

000 001 002 003 004 005 SADUNs: SHARPNESS-AWARE DEEP UNFOLDING 006 NETWORKS FOR IMAGE RESTORATION 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025

ABSTRACT

026 The ability to improve model performance while preserving structural integrity re-
027 presents a fundamental challenge in deep unfolding networks (DUNs), particularly
028 when handling increasingly complex black-box priors. This paper presents a novel
029 Sharpness-Aware Deep Unfolding Networks (SADUNs), which addresses these
030 limitations by integrating Sharpness-Aware Minimization (SAM) principles with
031 the proximal operator theory. By analyzing the gradient landscape of linear inverse
032 problems, we develop the separable sharpness-aware perturbation and subgradient
033 calculation modules that maintain original network structures while enhancing
034 optimization. Our theoretical analysis demonstrates that SADUNs achieve linear
035 convergence for sparse coding tasks under common assumptions. Crucially, our
036 framework reduces training costs through fine-tuning compatibility and preserves
037 inference speed by eliminating redundant gradient computations via proximal op-
038 erator properties. Comprehensive experiments validate SADUNs across multiple
039 domains. Moreover, we have validated the improvement of our framework on plug-
040 and-play single image super-resolution tasks, which means that our framework has
041 the potential to expand to more types of deep unfolding networks.
042

1 INTRODUCTION

043 Linear Inverse Problems (LIPs) are a core research direction in science and engineering, focusing
044 on inferring input information or system characteristics from observable outputs. Unlike well-posed
045 forward problems, LIPs are typically ill-posed but indispensable in practical scenarios like medical
046 imaging (Sun et al., 2016) and signal processing (Zheng et al., 2022a). A major breakthrough in LIPs
047 is compressive sensing (CS), which integrates signal acquisition and reconstruction efficiently. By
048 exploiting signal sparsity (Baraniuk et al., 2010), CS enables sub-Nyquist-rate measurements, and
049 original signals can be reconstructed from limited observations via optimization algorithms, finding
050 wide use in image restoration (Cheng et al., 2022) and HSI (Zhang et al., 2022c).
051

052 CS is often modeled as the l_1 -norm regularized Least Absolute Shrinkage and Selection Operator
053 (LASSO) problem (to promote sparsity), with solutions including proximal gradient algorithms like
054 Iterative Shrinkage-Thresholding Algorithm (ISTA) (Daubechies et al., 2004) and its variants (e.g.,
055 momentum-enhanced versions (Beck & Teboulle, 2009)). With deep learning advances, studies (e.g.,
056 (Gregor & LeCun, 2010)) accelerated such iterative algorithms by learning: unfolding ISTA iterations
057 into "Learned ISTA (LISTA)" layers (like time-unfolded recurrent networks), forming the class of
058 Deep Unfolding Networks (DUNs).
059

060 Among all DUNs, we can simply classify them into interpretability-oriented, application-oriented, and
061 framework-oriented algorithms. As DUNs are designed from traditional iterative algorithms, some
062 previous works such as LISTA-CP (Chen et al., 2018), focus on **interpretability** with sparsity-based
063 priors. However, in real world **applications**, people are not satisfied with the l_1 -norm, as it's a convex
064 approximation of l_0 -norm. As conventional optimization employs non-convex regularizers (Fan & Li,
065 2001), deep learning admits black-box priors (Zhang & Ghanem, 2018; You et al., 2021; Wang & Gan,
066 2024; Zhang et al., 2022c; Yang et al., 2025). Moreover, the neural-network modules corresponding
067 to these black-box priors grow increasingly complexity. The works (Zheng et al., 2022b) and (Li
068 et al., 2021) have proposed acceleration **frameworks** of HNO and ELISTA for unfolding networks,
069 respectively. HLISTA designed a framework that embeds complex neural networks into simple DUNs
070 to enhance performance.
071

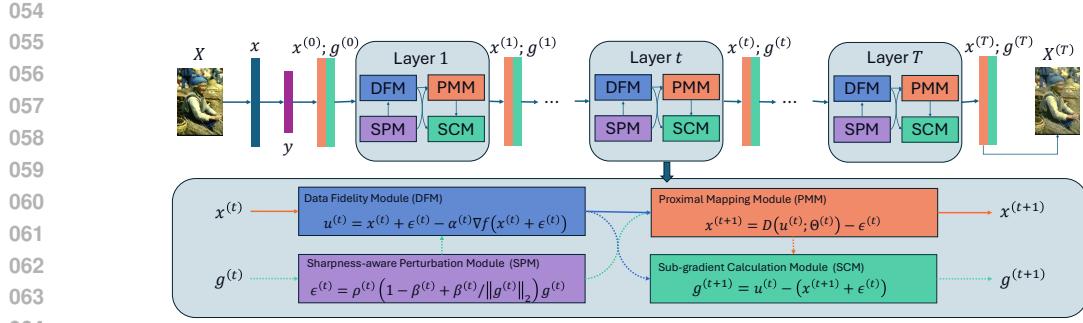


Figure 1: Illustration of our proposed SADUNs framework. Specifically, SADUNs unfolds T iterations to learnable layers, D is parameterized proximal mapping, and we use the update rule of Unified Sharpness-Aware Minimization in SPM. We use dotted arrows to indicate our modifications to the traditional DUN model. When these connections fail (just set $\rho = 0$), our model will degenerate to the traditional DUN. In other words, to convert a traditional DUN to a SADUN, just restore these connections. This may help you better understand our tuning strategy.

Inspired by TV-layers (Yeh et al., 2022), we realize that research on DUNs in recent years has often focused on designing better modules or introducing more complex algorithms, and these methods have not utilized the common smoothing and sharpening techniques in the field of image processing. Recently, the emergence of Sharpness-Aware Minimization (SAM) (Zhou et al., 2021) in deep learning has rekindled interest in loss-landscape geometry with only first-order information, which means that we can indirectly utilize part of the sharpness information by introducing the SAM algorithm. Furthermore, DUNs are widely applied to solving inverse problems with black-box priors. This means that we can use the SAM algorithm to extract the loss-landscape geometry information contained therein. Finally, when the existing framework-oriented methods were proposed, the network structures and parameter counts of DUNs were relatively simple, and their improved models were often trained in an end-to-end manner. However, more advanced DUNs usually have publicly available model files, so we aim to design a method that performs fine-tuning based on pre-trained models.

To address the aforementioned challenges, we design a deep unfolding framework based on the well-known SAM algorithm (Zhou et al., 2021), denoted as Sharpness-Aware Deep Unfolding Networks (SADUNs). We design separable sharpness-aware and subgradient calculation modules, which significantly reduce damage to the model, as depicted in Figure 1. The main contributions are summarized as follows:

- **A novel perspective and comprehensive framework for DUNs.** We commence from the gradient landscape of linear inverse problems and explore enhancing model performance by improving local problem properties, which offers a fresh perspective for designing more sophisticated DUNs. From the sharpness-aware perspective, we engineered a framework applicable to most deep unfolding networks (DUNs). By leveraging proximal operators and subgradients, we eliminate one gradient computation in sharpness-aware perturbation updates, resulting in virtually no inference speed degradation.
- **Linear convergence for sparse coding.** The theoretical results demonstrate that our network achieves linear convergence, which guarantees the applicability of our framework to scenarios demanding sparse-based priors, such as group-sparsity (Zou et al., 2024), low-rank (Ke et al., 2021).
- **Reduce training costs.** By emphasizing local properties, our framework inherently supports fine-tuning techniques akin to those in LLMs, enabling seamless migration from conventional DUNs to our SADUNs. Prior frameworks typically disregard complex priors (and their neural representations), thus heavily relying on end-to-end training.
- **Performance improvement for a variety of experiments.** We conduct extensive experiments, including synthetic data experiments, natural image compressive sensing and single image super resolution. The results show that our SADUNs architecture can effectively improve the performance of original networks and is widely applicable to different DUNs.

108 **2 BACKGROUND AND PRELIMINARIES**109 **2.1 ITERATIVE SHRINKAGE-THRESHOLDING ALGORITHM (ISTA)**110 For the LASSO problem mentioned above, which is used to model compressed sensing, its form is as
111 follows:

112
$$\min_x \left\{ F(x) = f(x) + \lambda g(x) = \frac{1}{2} \|y - Ax\|_2^2 + \lambda \|x\|_1 \right\}, \quad (1)$$

113 where $y \in \mathbb{R}^m$ denotes the observed measurement vector, $A \in \mathbb{R}^{m \times n}$ (with $m \ll n$) represents the
114 sensing matrix, $x \in \mathbb{R}^n$ is the original sparse signal to be reconstructed, and $\lambda > 0$ is a regularization
115 parameter balancing the data-fitting term f and regularization term g to promote sparsity.116 As one of the commonly used algorithms for solving LASSO, ISTA can be introduced by adopting
117 the idea of majorize-minimization (MM) optimization (Ortega & Rheinboldt, 2000), which works by
118 finding a surrogate function that minimizes the objective function.119 **Definition 1** (Surrogate function). *In majorize-minimization, a surrogate function $Q(x | x^{(t)})$ is
120 defined as a function that majorizes the original objective function $f(x)$ at the current iterate $x^{(t)}$,
121 satisfying two key conditions:*

122
$$Q(x | x^{(t)}) \leq f(x), \forall x \in \text{dom}\{f\}; Q(x^{(t)} | x^{(t)}) = f(x^{(t)}).$$

123 This ensures that minimizing the surrogate function $Q(x | x^{(t)})$ to obtain the next iterate $x^{(t+1)}$ will
124 be non-increasing in the original objective function f .125 A common choice of the surrogate function is obtained by performing a second-order Taylor expansion
126 on f :

127
$$Q(x | z) = f(z) + (x - z)^\top \nabla f(z) + \frac{L}{2} \|x - z\|_2^2, \quad (2)$$

128 where L is greater than the upper bound of the eigenvalues of $\nabla^2 f(z)$ and z is a known point
129 (usually $x^{(t)}$). In compressed sensing problems, this can be directly written as the upper bound of the
130 eigenvalues of $A^\top A$. Then, we have

131
$$x^{(t+1)} = \operatorname{argmin}_x Q(x | x^{(t)}) + \lambda g(x) = \operatorname{argmin}_x \frac{L}{2} \|x - (x^{(t)} - \frac{1}{L} \nabla f(x^{(t)}))\|_2^2 + \lambda g(x),$$

132 with the following definition:

133 **Definition 2** (Proximal mapping/operator). *For any $x \in \mathbb{R}^n$, the proximal operator $\operatorname{prox}_{\lambda g}$ is the
134 unique solution to the optimization problem:*

135
$$\operatorname{prox}_{\lambda g}(y) = \operatorname{argmin}_x \lambda g(x) + \frac{1}{2} \|x - y\|_2^2, \quad (3)$$

136 where g is a proper convex lower semi-continuous function, $\lambda > 0$ is a positive parameter, $\|\cdot\|_2$
137 denotes the Euclidean norm.

138 Then we have

139
$$x^{(t+1)} = \operatorname{prox}_{\lambda/L g}(x^{(t)} - \frac{1}{L} A^\top (Ax^{(t)} - y)), \quad (4)$$

140 where $\operatorname{prox}_{\lambda/L g}$ is the soft-thresholding function $\eta_{\lambda/L}(x) = \operatorname{sgn}(x) \max\{|x| - \lambda/L, 0\}$ for the
141 LASSO problem (1).142 **2.2 ISTA-BASED DUNs**143 (Gregor & LeCun, 2010) firstly proposed a class of methods to learn the parameters of the algorithm
144 from training data, called deep unfolding networks (DUNs), and proposed a Learned ISTA (LISTA)
145 method for the sparse coding task. Subsequently, by mining the relationships between variables,
146 (Chen et al., 2018) provided the first linear convergence for DUN and presented the LISTA-CP method,
147 whose update rule can be formulated as follows:

148
$$x^{(t+1)} = \eta_{\theta(t)}(x^{(t)} - W^{(t)}(Ax^{(t)} - y)), \quad (5)$$

162 where the sequence of learnable parameters $\{W^{(t)}, \theta^{(t)}\}_{t=1}^T$ is initialized with αA^\top and $\alpha \lambda$, respectively, and T represents the total number of iterations (or layers). In recent years, a large number of 163 deep unfolding networks have emerged with clear convergence guarantees, such as (Wu et al., 2020; 164 Li et al., 2021; Kong et al., 2022; Liu et al., 2018).

165 In order to achieve better sparse representation, (Zhang & Ghanem, 2018) proposed a method by 166 using neural networks to promote sparsity, called ISTA-NET, which firstly introduces conventional 167 layers to DUNs. By introducing deep models into the regularization term, unfolding networks have 168 rapidly spread to various application fields, including natural image processing (Zhang & Ghanem, 169 2018; Wang & Gan, 2024), communication technology (Zheng et al., 2022a), and medical image 170 processing (Zhang & Ghanem, 2018), and other areas (Han et al., 2020; Zhang et al., 2022a). For 171 ISTA-based unfolding networks, the regularization term can usually be understood as a hidden 172 function with parameters, i.e. $g(x, \Theta)$, where Θ is the set of learnable parameters in the proximal 173 operator of $g(x, \Theta)$.

174 2.3 PROXIMAL OPERATORS AND SUBGRADIENTS

175 In Definition 2, we have already given the definition of the proximal operator. Here, we give the 176 definition of the subgradient.

177 **Definition 3.** For a convex function $f : \mathbb{R}^n \rightarrow \mathbb{R}$, a vector $v \in \mathbb{R}^n$ is called a subgradient of f at a 178 point $x \in \mathbb{R}^n$ if for all $y \in \mathbb{R}^n$, the following inequality holds:

$$179 f(y) \geq f(x) + \langle v, y - x \rangle,$$

180 where $\langle \cdot, \cdot \rangle$ denotes the inner product in \mathbb{R}^n . The set of all subgradients of f at x is called the 181 subdifferential of f at x , denoted by $\partial f(x)$:

$$182 \partial f(x) = \{v \in \mathbb{R}^n \mid f(y) \geq f(x) + \langle v, y - x \rangle, \forall y \in \mathbb{R}^n\}.$$

183 Next, we present two useful properties of the proximal operator and subgradients (Beck, 2017):

184 **Property 1.** If $f(x) = g(ax + b)$ with $a > 0$, then

$$185 \text{prox}_{a^2 \lambda g}(ax + b) = a(\text{prox}_{\lambda f}(x) + b). \quad (6)$$

186 **Property 2.** According to definitions 2 and 3, for any proper convex lower semi-continuous with 187 function g , with $x^* = \text{prox}_{\lambda g}(x)$, we define

$$188 \tilde{\nabla} g(x^*) = x - x^* \in \lambda \partial g(x^*). \quad (7)$$

189 2.4 SHARPNESS-AWARE MINIMIZATION

190 The Sharpness-Aware Minimization (Foret et al., 2020) aims to improve the sharpness of the loss 191 function by solving such minimax problems:

$$192 \min_x \max_{\|\epsilon\|_p \leq \rho} F(x + \epsilon), \quad (8)$$

193 where F here means loss function in deep learning, ρ represents the radius of the exploration area. 194 (Andriushchenko & Flammarion, 2022; Si & Yun, 2023; Su et al., 2025) suggest that the perturbation 195 is not required to be normalized, named Unnormalized Sharpness-Aware Minimization (USAM). 196 Then (Oikonomou & Loizou, 2025) proposed a framework balanced between SAM and USAM:

$$197 \epsilon(x) = \rho(1 - \beta + \frac{\beta}{\|\nabla F(x)\|_2}) \nabla F(x), \quad (9)$$

198 where $\beta \in [0, 1]$, called Unified SAM, which offers a single, theoretically grounded framework that 199 generalizes and improves both SAM and USAM by relaxing restrictive assumptions, supporting 200 arbitrary sampling strategies, and delivering SOTA convergence guarantees for nonconvex and PL 201 functions. In particular, when β takes the values of 0 and 1, respectively, Eq. (9) corresponds to SAM 202 and USAM. Although some studies have focused on introducing adaptive gradients (Sun et al., 2024), 203 their update to x can still be expressed as:

$$204 x^{(t+1)} = x^{(t)} - \alpha g^{(t)}, \quad (10)$$

216 Table 1: Changed PSNR(dB) Results for Compressive Sensing on Set11.
217

	house	came	lena	fing	mona	flin	parr	boat	fore	barb	pepp
sharpen	0.009	-0.004	0.002	0.016	-0.004	0.011	-0.000	0.002	0.000	-0.001	-0.011
smooth	-0.033	0.003	-0.014	-0.047	-0.007	-0.039	-0.006	-0.015	-0.013	-0.003	0.012

223 where $g^{(t)}$ is the perturbation gradient $\nabla F(x^{(t)} + \epsilon(x^{(t)}))$ or its variants. The recently proposed
224 SAM methods can be mainly divided into three categories: optimizing the perturbation direction
225 (Zhou et al., 2021; Becker et al., 2024), optimizing the perturbation radius (Oikonomou & Loizou,
226 2025; Kwon et al., 2021), exploring better perturbation gradients (Sun et al., 2024). Note that, some
227 variants of SAM (Sun et al., 2024; Mordido et al., 2023) tailored for stochastic optimization are
228 incompatible with DUNs.

230 2.5 DUNs LACK SHARPNESS INFORMATION
231

232 To verify the neglect of sharpness information by DUNs (Deep Unrolling Networks), we applied a
233 certain degree of sharpening and smoothing to the outputs of ISTA-NET respectively, and statistically
234 analyzed the changes in PSNR with a 25% compression ratio, as shown in Table 1, which indicates
235 that existing DUNs have certain limitations in capturing sharpness information.

236 In this experiment, we used the "gaussian" and "laplace" functions from scikit-image to smooth or
237 sharpen the images:

$$x_{smooth} = \text{gaussian}(x, 0.3); x_{sharpen} = x + 0.01\text{laplace}(x).$$

240 3 OUR SHARPNESS-AWARE MINIMIZATION ARCHITECTURE FOR
241 ISTA-BASED DEEP UNFOLDING NETWORKS
242

243 Before introducing our algorithm, please note that for simplicity in the formula, we use $g(x)$ and
244 $D(x)$ as a simplification of $g(x, \Theta)$ and $D(x, \Theta)$.

245 Unlike previous frameworks, which are designed to solve the problem (1), our framework focuses on
246 its gradient landscape, by solving the problem:

$$x^{(t+1)} = \operatorname{argmin}_x f(x + \epsilon^{(t)}) + \lambda g(x + \epsilon^{(t)}), \quad (11)$$

250 where the perturbation $\epsilon^{(t)}$ is defined as:

$$\epsilon^{(t)} = \operatorname{argmax}_{\|\epsilon\|_2 \leq \rho} f(x^{(t)} + \epsilon) + \lambda g(x^{(t)} + \epsilon). \quad (12)$$

254 3.1 SOLVE PROBLEM (11) WITH PROPERTY 1 AND MAJORIZATION-MINIMIZATION.
255

256 Looking back at ISTA and MM optimization, we first provide the definition of the surrogate function
257 $Q(x + \epsilon^{(t)} | z^{(t)})$ for Eq. (11) as follows:

$$f(z^{(t)}) + (x + \epsilon^{(t)} - z^{(t)})^\top \nabla f(z^{(t)}) + \frac{1}{2\alpha^{(t)}} \|x + \epsilon^{(t)} - z^{(t)}\|_2^2,$$

261 where $\alpha^{(t)} \leq 1/L$ is the step size of t -th iteration. Thus, according to the MM optimization criterion,
262 we use $\tilde{Q}(x + \epsilon | z^{(t)})$ to replace $f(x + \epsilon^{(t)})$, resulting in the following:

$$x^{(t+1)} = \operatorname{argmin}_x \tilde{Q}(x + \epsilon^{(t)} | z^{(t)}) + \lambda g(x + \epsilon^{(t)}). \quad (13)$$

265 Next, we will explicitly solve for Eq. (13). Recalling Property 1, we need to construct v , such that
266 $v(x) = g(x + \epsilon^{(t)})$, that is:

$$\begin{aligned} x^{(t+1)} &= \operatorname{prox}_{\alpha^{(t)}\lambda v}(x^{(t)} - \alpha^{(t)} \nabla f(z^{(t)})) \\ &= \operatorname{argmin}_x \tilde{Q}(x + \epsilon^{(t)} | x^{(t)} + \epsilon^{(t)}) + \lambda v(x), \end{aligned}$$

270 Then, we have: $\text{prox}_{\lambda g}(z^{(t)}) = \text{prox}_{\lambda u}(x^{(t)}) + \epsilon^{(t)}$, where $\text{prox}_{\lambda g}(x) = D(x - \alpha^{(t)} \nabla f(x))$. Thus,
 271 we obtain the iterative form corresponding to Eq. (13):
 272

$$273 \quad x^{(t+1)} = \text{prox}_{\alpha^{(t)} \lambda g}(z^{(t)} - \alpha^{(t)} \nabla f(z^{(t)})) - \epsilon^{(t)}, \quad (14)$$

274 which is similar to (10), since (10) is actually equivalent to:
 275

$$276 \quad x^{(t+1)} = (x^{(t)} + \epsilon^{(t)}) - \nabla F(x^{(t)} + \epsilon^{(t)}) - \epsilon^{(t)}.$$

278 **3.2 CALCULATING SUBGRADIENT WITH PROPERTY 2.**

280 For the perturbation sub-problem (12), we continue to use the update strategy of unified SAM,
 281 namely:
 282

$$283 \quad \epsilon^{(t)} = \rho^{(t)}(1 - \beta^{(t)} + \frac{\beta^{(t)}}{g^{(t)}})g^{(t)} \quad (15)$$

284 where $g^{(t)} \in \partial F(x^{(t)})$. However, for ISTA-NET or other complex DUNs, the subgradient of the
 285 regulation term $\partial g(x)$ is not readily available. Thus, we attempt to estimate the subgradient of v at
 286 $x^{(t+1)}$ by:
 287

$$288 \quad \alpha^{(t)} \lambda \tilde{\nabla} v(x^{(t+1)}) = x^{(t)} - \alpha^{(t)} \nabla f(z^{(t)}) - x^{(t+1)}.$$

289 However, we need the subgradient of g rather than v . According to $v(x) = g(x + \epsilon^{(t)})$, we can obtain
 290

$$291 \quad \alpha^{(t)} \lambda \tilde{\nabla} g(x^{(t+1)} + \epsilon^{(t)}) = x^{(t)} - \alpha^{(t)} \nabla f(z^{(t)}) - x^{(t+1)}.$$

292 Fortunately, SAM allows for certain variations in the selection of gradients when calculating pertur-
 293 bations (Zhou et al., 2021; Du et al., 2021). Thus, we present the update formula for perturbations:
 294

$$295 \quad \epsilon^{(t)} = \rho(1 - \beta + \frac{\beta}{\|\tilde{\nabla} g(x^{(t)} + \epsilon^{(t-1)})\|_2})\tilde{\nabla} g(x^{(t)} + \epsilon^{(t-1)}). \quad (16)$$

297 **3.3 A SUMMARY OF OUR SADUNS FRAMEWORK**

299 To better illustrate our model, we decompose it into four components. First, there are two modules
 300 corresponding to the deep unfolding network: the Data Fidelity Module (DFM), which is derived
 301 from the Taylor expansion of the data fidelity term, and the Proximal Mapping Module (PMM), which
 302 enforces the solution to satisfy the prior knowledge. Additionally, the two modules dedicated to
 303 sharpness awareness include the Sharpness-Aware Perturbation Module (SPM) and the Subgradient
 304 Calculation Module (SCM). The overall structure of our framework is depicted in Algorithm 1.
 305 Figure 1 more intuitively illustrates our model, where solid lines represent the data flow of DUNs,
 306 and dashed lines denote the interaction between DUNs and SAM.
 307

Algorithm 1 SADUNs

309 **Input:** Observation y , basis matrix A , depth T , scalar parameters $\{\alpha^{(t)}, \beta^{(t)}, \Theta^{(t)}, \rho^{(t)}\}_{t=1}^T$, initial
 310 point $x^{(0)} = 0$ and initial gradient $g^{(0)} = 0$
 311 **for** $t = 0$ **to** $T - 1$ **do**
 312 SPM: $\epsilon^{(t)} = \rho^{(t)}(1 - \beta^{(t)} + \frac{\beta^{(t)}}{\|g^{(t)}\|})g^{(t)}$;
 313 DFM: $u^{(t)} = x^{(t)} + \epsilon^{(t)} - \alpha^{(t)} \nabla f(x^{(t)} + \epsilon^{(t)})$;
 314 PMM: $x^{(t+1)} = D(u^{(t)} + \epsilon^{(t)}, \Theta^{(t)}) - \epsilon^{(t)}$;
 315 SCM: $g^{(t+1)} = x^{(t+1)} + \epsilon^{(t)} - u^{(t+1)}$;
 316 **end for**

318 **3.4 LEARNING STRATEGY**

321 By exploring proximal operator properties, each module in the original model has a direct counterpart
 322 in SADUN. In other words, we can simply regard the original DUN as special SADUN with $\rho = 0$,
 323 which means we can reuse the well-trained model. Therefore, one may load trained parameters of the
 324 original DUN and initialize ρ and β . Then, you may fine tune SADUN for a few epochs or perform

grid searches on rho and beta to avoid any training. In the experimental section, we used end-to-end training in sparse coding tasks, fine tune strategy in compressive sensing tasks, and no training in the final plug-and-play experiment. Our framework yields consistent improvements across these disparate training strategies.

4 THEORETICAL RESULTS

Since our framework (i.e. Algorithm 1) can be adapted to LISTAs, we prove that our framework can maintain linear convergence under sparse prior conditions in this section. Firstly, we introduce some definitions and assumptions from (Chen et al., 2018; Liu et al., 2018). Due to the introduction of sparsity priors, we make the following assumptions about the set of sparse vectors.

Assumption 1 (Basic Assumption). *Sparse signal x^* is sampled from the following set:*

$$x^* \in \{x^* \mid |x_i^*| \leq B, \forall i, \|x\|_0 \leq s\}. \quad (17)$$

In other words, x^ is bounded and s -sparse ($s \geq 2$).*

Note that this assumption is a basic assumption for sparse coding. To my knowledge, almost all LISTAs need to satisfy this assumption. In addition, the matrix $W^{(t)}$ learned in (1) must meet the following definition.

Definition 4. *For given $A \in \mathbb{R}^{m \times n}$, the generalized mutual coherence is defined as*

$$\mu(A) = \inf_{\substack{\mathbf{W} \in \mathbb{R}^{N \times M} \\ \mathbf{W}^T \mathbf{A}_i = 1, 1 \leq i \leq M}} \left\{ \max_{\substack{i \neq j \\ 1 \leq i, j \leq M}} \mathbf{W}_i^T \mathbf{A}_j \right\}. \quad (18)$$

Additionally, We define $W(A)$ as the set of W which attains infimum given (18). A weight matrix W is "good" if

$$W \in \{W \mid |W_i^T A_j| \leq \mu(A) \forall j \neq i, W_i^T A_i = 1, \forall i\}$$

From Lemma 1 in (Chen et al., 2018), we know $W(A) \neq \emptyset$. Furthermore, the lower bound of thresholding $\theta^{(t)}$ should be given to make $x^{(t+1)}$ satisfies *No False Positives*. Then, we have the following theorem.

Theorem 1. *Given $\{W^{(t)}, \theta^{(t)}\}_{t=0}^{\infty}$ and $x^{(0)} = 0$, let $\{x^{(t)}\}_{t=0}^{\infty}$ be generated by Algorithm 1. If Assumption 1 holds and s is sufficiently small, then there exists a sequence of parameters $\{W^{(t)}, \theta^{(t)}\}_{t=0}^{\infty}$ such that, for all $x^* \in \mathcal{X}(Bs)$, we have*

$$\|x^{(t)}(x^*) - x^*\|_2 \leq sB \exp(-ct),$$

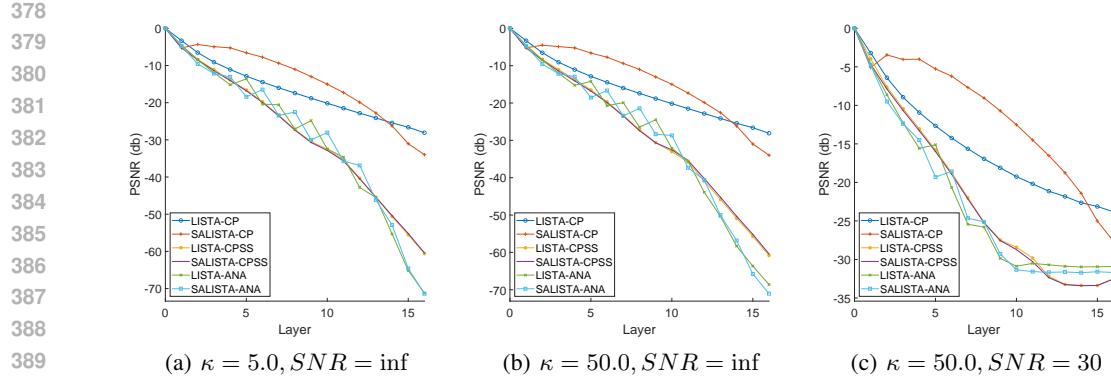
where $c > 0$ is related to A , s and sufficiently small ρ for all $\beta \in [0, 1]$.

5 EXPERIMENTS

To verify the generality of the improvements brought by our framework to deep unrolling networks, we conduct experiments on three types of proximal operators: those using the soft-thresholding function (LASSO), those relying solely on convolutional operations (ISTA-NET), and those adopting state-of-the-art mechanisms such as CNV2 and multi-head attention (UFC-NET). All experiments are performed on a server with NVIDIA 2080 Ti.

5.1 SYNTHETIC DATA SPARSE CODING (LASSO)

To verify the effectiveness of our Theorem 1, we conducted sparse representation experiments on the LASSO model on synthetic data. We adopted our SADUNs framework to LISTA-CP, LISTA-CPSS(Chen et al., 2018), Analysis LISTA(Liu et al., 2018), named SALISTA-CP, SALISTA-CPSS, SALISTA-ANA. And we compared those algorithms with three noise levels expressed by SNR (Signal-to-Noise Ratio), which is the indicator and condition numbers κ of ill conditioned matrix on sparse coding problems. We will use the same experimental setup as (Liu et al., 2018), with

Figure 2: Comparisons of sparse representation with different layers under different SNR and κ .

$m = 250, n = 100$, and $T = 16$. All the results are shown in Figure 2, where NMSE is defined as following:

$$\text{NMSE}(x, x^*) = 10 \log_{10} \left(\frac{\mathbb{E} \|x - x^*\|_2^2}{\mathbb{E} \|x^*\|_2^2} \right), \quad (19)$$

where x represents the output of the networks. Our framework demonstrates substantial improvements over generic DUNs (e.g., LISTA-CP), while still offering noticeable gains for inherently stronger models (e.g., LISTA-CPSS).

5.2 NATURAL IMAGE COMPREHENSIVE SENSING

To better demonstrate the applicability of our algorithm to different unfolding networks, we have improved both the classic ISTA-NET and the SOTA UFC-NET by adopting our framework.

5.2.1 ISTA-NET

In this subsection, we perform a natural image compressive sensing task to evaluate ours and many other methods. We use the training set, sampling matrix, and initialization matrix provided by ISTA-NET, and tune our model using the same strategy. The proximal operator is defined as $D(u, \Theta) = \tilde{\mathcal{F}}(\eta_\theta(\mathcal{F}(u, \Theta_1)), \Theta_2)$, where $\Theta = \{\Theta_1, \theta, \Theta_2\}$. And, the recovery transform $\tilde{\mathcal{F}}$ satisfying the symmetry constrain $\tilde{\mathcal{F}} \odot \mathcal{F} = \mathcal{I}$, where \mathcal{I} represent the identity mapping.

The results with different CS ratios are reported in Table 2, compared with TVAL3 (Li et al., 2013), D-AMP (Metzler et al., 2016), IRCNN (Zhang et al., 2017), SDA (Mousavi et al., 2015) and ReconNet (Kulkarni et al., 2016b). From all the results, we know that our SADUN-ISTA-NET architecture can effectively improve the performance of ISTA-NET. Moreover, our SADUN-ISTA-NET outperforms the other methods. And, we conducted visual comparisons of images at a 25% compression ratio and

Table 2: Comparisons of average PSNR (dB) performance on Set11 (Kulkarni et al., 2016a) with different CS ratios.

Algorithms	CS Ratio (%)							Time Cost	
	1	4	10	25	30	40	50	CPU	GPU
TVAL3	16.43	18.75	22.99	27.92	29.23	31.46	33.55	3.135s	-
D-AMP	5.21	18.40	22.64	28.46	30.39	33.56	35.92	51.21s	-
IRCNN	7.70	17.56	24.02	30.07	31.18	34.06	36.23	-	68.42s
SDA	17.29	20.12	22.65	25.34	26.63	27.79	28.95	-	0.0032s
ReconNet	17.27	20.63	24.28	25.60	28.74	30.58	31.50	-	0.016s
ISTA-NET	17.45	21.38	26.11	30.80	33.29	35.49	37.46	0.024s	0.0036s
Ours	17.40	21.46	26.18	31.96	33.34	35.63	37.57	0.025s	0.0059s

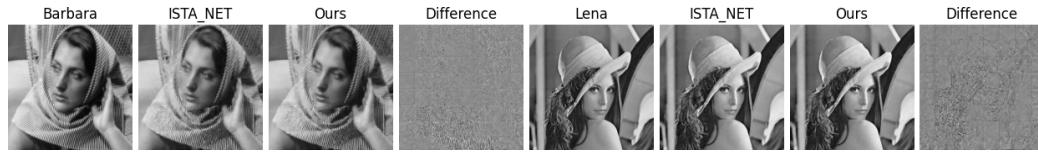


Figure 3: Visual comparisons between ISTA-NET and Ours SAISTA-NET

Table 3: Average PSNR(dB) Results for Compressive Sensing on the CBSD68 (Martin et al., 2002) Dataset.

CS Ratio (%)	1	4	5	10
UFC-NET	23.31	26.74	27.47	30.11
SAUFC-T	$\beta = 1.0$	23.35	26.80	27.58
	$\beta = 0.5$	23.34	26.81	27.60
	$\beta = 0.0$	23.33	26.80	27.58
SAUFC-F	$\beta = 1.0$	23.34	26.81	27.57
	$\beta = 0.5$	23.34	26.81	27.57
	$\beta = 0.0$	23.34	26.81	27.57

calculated the differences between the output images of our algorithm and those of ISTA-NET, as shown in Figure 3.

5.2.2 UFC-NET

Since our framework being designed for complex priors, we designed the fundamental experiments on SOTA DUNs such as UFC-NET (Wang & Gan, 2024) compared to previous frameworks. The training details such as datasets, optimizers are the same as UFC-NET, and we use a fixed learning rate. The UFC-NET introduced advanced modules such as Multi-head Attention Residual Block (MARB) and Auxiliary Iterative Reconstruction Block (AIRB) to achieve SOTA performance. We compare the tuned model with ISTA-NET⁺ (Zhang & Ghanem, 2018), MAC-NET (Chen et al., 2020), AMP-NET (Zhang et al., 2020), LTw-ISTA (Gan et al., 2023) and original UFC-NET, and the results are shown in Table 4. However, we can not confirm whether the success of our framework comes from adjusting the structure and parameters. Thus, we further try to use fixed ρ, β as in SAUFC-F, and the results are shown in Table 3. And, in Table 4, our SAUFC-NET demonstrates nearly consistent improvements in the SSIM metric, particularly on the Set14 and General100 datasets, where our method also achieves gains in PSNR.

6 FURTHER THOUGHTS FOR PLUG-AND-PLAY PRIORS

For plug-and-play models (PnP-DUNs), $\text{prox}_{\lambda/\mu g}(x)$ is often regarded as a well-trained denoiser. In the section, we take single image super resolution (SISR) as an example to verify our SADUNs can be adopted to free-formed priors. The half-quadratic splitting (HQS) algorithm (Geman & Yang, 1995) is often used in PnP-DUNs (Tang et al., 2025; Zhang et al., 2022b; Sinha & Chaudhury, 2025; Sinha et al., 2025). In order to decouple the data term and prior term of (1), HQS introduces an auxiliary variable z , which reformulates Problem (1):

$$\min_{x,z} f(x) + \lambda g(z) + \frac{\mu}{2} \|x - z\|_2^2,$$

where μ is a penalty parameter. It is obvious that HQS transforms linear inverse problems into two-step proximal operations:

$$z^{(t+1)} = \text{prox}_{\lambda/\mu g}(\text{prox}_{1/\mu f}(z^{(t)})). \quad (20)$$

According to Definition 2, $\text{prox}_{1/\mu f}$ satisfies $0 \in x - z + \frac{1}{\mu} \partial f(x)$, where $x = \text{prox}_{\lambda f}(z)$. For LIPs, f is strongly convex, which means $\partial f(x) = \{\nabla f(x)\}$. Combining (29) and (30), we derive:

$$x = z - \frac{1}{\mu} \nabla f(x). \quad (21)$$

486
487
488
Table 4: Average PSNR (dB) and SSIM comparisons of UFC-Net and competing methods on multiple
datasets with different CS ratios.

Datasets	CS Ratio (%)	Set14 (Zeyde et al., 2012)				Urban100 (Huang et al., 2015)				General100 (Dong et al., 2016)			
		1	4	10	25	1	4	10	25	1	4	10	25
ISTA-NET+	PSNR	18.20	22.07	25.98	30.610	16.66	19.65	23.48	28.89	19.00	23.74	28.52	34.31
	SSIM	0.4012	0.5707	0.7288	0.8699	0.1450	0.6486	0.7841	0.8944	0.4698	0.6545	0.8100	0.9248
MAC-NET	PSNR	18.43	23.71	26.40	30.67	16.39	21.60	24.49	28.79	19.72	26.17	29.70	34.83
	SSIM	0.3974	0.6171	0.7381	0.8742	0.3637	0.6120	0.7465	0.8798	0.4857	0.7169	0.8275	0.9283
AMP-NET	PSNR	21.55	25.42	28.70	33.12	19.55	22.73	25.92	30.79	22.68	26.91	30.77	35.93
	SSIM	0.5301	0.6996	0.8179	0.9136	0.5016	0.6819	0.8144	0.9188	0.6109	0.7689	0.8712	0.9493
LTw-IST	PSNR	21.48	25.44	28.82	33.40	19.46	23.01	26.76	31.79	22.69	27.53	31.91	37.31
	SSIM	0.5190	0.7112	0.8342	0.9241	0.4886	0.7061	0.8463	0.9349	0.5989	0.7935	0.8990	0.9616
UFC-NET	PSNR	21.79	25.67	29.09	33.81	19.68	23.36	27.54	32.81	23.08	27.92	32.31	37.75
	SSIM	0.5323	0.7163	0.8362	0.9259	0.5039	0.7193	0.8581	0.9421	0.6145	0.7988	0.9014	0.9624
SAUFC-NET	PSNR	21.74	25.70	29.15	33.91	19.65	23.37	27.51	32.81	22.94	27.90	32.31	37.82
	SSIM	0.5323	0.7183	0.8377	0.9273	0.5014	0.7201	0.8575	0.9427	0.6147	0.8003	0.9021	0.9631

501
502
503
Table 5: Average PSNR (dB) Results of Different Methods for 2x Single Image Super-Resolution on
the CBSD68 Dataset.

kernel	1	2	3	4	5	6	7	8
DPIR-IRCNN	33.77	33.84	30.80	27.25	28.21	27.48	27.31	26.75
SADUN-IRCNN($\beta=1.0$)	33.77	33.84	30.80	27.27	28.22	27.49	27.32	26.77
SADUN-IRCNN($\beta=0.5$)	33.77	33.84	30.80	27.26	28.21	27.49	27.32	26.76
SADUN-IRCNN($\beta=0.0$)	37.77	33.84	30.80	27.26	28.21	27.48	27.31	26.75

511
512
513
From the perspective of ordinary differential equations (An et al., 2022), ISTA (4) and HQS (20) are
514
solutions to the same differential equation. This means that the subgradient calculated based on ISTA
515
can be regarded as an approximation of the HQS global gradient.516
517
6.1 SINGLE IMAGE SUPER RESOLUTION (HQS)518
519
The mathematical formulation of classical degradation model is given by

520
521
$$y = (x * k) \downarrow_s + n, \quad (22)$$

522
523
524
525
526
527
528
where \downarrow_s denotes the standard s -fold downampler, i.e., selecting the upper-left pixel for each distinct
529
 $s \times s$ patch and k denotes the blur kernel. The classical SISR model still belongs to the linear inverse
530
problem. HQS updates the data fidelity term f using a closed-form solution. We use the same setting
531
with (Zhang et al., 2022b), and we use pretrained IRCNN. With $\rho = 0.01$, our SADUN-IRCNN
532
makes a slight promotion without tuning, the results are shown in Table 5. That is to say, even without
533
tuning, applying the approximate subgradient SAM to the HQS-based DUNs is still effective, and
534
only requires very little additional computation.535
536
7 CONCLUSION AND FUTURE WORKS537
538
539
The sharpness-aware framework can achieve significant performance improvements with the addition
540
of parameters that are much smaller than those of most unfolding networks. Since the change in
541
the number of parameters is minimal and the meaning of each component remains unchanged, our
542
framework does not require full end-to-end training and only needs tuning on existing models. This
543
means that our framework has better adaptability to large models compared to existing unfolding
544
network frameworks. For future research, there is hope to further improve methods, such as ap-
545
plying gradient landscape and subgradient based methods to more types of DUNs and introducing
546
acceleration mechanisms.

540 REFERENCES
541

542 Weixin An, Yingjie Yue, Yuanyuan Liu, Fanhua Shang, and Hongying Liu. A numerical des
543 perspective on unfolded linearized admm networks for inverse problems. In *Proceedings of the*
544 *30th ACM International Conference on Multimedia*, MM '22, pp. 5065–5073, New York, NY,
545 USA, 2022. Association for Computing Machinery. ISBN 9781450392037. doi: 10.1145/3503161.
546 3547887. URL <https://doi.org/10.1145/3503161.3547887>.

547 Maksym Andriushchenko and Nicolas Flammarion. Towards understanding sharpness-aware mini-
548 mization. In *International Conference on Machine Learning*, pp. 639–668. PMLR, 2022.

549 Richard G Baraniuk, Volkan Cevher, Marco F Duarte, and Chinmay Hegde. Model-based compressive
550 sensing. *IEEE Transactions on information theory*, 56(4):1982–2001, 2010.

551 Amir Beck. *First-order methods in optimization*. SIAM, 2017.

552 Amir Beck and Marc Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse
553 problems. *SIAM journal on imaging sciences*, 2(1):183–202, 2009.

554 Marlon Becker, Frederick Altrock, and Benjamin Risse. Momentum-sam: Sharpness aware mini-
555 mization without computational overhead. *arXiv preprint arXiv:2401.12033*, 2024.

556 Jiwei Chen, Yubao Sun, Qingshan Liu, and Rui Huang. Learning memory augmented cascading
557 network for compressed sensing of images. In *European Conference on Computer Vision*, pp.
558 513–529. Springer, 2020.

559 Xiaohan Chen, Jialin Liu, Zhangyang Wang, and Wotao Yin. Theoretical linear convergence of
560 unfolded ista and its practical weights and thresholds. *Advances in Neural Information Processing*
561 *Systems*, 31, 2018.

562 Ziheng Cheng, Bo Chen, Ruiying Lu, Zhengjue Wang, Hao Zhang, Ziyi Meng, and Xin Yuan.
563 Recurrent neural networks for snapshot compressive imaging. *IEEE Transactions on Pattern
564 Analysis and Machine Intelligence*, 45(2):2264–2281, 2022.

565 Ingrid Daubechies, Michel Defrise, and Christine De Mol. An iterative thresholding algorithm
566 for linear inverse problems with a sparsity constraint. *Communications on Pure and Applied
567 Mathematics: A Journal Issued by the Courant Institute of Mathematical Sciences*, 57(11):1413–
568 1457, 2004.

569 Chao Dong, Chen Change Loy, and Xiaoou Tang. *Accelerating the Super-Resolution Convolutional
570 Neural Network*, pp. 391–407. Jan 2016. doi: 10.1007/978-3-319-46475-6_25. URL http://dx.doi.org/10.1007/978-3-319-46475-6_25.

571 Jiawei Du, Hanshu Yan, Jiashi Feng, Joey Tianyi Zhou, Liangli Zhen, Rick Siow Mong Goh, and
572 Vincent YF Tan. Efficient sharpness-aware minimization for improved training of neural networks.
573 *arXiv preprint arXiv:2110.03141*, 2021.

574 Jianqing Fan and Runze Li. Variable selection via nonconcave penalized likelihood and its oracle
575 properties. *Journal of the American statistical Association*, 96(456):1348–1360, 2001.

576 Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur. Sharpness-aware minimization
577 for efficiently improving generalization. In *International Conference on Learning Representations*,
578 2020.

579 Hongping Gan, Xiaoyang Wang, Lijun He, and Jie Liu. Learned two-step iterative shrinkage
580 thresholding algorithm for deep compressive sensing. *IEEE Transactions on Circuits and Systems
581 for Video Technology*, 34(5):3943–3956, 2023.

582 D. Geman and Chengda Yang. Nonlinear image recovery with half-quadratic regularization. *IEEE
583 Transactions on Image Processing*, 4(7):932–946, 1995. doi: 10.1109/83.392335.

584 Karol Gregor and Yann LeCun. Learning fast approximations of sparse coding. In *Proceedings of
585 the 27th international conference on international conference on machine learning*, pp. 399–406,
586 2010.

594 Xiaochen Han, Bo Wu, Zheng Shou, Xiao-Yang Liu, Yimeng Zhang, and Linghe Kong. Tensor
595 fista-net for real-time snapshot compressive imaging. In *Proceedings of the AAAI Conference on*
596 *Artificial Intelligence*, volume 34, pp. 10933–10940, 2020.

597

598 Jia-Bin Huang, Abhishek Singh, and Narendra Ahuja. Single image super-resolution from transformed
599 self-exemplars. In *2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*,
600 Jun 2015. doi: 10.1109/cvpr.2015.7299156. URL <http://dx.doi.org/10.1109/cvpr.2015.7299156>.

601

602 Ziwen Ke, Wenqi Huang, Zhuo-Xu Cui, Jing Cheng, Sen Jia, Haifeng Wang, Xin Liu, Hairong Zheng,
603 Leslie Ying, Yanjie Zhu, et al. Learned low-rank priors in dynamic mr imaging. *IEEE Transactions*
604 *on Medical Imaging*, 40(12):3698–3710, 2021.

605

606 Lin Kong, Wei Sun, Fanhua Shang, Yuanyuan Liu, and Hongying Liu. Hno: High-order numerical
607 architecture for ode-inspired deep unfolding networks. In *Proceedings of the AAAI Conference on*
608 *Artificial Intelligence*, volume 36, pp. 7220–7228, 2022.

609

610 Kuldeep Kulkarni, Suhas Lohit, Pavan Turaga, Ronan Kerviche, and Amit Ashok. Reconnet: Non-
611 iterative reconstruction of images from compressively sensed random measurements. *arXiv: Computer*
612 *Vision and Pattern Recognition, arXiv: Computer Vision and Pattern Recognition*, Jan 2016a.

613

614 Kuldeep Kulkarni, Suhas Lohit, Pavan Turaga, Ronan Kerviche, and Amit Ashok. Reconnet: Non-
615 iterative reconstruction of images from compressively sensed measurements. In *Proceedings of the*
616 *IEEE conference on computer vision and pattern recognition*, pp. 449–458, 2016b.

617

618 Jungmin Kwon, Jeongseop Kim, Hyunseo Park, and Inho Choi. Asam: Adaptive sharpness-aware min-
619 imization for scale-invariant learning of deep neural networks. *Cornell University - arXiv, Cornell*
620 *University - arXiv*, Feb 2021.

621

622 Chengbo Li, Wotao Yin, Hong Jiang, and Yin Zhang. An efficient augmented lagrangian method
623 with applications to total variation minimization. *Computational Optimization and Applications*,
56(3):507–530, 2013.

624

625 Wenchao Li, Rui Chen, Mingming Zhou, Kun Zhang, Ziwen Wang, Wei Pu, Junjie Wu, and Jianyu
626 Yang. Sap-ista-net: Synthetic aperture processing assisted ista network for multichannel radar
627 forward-looking superresolution imaging. *IEEE Sensors Journal*, 2025.

628

629 Yangyang Li, Lin Kong, Fanhua Shang, Yuanyuan Liu, Hongying Liu, and Zhouchen Lin. Learned
630 extragradient ista with interpretable residual structures for sparse coding. In *Proceedings of the*
631 *AAAI Conference on Artificial Intelligence*, volume 35, pp. 8501–8509, 2021.

632

633 Jialin Liu, Xiaohan Chen, Zhangyang Wang, and Wotao Yin. Alista: Analytic weights are as good
634 as learned weights in lista. *International Conference on Learning Representations, International*
Conference on Learning Representations, Sep 2018.

635

636 D. Martin, C. Fowlkes, D. Tal, and J. Malik. A database of human segmented natural images
637 and its application to evaluating segmentation algorithms and measuring ecological statistics.
638 In *Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001*, Nov
639 2002. doi: 10.1109/iccv.2001.937655. URL <http://dx.doi.org/10.1109/iccv.2001.937655>.

640

641 Christopher A Metzler, Arian Maleki, and Richard G Baraniuk. From denoising to compressed
642 sensing. *IEEE Transactions on Information Theory*, 62(9):5117–5144, 2016.

643

644 Peng Mi, Li Shen, Tianhe Ren, Yiyi Zhou, Xiaoshuai Sun, Rongrong Ji, and Dacheng Tao. Make
645 sharpness-aware minimization stronger: A sparsified perturbation approach. *Advances in Neural*
Information Processing Systems, 35:30950–30962, 2022.

646

647 Gonçalo Mordido, Pranshu Malviya, Aristide Baratin, and Sarath Chandar. Lookbehind optimizer: k
steps back, 1 step forward. *arXiv preprint arXiv:2307.16704*, 2023.

648 Ali Mousavi, Ankit B Patel, and Richard G Baraniuk. A deep learning approach to structured signal
 649 recovery. In *2015 53rd annual allerton conference on communication, control, and computing*
 650 (*Allerton*), pp. 1336–1343. IEEE, 2015.

651

652 Dimitris Oikonomou and Nicolas Loizou. Sharpness-aware minimization: General analysis and
 653 improved rates. *arXiv preprint arXiv:2503.02225*, 2025.

654

655 James M Ortega and Werner C Rheinboldt. *Iterative solution of nonlinear equations in several*
 656 *variables*. SIAM, 2000.

657

658 Dongkuk Si and Chulhee Yun. Practical sharpness-aware minimization cannot converge all the way
 659 to optima. *Advances in Neural Information Processing Systems*, 36:26190–26228, 2023.

660

661 Arghya Sinha and Kunal N Chaudhury. Fista iterates converge linearly for denoiser-driven regularization.
 662 *SIAM Journal on Imaging Sciences*, 18(1):SC1–SC15, 2025.

663

664 Arghya Sinha, Bhartendu Kumar, Chirayu D Athalye, and Kunal N Chaudhury. Linear convergence
 665 of plug-and-play algorithms with kernel denoisers. *IEEE Transactions on Signal Processing*, 2025.

666

667 Dan Su, Long Jin, and Jun Wang. Noise-resistant sharpness-aware minimization in deep learning.
 668 *Neural Networks*, 181:106829, 2025.

669

670 Hao Sun, Li Shen, Qihuang Zhong, Liang Ding, Shixiang Chen, Jingwei Sun, Jing Li, Guangzhong
 671 Sun, and Dacheng Tao. Adasam: Boosting sharpness-aware minimization with adaptive learning
 672 rate and momentum for training deep neural networks. *Neural Networks*, 169:506–519, 2024.

673

674 Jian Sun, Huibin Li, Zongben Xu, et al. Deep admm-net for compressive sensing mri. *Advances in*
 675 *neural information processing systems*, 29, 2016.

676

677 Junqi Tang, Guixian Xu, Subhadip Mukherjee, and Carola-Bibiane Schönlieb. Practical operator
 678 sketching framework for accelerating iterative data-driven solutions in linear inverse problems.
 679 *Journal of Mathematical Imaging and Vision*, 67(4):1–20, 2025.

680

681 Xiaoyang Wang and Hongping Gan. Ufc-net: Unrolling fixed-point continuous network for deep
 682 compressive sensing. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern*
 683 *Recognition*, pp. 25149–25159, 2024.

684

685 Kailun Wu, Yiwen Guo, Ziang Li, and Changshui Zhang. Sparse coding with gated learned ista.
 686 *International Conference on Learning Representations, International Conference on Learning*
 687 *Representations*, Apr 2020.

688

689 Shuowen Yang, Fernando Pérez-Bueno, Hanlin Qin, Rafael Molina, and Aggelos K Katsaggelos.
 690 Lcnet: Lightweight cycle network driven by physical and deep prior for compressed sensing. *IEEE*
 691 *Transactions on Multimedia*, 2025.

692

693 RaymondA. Yeh, Yuan-Ting Hu, Zhongzheng Ren, and AlexanderG. Schwing. Total variation
 694 optimization layers for computer vision. Apr 2022.

695

696 Di You, Jingfen Xie, and Jian Zhang. Ista-net++: Flexible deep unfolding network for compressive
 697 sensing. In *2021 IEEE International Conference on Multimedia and Expo (ICME)*, pp. 1–6. IEEE,
 698 2021.

699

700 Roman Zeyde, Michael Elad, and Matan Protter. *On Single Image Scale-Up Using Sparse-*
 701 *Representations*, pp. 711–730. Jan 2012. doi: 10.1007/978-3-642-27413-8_47. URL http://dx.doi.org/10.1007/978-3-642-27413-8_47.

702

703 Hongwei Zhang, Jiacheng Ni, Shichao Xiong, Ying Luo, and Qun Zhang. Sr-ista-net: Sparse
 704 representation-based deep learning approach for sar imaging. *IEEE Geoscience and Remote*
 705 *Sensing Letters*, 19:1–5, 2022a.

706

707 Jian Zhang and Bernard Ghanem. Ista-net: Interpretable optimization-inspired deep network for
 708 image compressive sensing. In *Proceedings of the IEEE conference on computer vision and pattern*
 709 *recognition*, pp. 1828–1837, 2018.

702 Kai Zhang, Wangmeng Zuo, Shuhang Gu, and Lei Zhang. Learning deep cnn denoiser prior for image
 703 restoration. In *Proceedings of the IEEE conference on computer vision and pattern recognition*,
 704 pp. 3929–3938, 2017.

705 Kai Zhang, Yawei Li, Wangmeng Zuo, Lei Zhang, Luc Van Gool, and Radu Timofte. Plug-and-play
 706 image restoration with deep denoiser prior. *IEEE Transactions on Pattern Analysis and Machine*
 707 *Intelligence*, 44(10):6360–6376, 2022b. doi: 10.1109/TPAMI.2021.3088914.

708 Xuanyu Zhang, Yongbing Zhang, Ruijin Xiong, Qilin Sun, and Jian Zhang. Herosnet: Hyperspectral
 709 explicable reconstruction and optimal sampling deep network for snapshot compressive imaging.
 710 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
 711 17532–17541, 2022c.

712 Zhonghao Zhang, Yipeng Liu, Jianli Liu, Fei Wen, and Ce Zhu. Amp-net: Denoising-based deep
 713 unfolding for compressive image sensing. *IEEE Transactions on Image Processing*, 30:1487–1500,
 714 2020.

715 Hanying Zheng, Yiqing Zhang, Zhengyang Hu, Rongchao Sun, and Jiang Xue. A model-driven
 716 network based on ista for massive mimo signal detection. In *2022 14th International Conference*
 717 *on Wireless Communications and Signal Processing (WCSP)*, pp. 1–6. IEEE, 2022a.

718 Ziyang Zheng, Wenrui Dai, Duoduo Xue, Chenglin Li, Junni Zou, and Hongkai Xiong. Hybrid
 719 ista: Unfolding ista with convergence guarantees using free-form deep neural networks. *IEEE*
 720 *Transactions on Pattern Analysis and Machine Intelligence*, 45(3):3226–3244, 2022b.

721 Wenxuan Zhou, Fangyu Liu, Huan Zhang, and Muhan Chen. Sharpness-aware minimization with
 722 dynamic reweighting. *arXiv preprint arXiv:2112.08772*, 2021.

723 Yinan Zou, Yong Zhou, Xu Chen, and Yonina C Eldar. Proximal gradient-based unfolding for
 724 massive random access in iot networks. *IEEE Transactions on Wireless Communications*, 23(10):
 725 14530–14545, 2024.

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756 A APPENDIX
757758 A.1 PROOF FOR SALISTA-CP
759760 Before proving Theorem 1, we give the formulation of SALISTA-CP as following:
761

762
$$\epsilon^{(t)} = m^{(t)} \odot \rho^{(t)} (1 - \beta^{(t)} + \beta^{(t)} / \|g^{(t)}\|_2) g^{(t)}, \quad (23)$$

764
$$u^{(t)} = x^{(t)} - W^{(t)}(A(x^{(t)} + \epsilon^{(t)}) - y), \quad (24)$$

766
$$x^{(k+1)} = \eta_{\theta^{(t)}}(u^{(t)}) - \epsilon^{(t)}, \quad (25)$$

767
$$g^{(t+1)} = u^{(t)} - x^{(t+1)}, \quad (26)$$

768
$$m^{(t+1)} = 1_{u^{(t)} > \theta^{(t)}}, \quad (27)$$

770 where 1_c represents indicator function of set c , and \odot means element-wise multiplication. In fields
771 where traditional priors such as sparsity are employed, Deep Unfolding Networks (DUNs) often need
772 to learn more information from the data fidelity term f , and the update rule for $u^{(t)}$ (24) is derived
773 from LISTA-CP (Chen et al., 2018). Moreover, since subgradient $g^{(t)}$ is not sparse, this violates the
774 *no-false-positive* assumption. We adopt a strategy similar to SSAM (Mi et al., 2022), where a mask
775 $m^{(t)}$ is applied to the perturbations to ensure the sparsity of the solution. In this proof, we use the
776 notion $x^{(t)}$ to replace $x^{(t)}(x^*)$ for simplicity. We fix A in the proof, $\mu(D)$ can be simply written as μ .
777780 Proof. A.1.1 PROOF FOR SALISTA WITH $\beta = 0$
781782 Step 1: **No False Positives.**783 Let $S = \text{support}(x^*)$ indicates the non-zero entires. We want to prove by induction that, as long as
784 all trained $W^{(t)}$ satisfies the "good" conditions in Definition 4, $x_i^{(t)} = 0, i \notin S$ (*no false positives*).
785 As we set $x^{(0)} = 0$, it is satisfied when $t = 0$ and

787
$$\theta^{(t)} = (\mu + \mu \rho^{(t)}) \sup_{x^* \in \mathcal{X}(B, s)} \{\|x^{(t)} - x^*\|_1\} + \mu \sum_{v=1}^{t-1} (1 + \mu(s-1))^{t-v} \prod_{b=v+1}^t \rho^{(b)} \sup_{x^* \in \mathcal{X}(B, s)} \{\|x^{(v)} - x^*\|_1\},$$

791 where $\mathcal{X}(B, s) = \{x^* \mid |x_i^*| \leq B, \forall i, \|x\|_0 \leq s\}$ is defined in the Basic Assumption 1. Fixing t and
792 assuming $x_i^{(v)} = 0, i \notin S, \forall v \in \mathbb{N}^+ \leq t$, then we have

795
$$\begin{aligned} x_i^{(t+1)} &= \eta_{\theta^{(t)}}(x_i^{(t)} + \epsilon_i^{(t)} - W_{i,:}^{(t)}(A(x^{(t)} + \epsilon^{(t)}) - y)) - \epsilon_i^{(t)} \\ &= \eta_{\theta^{(t)}}(-W_{i,:}^{(t)}(A(x^{(t)} + \epsilon^{(t)}) - y)), i \notin S, \end{aligned}$$

799 where $\epsilon_i^{(t)} = 0$ as the mask in (27). Since $W^{(t)}$ is good,

801
$$\begin{aligned} \theta^{(t)} &\geq (\mu + \mu \rho^{(t)}) \|x^{(t)} - x^*\|_1 + \mu \sum_{v=1}^{t-1} (1 + \mu(s-1))^{t-v} \prod_{b=v+1}^t \rho^{(b)} \|x^{(v)} - x^*\|_1 \\ &\geq \mu (\|x^{(t)} - x^*\|_1 + \|\epsilon_j^{(t)}\|_1) \\ &\geq \sum_{j \in S} (|W_{i,:}^{(t)} A_{:j}(x_i^{(t)} - x_j^*)| + |W_{i,:}^{(t)} A_{:j} \epsilon_j^{(t)}|) \\ &\geq \sum_{j \in S} |W_{i,:}^{(t)} A_{:j}(x_j^{(t)} + \epsilon_j^{(t)} - x_j^*)|, \forall i \in S, \end{aligned} \quad (28)$$

810 where we can achieve (28) with the following recursive formula:
811

$$\begin{aligned}
812 \|\epsilon^{(t)}\|_1 &= \rho^{(t)} \|m^{(t-1)} \odot g^{(t-1)}\|_1 \\
813 &\leq \rho^{(t)} \sum_{i \in S} | -\epsilon_i^{(t-1)} - (x_i^{(t)} - x_i^*) - \sum_{j \neq i, j \in S} W_{i,:}^{(t-1)} A_{:,j} (x_j^{(t-1)} + \epsilon_j^{(t-1)} - x_j^*) | \\
814 &\leq \rho^{(t)} (\|\epsilon^{(t-1)}\|_1 + \|x^{(t)} - x^*\|_1 + \mu \sum_{i \in S} \sum_{j \neq i, j \in S} |(x_j^{(t-1)} + \epsilon_j^{(t-1)} - x_j^*)|) \\
815 &\leq \rho^{(t)} (\|\epsilon^{(t-1)}\|_1 + \|x^{(t)} - x^*\|_1 + \mu(s-1) (\|\epsilon^{(t-1)}\|_1 + \|x^{(t-1)} - x^*\|_1)) \\
816 &\leq \rho^{(t)} (\|x^{(t)} - x^*\|_1 + \sum_{v=1}^{t-1} (1 + \mu(s-1))^{t-v} \prod_{b=v+1}^t \rho^{(b)} \|x^{(v)} - x^*\|_1).
817 \end{aligned} \tag{29}$$

823 For (29), the mask $m^{(t)}$ satisfies $m_i^{(t)} = 1 \Rightarrow i \in S$.
824

825 **Step 2: Upper Bound of Recovery Error.**

826 $\forall i \in S$, we have

$$\begin{aligned}
827 x_i^{(t+1)} &= \eta_{\theta^{(t)}} (x_i^{(t)} + \epsilon_i^{(t)} - W_{i,:}^{(t)} (A(x^{(t)} + \epsilon^{(t)}) - y)) - \epsilon_i^{(t)} \\
828 &= \eta_{\theta^{(t)}} (x_i^{(t)} + \epsilon_i^{(t)} - \sum_{j \in S, j \neq i} W_{i,:}^{(t)} A_{:,j} (x_j^{(t)} + \epsilon_j^{(t)} - x_j^*) - (x_i^{(t)} + \epsilon_i^{(t)} - x_i^*)) - \epsilon_i^{(t)} \\
829 &= \eta_{\theta^{(t)}} (x_i^* - \sum_{j \in S, j \neq i} W_{i,:}^{(t)} A_{:,j} (x_j^{(t)} + \epsilon_j^{(t)} - x_j^*)) - \epsilon_i^{(t)} \\
830 &\in x_i^* - \epsilon_i^{(t)} - \sum_{j \in S, j \neq i} W_{i,:}^{(t)} A_{:,j} (x_j^{(t)} + \epsilon_j^{(t)} - x_j^*) - \theta^{(t)} \partial g(x_i^{(t+1)} + \epsilon_i^{(t)})
831 \end{aligned}$$

832 where ∂g denotes the sub-gradient of $\|\cdot\|_1$ that is defined by
833

$$\partial g(x) = \begin{cases} \text{sgn}(x), & x \neq 0, \\ [1, -1], & x = 0. \end{cases} \tag{30}$$

834 Equation 30 suggests that $g(x_i^{(t+1)} + \epsilon_i^{(t)})$ has a magnitude not greater than 1. Thus, we obtain for
835 $i \in S$,

$$\begin{aligned}
836 |x_i^{(t+1)} - x_i^*| &\leq |\epsilon_i^{(t)}| + \sum_{j \in S, j \neq i} |W_{i,:}^{(t)} A_{:,j} (x_j^{(t)} + \epsilon_j^{(t)} - x_j^*)| + \theta^{(t)} \\
837 &\leq |\epsilon_i^{(t)}| + \mu \sum_{j \in S, j \neq i} (|x_j^{(t)} - x_j^*| + |\epsilon_j^{(t)}|) + \theta^{(t)}.
838 \end{aligned}$$

839 Then, we have

$$\begin{aligned}
840 \|x^{(t+1)} - x^*\|_1 &\leq \sum_{i \in S} (|\epsilon_i^{(t)}| + \mu \sum_{j \in S, j \neq i} (|x_j^{(t)} - x_j^*| + |\epsilon_j^{(t)}|) + \theta^{(t)}) \\
841 &= \|\epsilon^{(t)}\|_1 + \mu(s-1) (\|x^{(t)} - x^*\|_1 + \|\epsilon^{(t)}\|_1) + s\theta^{(t)} \\
842 &= (1 + \mu(s-1)) \|\epsilon^{(t)}\|_1 + \mu(s-1) \|x^{(t)} - x^*\|_1 + s\theta^{(t)}.
843 \end{aligned} \tag{31}$$

844 With equation 29, we have

$$\begin{aligned}
845 \|x^{(t+1)} - x^*\|_1 &\leq \rho^{(t)} C_2 \|x^{(t)} - x^*\|_1 + \sum_{v=1}^{t-1} C_2^{t-v+1} \prod_{b=v+1}^t \rho^{(b)} \|x^{(v)} - x^*\|_1 + C_1 \|x^{(t)} - x^*\|_1 + s\theta^{(t)}, \\
846 \end{aligned} \tag{32}$$

847 where $C_1 = \mu(s-1)$, $C_2 = 1 + C_1$.

864 **Step 3: Error Bound For The Whole Data Set.**

865 Finally, we take supremum over $x^* \in \mathcal{X}(B, s)$,

$$\begin{aligned}
 867 \sup_{x^* \in \mathcal{X}(B, s)} \{ \|x^{(t+1)} - x^*\|_1 \} &\leq \rho^{(t)} C_2 \sup_{x^* \in \mathcal{X}(B, s)} \{ \|x^{(t)} - x^*\|_1 \} \\
 868 &\quad + \sum_{v=1}^{t-1} C_2^{t-v+1} \prod_{b=v+1}^t \rho^{(b)} \sup_{x^* \in \mathcal{X}(B, s)} \{ \|x^{(v)} - x^*\|_1 \} \quad (33) \\
 869 &\quad + \sup_{x^* \in \mathcal{X}(B, s)} \{ C_1 \|x^{(t)} - x^*\|_1 \} + s\theta^{(t)}.
 \end{aligned}$$

870 With equation A.1.1, we have

$$\begin{aligned}
 871 \sup_{x^* \in \mathcal{X}(B, s)} \{ \|x^{(t+1)} - x^*\|_1 \} &\leq \rho^{(t)} C_2 \sup_{x^* \in \mathcal{X}(B, s)} \{ \|x^{(t)} - x^*\|_1 \} \\
 872 &\quad + \sum_{v=1}^{t-1} C_2^{t-v+1} \prod_{b=v+1}^t \rho^{(b)} \sup_{x^* \in \mathcal{X}(B, s)} \{ \|x^{(v)} - x^*\|_1 \} \\
 873 &\quad + C_1 \sup_{x^* \in \mathcal{X}(B, s)} \{ \|x^{(t)} - x^*\|_1 \} \\
 874 &\quad + (\mu + \mu\rho^{(t)})s \sup_{x^* \in \mathcal{X}(B, s)} \{ \|x^{(t)} - x^*\|_1 \} \\
 875 &\quad + \mu s \sum_{v=1}^{t-1} C_2^{t-v} \prod_{b=v+1}^t \rho^{(b)} \sup_{x^* \in \mathcal{X}(B, s)} \{ \|x^{(v)} - x^*\|_1 \}. \quad (34)
 \end{aligned}$$

876 Since $\rho^{(t)}$ is a enough small scalar, we rearrange the above equation as follows:

$$\sup_{x^* \in \mathcal{X}(B, s)} \{ \|x^{(t+1)} - x^*\|_1 \} \leq H \sup_{x^* \in \mathcal{X}(B, s)} \{ \|x^{(t)} - x^*\|_1 \} + \mu \sum_{v=1}^{t-1} C_3^{t-v} \sup_{x^* \in \mathcal{X}(B, s)} \{ \|x^{(v)} - x^*\|_1 \}, \quad (35)$$

877 where $H = (2s - 1)\mu(1 + \bar{\rho}) + \bar{\rho}$, $C_3 = \bar{\rho}(1 + C_2)$, and $\bar{\rho}$ is the upper bound of $\rho^{(t)}$ for all t . By induction, with $c = -\log(H)$, we have

$$\begin{aligned}
 878 \sup_{x^* \in \mathcal{X}(B, s)} \{ \|x^{(t+1)} - x^*\|_1 \} &\leq (H^t + r(t, \mu, s, \rho)) \sup_{x^* \in \mathcal{X}(B, s)} \{ \|x^{(t)} - x^*\|_1 \} \\
 879 &\leq \sup_{x^* \in \mathcal{X}(B, s)} \{ \|x^{(0)} - x^*\|_1 \} \leq sB(\exp(-ct) + r(t, \mu, s, \rho)),
 \end{aligned}$$

880 where $r(t, \mu, s, \rho)$ denotes the slight influence of the second term of equation 35. Since $\|x\|_2 \leq \|x\|_1, \forall x \in \mathbb{R}$, we can get the upper bound for l_2 norm:

$$\sup_{x^* \in \mathcal{X}(B, s)} \{ \|x^{(t+1)} - x^*\|_2 \} \leq \sup_{x^* \in \mathcal{X}(B, s)} \{ \|x^{(t+1)} - x^*\|_1 \} \leq sB(\exp(-ct) + r(t, \mu, s, \rho)),$$

881 As long as $s \leq ((1 - \rho)/((1 + \rho)\mu) + 1)/2$, $c = -\log(H) > 0$, then the error bound holds uniformly for all $x^* \in \mathcal{X}(B, s)$.

882 **A.1.2 PROOF FOR SALISTA WITH $\beta = 1$**

883 When $\beta \neq 0$,

$$\frac{\rho^{(t)}}{\|g^{(t)}\|_2}$$

884 is not small enough, which means something new is needed. Therefore, we need to further explore $\|\epsilon^{(t)}\|_1$:

$$\|\epsilon^{(t)}\|_2 = \frac{\rho^{(t)}}{\|m^{(t)} \odot g^{(t)}\|_2} \|\|m^{(t)} \odot g^{(t)}\|_2 = \rho^{(t)} \geq \frac{1}{\sqrt{s}} \|\epsilon^{(t)}\|_1. \quad (36)$$

885 **Step 1: No False Positives.**

886 Let $S = \text{support}(x^*)$ indicates the non-zero entires. We want to prove by induction that, as long as all trained

918 $W^{(t)}$ satisfies the "good" conditions in Definition 4, $x_i^{(t)} = 0, i \notin S$ (no false positives). As we set $x^{(0)} = 0$, it
919 is satisfied when $t = 0$ and

$$920 \quad 921 \quad 922 \quad \theta^{(t)} = \mu \sup_{x^* \in \mathcal{X}(B, s)} \{ \|x^{(t)} - x^*\|_1 \} + \sqrt{s} \mu \rho^{(t)}, \quad (37)$$

923 where $\mathcal{X}(B, s) = \{x^* \mid |x_i^*| \leq B, \forall i, \|x\|_0 \leq s\}$ is defined in the Basic Assumption 1. Fixing t and assuming
924 $x_i^{(v)} = 0, i \notin S, \forall v \in \mathbb{N}^+ \leq t$, then we have

$$925 \quad 926 \quad 927 \quad x_i^{(t+1)} = \eta_{\theta^{(t)}}(x_i^{(t)} + \epsilon_i^{(t)} - W_{i,:}^{(t)}(A(x^{(t)} + \epsilon^{(t)}) - y)) - \epsilon_i^{(t)} \\ = \eta_{\theta^{(t)}}(-W_{i,:}^{(t)}(A(x^{(t)} + \epsilon^{(t)}) - y)), i \notin S,$$

928 where $\epsilon_i^{(t)} = 0$ as the mask in (27). Since $W^{(t)}$ is good, we have

$$929 \quad 930 \quad 931 \quad 932 \quad 933 \quad 934 \quad 935 \quad 936 \quad \theta^{(t)} \geq \mu \|x^{(t)} - x^*\|_1 + \sqrt{s} \mu \rho^{(t)} \\ \geq \mu (\|x^{(t)} - x^*\|_1 + \|\epsilon_j^{(t)}\|_1) \\ \geq \sum_{j \in S} (|W_{i,:}^{(t)} A_{:j} (x_i^{(t)} - x_j^*)| + |W_{i,:}^{(t)} A_{:j} \epsilon_j^{(t)}|) \\ \geq \sum_{j \in S} |W_{i,:}^{(t)} A_{:j} (x_j^{(t)} + \epsilon_j^{(t)} - x_j^*)|, \forall i \in S, \quad (38)$$

937 where we can achieve (38) with Eq. (36).

939 Step 2: Upper Bound of Recovery Error.

940 Since Eq. (36) has no impact on the update rule (24), we can follow the conclusion of (31), and thus we have

$$941 \quad 942 \quad 943 \quad 944 \quad \|x^{(t+1)} - x^*\|_1 \leq (1 + \mu(s-1)) \|\epsilon^{(t)}\|_1 + \mu(s-1) \|x^{(t)} - x^*\|_1 + s \theta^{(t)} \\ \leq (1 + \mu(s-1)) \sqrt{s} \rho^{(t)} + \mu(s-1) \|x^{(t)} - x^*\|_1 + s \theta^{(t)}. \quad (39)$$

946 Step 3: Error Bound For The Whole Data Set.

947 Finally, we take supremum over $x^* \in \mathcal{X}(B, s)$,

$$948 \quad 949 \quad \sup_{x^* \in \mathcal{X}(B, s)} \{ \|x^{(t+1)} - x^*\|_1 \} \leq \mu(s-1) \sup_{x^* \in \mathcal{X}(B, s)} \{ \|x^{(t)} - x^*\|_1 \} + (1 + \mu(s-1)) \sqrt{s} \rho^{(t)} + s \theta^{(t)}. \quad (40)$$

950 With equation 37, we have

$$951 \quad 952 \quad 953 \quad \sup_{x^* \in \mathcal{X}(B, s)} \{ \|x^{(t+1)} - x^*\|_1 \} \leq \rho^{(t)} \mu(2s-1) \sup_{x^* \in \mathcal{X}(B, s)} \{ \|x^{(t)} - x^*\|_1 \} + (1 + \mu(2s-1)) \sqrt{s} \rho^{(t)}. \quad (41)$$

954 In this case, we have $H = (2s-1)\mu$, $C = (1 + \mu(2s-1)) \sqrt{s} \bar{\rho}$, and $\bar{\rho}$ is the upper bound of $\rho^{(t)}$ for all t . By
955 induction, with $c = -\log(H)$, we have

$$956 \quad 957 \quad 958 \quad \sup_{x^* \in \mathcal{X}(B, s)} \{ \|x^{(t+1)} - x^*\|_1 \} \leq H \sup_{x^* \in \mathcal{X}(B, s)} \{ \|x^{(t+1)} - x^*\|_1 \} + C \\ \leq s B \exp(-ct) + C \sum_{\tau=0}^{k+1} (H^\tau) \\ \leq s B \exp(-ct) + \frac{C}{1-H}.$$

959 Since $\|x\|_2 \leq \|x\|_1, \forall x \in \mathbb{R}$, we can get the upper bound for l_2 norm:

$$960 \quad 961 \quad 962 \quad \sup_{x^* \in \mathcal{X}(B, s)} \{ \|x^{(t+1)} - x^*\|_2 \} \leq \sup_{x^* \in \mathcal{X}(B, s)} \{ \|x^{(t+1)} - x^*\|_1 \} \leq s B \exp(-ct) + \frac{1+H}{1-H} \sqrt{s} \bar{\rho},$$

963 As long as $s \leq (1/\mu + 1)/2, c = -\log(H) > 0$, then the error bound holds uniformly for all $x^* \in \mathcal{X}(B, s)$.

969 A.1.3 PROOF FOR SALISTA WITH $\beta \in (0, 1)$

970 When $\beta \in (0, 1)$, each update of u can be devide to $\beta = 1$ and $\beta = 0$. Therefore, its convergence property lies
971 between the two cases mentioned above. \square

972
973

A.2 ADDITIONAL EXPERIMENT AND DETAILS

974
975
976
977
978

In some fields, such as synthetic aperture processing (Li et al., 2025), the DUNs paradigm based on ISTA-NET (Zhang & Ghanem, 2018) still attracts considerable attention. Therefore, we apply the SADUN framework proposed in this paper to ISTA-NET to ensure the universality of our framework. For the convenience of characterizing the model, we denote a single convolution operator as $c(x)$ and some composite operations $cr(x) = \text{relu}(c(x))$, $cbr(x) = \text{relu}(\text{bn}(c(x)))$.

979
980

A.2.1 DETAILS OF SPARSE CODING TASK

981
982
983
984
985
986
987
988
989

In sparse coding task, we choose $m = 250, n = 500$. We sample the entries of A i.i.d. from the standard Gaussian distribution, $A_{ij} \sim N(0, 1/m)$ and then normalize its columns to have the unit l_2 norm. We fix a matrix A in each setting where different networks are compared. To generate sparse vectors x^* , we decide each of its entry to be non-zero following the Bernoulli distribution with $pb = 0.1$. The values of the non-zero entries are sampled from the standard Gaussian distribution. A test set of 1000 samples generated in the above manner is fixed for all tests in our simulations. And we use multi-stage training strategy (Chen et al., 2018; Liu et al., 2018) to train our SALISTA-CP, SALISTA-CPSS and SALISTA-ANA. Moreover, LISTA-CPSS, LISTA-ANA and our SADUNs version all use the support selection technique:

990
991
992
993

$$\eta_{\theta^{(t)}}^{p^{(t)}}(x_i) = \begin{cases} x_i, & i \in S^{p^{(k)}}(x) \\ 0, & |x_i| \leq \theta^{(t)} \\ \eta_{\theta^{(t)}}(x_i), & \text{otherwise,} \end{cases} \quad (42)$$

994
995

where $S^{p^{(k)}}(x)$ includes the elements with the largest $pk\%$ magnitudes in vector x .

996
997

A.2.2 DETAILS OF SISR TASK

998
999
1000

For the SISR problem (22) and other model contains conventional operator, the fourier transform is usually used in its closed-form solution. For model (22), the closed-form solution is defined as:

1001
1002
1003

$$\mathcal{F}^{-1} \left(\frac{1}{\alpha^{(t)}} \left(d - \overline{\mathcal{F}(t)} \odot_s \frac{\mathcal{F}(t)d \Downarrow_s}{\overline{\mathcal{F}(t)}\mathcal{F}(t) \Downarrow_s + \alpha^{(t)}} \right) \right),$$

1004
1005
1006

where $d = \overline{\mathcal{F}(t)}\mathcal{F}(y \uparrow_s) + \alpha^{(t)}\mathcal{F}(z^{(t)})$ and \odot_s denotes distinct block processing operator with element-wise multiplication, \Downarrow_s denotes distinct block downampler, \overline{x} means the conjugate transpose of x . And the architecture of IRCNN is defined as

1007
1008

$$\text{prox}_{\lambda/\mu g}(x) = x + \text{cbr}(\text{cbr}(\text{cbr}(\text{cbr}(\text{cr}(x))))).$$

1009
1010

A.2.3 FULL VISUAL COMPARISONS OF THE EXPERIMENTS BASED ON ISTA-NET

1011
1012

Due to page limitations, we have only presented a portion of the visual comparison results in the main text. In Figure 4, we present all the results for better comparison.

1013
1014

A.3 DISCUSSION ON THE PROPOSED MODULES

1015
1016
1017
1018
1019

For deep unfolding networks, the data fidelity term f is often determined by downstream tasks. Therefore, more emphasis is placed on designing a well-performing regularization term g , or rather, the proximal operator of the regularization term. In our SADUNs framework, these two components are defined as DFM and PMM respectively, to facilitate their application in different scenarios.

1020
1021

For simple optimization problems, such as sparse coding, it is actually unnecessary to use (16) for approximation; instead, the subgradient can be used directly for calculatio by

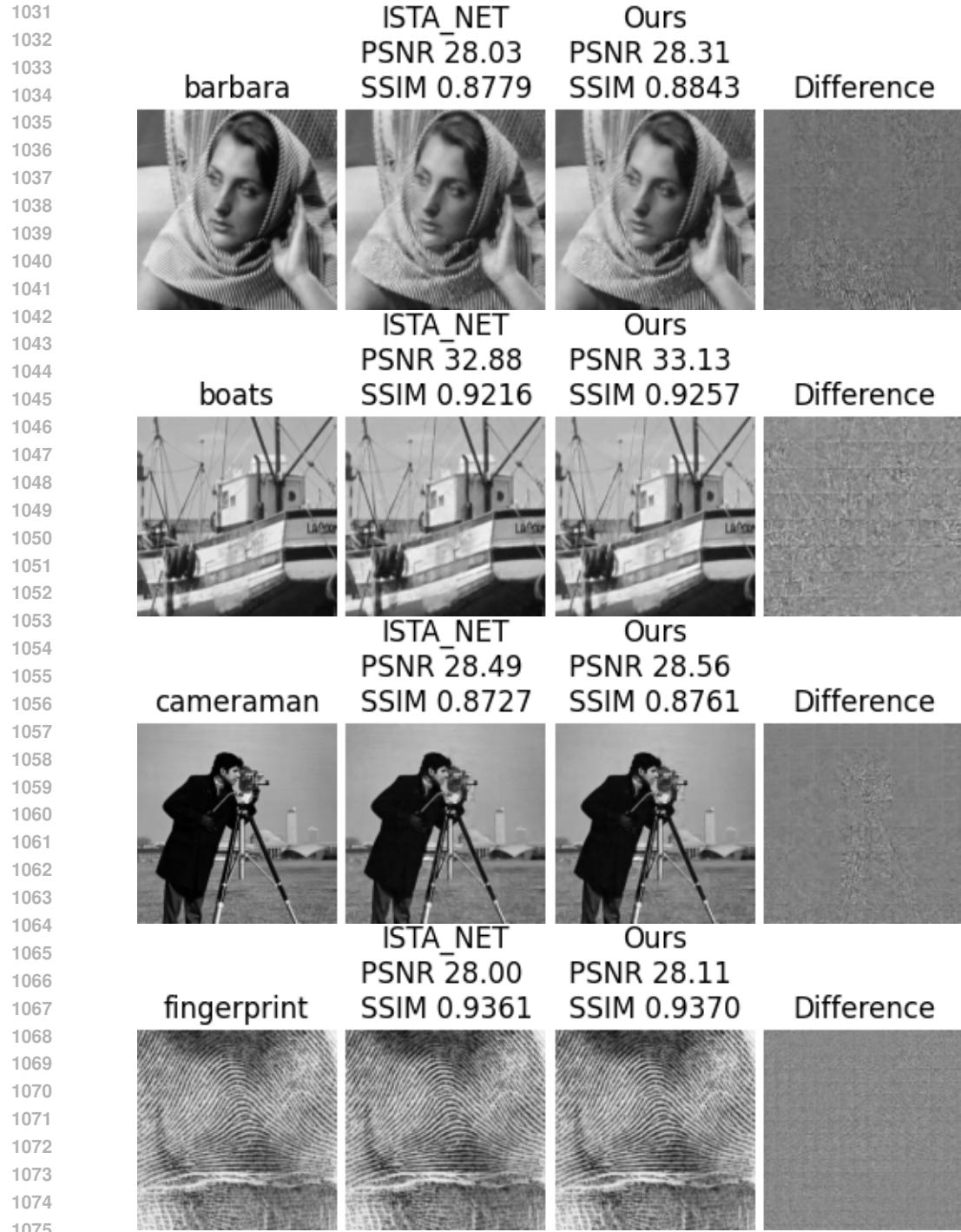
1022
1023

$$g^{(t)} = \nabla f(x^{(t)}) + \lambda \text{sign}(x^{(t)}) \quad (43)$$

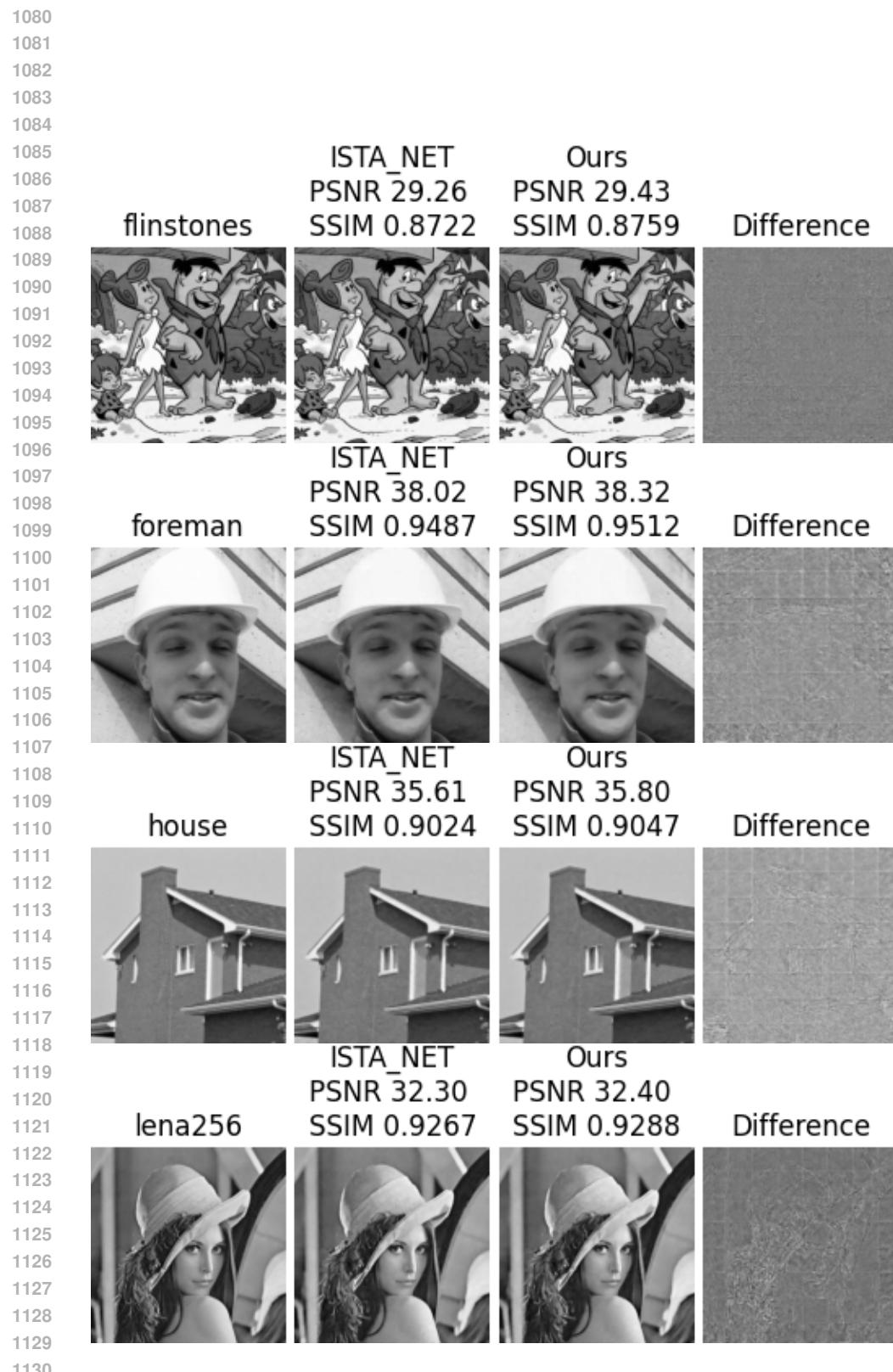
1024
1025

where $\text{sign}(x^{(t)}) \in \partial g(x^{(t)})$. We compare this strategy of directly using SAM with our proposed scheme, as shown in Figure 5. We also compared the number of parameters and running speed between SADUNs and SAM+LISTA, as shown in Table 6. However, for complex application problems,

1026
1027
1028
1029
1030



1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079



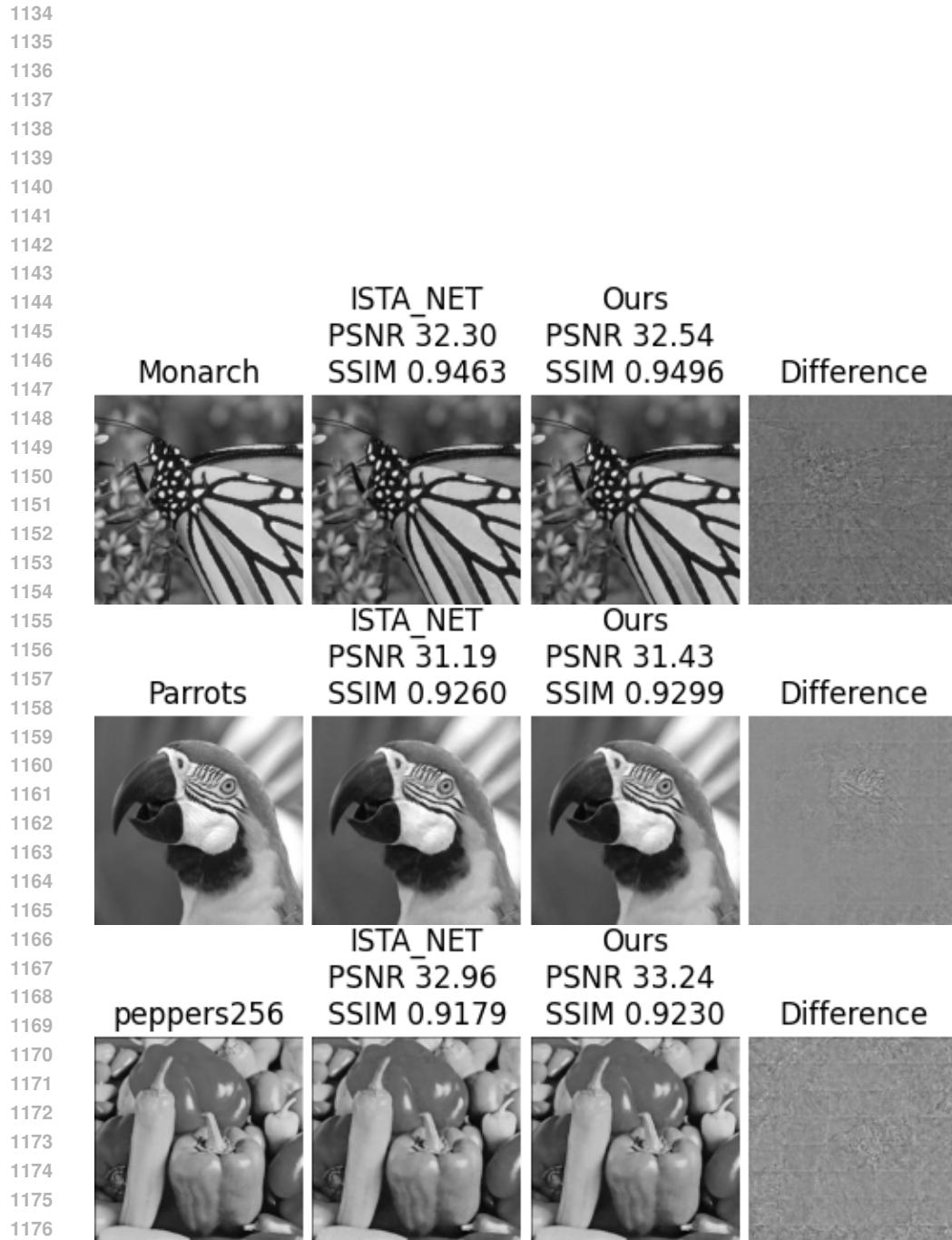


Figure 4: Visual Comparisons of the experiments based on ISTA-NET

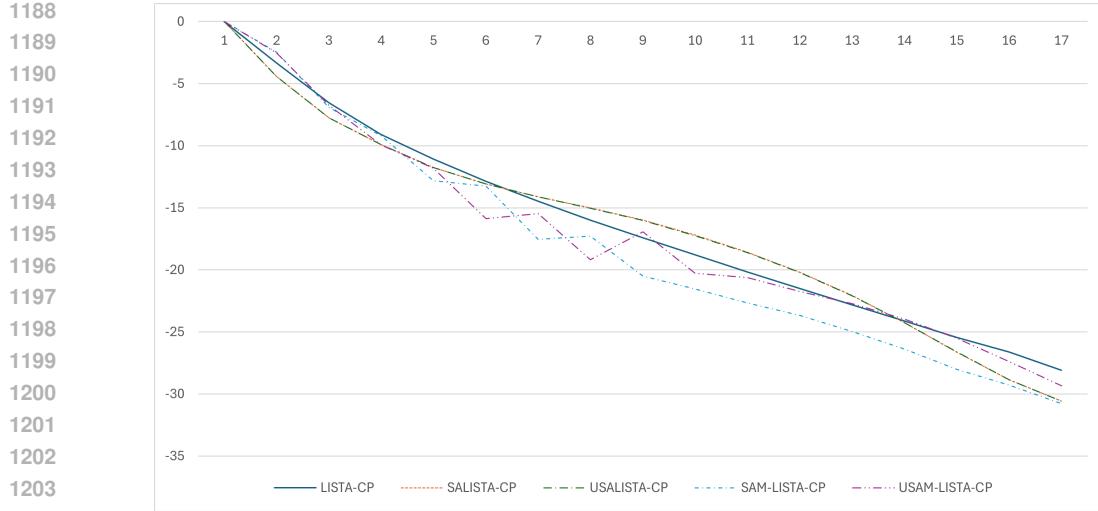


Figure 5: Comparisons of sparse representation between our approximation and real subgradient

the subgradient of the regularization term is difficult to calculate directly, which means that the improvement of SCM is relatively challenging. Finally, in this paper, the SPM adopts the update form of Unified SAM to achieve a balance between SAM and USAM. In addition, other SAM variants can also be adopted, such as ASAM. We further attempted to use the update form of ASAM in SPM:

$$\epsilon^{(t)} = \rho^{(t)} \frac{(x^{(t+1)})^2 * g^{(t+1)}}{\|x^{(t+1)} * g^{(t+1)}\|_2},$$

and conducted a brief comparison as shown in Figure 6.

Table 6: Comparison of the network structures and running speed between SADUNs and SAM+LISTA.

	SAM-LISTA-CP	USAM-LISTA-CP	SALISTA-CP	USALISTA-CP
number of parameters	2MN+3	2MN+3	MN+3	MN+3
running speed (s)	2.56	2.57	1.83	1.85

A.4 DETAILS THE USAGE OF LARGE LANGUAGE MODELS

We conducted a simple review and grammar check by LLM model.

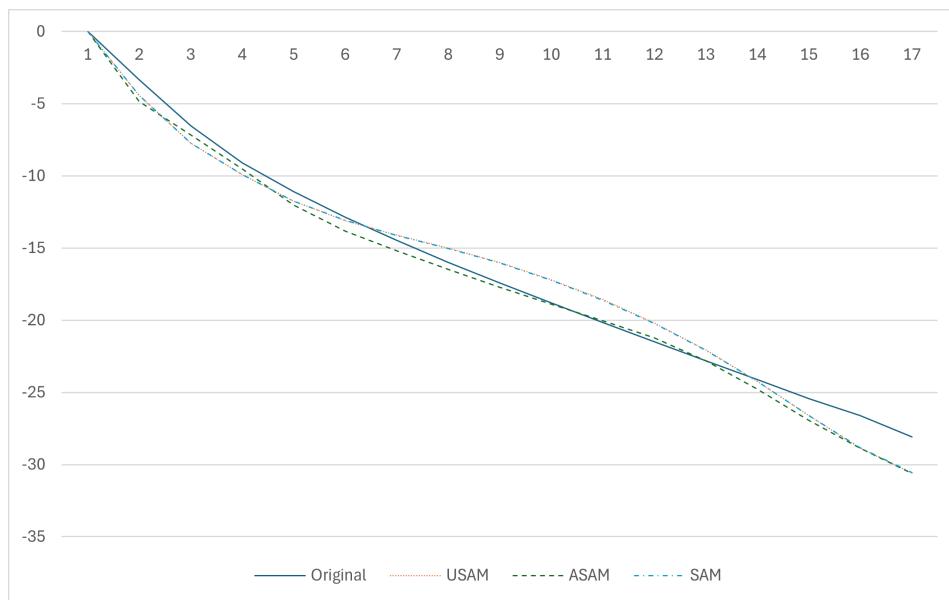


Figure 6: Comparisons of sparse representation between Unified SAM and ASAM

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295