 >l<g(t+l)

€ EERrT G

and conducted a brief comparison as shown in Figure 4.

A.3.1 DETAILS THE USAGE OF LARGE LANGUAGE MODELS

We conducted a simple review and grammar check by LLM model.
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Table 5: Comparison of the network structures and running speed between SADUNs and
SAM+LISTA.

SAM-LISTA-CP USAM-LISTA-CP SALISTA-CP USALISTA-CP

number of parameters 2MN+3 2MN+3 MN+3 MN+3
running speed (s) 2.56 2.57 1.83 1.85
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Original USAM  ------ ASAM  -----.- SAM

Figure 4: Comparisons of sparse representation between Unified SAM and ASAM
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