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Abstract: We present Asymmetric Dexterity (AsymDex), a novel reinforcement
learning (RL) framework that can efficiently learn asymmetric bimanual skills
for multi-fingered hands without relying on demonstrations, which can be cum-
bersome to collect. Two crucial ingredients enable AsymDex to reduce the ob-
servation and action space dimensions and improve sample efficiency. First,
AsymDex leverages the natural asymmetry found in human bimanual manipu-
lation and assigns specific and interdependent roles to each hand: a facilitating
hand that moves and reorients the object, and a dominant hand that performs
complex manipulations on said object. Second, AsymDex defines and operates
over relative observation and action spaces, facilitating responsive coordination
between the two hands. Further, AsymDex can be easily integrated with recent
advances in grasp learning to handle both the object acquisition phase and the
interaction phase of bimanual dexterity. Unlike existing RL-based methods for
bimanual dexterity, which are tailored to a specific task, AsymDex can be used
to learn a wide variety of bimanual tasks that exhibit asymmetry. Detailed ex-
periments on four simulated asymmetric bimanual dexterous manipulation tasks
reveal that AsymDex consistently outperforms strong baselines that challenge its
design choices, in terms of success rate and sample efficiency. The project website
is at https://sites.google.com/view/asymdex-2024/.
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1 Introduction

We tackle the challenge of learning bimanual dexterous manipulation skills on multi-fingered hands
using reinforcement learning (RL). Bimanual skills are crucial for robots operating in human envi-
ronments as they allow for more complex and flexible manipulation compared to a single hand [1–7].
While learning dexterous manipulation skills on a single hand presents numerous challenges [8–14],
learning bimanual dexterity can be significantly more challenging due to the higher-dimensional
state and action spaces and the need to coordinate and synchronize the movement of two hands [1].

To circumvent the challenges introduced by the high-dimensional state and action spaces of biman-
ual dexterous manipulation, we take inspiration from how humans approach this challenge. Humans
exhibit a natural asymmetry in how we use each of our hands when we perform most bimanual
tasks. Specifically, we tend to use one hand to reposition and reorient an object being manipulated
so as to make it easier for the other hand to achieve the desired manipulation objectives. While the
asymmetric assumption might seem restrictive at first glance, rich bodies of work in human biome-
chanics and evolution reveal its significance and necessity [15–18]. Evolutionary biologists posit
that such handedness evolved in humans and great apes to meet the escalating cognitive demands of
tool use and complex manipulation [19]. Indeed, a large class of real-world bimanual tasks admit
this asymmetry (e.g., attachment, detachment, assembly, pouring).

A key insight that we leverage is that the natural asymmetry between the two hands can reduce
the dimensionality of the bimanual dexterous manipulation, and in turn improve effectiveness and
sample efficiency. Using this insight, we contribute a novel learning framework, dubbed Asymmetric
Dexterity (AsymDex), that can efficiently learn asymmetric bimanual dexterous manipulation tasks
based on RL (see Fig. 1 for a block diagram). Note that AysmDex does not require the cumbersome
collection of demonstrations and can learn bimanual skills only using reinforcement learning.
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Figure 1: Our approach (AsymDex) efficiently learns asymmetric bimanual dexterous manipulation
skills based on reinforcement learning by effectively leveraging i) the natural asymmetry in the
hands’ roles and ii) relative state and action spaces that encourage synchronization.

AsymDex has two crucial ingredients. First, it introduces asymmetry by defining a dominant hand
and a facilitating hand. While the facilitating hand learns to reposition and reorient the object,
the dominant hand learns complex manipulation skills (including in-hand manipulation). Note that
there’s no relative movement between the grasped object and the facilitating hand. As a result,
AsymDex holds the fingers of the facilitating hands in the grasping pose and only controls the 6D
motion of its base. On the other hand, AsymDex learns to control both the base and fingers of
the dominant hand. Second, AsymDex reasons about and controls the relative motion between the
dominant and facilitating hands. We define relative observation and action spaces that incentivize
responsive coordination between the two hands without resorting to explicit time-dependence.

We also leverage the observation that bimanual manipulation in practice is composed of two distinct
phases: i) the acquisition phase in which objects are grasped from surfaces, and ii) the interac-
tion phase where the two hands coordinate to perform the bimanual task. Unlike many existing
methods that ignore the acquisition phase, we show that this decomposition enables AysmDex to be
seamlessly integrated with learned grasping policies to enable fluent execution.

In summary, we contribute AsymDex – a novel framework for asymmetric bimanual dexterity that
leverages the natural asymmetry in hand roles and relative observation and action spaces. We eval-
uate AsymDex on four complex bimanual dexterous tasks (adapted from BiDexHand [20]) and
compare against strong baselines that challenge its design choices. Our results show that AsymDex
consistently outperforms the baselines in terms of success rate and sample efficiency.

2 Related Work

In this section, we contextualize our contributions within relevant sub-fields.

Learning Bimanual Manipulation: Several existing methods focus on learning bimanual skills,
but are often limited to simple end-effectors. Imitation learning (IL) based approaches have been
particularly successful in bimanual manipulation [3, 21–23], and have led to novel and low-cost
infrastructure to collect bimanual manipulation data [4, 24]. These approaches rely on demonstra-
tions to provide the necessary supervision to learn effective coordination strategies. Reinforcement
learning (RL) has also been shown to be successful in learning bimanual manipulation skills [25–
28]. These methods implicitly incentivize coordination by learning to optimize reward functions
that favor task success and efficiency. In contrast to all of these works that only consider parallel jaw
grippers, AsymDex learns bimanual dexterous manipulation skills involving multi-fingered hands.

Asymmetry in Bimanual Manipulation: Motivated by the asymmetry in how humans use their two
hands (referred to as role-differentiated bimanual manipulation [16–18, 29]), recent works assign
different roles to each robot hand in the bimanual system [2, 30–33]. However, some of these
approaches restrict the role of the facilitating hand to stabilizing the object while the dominant
hand manipulates it [2, 30, 31]. In contrast, AsymDex allows the facilitating hand to reposition
and reorient the object simultaneously as the dominant hand executes its role. Importantly, unlike
AsymDex, all these prior methods are limited to parallel jaw grippers.
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Learning Dexterous Manipulation: Learning dexterous manipulation skills involves addressing
numerous challenges due to high dimensional state and action spaces and highly nonlinear dynam-
ics. Recent works have tackled these challenges using imitation learning (IL) or reinforcement learn-
ing (RL) and demonstrate impressive performance [8–12, 14, 34–37]. However, IL-based methods,
including those that combine RL and IL [8, 10], rely either on complex infrastructure and retargeting
methods to collect demonstrations [8, 14, 35, 38, 39] or pre-trained expert policies [11, 12, 37]. On
the other hand, RL-based methods do not share these constraints as they learn skills via reinforce-
ment. However, RL methods tend to require single amounts of exploration even for unimanual dex-
terous manipulation [9, 10, 34, 36]. As we show in our experiments, naive application of RL-based
methods is not effective for bimanual dexterous manipulation due to the increased dimensionality
and the need for coordination. We also show that AsymDex is able to efficiently learn complex
bimanual dexterous manipulation skills using RL without relying on demonstrations.

Learning Bimanual Dexterous Manipulation: A few recent studies have focused on learning
bimanual dexterity. Some of these methods require the collection of expert demonstrations [6] and
suffer from the same limitations we discussed earlier for IL-based methods that use parallel jaw
grippers. To circumvent the need for collecting demonstrations, recent efforts have led to methods
that only leverage RL and yet are capable of learning impressive bimanual manipulation skills,
such as playing the piano [7], twisting lids off containers [40], and dynamic handover [5]. While
these methods are specifically designed to solve a particular task, AsymDex is capable of efficiently
learning different bimanual dexterous manipulation tasks.

3 Learning Asymmetric Bimanual Dexterous Manipulation Skills

In this section, we formulate the problem of asymmetric bimanual dexterous manipulation and in-
troduce the different elements of our approach (AsymDex).

3.1 Preliminaries

Consider the problem of bimanual dexterous manipulation, in which two multi-fingered hands co-
ordinate to manipulate up to two objects. Formally, this problem can be defined as a Partially-
Observable Markov Decision Process (POMDP)M = (S,Z,A,R,P), where S ∈ Rn is the state
space, Z ∈ Rm is the observation space, A ∈ Ru is the action space, R : Rm × Ru → R is the
reward function, and P : Rn × Ru → Rn is the environment dynamics. Note that we do not as-
sume access to any demonstrations. Instead, we tackle of challenge of learning purely based on
reinforcement. Given this formulation, the problem boils down to learning a policy π : Z → A that
maximizes the expected discounted cumulative reward Eπ[ΣT−1t=0 γ

tR(z(t), a(t))].

Observation and Action Space: The observation spaceZ is composed of hand and object measure-
ments. At step t, z(t) contains ξb1(t) ∈ R6, ξb2(t) ∈ R6, ξh1 (t) ∈ Rn1 , ξh2 (t) ∈ Rn2 , o1(t) ∈ R6, and
o2(t) ∈ R6, where ξb1 and ξb2 denote the first and the second hand bases’ 6D poses, ξh1 and ξh2 denote
the first and the second hands’ joint states (e.g., the palm and fingers), and o1 and o2 represents the
6D poses of either two objects (e.g., stacking two cups), or two parts of the same object (e.g., bottle
and bottle cap). The action at Step t is given by a(t) = [ξ̂b1(t), ξ̂b2(t), ξ̂h1 (t), ξ̂h2 (t)], composed of the
target base poses (ξ̂b1 and ξ̂b2) and target joint positions (ξ̂h1 and ξ̂h2 ) for both hands. These actions are
fed to a PD tracking controller to actuate both hands.

Note that our primary contributions pertain to the interaction phase of bimanual dexterous ma-
nipulation, in which two dexterous multi-fingered hands coordinate to complete the task after
having grasped the necessary object(s). Most existing works focus solely on the interaction
phase [5, 40, 41]. In Section. 3.6, we discuss how our approach can be extended to also tackle
the acquisition phase, in which the hands learn to grasp objects before coordinating.

3.2 A Monolithic Approach

We begin by discussing the most straightforward approach one could take: a mono-
lithic policy that utilizes all accessible environment states to plan actions for both hands:
πnaive(ξ̂

b
1(t), ξ̂b2(t), ξ̂h1 (t), ξ̂h2 (t)|ξb1(t), ξb2(t), ξh1 (t), ξh2 (t), o1(t), o2(t)). Training such a policy can

be highly inefficient due to the high dimensionality of the observation and action spaces. Impor-

3



Algorithm 1: AsymDex: Interaction Phase

1 Randomly initialize the two hand bases’ poses ξbf (0) and ξbd(0), and initialize object poses
of (0) and od(0) based on ξbf (0) and ξbd(0). Initialize policy πθ.

2 for iter ∈ {1, ...,max} do
3 Initialize replay buffer B = ∅ ;
4 for t ∈ {1, ...,M} do
5 Simulate:
6 Collect hand and object states ξbf (t), ξbd(t), ξhd (t), of (t), od(t);
7 Compute relative states ξbr(t) = ξba(t)�Pf , or(t) = od(t)�Pf ;
8 Policy πAsymDex(ξ̂br(t), ξ̂

h
d (t)|ξbr(t), ξhd (t), or(t)) outputs relative actions;

9 Bimanual controller (Eqn. 1) computes ξ̂bf (t) and ξ̂bd(t) based on ξ̂br(t);
10 if Meet reset condition then
11 Reset environment;
12 end
13 Environment physics steps with ξ̂bf (t), ξ̂bd(t), ξ̂

h
d (t);

14 Evaluate:
15 Compute reward r(t)
16 Collect observations (ξbr(t), ξ

h
r (t), or(t)), actions (ξ̂br(t), ξ̂

h
r (t)), and reward r(t)

into buffer B;
17 end
18 Update the Policy πAsymDex based on B;
19 end
20 Return: Trained policy πAsymDex

tantly, this monolithic implementation does not exploit the natural asymmetry found in most biman-
ual tasks. Below, we explain how AsymDex incorporates this insight.

3.3 Incorporating Asymmetry

When humans execute bimanual manipulation tasks, we tend to use our dominant hand to perform
precise manipulations, and use a non-dominant hand to facilitate such manipulation [16–18]. For
instance, when opening a bottle, we typically use our facilitating hand to move and reorient the bottle
such that the bottle cap is closer to and oriented toward the dominant hand, which will then grasp the
cap and uncap the bottle. During this cooperation process, our non-dominant hand moves and rotates
the object with a firm grasp to facilitate the object manipulation by the dominant hand. Motivated
by this, we assign different roles to each robot hand (i.e., a facilitating hand and a dominant hand)
during bimanual manipulation.

Further, we make the observation that there tends to be no relative motion between the facilitat-
ing hand and the grasped object since the facilitating hand need only hold, move, and reorient the
object (i.e., no in-hand reorientation). On the contrary, the hand dominant can interact freely with
the object either directly or via another object. This observation suggests that the asymmetric ma-
nipulation and coordination strategy is neither dependent on nor influences the hand joints of the
facilitating hand. As such, we can considerably reduce the observation and action spaces by ac-
counting for asymmetry. Precisely, this observation allows us to define an asymmetric bimanual
policy: πasym(ξ̂bd(t), ξ̂

b
f (t), ξ̂hd (t)|ξbd(t), ξbf (t), ξhd (t), o1(t), o2(t)) which use the facilitating hand to

only to reposition and reorient the object. This considerable reduction in the dimensions of the
observation and action spaces is likely to result in improved sample efficiency.

3.4 Incorporating Relative Observation and Action Spaces

In addition to asymmetry, a key characteristic of bimanual dexterous manipulation is the synchro-
nized motion of the two hands in which each hand moves in response to the other. In this section,
we explain how we can further reduce the size of the observation and action spaces by defining rel-
ative and object-centric spaces that capture the relationships between the motions of two hands and
the object(s) being manipulated. Indeed, the use of relative state spaces has shown to considerably
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Figure 2: We decompose asymmetric bimanual dexterous manipulation into two phases: An ac-
quisition phase and an interaction phase. We show that AsymDex can be integrated with learned
grasping policies in order to seamlessly execute both phases.

benefit bimanual manipulation with simple end effectors [23, 42–44]. Furthermore, some of these
prior work is limiting the relative space in a one-degree-of-freedom (1-DoF) action space [23], while
AsymDex allows for complete 6-DoFs relative space.

Let of = o1 be the state of the object being held by the facilitating hand, and let od = o2 be
the state of the object being manipulated by the dominant hand. We attach a coordinate frame
to the object being held by the facilitating hand: Pf . Now, we can transform the observations
(ξbd(t), ξ

b
f (t), ξhd (t), of (t), od(t)), which where originally defined in the world coordinate frame PW ,

into the new coordinate frame Pf . Note that since there is no relative motion between the facilitating
hand and the object that it’s holding, neither of (t) nor ξbf (t) do not change in Pf . As such, both of (t)

and ξbf (t) can be neglected without losing any information. Now, transforming the remaining ob-
servations (ξbd(t), ξ

h
d (t), od(t)) into the new coordinate Pf yields (ξbr(t), ξ

h
d (t), or(t)), respectively.

Here, ξbr(t) denotes the 6D pose of the dominant hand base and or(t) denotes the 6D pose of the
object being manipulated by the dominant hand, both now defined relative to the object being held
by the facilitating hand. Note that since ξhd (t) denotes the dominant hands’ joint states, it is not im-
pacted by the change of coordinates. Similarly, we apply the same modifications to the action spaces
of the asymmetry bimanual policy. This allows us to reduce the actions from (ξ̂bd(t), ξ̂

b
f (t), ξ̂hd (t)) to

(ξ̂br(t), ξ̂
h
d (t)), where ξ̂br(t) is the target relative pose of the dominant hand now defined relative to

the object being held by the facilitating hand.

Incorporating the above change of coordinates in addition to leveraging asymmetry, allows us to
define AsymDex’s policy as πAsymDex(ξ̂br(t), ξ̂

h
d (t)|ξbr(t), ξhd (t), or(t)). Note that our formulation

has significantly reduced the dimensions of both the state and action spaces, compared to the naive
policy πnaive as defined in Section 3.2. See Appendix. A for RL algorithm and policy architecture.

3.5 Relative Pose Controller

To control the hand bases based on the target relative pose ξ̂br(t) provided by πAsymDex, we designed
a bimanual controller that computes both the target dominant hand base pose ξ̂bd(t) and the target
facilitating hand base pose ξ̂bf (t) as follows

ξ̂bd(t) = αR
of
world · dist(ξ̂

b
r(t), ξ

b
r(t)) + ξbd(t),

ξ̂bf (t) = (α− 1)R
of
world · dist(ξ̂

b
r(t), ξ

b
r(t)) + ξbf (t),

(1)

where Rofworld denotes the rotational transformation from Frame Pf to the world frame PW , dist(·)
denotes the difference between two 6D poses. and α is a hyperparameter that controls the involve-
ment of each hand. Throughout our experiments, we used fixed α = 0.5. The pseudo-code of the
training process is included in Alg. 1.

3.6 Acquiring Objects

While our approach as explained thus far deals with the challenge of coordinating two hands to
accomplish asymmetric dexterous manipulation tasks, it assumes the task begins with that the ob-
ject(s) of interest have already been grasped. However, in practice, robots must be able to tackle the
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challenge of grasping the necessary objects before the interaction between the two hands and the
objects can begin. We refer to this phase as the acquisition phase. Most recent works on bimanual
dexterous manipulation often entirely ignore the acquisition phase and focus purely on the interac-
tion phase [5, 7, 40]. In contrast, we demonstrate that our approach can seamlessly accommodate
the acquisition phase by i) leveraging the observation that the acquisition phase doesn’t require the
coordination of two arms, and ii) employing recent advances in learning to grasp. Specifically, we
demonstrate that we can seamlessly integrate AsymDex with PDGM [45], which can efficiently
learn multi-fingered grasping policies by leveraging pre-grasp poses (see Fig. 2). Details about the
grasping reward design are available in Appendix. B. We begin by executing the grasping policy in
isolation and then ”turn on” the asymmetric policy learned by AsymDex after the object has been
firmly grasped by the facilitating hand. If the task requires the dominant hand to also grasp a second
object, we employ the same method to train a grasping policy for dominant hand to acquire the ob-
ject, but switch the control of the dominant hand’s joints over the asymmetric policy after the object
has been grasped.

4 Evaluation

We evaluated AsymDex on four asymmetric bimanual manipulation tasks and compared its perfor-
mance against strong baselines that challenge our key design choices. We begin by explaining the
various aspects of our experimental setup and follow with a discussion of results.

Platform: We conducted all our experiments using two ShadowHands – each a 30-DoF simulated
multi-finger hand system (24-DoF hand + 6-DoF floating wrist base) built with Isaac Gym [46].

Tasks: We evaluated AsymDex and the baselines on the following four biannual manipulation tasks
which contain both original (Block in cup, Bottle cap) and adapted tasks (Stack, Switch) from BiDex-
Hand [20] (see Fig. 3 for visualization).

• Block in cup: The two hands must coordinate to ensure that one hand places a block inside a cup
that is being held by the other without letting either the cup or the block fall to the ground.

• Stack: Two cups need to be stacked together. Each hand must hold a cup, and both must coordi-
nate such that the two cups are aligned as one slides into the other.

• Bottle cap: One hand must hold and reorient a bottle such that the other hand can grasp and
separate the bottle cap from the bottle.

• Switch: One hand holds and reorients a switch in a way that allows the other hand to turn it on.

Note that the hands have to coordinate and perform all four tasks without relying on a support surface
such as a table and ensure that the object(s) are not dropped. See Appendix. C for details on state
space design, sampling procedure, success criteria, and reward design for each task.

(a) Block in cup (b) Stack (c) Bottle cap (d) Switch

Figure 3: We evaluate AsymDex on four bimanual dexterous manipulation tasks.

Metrics: We quantify performance in terms of i) Task success rate (see Appendix. C for criteria)
and ii) sample efficiency. We report both metrics across five random seeds in all experiments.

We evaluated AsymDex with two sets of experiments as described below.

4.1 Learning Bimanual Coordination

In this experiment, we focus on AsymDex’s effectiveness during the interaction phase. We initialize
the environment such that the hands are at a pre-grasp pose around the objects using appropriate
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Figure 4: AsymDex consistently outperforms the baselines in terms of sample efficiency and success
rate. Solid lines indicate mean trends and shaded areas show ± std. dev., over five random seeds.

Table 1: Success rates (mean ± std. dev.) in Interaction phase

Task
Method

Monolithic Asym-w/o-rel Rel-w/o-Asym AsymDex (ours)

Block in cup 0.0429± 0.0266 0.0164± 0.0190 0.3052± 0.1577 0.7701 ± 0.0559
Stack 0.2517± 0.2809 0.0044± 0.0037 0.9443 ± 0.0136 0.9233± 0.0250

Bottle cap 0.6125± 0.1734 0.7893± 0.1277 0.8073± 0.1389 0.8301 ± 0.1797
Switch 0.0563± 0.0126 0.1626± 0.0882 0.1149± 0.0176 0.6700 ± 0.0359

initial grasps (After the first timestep of the environment, the hand need to learn to catch and grasp
the object from pre-grasp pose if it is not a facilitating hand). Note that this is a common assumption
in recent methods that learn bimanual dexterous manipulation skills [5, 40]. Further, this allows
us to isolate and examine AsymDex’s ability to learn to coordinate two multi-fingered hands. See
Section 4.2 for the second experiment in which we also consider the challenge of acquiring the
objects from a tabletop surface before interaction begins.

We compare AsymDex policy against the following baselines:

• Monolithic: This policy doesn’t make assumptions about the structure of bimanual manipula-
tion (see Sec. 3.2). As such, this baseline allows us to examine the necessity and effectiveness
of leveraging both the asymmetry in hand roles and the relative action and observation spaces.

• Asym-w/o-rel: This policy leverages asymmetry in hand roles, but learns over absolute obser-
vation and action places (see Sec. 3.3). As such, this baseline allows us to examine the necessity
and effectiveness of relative action and observation spaces.

• Rel-w/o-asym: This policy leverages the relative observation and action places, but ignores
asymmetry. As such, it allows us to examine the necessity and effectiveness of asymmetry.

We report the learning curves in Fig. 4 and success rates in Table 1. As can be readily observed,
AsymDex is the only method that consistently performs well across all tasks, either performing
comparably or outperforming all the baselines. While Rel-w/o-asym performs comparably to
AsymDex on Stack, it is not able to match AsymDex’s performance on the other tasks. Both
AsymDex and Rel-w/o-asym perform substantially better than the other two baselines across
all tasks except Switch, where AsymDex performs much better than all three baselines. In fact,
Asym-w/o-rel is able to learn an effective policy in only one task (Bottle cap), while Monolithic
struggles on all four tasks. Curiously, Monolithic outperforms asym-w/o-rel on the Stack task.
Qualitative analysis of rollouts reveals that, unlike Asym-w/o-rel, the Monolithic policy learns
to use the facilitating hand’s fingers to orient the cup towards the bottom of the other cup.

Taken together, the above observations reveal a few insights. First, when used in isolation, neither
asymmetry nor relative motion are sufficient across all tasks. In particular, while each might provide
sufficient structure to accomplish some tasks, they prove to be less effective on other tasks. Second,
the use of relative motion offers a larger boost in performance compared to asymmetry, likely due
to the fact that relative spaces avoid unnecessary exploration (e.g., when the two hands move in
parallel) while allowing the facilitating hand to exhibit more complex behaviors. Third, ignoring
both asymmetry and relative motion hardly leads to success.
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4.2 Learning to Grasp and Coordinate

In this experiment, we evaluate AsymDex’s ability to incorporate the object acquisition phase in
addition to the interaction phase. Specifically, we initialize the environment for each task such that
the objects of interest are placed on a tabletop surface. As such, each method needs to learn both to
grasp the necessary objects and to coordinate the two hands to complete the tasks.

For AsymDex, we follow the same strategy as introduced in Section 3.6. We compare AsymDex’s
performance against the following baselines:

• 1-stage-monolithic: This baseline uses a single policy to learn both the grasping and in-
teraction phases for both hands, and thus allows us to investigate the benefits of AsymDex’s
two-phase decomposition.

• 2-stage-monolithic: This policy benefits from the same phase decomposition as AsymDex
policy, but leverages neither asymmetry nor relative motion. As such, this baseline allows us to
examine if this task can be solved merely with two-phase decomposition.

To ensure a fair comparison, we provide pre-grasp pose annotations to both baselines. Further, we
ensure that the total number of env. interactions (the number of one stage or the sum of two stages)
is the same across AsymDex and the baselines. See Appendix. B for details of the grasping learning.

We report the overall roll-out success rate of all methods for two tasks across five random seeds in
Table. 2. We find that AsymDex significantly outperforms the other two baselines in both tasks,
suggesting that combining phase decomposition with AsymDex’s other two design choices (asym-
metry and relative state) results in policies that can effectively handle both the acquisition and the
interaction phases of bimanual dexterous manipulation. The fact that 2-stage-monolithic base-
line outperforms the 1-stage-monolithic baseline demonstrates the inherent benefits of phase
decomposition. Our qualitative analysis of Block in cup task revealed that 1-stage-monolithic
policy learns to tip the cup over and push the block towards the cup. In contrast, both the two-
stage policies learn the expected behavior. This suggests that the phase decomposition nudges the
grasping and interaction policies to learn reasonable behaviors that complement each other.

Table 2: Success rates (mean ± std. dev.) after combining acquisition and interaction phases

Task
Method

1-stage-monolithic 2-stage-monolithic 2-stage-AsymDex

Block in cup 0.0321± 0.0251 0.1505± 0.1059 0.7938 ± 0.0897
Bottle cap 0.1680± 0.2695 0.6407± 0.1141 0.8726 ± 0.0600

5 Conclusion

Our framework (AsymDex) is capable of learning complex asymmetric bimanual dexterous manip-
ulation tasks via reinforcement without relying on demonstrations. We introduced and validated
the need for AsymDex’s two crucial ingredients: assigning asymmetric roles to the two hands, and
using relative observation and action spaces. Our evaluation results reveal that the combination of
these choices consistently leads to better sample efficiency and success rates across different tasks.

6 Limitations and Future Works

Our work has revealed a number of limitations and avenues for future research. First, AsymDex in
its current form cannot handle certain bimanual tasks that require complex multi-finger manipulation
from both hands (e.g., reorienting a heavy object, dynamic handover). Second, AsymDex does not
consider the kinodynamic constraints that might result from manipulator arms. Third, AsymDex
has not yet been evaluated on hardware. Fourth, behaviors produced by AsymDex are not always
natural or human-like due to lack of necessary incentives.
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Appendices

A RL Training

We use Proximal Policy Optimization (PPO) [47] algorithm to train all policies πnaive, πasym, and
πAsymDex with their corresponding value functions. Both policies and value functions are param-
eterized via a three-layer MLP network. The size of hidden layers for each is i) policy: (256,
256, 128), ii) value function: (512, 512, 512). The activation functions are all set as Exponen-
tial Linear Unit (ELU). We use the same PPO hyperparameters for all the baselines and AsymDex
(learning rate : 3 × 10−4, γ : 0.98, λ : 0.95). We train the polices on a computer with a single
Nividia RTX 4090 GPU.

B Grasping Learning

Two-stage policy Both AsymDex (our approach) and 2-stage-monolithic policy (one of the
baselines in Sec. 4.2) are two-stage policies. Therefore, they can first learn a grasping policy for
the facilitating hand (or two grasping policies for facilitating hand and dominant hand respectively).
Such policy πgrasp(ξ̂hf (t)|ξhf (t), ξbf (t) � Xof ) takes in the hand joint states and the relative pose
between hand and the object, and outputs the target hand joint positions to grasp the object firmly.
We first provide pre-grasp annotations [45], which allows the hands to initialize at the position close
to the objects with proper joint positions. Then we script the 6D lifting hand base motions and
design the the following rewards, which is the same across all objects.

Reward = Rrel pos +Rrel rot

The relative position rewardRrel pos = (α−||xobj−xinitial||)∗β, where xobj is the current relative
position between the object and the hand, and xinitial is the initial relative position between the
object and the hand. The α, β ∈ R+ are hyper-parameters. The relative rotation rewardRrel pos =<
uobj , uhand >, where uobj is the object direction vector, uhand is the hand direction vector, and
< ·, · > denotes the inner product of two vectors. We define the object direction vector and hand
direction vector to be the same at the beginning of the grasping phase. Both rewards encourage the
hand to keep a constant relative pose, i.e., grasping the object, during the script motion.

One-stage policy Another baseline in Sec. 4.2, i.e., the 1-stage-monolithic policy, does not
incorporate the task decomposition. Therefore, it only uses the task-specific interaction rewards (see
Appendix. C) to learn how to complete the entire bimanual task. For a fair comparison, both hands
also start at the pre-grasp poses.

C Task Design

In this section, we show the details for each task.

State Space Design For each task, the hand joint states ξhf (t), ξhd (t) include the 24-DoF hand
joint positions and the 24-DoF hand joint velocities. We use quaternions to represent rotation part
of object and hand base poses. And for all policies, we also include the previous actions in the
policy input. For the block in cup task, of (t) and od(t) represent the poses of the cup and the block
respectively. For the stack task, of (t) and od(t) represent the poses of two cups. For the Bottle cap
task, of (t) and od(t) represent the poses of the bottle and the cap respectively. For the Switch task,
of (t) and od(t) represent the poses of the switch body and the button respectively. The dimensions
of the observation and action spaces of each policy are shown in Table. 3. It is obvious that AsymDex
policy significantly reduces the state dimensions.

Sampling Procedure

• Place block in cup: The initial position of dominant hand base is randomized: xd ∈ X ∼
U(0.3, 0.7), yd ∈ Y ∼ U(−0.2, 0.0), zd ∈ Z ∼ U(0.7, 1.1). For the rotation of the
dominant hand, we randomly rotate it around the axis along the arm at a random angle,
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Table 3: Dimension of Observation and action spaces. For all tasks, the dimensions are identical.
Monolithic Asym-w/o-rel Rel-w/o-Asym AsymDex (ours)

Observation 176 108 163 88
Action 52 32 46 26

α ∈ A ∼ U(−1.57, 1.57), in radians. The block is initialized in the dominant hand. Thus
its position and rotation is calculated based on the initial position and rotation of dominant
hand base. The initial position of the facilitating hand base is at [0.55, 0.6, 0.8].

• Stack cups: The initial position of dominant hand base is randomized: xd ∈ X ∼
U(0.3, 0.7), yd ∈ Y ∼ U(−0.2, 0.0), zd ∈ Z ∼ U(0.7, 1.1). For the rotation of the
dominant hand, we randomly rotate it around the axis along the arm at a random angle,
α ∈ A ∼ U(−1.57, 1.57), in radians. The cup is initialized in the dominant hand. Thus
its position and rotation is calculated based on the initial position and rotation of dominant
hand. The initial position of the facilitating hand base is at [0.55, 0.6, 0.8].

• Open bottle cap: The initial position of dominant hand base is randomized: xd ∈ X ∼
U(0.58, 0.62), yd ∈ Y ∼ U(−0.21,−0.19), zd ∈ Z ∼ U(0.58, 0.62). For the rotation of
the dominant hand, we randomly rotate it around the axis along the arm at a random angle,
α ∈ A ∼ U(−1.0, 1.0), in radians. The initial position of the facilitating hand base is
randomized: xf ∈ X ∼ U(0.53, 0.57), yf ∈ Y ∼ U(0.59, 0.61), zf ∈ Z ∼ U(0.43, 0.45).
For the rotation of the facilitating hand, we randomly rotate it around the axis along the
arm at a random angle, β ∈ B ∼ U(−0.5, 0.5), in radians. The bottle is initialized in the
facilitating hand. Thus its position and rotation is calculated based on the initial position
and rotation of facilitating hand base.

• Turn on switch: The initial position of dominant hand base is randomized: xd ∈ X ∼
U(0.2, 0.6), yd ∈ Y ∼ U(−0.25,−0.05), zd ∈ Z ∼ U(0.5, 0.9). For the rotation of the
dominant hand, we randomly rotate it around the axis along the arm at a random angle,
α ∈ A ∼ U(−1.0, 1.0), in radians. The initial position of the facilitating hand base is
randomized: xf ∈ X ∼ U(0.2, 0.6), yf ∈ Y ∼ U(0.05, 0.25), zf ∈ Z ∼ U(0.41, 0.81).
For the rotation of the facilitating hand, we randomly rotate it around the axis along the
arm at a random angle, β ∈ B ∼ U(−1.0, 1.0), in radians. The switch is initialized in the
facilitating hand. Thus its position and rotation is calculated based on the initial position
and rotation of facilitating hand base.

Success Criteria

• Place block in cup The task is considered successful if the distance of the block center
and the cup center is smaller than 0.035 meters. This distance makes sure the task is only
considered successful when the block is inside the cup. If the block falls on the ground or
has not entered the cup within a certain time step, the task is considered failed.

• Stack cups The task is considered successful if the distance between the cup centers is
smaller than 0.02 meters. If either cup falls on the ground or has not been stacked within a
certain time step, the task is considered failed.

• Open bottle cap The task is considered successful if the cap is taken off from its original
position 0.05 meters away within a time duration, and is considered failed otherwise.

• Turn on switch The button and the switch body are connected by a revolute joint ranging
from 0 to 0.5585 rads. The task is considered successful if the button is pressed and rotated
0.3585 rads within a time duration, and is considered failed otherwise.

Reward Design The reward design is similar across all tasks:
Reward = Rhand distance +Rprogress +Raction penalty +Rsuccess bonus

For each task, Raction penalty = −||a(t)||2, and the Rsuccess bonus is the task success reward.
Rhand distance and Rprogress are slightly different for each tasks.

• Place block in cup: Rhand distance = e−||xpalm−xcup mouth||, where xpalm is the domi-
nant hand palm position, and xcup mouth is the position of the cup mouth. Rprogress =
−||xcup − xblock||, where xcup is the position of the cup, and xblock is the position of the
block.
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• Stack cups: Rhand distance = e−||xpalm−xcup mouth||, where xpalm is the dominant hand
palm position, and xcup mouth is the position of the cup mouth, which is grasped by the
facilitating hand. Rprogress = −||xcupd − xcupf ||, where xcupf is the position of the
cup grasped by the facilitating hand, and xcupd is the position of the cup grasped by the
dominant hand.
• Open bottle cap: Rhand distance = (1− (||xindex − xcap||+ ||xthumb − xcap||))3, where
xindex and xthumb are the tip position of index finger and thumb respectively, and xcap is
the position of the bottle cap. Rprogress = ||xcap − xbottle top||, where xcap is the position
of the cap, and xbottle top is the position of the top of the bottle.

• Turn on switch: Rhand distance = (1 − (||xindex − xbutton|| + ||xthumb − xbutton||))3,
where xindex and xthumb are the tip position of index finger and thumb respectively, and
xbutton is the position of the button. Rprogress = 2 ∗ θbutton, where θbutton is the rotated
angle of the joint that connects the button and the switch body.
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