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Abstract
We explore a Federated Reinforcement Learning
(FRL) problem where N agents collaboratively
learn a common policy without sharing their tra-
jectory data. To date, existing FRL work has
primarily focused on agents operating in the same
or “similar” environments. In contrast, our prob-
lem setup allows for arbitrarily large levels of
environment heterogeneity. To obtain the optimal
policy which maximizes the average performance
across all potentially completely different environ-
ments, we propose two algorithms: FEDSVRPG-
M and FEDHAPG-M. In contrast to existing re-
sults, we demonstrate that both FEDSVRPG-M
and FEDHAPG-M, both of which leverage mo-
mentum mechanisms, can exactly converge to a
stationary point of the average performance func-
tion, regardless of the magnitude of environment
heterogeneity. Furthermore, by incorporating the
benefits of variance-reduction techniques or Hes-
sian approximation, both algorithms achieve state-
of-the-art convergence results, characterized by
a sample complexity of O

(
ϵ−

3
2 /N

)
. Notably,

our algorithms enjoy linear convergence speedups
with respect to the number of agents, highlight-
ing the benefit of collaboration among agents in
finding a common policy.

1. Introduction
Recently, there has been a lot of interest applying Federated
Learning (FL) algorithms to reinforcement learning (RL)
problems in order to solve complex sequential decision-
making tasks (Qi et al., 2021; Jin et al., 2022; Liu et al.,
2019). Federated reinforcement learning (FRL) has been
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widely applied as it provides the following advantages: First,
FRL protects each agent’s privacy by only allowing the
model to be shared between the server and agent, while
keeping the raw data localized. Secondly, by sharing the
model with the server, FRL can reduce the sample com-
plexity and produce a better policy than if each agent learns
individually with its own limited data. However, existing
work in the FRL framework is limited to either multiple
agents interacting with the same environment (Fan et al.,
2021; Khodadadian et al., 2022) or multiple agents with dis-
tinct, yet similar environments (Jin et al., 2022; Xie & Song,
2023b; Wang et al., 2023a). It remains an open problem
to formally characterize how FRL performs when multiple
agents from completely different environments, i.e., with
arbitrarily large heterogeneity levels, are allowed to collab-
orate. In this work, we provide an answer to the following
question: what is the best achievable sample complexity
when considering severely heterogeneous environments?

We focus on developing FRL algorithms that compute an
optimal universal policy that ensures uniformly good perfor-
mance for N agents, despite their operation in disparate en-
vironments. The motivation for a shared policy stems from
practical applications necessitating uniform approaches for
distinct agents. For instance, Spotify, a leading audio stream-
ing company, intends to design a uniform pricing plan that
suits the listening habits of all users. Given the substantial
variations in listening habits among users, establishing a
pricing strategy that aligns with the preferences of all users
is of great importance. Similarly, autonomous vehicles nav-
igating diverse settings like urban streets, rural areas, and
highways must adapt to varied challenges. A uniform pol-
icy that adjusts to this environmental heterogeneity ensures
consistent, safe decision-making across all terrains, high-
lighting the need for robust algorithms capable of handling
dynamic driving conditions efficiently. Moreover, a univer-
sally optimal policy could serve as a foundational model
that can be individually fine-tuned, a concept that has gained
a lot of attention in meta- and few-shot RL research (Finn
et al., 2017; Yu et al., 2020). This approach underscores
the broader necessity of designing a uniform and adaptable
policy for heterogeneous settings.

In this work, the environment heterogeneity refers to the
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fact that each agent has a different reward function, state
transition kernel, or initial state distribution, while they
share common state and action spaces. Notably, compared
with the existing work (Jin et al., 2022; Wang et al., 2023a),
we do not assume that all the environments are similar, i.e.,
environmental heterogeneity does not need to be bounded by
small constants. Instead, we consider a more general setting
where the magnitude of heterogeneity can be arbitrary. With
this setup, we aim to answer the following question:

Is it possible to design a provably efficient FRL al-
gorithm which can accommodate arbitrary levels
of environmental heterogeneity among agents?

We answer this question affirmatively. Our main contribu-
tions are listed below.

• New momentum-powered federated reinforcement
learning algorithms: We propose two new algorithms
FEDSVRPG-M and FEDHAPG-M for solving heteroge-
neous FRL problems (formally specified in Eq. (3)). Lever-
aging momentum, we prove that our algorithms, even with
constant local step-sizes, converge to the exact stationary
point of the heterogeneous FRL problem, regardless of the
magnitude of environment heterogeneity. This stands in
contrast to the state-of-the-art work, which only show con-
vergence to a ball around the stationary point whose radius
depends on the environmental heterogeneity levels. Im-
portantly, our results hold even when different notions of
environment heterogeneity are considered such as the het-
erogeneity in Markov decision processes (MDPs) or policy
advantage heterogeneity (Xie & Song, 2023b).

• State-of-the-art convergence rates: By integrating
variance-reduction techniques and curvature information
into the policy gradient estimation, our algorithms achieve
sample-efficiency improvement over prior work (Fan et al.,
2021). In particular, we reduce the sample complexity
from O

(
ϵ−

5
3 /N

2
3

)
to O

(
ϵ−

3
2 /N

)
when finding the ϵ-

approximate first order stationary point1 (ϵ-FOSP) (Nes-
terov, 2003). When only a single agent is included, i.e.,
N = 1, our results align with the best known sample com-
plexity of O

(
ε−

3
2

)
from Fatkhullin et al. (2023).

• Practical algorithm structures: Our algorithms are easy
to implement because: (1) Constant local step-sizes. This
feature reduces the amount of algorithm tuning. In contrast,
many FL optimization algorithms (Karimireddy et al., 2020;
Wang et al., 2019; Yang et al., 2021) require diminishing
local step-sizes preset according to complex schedules in or-
der to counteract the effects of heterogeneity. (2) Sampling

1Finding a parameter θ such that ∥∇J(θ)∥2 ≤ ϵ, where J is
defined in Eq. (3). Note that in work such as (Shen et al., 2019;
Fatkhullin et al., 2023), the notion ∥∇J(θ)∥2 ≤ ϵ2 is applied
instead.

one trajectory per local iteration. This means our algo-
rithms can address the challenge of poor sample efficiency
in RL. Unlike existing variance-reduced policy gradient
(PG) algorithms for the single agent setting (Papini et al.,
2018; Xu et al., 2019; Gargiani et al., 2022), our approach
avoids the need for large batch sizes during certain itera-
tions. (3) Accommodating multiple local updates. With this
feature, our algorithms become more suitable for real-world
applications, where communication latency causes serious
bottlenecks.

• Linear speedup: Analysis of FEDSVRPG-M and
FEDHAPG-M shows that they can converge N -times faster
than the scenario where each agent learns a policy on its
own. Essentially, by adopting the FL approach, the sample
complexity of our algorithms can be linearly scaled by the
number of agents N , i.e., collaboration always helps. To
our knowledge, we are the first to achieve a linear speedup
for finding a stationary point of FRL problems using policy-
based methods. Importantly, the linear speedup is estab-
lished even when considering multiple local updates and
without making any assumptions about environment hetero-
geneity. Compared to prior work, our result outperforms
that of Jin et al. (2022); Fan et al. (2021), which at best
achieves sublinear speedup, see Table 1.

2. Related Work
Federated RL A comprehensive overview of techniques
and open problems in FRL was offered by Qi et al. (2021).
Much of the work in FRL has focused on developing feder-
ated versions of value-based methods (Khodadadian et al.,
2022; Woo et al., 2023; Wang et al., 2023a). Notably, Kho-
dadadian et al. (2022) and Woo et al. (2023) established
the benefits of FL in terms of linear speedup, assuming
all agents operate in identical environment. Wang et al.
Wang et al. (2023a) introduced the FEDTD(0) algorithm
to address the FRL problem with distinct yet similar en-
vironments demonstrated linear speed up was achievable.
On the other hand, Zhang et al. (2024) proposed the FED-
SARSA algorithm to solve the on-policy FRL problem,
but it is applicable only in similar environments. Another
major area of FRL research studies federated policy-based
algorithms (Jin et al., 2022; Xie & Song, 2023b; Fan et al.,
2021; Wang et al., 2023b; Lan et al., 2023). However, Fan
et al. (2021) only consider uniform environments and only
one local update step. While Xie & Song explored diverse
environments, they only showed an asymptotic convergence.
Most relevant to our work, Jin et al. (2022) studied heteroge-
neous environments. Nevertheless, the algorithms from Jin
et al. (2022) were saddled with a non-vanishing convergence
error. This non-vanishing error depended on the environ-
mental heterogeneity levels. Note that none of these papers
investigated the FRL problems with arbitrary environment
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Table 1. Comparision of the results for policy-based methods in FRL. LU and HETER denote the multiple local updates and environment
heterogeneity, respectively.

ALGORITHM CONVERGENCE SPEEDUP LU HETER

PAVG (Jin et al., 2022) finite but inexact No speedup ! !

FEDKL (Xie & Song, 2023b) asymptotic No speedup % !

FEDPG-BR (Fan et al., 2021) finite and exact Sublinear: N
2
3 % %

FAPI (Xie & Song, 2023a) asymptotic and inexact No speedup % !

FEDSVRPG-M (Ours) finite and exact Linear: N ! !

FEDHAPG-M (Ours) finite and exact Linear: N ! !

heterogeneity. To bridge this gap, our proposed algorithms,
FEDSVRPG-M and FEDHAPG-M, utilize policy-based
techniques and can converge exactly. See Table 1 for a
comparison of our results with the existing work in FRL
policy-based methods.

3. Preliminaries
Federated Learning. Federated learning (FL) is a machine
learning approach where a model is trained across multiple
clients. Each client runs several iterations of a learning al-
gorithm on its own dataset. Periodically, clients send their
local models to the server. The server aggregates the models
and then broadcasts the resulting model to all clients and
the process repeats. By performing multiple local updates
with its own data, FL can substantially reduce communica-
tion costs. Our proposed algorithms align with the structure
of standard FL algorithms such as FEDAVG (McMahan
et al., 2017): an agent performs multiple local updates (us-
ing SGD) between two communication rounds. Nonethe-
less, such local updates will introduce “client-drift” prob-
lems (Karimireddy et al., 2020; Charles & Konečnỳ, 2021;
Wang et al., 2022), presenting a key challenge in FL regard-
ing the trade-off between communication cost and model
accuracy. Additionally, handling data that is not identically
distributed across devices, affecting both data modeling and
convergence analysis, presents another challenge. These
challenges are further amplified in the context of FRL.

3.1. Centralized Reinforcement Learning

A centralized reinforcement learning task2 is generally mod-
eled as a discrete-time Markov Decision Process (MDP):
M = {S,A,P,R, γ, ρ}, where S is the state space, A
is the action space and ρ denotes the initial state distribu-
tion. Here, P (s′ | s, a) denotes the probability that the
agent transitions from the state s to s′ when taking the

2To distinguish from the federated setting, we refer to the single-
agent case as centralized RL or when it’s clear from context, simply
reinforcement learning.

action a ∈ A. The discount factor is γ ∈ (0, 1), and
R(s, a) : S × A → [0, Rmax] is the reward function for
taking action a at state s for some constant Rmax > 0. A
policy π : S → ∆(A) is a mapping from the state space S
to the probability distribution over the action space A.

Under any stationary policy, the agent can collect a trajec-
tory τ ≜ {s0, a0, s1, a1, . . . , sH−1, aH−1, sH}, which is
the collection of state-action pairs, where H is the maxi-
mum length of all trajectories. Once a trajectory τ is ob-
tained, a cumulative discounted reward can be observed;
R(τ) ≜

∑H−1
h=0 γhR (sh, ah) .

3.2. Policy Gradients

Given finite state and action spaces, the policy π(a|s) can
be stored in a |S|× |A| table. However, in practice, both the
state and action spaces are large and the tabular approach
becomes intractable. Alternatively, the policy is parameter-
ized by an unknown parameter θ ∈ Rd, the resulting policy
is denoted by πθ. Given the initial distribution ρ, p(τ | θ)
denotes the probability distribution over trajectory τ , which
can be calculated as

p(τ | θ) = ρ (s0)

H−1∏
h=0

πθ (ah | sh)P (sh+1 | sh, ah) .

The goal of RL is to find the optimal policy parameter θ that
maximizes the expected discounted trajectory reward:

max
θ∈Rd

J(θ) ≜ Eτ∼p(τ |θ)[R(τ)] =
∫
R(τ)p(τ | θ)dτ. (1)

Note that the underlying distribution p in Eq. (1) depends on
the variable θ which varies through the whole optimization
procedure. This property, referred to as non-obliviousness,
highlights a unique challenge in RL and creates a notable
distinction from supervised learning problems, where the
distribution p is stationary.

To deal with the non-oblivious and non-convex problem
(1), a standard approach is to use the policy gradient (PG)
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method (Williams, 1992; Sutton et al., 1999). PG takes the
first-order derivative of the objective (1) where ∇J(θ) can
be expressed as∫
R(τ)∇p(τ | θ)dτ = Eτ∼p(τ |θ)[∇ log p(τ | θ)R(τ)].

Then, the policy θ can be optimized by running gradient
ascent-based algorithms. However, since the distribution
p(τ | θ) is unknown, it is impossible to calculate the full
gradient. To address this issue, stochastic gradient ascent is
typically used, producing a sequence of the form:

θ ← θ + η · 1
B

B∑
i=1

g(τi | θ)

where η > 0 denotes the stepsize, B is the number of
trajectories, and g(τi | θ) is an estimate of the full gradient
∇J(θ) using the trajectory τi. The most common unbiased
estimators of PG are REINFORCE (Williams, 1992) and
GPOMDP (Baxter & Bartlett, 2001). In this paper, g(τ | θ)
is defined as

g(τ | θ) =
H−1∑
t=0

(
H−1∑
h=t

γhR (sh, ah)

)
∇ log πθ (at | st) .

Importance Sampling Since problem 1 is non-oblivious,
we have Eτ∼p(τ |θ) [g(τ | θ)− g (τ | θ′)] ̸= ∇J(θ) −
∇J (θ′). To address this issue of distribution shift, we intro-
duce an importance sampling (IS) weight, denoted by

w (τ | θ′, θ) ≜ p (τ | θ′)
p(τ | θ)

=

H−1∏
h=0

πθ′ (ah | sh)
πθ (ah | sh)

. (2)

With the definition of the IS weight, we can ensure that
Eτ∼p(τ |θ) [g(τ | θ)− w (τ | θ′, θ) g (τ | θ′)] = ∇J(θ) −
∇J (θ′) .

4. Problem Formulation
We are now ready to characterize heterogeneity in our N -
agent FRL problem. Environmental heterogeneity is mod-
eled by allowing each agent to have its own state transition
kernelP(i), reward functionR(i), or the initial state distribu-
tion ρ(i). However, all agents share the same state and action
space. These environments are characterized by the MDPs,
Mi =

〈
S,A,R(i),P(i), γ, ρ(i)

〉
, for i = 1, · · · , N .

The objective of FRL is to enable N agents to collabora-
tively learn a common policy function or a value function
that uniformly performs well across all environments. To
preserve privacy, agents are not allowed to exchange their
raw observations (i.e., their rewards, states, or actions). In
particular, we consider solving the following optimization

problem:

max
θ

{
J(θ) ≜

1

N

N∑
i=1

Ji(θ)

}

where Ji(θ) ≜ E

[
H−1∑
h=0

γhR(i) (sh, ah) | s0 ∼ ρ(i),

ah ∼ πθ (· | sh) , sh+1 ∼ P(i) (· | sh, ah)
]
. (3)

Objective. For solving the optimization problem (3), we
aim to find the ϵ-FOSP, i.e., a parameter θ such that
∥∇J(θ)∥2 ≤ ε. There exists work that leverages the “gradi-
ent domination” condition (Agarwal et al., 2020; Liu et al.,
2020; Ding et al., 2021; Fatkhullin et al., 2023) for finding
a global optimal policy in the centralized RL setting. The
gradient domination condition is useful as it guarantees that
every stationary policy is globally optimal. However, as
shown in Zeng et al. (2021), we cannot expect this condition
to hold in general for FL or multi-agent problems. Specifi-
cally, even if a single performance function, Ji(θ), satisfies
the “gradient domination” condition, the average function
J(θ) = 1

N

∑N
i=1 Ji(θ) might not. Zeng et al. (2021) re-

solved this issue by introducing strong assumptions into
the problem. For instance, Assumption 2 in their paper
requires that the joint states between the environments are
equally explored, which is difficult to verify in real-world
applications.

Difference in the problem setup. Our setting is more gen-
eral than existing work (Jin et al., 2022; Wang et al., 2023a).
In our work, each MDP can have a distinct initial state dis-
tribution, a feature not addressed in Jin et al.. Furthermore,
our framework does not require the bounded heterogeneity
assumption of Wang et al. and thus can handle arbitrary
environment heterogeneity.

5. Algorithms
To solve problem (3), we present two federated momentum-
based algorithms: FEDSVRPG-M and FEDHAPG-M.
FEDSVRPG-M is based on a variance reduction method,
while FEDHAPG-M leverages a fast Hessian-aided tech-
nique. Since FEDSVRPG-M only uses the first-order in-
formation (gradient), it is computationally cheaper than
FEDHAPG-M, which aims to approximate second-order
information (Hessians). Conversely, FEDHAPG-M, with
its use of second-order information, is more robust than
FEDSVRPG-M.

In the centralized RL setting, momentum-based PG meth-
ods (Yuan et al., 2020; Huang et al., 2020) are proposed to
reduce the variance of stochastic gradients. In contrast, our
algorithms integrate momentum within a federated context,
achieving dual benefits: it not only accelerates the con-
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vergence and stabilizes oscillations, but also mitigates the
impact of environment heterogeneity. Consequently, our al-
gorithms can exactly converge to the ϵ-FOSP of problem (3),
no matter how large the environment heterogeneity is. This
represents a significant improvement upon (Jin et al., 2022;
Xie & Song, 2023a), which only show the convergence to
the neighborhood around the stationary point of problem.
The size of the neighborhood in their papers is determined
by the environment heterogeneity.

5.1. FEDSVRPG-M

We now describe the federated stochastic variance-reduced
PG with momentum algorithm (FEDSVRPG-M for short).
We outline its steps in Algorithm 1.

FEDSVRPG-M initializes all agents and the server with a
common model θ0. In Algorithm 1, we use the superscript
(i) to index the i-th agent and the subscript r and k to denote
the r-th communication round and k-th local iteration. In
each communication round r, each agent i ∈ [N ] is initiated
from a common model θr and samples a single trajectory
from its own environment to perform K local iterations. At
each local iteration k, instead of using PG, FEDSVRPG-
M uses the following momentum-based variance-reduced
stochastic PG estimator:

u
(i)
r,k = βgi

(
τ
(i)
r,k | θ

(i)
r,k

)
+ (1− β)

[
ur + gi

(
τ
(i)
r,k | θ

(i)
r,k

)
−w(i)

(
τ
(i)
r,k | θr−1, θ

(i)
r,k

)
gi

(
τ
(i)
r,k | θr−1

)]
, (4)

where β ∈ (0, 1] and w(i) is the importance sampling
weight, which is defined as:

w(i)
(
τ
(i)
r,k | θr−1, θ

(i)
r,k

)
≜

p(i)
(
τ
(i)
r,k | θr−1

)
p(i)

(
τ
(i)
r,k | θ

(i)
r,k

) .

When β = 1, Eq. (4) reduces to the stochastic PG direc-
tion. When β = 0, it reduces to the variance-reduced PG
direction. Notably, compared to the IS-MBPG algorithm
of Huang et al. (2020) for the centralized RL setting, the
local updating rule in Algorithm 1 differs in that we estimate
the PG directions locally, θ(i)r,k, and globally θr−1, instead of
two consecutive local policies. Furthermore, FEDSVRPG-
M only requires constant local step-sizes, in contrast to the
decreasing step-sizes in Huang et al. (2020). Moreover,
FEDSVRPG-M only samples one trajectory per iterate, i.e.,
not does not require very large batch sizes, which is often
necessary for centralized variance-reduced PG methods (Xu
et al., 2019; Yuan et al., 2020). For more discussion on
the variance-reduced PG-type algorithms, we refer readers
to Gargiani et al. (2022).

A notable feature of FEDSVRPG-M is communication
efficiency and data locality. To save the communication

costs and preserve privacy, all agents upload their local
model’s difference ∆

(i)
r , instead of the raw trajectories, to

the server only after K local iterations (line 10). Following
this step, the server aggregates all the differences to update
the global model θr+1 using the global step-size λ and
then broadcasts it to all agents. Note that FEDSVRPG-
M follows the same structure of the vanilla FEDAVG and
achieves the same communication cost per communication
round as FEDAVG.

Comparison with prior work. Note that the algorithms
in Fan et al. (2021) require the server to own its own envi-
ronment (an MDP). They utilized the variance-reduced PG
method for updating global models on the server side and
applied the stochastic PG method to update the local model
only once on the agent side. In contrast, our algorithms
eliminate the need for the server to own its environment,
enhancing its applicability in real-world scenarios. This is
crucial as, in numerous cases, the server may function as a
third-party entity without access to the environment.

Challenges. Most importantly, our algorithms accommo-
date multiple local updates, a crucial step for reducing the
communication costs in FL. Thus, it is important for us to
mitigate the common “client-drift” problems due to het-
erogeneity among agents. Notably, even for the standard
FL algorithms in the supervised setting, it takes a sub-
stantial effort for the FL community to tackle this prob-
lem, such as FEDPROX (Li et al., 2020), FEDNOVA (Wang
et al., 2020), SCAFFOLD (Karimireddy et al., 2020) and
FEDLIN (Mitra et al., 2021). This challenge is further exac-
erbated in FRL, where the non-oblivious nature of problems
makes it uncertain whether the bounded gradient heterogene-
ity assumption, commonly employed in FL optimization lit-
erature, remains applicable. Consequently, achieving a bal-
ance between communication cost and convergence rate is
challenging. We analyze the performance of FEDSVRPG-
M in Section 6.

5.2. FEDHAPG-M

Recently, HAPG (Shen et al., 2019) has been proposed
for the centralized RL to reduce the sample complexity
from O

(
1/ϵ4

)
to O

(
1/ϵ3

)
to obtain the ϵ-FOSP. The main

success of HAPG comes from that it utilizes the stochas-
tic approximation of the second-order policy differential.
While HAPG uses curvature information, the computation
cost of HAPG is still linear per iteration with respect to the
parameter dimension d, as it avoids computing the Hessian
explicitly.

We now provide a federated variant of HAPG; Feder-
ated Hessian Aided Policy Gradient with Momentum
(FEDHAPG-M). As discussed in FEDSVRPG-M, the us-
age of momentum in FEDHAPG-M primarily serves to
offer an “anchoring” direction that encodes PG estimates
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Algorithm 1 Description of FEDSVRPG-M
Input: initial model θ−1 = θ0, gradient estimate u0,
local step-size η, global step-size λ and momentum β.
for r = 0, 1, . . . , R− 1 do

▷ Agent side
for each agent i ∈ [N ] do

Initial local model θ(i)r,0 = θr
for k = 0, 1, . . . ,K − 1 do

Sample a trajectory τ
(i)
r,k ∼ p(i)

(
τ | θ(i)r,k

)
and

compute u
(i)
r,k using Eq. (4).

Update local model θ(i)r,k+1 = θ
(i)
r,k + ηu

(i)
r,k

end for
Send ∆

(i)
r = θ

(i)
r,K − θr to the server

end for
▷ Server side
Aggregate ur+1 = 1

ηNK

∑N
i=1 ∆

(i)
r

Update global model θr+1 = θr + λur+1

end for

from all agents. Consequently, it eliminates the need for
bounded environment heterogeneity assumption in existing
FRL literature (Jin et al., 2022; Wang et al., 2023a; Xie &
Song, 2023b). Moreover, FEDHAPG-M employs a second-
order approximation instead of computing the difference
between two consecutive stochastic gradients. As a result,
FEDHAPG-M obtains an improved sample complexity
akin to that of FEDSVRPG-M.

Note that FEDHAPG-M follows the same structure of the
vanilla FEDAVG and FEDSVRPG-M, differing only in
the local update procedure. In FEDHAPG-M, we replace
the local update direction in FEDAVG with a variant of
HAPG, see line 7 ∼ 9 in Algorithm 2. It is worth noting
that the uniform sampling step in line 7 guarantees that
Λ
(i)
r,k is an unbiased estimator of∇J(θ(i)r,k)−∇J(θr−1). To

estimate the term Λ
(i)
r,k, as in Furmston et al. (2016); Shen

et al. (2019), we first assume that the function Ji(θ) is twice
differentiable for all i ∈ [N ]. Then we compute it as:

Λ
(i)
r,k ≜

〈
∇ log p

(
τ
(i)
r,k | θ

(i)
r,k(α)

)
, v

(i)
r,k

〉
gi

(
τ
(i)
r,k | θ

(i)
r,k(α)

)
+∇

〈
gi

(
τ
(i)
r,k | θ

(i)
r,k(α)

)
, v

(i)
r,k

〉
(5)

where v(i)r,k ≜ θ
(i)
r,k − θr−1. The variable θr−1 represents the

last-iterate global policy maintained in the server. As men-
tioned in Fatkhullin et al. (2023), the computation of the sec-
ond term in Eq (5) can be simplified through via automatic
differentiation of the scalar quantity g

(
τ
(i)
r,k | θ

(i)
r,k(α)

)
.

Thus, the computation cost of FEDHAPG-M does not in-
crease and remains at O(Hd).

Discussion. Same as FEDSVRPG-M, FEDHAPG-M en-

Algorithm 2 Description of FEDHAPG-M
Input: initial model θ−1 = θ0 and gradient estimate u0,
local step-size η, global step-size λ and momentum β.
for r = 0, · · · , R− 1 do
▷ Agent side
for each agent i ∈ [N ] do

Initial local model θ(i)r,0 = θr
for k = 0, · · · ,K − 1 do

Choose α uniformly at random from [0, 1], and
compute θ

(i)
r,k(α) = αθr−1 + (1− α)θ

(i)
r,k

Sample a trajectory τ
(i)
r,k from the density

p(i)
(
τ | θ(i)r,k(α)

)
and compute u

(i)
r,k =

βw(i)
(
τ
(i)
r,k | θ

(i)
r,k, θ

(i)
r,k(α)

)
gi

(
τ
(i)
r,k | θ

(i)
r,k

)
+

(1− β)
[
ur + Λ

(i)
r,k

]
, where Λ

(i)
r,k can be com-

puted by using Eq. (5)
Update local model θ(i)r,k+1 = θ

(i)
r,k + ηu

(i)
r,k

end for
Send ∆

(i)
r = θ

(i)
r,K − θr back to the server

end for
▷ Server side
Aggregate ur+1 = 1

ηNK

∑N
i=1 ∆

(i)
r

Update global model θr+1 = θr + λur+1

end for

joys the following favorable features: (1) Only sampling
one trajectory per local iteration; (2) No need for the server
to have its own environment; (3) Multiple local updates.
Such features were not simultaneously addressed in Fan
et al. (2021); Xie & Song (2023a).

6. Convergence Analysis
First, we introduce some standard assumptions.

Assumption 6.1. Let π(i)
θ (a | s) be the policy of the i-th

agent at state s. There exist constants G,M > 0 such that
the log-density of the policy function satisfies∥∥∥∇θ log π

(i)
θ (a | s)

∥∥∥ ≤ G,
∥∥∥∇2

θ log π
(i)
θ (a | s)

∥∥∥
2
≤M,

for all a ∈ A and s ∈ S and i ∈ [N ].

Assumption 6.2. For each agent i ∈ [N ], the variance of
stochastic gradient gi(τ | θ) is bounded, i.e., there exists
a constant σ > 0, for all policies πθ such that Var(gi(τ |
θ)) = E∥gi(τ | θ)−∇Ji(θ)∥2 ≤ σ2.

Assumption 6.3. For each agent i ∈ [N ], the vari-
ance of importance sampling weight w(i) (τ | θ1, θ2) is
bounded, i.e., there exists a constant W > 0 such that
Var

(
w(i) (τ | θ1, θ2)

)
≤W holds for any θ1, θ2 ∈ Rd and

τ ∼ p(i) (· | θ2).
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Assumption 6.1, 6.2 and 6.3 are commonly made in the
convergence analysis of PG algorithms and their variance-
reduced variants (Papini et al., 2018; Xu et al., 2019; Shen
et al., 2019; Liu et al., 2020). They can be easily verified for
Gaussian policies (Cortes et al., 2010; Pirotta et al., 2013;
Papini et al., 2018). With these assumptions, we are ready
to present the convergence guarantees for our FEDSVRPG-M
algorithms.

Theorem 6.4. (FEDSVRPG-M) Under Assumption 6.1–
6.3, let u0 = 1

NB

∑N
i=1

∑B
b=1 gi

(
τ
(i)
b |θ0

)
with B =⌈

K
Rβ2

⌉
and

{
τ
(i)
b

}B

b=1

iid∼ p(i)(τ |θ0). There exists a con-

stant local step-size η, a proper global step-size λ and mo-
mentum coefficient β, such that the output of FEDSVRPG-
M after R rounds satisfies:

1

R

R−1∑
r=0

E
[
∥∇J (θr)∥2

]
≲

(
L̄∆σ

NKR

)2/3

+
L̄∆

R
(6)

where ∆ ≜ J (θ∗)− J(θ0), G0 ≜ 1
N

∑N
i=1 ∥∇Ji (θ0)∥

2.

Note that L̄ in Theorem 6.4 is a constant depending on the
constants G,M,W,H,Rmax and 1

(1−γ)2 . See Appendix for
details. The notation ≲ denotes that inequalities hold up to
some numeric number.

Comparison with prior work in FRL. FEDSVRPG-M
surpasses all existing results in FRL in convergence, as
shown in Table 1. Specifically, the results in Theorem 6
from Jin et al. (2022) achieve only inexact convergence to
a suboptimal solution, depending on the heterogeneity lev-
els among N agents. In contrast, FEDSVRPG-M exactly
converges to the ϵ-FOSP of Problem (3), with no heterogene-
ity term observed in Eq. (6). Fan et al. (2021) exclusively
considered the homogeneous environment. However, their
results are limited to the sublinear result. i.e., the stationary
point optimality can be scaled by N

2
3 . In contrast, the dom-

inant term
(

L̄∆σ
NKR

)2/3
in the right-hand side of FiEq. (6)

demonstrates that our algorithm provides a N -fold linear
speedup over the single-agent scenario. Unique to our al-
gorithm is the fact that this speed up is agnostic to the
heterogeneity levels, unlike Woo et al. (2023) and Wang
et al. (2023a) which obtain a speedup in the no and low
heterogeneity regimes respectively.

Comparison with prior work in RL. Compared to the
centralized RL, i.e., N = 1, FEDSVRPG-M exhibits
a convergence rate of O

(
1/(KR)

2
3

)
, which aligns with

the near-optimal convergence rate in Fatkhullin et al.
(2023). In contrast, Huang et al. (2020), utilizing dimin-
ishing step-sizes, achieves a slower convergence rate of
O
(
log(KR)/(KR)

2
3

)
.

Comparison with prior work in FL optimization. To ap-

preciate the tightness of our results, we note that our results
align with the state-of-the-art convergence rates Cheng et al.
(2024); Huang et al. (2024) in the FL optimization literature.
However, our results are established for a more complex
RL setting. In contrast to the supervised learning scenario,
where the distribution of τ is fixed over all iterations, our
problem is non-oblivious. Furthermore, FEDSVRPG-M al-
lows for the constant local step-sizes. In contrast, many
FL optimization algorithms (Yang et al., 2021; Khodada-
dian et al., 2022) require the decreasing local step-sizes to
mitigate heterogeneity among agents.

Now, we analyze the convergence of FEDHAPG-M.
Theorem 6.5. (FEDHAPG-M) Under Assumption 6.1–6.3,
choose the same u0 as Theorem 6.4. There exists a constant
local step-size η, a proper global step-size λ and momentum
coefficient β, such that the output of FEDHAPG-M after
R rounds satisfies

1

R

R−1∑
r=0

E
[
∥∇J (θr)∥2

]
≲

(
L̂∆σ

NKR

)2/3

+
L̂∆

R
(7)

where ∆ ≜ J (θ∗)− J(θ0), G0 ≜ 1
N

∑N
i=1 ∥∇Ji (θ0)∥

2

From Theorem 6.5, we remark that FEDHAPG-M
enjoys the same worst-case convergence rate, i.e.,
O(1/(NKR)2/3), as FEDSVRPG-M, except for the differ-
ences in the constant L̂ and parameter selection. Interested
readers are referred to Appendix for details.

Based on Theorem 6.4 and 6.5, we can now translate the
convergence results to the total sample complexity of each
agent, which is shown in the following corollary.
Corollary 6.6. Under Assumption 6.1–6.3, the sample
complexity of FEDSVRPG-M and FEDHAPG-M is
O
(
ϵ−

3
2 /N

)
per agent to find an ϵ-FOSP.

7. Experiments
We first use tabular environments to verify our theories on
the proposed FEDSVRPG-M algorithm. It is important to
note that FEDHAPG-M algorithm can not be assessed in the
tabular setting due to the objective function Ji(θ) not being
twice differentiable. We then evaluate both FEDSVRPG-M
and FEDHAPG-M’s performance on MuJoCo (Todorov
et al., 2012) with a deep RL extension. The baseline algo-
rithm is the PAVG algorithm (Jin et al., 2022).

Tabular Case. We evaluate the performance of our algo-
rithms in the environment of random MDPs, where both
state transitions and reward functions are generated ran-
domly. We use the same method as Jin et al. (2022) to con-
trol the environment heterogeneity. First, we randomly sam-
ple a nominal state transition kernelP0 and then generate the
environments

{
P(i) = κPi + (1− κ)P0

}N
i=1

. Each entry

7



Momentum for the Win: Collaborative Federated Reinforcement Learning across Heterogeneous Environments

Table 2. Impact of environment heterogeneity κ and momentum coefficient β. We evaluate FEDSVRPG-M with various κ and various
momentum coefficient β in {0.1, 0.2, 0.5, 0.8}. The baseline method is denoted by β = 1. Larger κ denotes larger environment
heterogeneity. Each setting was run with 16,000 random seeds.

RANDOM MDPS

κ = 0 κ = 0.2 κ = 0.4 κ = 0.6 κ = 0.8 κ = 1.0

β = 0.1 8.013±0.07 7.957±0.07 7.968±0.06 7.961±0.06 7.964±0.07 7.981±0.06

β = 0.2 7.876±0.06 7.877±0.06 7.851±0.06 7.837±0.06 7.841±0.06 7.824±0.07

β = 0.5 7.561±0.07 7.208±0.06 7.529±0.07 7.525±0.06 7.536±0.07 7.525±0.06

β = 0.8 7.211±0.07 7.203±0.07 7.201±0.06 7.192±0.06 7.193±0.06 7.184±0.06

β = 1.0 6.965±0.07 6.951±0.06 6.955±0.06 6.936±0.06 6.940±0.06 6.937±0.07

Figure 1. Mean rewards over global iterations for the CartPole and HalfCheetah tasks: (Top): FEDSVRPG-M; (Bottom): FEDHAPG-M.

of the kernels {Pi}Ni=1 are uniformly sampled between 0 and
1 and then normalized. Then, we can evaluate the impact
of environment heterogeneity by varying κ. We compare
the performance of FEDSVRPG-M with the existing base-
line algorithm (PAVG). The results are shown in Table 2.
The performance is measured by the average performance
function in Eq. (3). We observe that FEDSVRPG-M with
β = 0.1 outperforms the baseline algorithm (β = 1). Fur-
thermore, the performance of FEDSVRPG-M is agnostic
to the environment heterogeneity level κ. These trends are
expected and consistent with theoretical analysis in Sec. 6.

Deep RL Case. We evaluate the performance of our al-
gorithms across two benchmark RL tasks: CartPole and
HalfCheetah. While CartPole is a classic control task with
discrete actions, HalfCheetah represents a continuous RL

task. Both are widely recognized tasks in the MuJoCo simu-
lation environment (Todorov et al., 2012). Comprehensive
details of the experimental setups can be found in the ap-
pendix. To introduce environment heterogeneity, we change
the initial state distribution parameters in both tasks. We
use Categorical Policy for CartPole, and Gaussian Policy
for HalfCheetah. All policies are parameterized by the fully
connected neural network which has two hidden layers and
a hyperbolic tangent activation function. The hidden layers
neural network sizes are 32 for Gaussian policies and 8 for
Categorical policies. In Figure 1, we show how the mean
rewards change over the global iterations for our proposed
algorithms and baseline algorithm. In both tasks, as the
number of iterations increases, all algorithms exhibit a ris-
ing trend in mean rewards. There exist a β ̸= 1 that our
proposed algorithms outperform the baseline algorithm. In

8
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particular, FEDSVRPG-M exhibits optimal performance
at β = 0.2 for CartPole and β = 0.5 for HalfCheetah. In
contrast, FEDHAPG-M performs optimally with β = 0.8
for CartPole and β = 0.5 for HalfCheetah. FEDHAPG-M,
which uses second-order information, shows smaller vari-
ance than FEDSVRPG-M, as indicated by the narrower
color-shaded regions in the figure. Overall, our algorithms
demonstrated superior performance compared to the base-
line. See Appendix for more experiments evaluating the
linear speedup in the number of agents N .

8. Conclusion
We introduced FEDSVRPG-M and FEDHAPG-M, over-
coming the limitation of bounded environment heterogene-
ity assumed in prior FRL research. Our results demonstrate
the best known convergence for these algorithms and high-
light the benefits of collaboration in FRL, even in scenarios
with conflicting rewards across different environments. In
the future, we plan to focus on algorithms that facilitate
downstream fine-tuning or personalization, aiming to dis-
cover each MDP’s optimal policy through FRL, rather than
seeking a universally optimal policy.
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A. Notation

We denote F0 = ∅ and F (i)
r,k := σ

({
θ
(i)
r,j

}
0≤j≤k

∪ Fr

)
and Fr+1 := σ

(
∪iF (i)

r,K

)
for all r ≥ 0 where σ(·) indicates the

σ-algebra. Let Er[·] := E [· | Fr] be the expectation, conditioned on the filtration Fr, with respect to the random variables{
τ
(i)
r,k

}
1≤i≤N,0≤k<K

in the r-th iteration. Moreover, we use E[·] to denote the global expectation over all randomness in

algorithms. For all r ≥ 0, we define the following notations to simpify the proof:

Σr := E
[
∥∇J (θr)− ur+1∥2

]
,

Dr :=
1

NK

∑
i

∑
k

E
[∥∥∥θ(i)r,k − θr

∥∥∥]2 ,
c
(i)
r,k := E

[
θ
(i)
r,k+1 − θ

(i)
r,k | F

(i)
r,k

]
,

Mr :=
1

N

N∑
i=1

E
[∥∥∥c(i)r,0

∥∥∥2] .
Throughout the appendix, we denote

∆ := J (θ∗)− J(θ0), G0 :=
1

N

∑
∥∇Ji (θ0)∥2 , θ−1 := θ0 and Σ−1 := E

[
∥∇J (θ0)− u0∥2

]
.

and θ∗ denotes the optimal policy of the optimization problem (3).

B. Useful Lemmas and Inequalities
We make repeated use throughout the appendix (often without explicitly stating so) of the following inequalities:

• Given any two vectors x, y ∈ Rd, for any a > 0, we have

∥x+ y∥2 ≤ (1 + a)∥x∥2 +
(
1 +

1

a

)
∥y∥2. (8)

• Given any two vectors x, y ∈ Rd, for any constant a > 0, we have

⟨x, y⟩ ≤ a

2
∥x∥2 + 1

2a
∥y∥2. (9)

This inequality goes by the name of Young’s inequality.

• Given m vectors x1, . . . , xm ∈ Rd, the following is a simple application of Jensen’s inequality:∥∥∥∥∥
m∑
i=1

xi

∥∥∥∥∥
2

≤ m

m∑
i=1

∥xi∥2 . (10)

Proposition 1. (Proposition 5.2 in (Xu et al., 2020)) Under Assumption 1, both J(θ) and {Ji(θ)}Ni=1 are L-smooth with
L = HRmax

(
M +HG2

)
/(1− λ). In addition, for all θ1, θ2 ∈ Rd, we have

∥gi (τ | θ1)− gi (τ | θ2)∥2 ≤ Lg ∥θ1 − θ2∥2

and ∥gi(τ | θ)∥2 ≤ Cg for all θ ∈ Rd and i ∈ [N ], where Lg = HMRmax/(1− λ), Cg = HGRmax/(1− λ).
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Lemma B.1. If λL ≤ 1
24 , the following inequality holds for all r ≥ 0 :

E [J (θr+1)] ≥ E [J (θr)] +
11λ

24
E
[
∥∇J (θr)∥2

]
− 13λ

24
Σr.

Proof. Since J is L-smooth, we have

J (θr+1) ≥ J (θr) + ⟨∇J (θr) , θr+1 − θr⟩ −
L

2
∥θr+1 − θr∥2

= J (θr) + λ ∥∇J (θr)∥2 + λ ⟨∇J (θr) , ur+1 −∇J (θr)⟩ −
Lλ2

2
∥ur+1∥2 .

where we use the fact that θr+1 = θr + ηur+1. By using Young’s inequality, we have

J (θr+1)

≥J (θr) +
λ

2
∥∇J (θr)∥2 −

λ

2
∥∇J (θr)− ur+1∥2 − Lλ2

(
∥∇J (θr)∥2 + ∥∇J (θr)− ur+1∥2

)
≥J (θr) +

11λ

24
∥∇J (θr)∥2 −

13λ

24
∥∇J (θr)− ur+1∥2 ,

where the last inequality holds due to λL ≤ 1
24 . Taking the global expectation completes the proof.

Lemma B.2. (Lemma 6.1 in (Xu et al., 2020)) Under Assumptions 6.1 and 6.3, we have

Var
(
w(i)(τ | θ1, θ2)

)
≤ Cw ∥θ1 − θ2∥2

holds for any θ1, θ2 ∈ Rd and any i ∈ [N ], where Cω = H
(
2HG2 +M

)
(W + 1).

C. Federated Stochastic Variance-Reduced Policy Gradient with Momentum
According to the updating rule of FEDSVRPG-M, we have

E[ur+1] =
1

NK

∑
i,k

E
[
∇Ji(θ(i)r,k) + (1− β) (ur −∇Ji(θr))

]
.

Lemma C.1. If λ ≤
√

16βNK

L̃2
2 , we have

Σr ≤ (1− 8β

9
)Σr−1 +

L̃1

2

β
Dr +

3β2σ2

NK
+ 18λ2 L̃2

2

NK
E
∥∥∥∥∇J(θr−1)

∥∥∥∥2
holds for r ≥ 1, where L̃1

2
:= L2 + 24CwC

2
g + 6L2

g and L̃2

2
:= L2

g + 2CwC
2
g . When r = 0, we have

Σ0 ≤ (1− β)Σ−1 +
L̃1

2

β
D0 +

3β2σ2

NK

Proof.

Σr = E
[
∥ur+1 −∇J(θr)∥2

]
13
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= E

∥∥∥ 1

NK

∑
i,k

βgi

(
τ
(i)
r,k | θ

(i)
r,k

)
+ (1− β)

[
ur + gi

(
τ
(i)
r,k | θ

(i)
r,k

)
− w(i)

(
τ
(i)
r,k | θr−1, θ

(i)
r,k

)
gi

(
τ
(i)
r,k | θr−1

)]
−∇J(θr)

∥∥∥2]

= E

∥∥∥(1− β)(ur −∇J(θr−1)) +
1

NK

∑
i,k

[
gi

(
τ
(i)
r,k | θ

(i)
r,k

)
−∇J(θr)

]

−(1− β)

 1

NK

∑
i,k

w(i)
(
τ
(i)
r,k | θr−1, θ

(i)
r,k

)
gi

(
τ
(i)
r,k | θr−1

)
−∇J(θr−1)

∥∥∥2


= (1− β)2Σr−1 + 2E

〈(1− β)(ur −∇J(θr−1)),
1

NK

∑
i,k

[
∇Ji(θ(i)r,k)−∇J(θr)

] 〉
︸ ︷︷ ︸

T1

+ E

∥∥∥∥∥∥ 1

NK

∑
i,k

[
gi

(
τ
(i)
r,k | θ

(i)
r,k

)
−∇J(θr)

]
− (1− β)

 1

NK

∑
i,k

w(i)
(
τ
(i)
r,k | θr−1, θ

(i)
r,k

)
gi

(
τ
(i)
r,k | θr−1

)
−∇J(θr−1)

∥∥∥∥∥∥
2

︸ ︷︷ ︸
T2

Using Young’s inequality to bound T1, we have

T1 ≤ β(1− β)2E
∥∥∥ur −∇J(θr−1)

∥∥∥2 + 1

β
E
∥∥∥ 1

NK

∑
i,k

∇Ji(θ(i)r,k)−∇J(θr)
∥∥∥2

≤ β(1− β)2Σr−1 +
L2

β

1

NK

∑
i,k

E
∥∥∥θ(i)r,k − θr

∥∥∥2︸ ︷︷ ︸
Dr

(11)

Further bounding T2, we have

T2 ≤ E
∥∥∥∥ 1

NK

∑
i,k

(
gi

(
τ
(i)
r,k | θ

(i)
r,k

)
− w(i)

(
τ
(i)
r,k | θr, θ

(i)
r,k

)
gi

(
τ
(i)
r,k | θr

))

+ β

 1

NK

∑
i,k

w(i)
(
τ
(i)
r,k | θr, θ

(i)
r,k

)
gi

(
τ
(i)
r,k | θr

)
−∇J(θr)


+ (1− β)

( 1

NK

∑
i,k

(
w(i)

(
τ
(i)
r,k | θr, θ

(i)
r,k

)
gi(τ

(i)
r,k | θr)− w(i)

(
τ
(i)
r,k | θr−1, θ

(i)
r,k

)
gi(τ

(i)
r,k | θr−1)

)
−∇J(θr) +∇J(θr−1)

)∥∥∥∥2
≤ 3E

∥∥∥∥ 1

NK

∑
i,k

(
gi

(
τ
(i)
r,k | θ

(i)
r,k

)
− w(i)

(
τ
(i)
r,k | θr, θ

(i)
r,k

)
gi

(
τ
(i)
r,k | θr

))∥∥∥∥2︸ ︷︷ ︸
T21

+ 3
β2σ2

NK
+ 3(1− β)2 E


∥∥∥∥∥∥ 1

NK

∑
i,k

w(i)
(
τ
(i)
r,k | θr, θ

(i)
r,k

)
gi(τ

(i)
r,k | θr)− w(i)

(
τ
(i)
r,k | θr−1, θ

(i)
r,k

)
gi(τ

(i)
r,k | θr−1)

∥∥∥∥∥∥
2


︸ ︷︷ ︸
T22

(12)
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where we use the Young’s inequality in the last equality and the fact that E[∥X −E[X]∥2] ≤ E[∥X∥2] holds for any random
variable X .

To precede, we continue to bound T21 and have that

T21 = E
∥∥∥∥ 1

NK

∑
i,k

(
gi

(
τ
(i)
r,k | θ

(i)
r,k

)
− w(i)

(
τ
(i)
r,k | θr, θ

(i)
r,k

)
gi

(
τ
(i)
r,k | θr

))∥∥∥∥2

≤ 2E
∥∥∥∥ 1

NK

∑
i,k

(
1− w(i)(τ

(i)
r,k | θr, θ

(i)
r,k)
)
gi(τ

(i)
r,k | θr)

∥∥∥∥2

+ 2E
∥∥∥∥ 1

NK

∑
i,k

[
gi

(
τ
(i)
r,k | θ

(i)
r,k

)
− gi(τ

(i)
r,k | θr)

] ∥∥∥∥2

≤
2CwC

2
g

NK

∑
i,k

E
∥∥∥∥θ(i)r,k − θr

∥∥∥∥2 + 2
L2
g

NK

∑
i,k

E
∥∥∥∥θ(i)r,k − θr

∥∥∥∥2
= (2CwC

2
g + 2L2

g)Dr (13)

where we use the fact that ∥g(i)(τ | θ)∥2 ≤ Cg for all θ ∈ Rd and i ∈ [N ].

To bound T22, we have

T22 = E


∥∥∥∥∥∥ 1

NK

∑
i,k

w(i)
(
τ
(i)
r,k | θr, θ

(i)
r,k

)
gi(τ

(i)
r,k | θr)− w(i)

(
τ
(i)
r,k | θr−1, θ

(i)
r,k

)
gi(τ

(i)
r,k | θr−1)

∥∥∥∥∥∥
2


≤ 3E


∥∥∥∥∥∥ 1

NK

∑
i,k

[
w(i)

(
τ
(i)
r,k | θr, θ

(i)
r,k

)
− 1
]
gi(τ

(i)
r,k | θr)

∥∥∥∥∥∥
2


+ 3
1

N2K2

∑
i,k

E
∥∥∥gi(τ (i)r,k | θr)− gi(τ

(i)
r,k | θr−1)

∥∥∥2 + 3E


∥∥∥∥∥∥ 1

NK

∑
i,k

[
w(i)

(
τ
(i)
r,k | θr−1, θ

(i)
r,k

)
− 1
]
gi(τ

(i)
r,k | θr−1)

∥∥∥∥∥∥
2


≤ 3C2
gCw

1

N2K2

∑
i,k

E
∥∥∥∥θ(i)r,k − θr

∥∥∥∥2 + 3
L2
g

NK
E
∥∥∥∥θr−1 − θr

∥∥∥∥2 + 3C2
gCw

1

N2K2

∑
i,k

E
∥∥∥∥θ(i)r,k − θr−1

∥∥∥∥2

≤ 6C2
gCw

1

NK
Dr +

3L2
g + 6CwC

2
g

NK
E
∥∥∥∥θr−1 − θr

∥∥∥∥2 (14)

Combining the upper bound of T21 and T22 (i.e., (13) and (14)) into T2 in Eq. (12), we have

T2 ≤ (24CwC
2
g + 6L2

g)Dr +
3β2σ2

NK
+ 9(1− β)2

L2
g + 2CwC

2
g

NK
E
∥∥∥∥θr−1 − θr

∥∥∥∥2 (15)

Therefore, for r ≥ 1, we have

Σr ≤ (1− β)Σr−1 +
L2 + 24CwC

2
g + 6L2

g

β
Dr +

3β2σ2

NK
+ 9(1− β)2

L2
g + 2CwC

2
g

NK
E
∥∥∥∥θr−1 − θr

∥∥∥∥2 (16)

≤ (1− β)Σr−1 +
L2 + 24CwC

2
g + 6L2

g

β
Dr +

3β2σ2

NK

+ 18λ2
L2
g + 2CwC

2
g

NK
E
∥∥∥∥∇J(θr−1)

∥∥∥∥2 + 18λ2
L2
g + 2CwC

2
g

NK
E
∥∥∥∥∇J(θr−1)− ur

∥∥∥∥2
=

(
1− β + 18λ2

L2
g + 2CwC

2
g

NK

)
Σr−1 + 18λ2

L2
g + 2CwC

2
g

NK
E
∥∥∥∥∇J(θr−1)

∥∥∥∥2
15
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+
L2 + 24CwC

2
g + 6L2

g

β
Dr +

3β2σ2

NK
(17)

By choosing λ such that 18λ2 L2
g+2CwC2

g

NK ≤ 8β
9 , which holds when λ ≤

√
16βNK

L2
g+2CwC2

g
, we have

Σr ≤ (1− 8β

9
)Σr−1 +

L2 + 24CwC
2
g + 6L2

g

β
Dr +

3β2σ2

NK
+ 18λ2

L2
g + 2CwC

2
g

NK
E
∥∥∥∥∇J(θr−1)

∥∥∥∥2 (18)

holds for r > 0. When r = 0, we have that

Σ0 ≤ (1− β)Σ−1 +
L2 + 24CwC

2
g + 6L2

g

β
D0 +

3β2σ2

NK
(19)

which can be derived from Eq.(16).

Lemma C.2. (Bounding drift-term) If the local step-size satisfies η ≤ min{ L

32e2L̃3
2
K
, 1
KL}, the drift-term can be upper

bounded as:

Dr ≤ 4eK2Mr + (16η4K4L2 + 8η2K)

(
β2σ2 + 2L̃3

2
E
∥∥∥θr−1 − θr

∥∥∥2)
where L̃3

2
:= 2CwC

2
g + 2L2

g.

Proof. Define c
(i)
r,k := −η

(
∇Ji(θ(i)r,k) + (1− β)(ur −∇Ji(θr−1))

)
. For any 1 ≤ j ≤ k − 1 ≤ K − 2, we have:

E
∥∥∥c(i)r,j − c

(i)
r,j−1

∥∥∥2 ≤ η2L2E
∥∥∥θ(i)r,j − θ

(i)
r,j−1

∥∥∥2
= η2L2

(
E
∥∥∥c(i)r,j−1

∥∥∥2 + E
[
Var

[
θ
(i)
r,j − θ

(i)
r,j−1 | F

(i)
r,j−1

]])
. (20)

where we use the bias-variance decomposition in the last inequality.

E
[
Var

[
θ
(i)
r,j − θ

(i)
r,j−1 | F

(i)
r,j−1

]]
= η2E

∥∥∥∥gi (τ (i)r,j−1 | θ
(i)
r,j−1

)
−∇Ji(θ(i)r,j−1)

− (1− β)
[
w(i)

(
τ
(i)
r,j−1 | θr−1, θ

(i)
r,j−1

)
gi

(
τ
(i)
r,j−1 | θr−1

)
−∇Ji(θr−1)

] ∥∥∥∥2
= η2E

∥∥∥∥β [gi (τ (i)r,j−1 | θ
(i)
r,j−1

)
−∇Ji(θ(i)r,j−1)

]
+ (1− β)

[
gi

(
τ
(i)
r,j−1 | θ

(i)
r,j−1

)
− w(i)

(
τ
(i)
r,j−1 | θr−1, θ

(i)
r,j−1

)
gi

(
τ
(i)
r,j−1 | θr−1

)
−
(
∇Ji(θ(i)r,j−1)−∇Ji(θr−1)

)] ∥∥∥∥2
≤ 2η2β2σ2

+ 2η2(1− β)2 E
∥∥∥∥gi (τ (i)r,j−1 | θ

(i)
r,j−1

)
− w(i)

(
τ
(i)
r,j−1 | θr−1, θ

(i)
r,j−1

)
gi

(
τ
(i)
r,j−1 | θr−1

)∥∥∥∥2︸ ︷︷ ︸
T3

(21)

where Eq.(21) holds due to the Young’s inequality and the fact that E[∥X − E[X]∥2] ≤ E[∥X∥2].
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To precede, we bound T3 as

T3 = E
∥∥∥∥gi (τ (i)r,j−1 | θ

(i)
r,j−1

)
− w(i)

(
τ
(i)
r,j−1 | θr−1, θ

(i)
r,j−1

)
gi

(
τ
(i)
r,j−1 | θr−1

)∥∥∥∥2
≤ 2E

∥∥∥∥(1− w(i)(τ
(i)
r,j−1 | θr, θ

(i)
r,j−1)

)
gi(τ

(i)
r,j−1 | θr)

∥∥∥∥2
+ 2E

∥∥∥∥gi (τ (i)r,j−1 | θ
(i)
r,j−1

)
− gi(τ

(i)
r,j−1 | θr−1)

∥∥∥∥2
≤ 2CwC

2
gE
∥∥∥∥θ(i)r,j−1 − θr−1

∥∥∥∥2 + 2L2
gE
∥∥∥∥θ(i)r,j−1 − θr−1

∥∥∥∥2
= (2CwC

2
g + 2L2

g)E
∥∥∥∥θ(i)r,j−1 − θr−1

∥∥∥∥2 (22)

where we use the fact that ∥g(i)(τ | θ)∥2 ≤ Cg for all θ ∈ Rd and i ∈ [N ].

With the upper bound of T3 and L̃3

2
:= 2CwC

2
g + 2L2

g, we have

E
∥∥∥c(i)r,j − c

(i)
r,j−1

∥∥∥2 ≤ η2L2

(
E
∥∥∥c(i)r,j−1

∥∥∥2 + 2η2β2σ2 + 2η2(1− β)2L̃3

2
E
∥∥∥θ(i)r,j−1 − θr−1

∥∥∥2)
≤ η2L2

(
E
∥∥∥c(i)r,j−1

∥∥∥2 + 2η2β2σ2 + 4η2L̃3

2
E
∥∥∥θ(i)r,j−1 − θr

∥∥∥2 + 4η2L̃3

2
E
∥∥∥θr−1 − θr

∥∥∥2). (23)

Then we have

E
∥∥∥c(i)r,j

∥∥∥2 ≤ (1 +
1

q
)E
∥∥∥c(i)r,j−1

∥∥∥2 + (1 + q)E
∥∥∥c(i)r,j − c

(i)
r,j−1

∥∥∥2
≤ (1 +

2

q
)E
∥∥∥c(i)r,j−1

∥∥∥2 + (1 + q)η2L2

(
2η2β2σ2 + 4η2L̃3

2
E
∥∥∥θ(i)r,j−1 − θr

∥∥∥2 + 4η2L̃3

2
E
∥∥∥θr−1 − θr

∥∥∥2) (24)

where we use the fact that ηL ≤ 1
K ≤

1
q+1 and let q = k − 1. By unrolling this recurrence, we have

E
∥∥∥c(i)r,j

∥∥∥2 ≤ (1 +
2

k − 1
)jE

∥∥∥c(i)r,0

∥∥∥2 + kη2L2

j−1∑
i=0

(2η2β2σ2 + 4η2L̃3

2
E
∥∥∥θr−1 − θr

∥∥∥2)Πj−1
j′=i+1(1 +

2

k − 1
)

+ kη2L2

j−1∑
s=0

(4η2L̃3

2
E
∥∥∥θ(i)r,s − θr

∥∥∥2)Πj−1
j′=s+1(1 +

2

k − 1
)

≤ (1 +
2

k − 1
)k−1E

∥∥∥c(i)r,0

∥∥∥2 + kη2L2
k−1∑
i=0

(2η2β2σ2 + 4η2L̃3

2
E
∥∥∥θr−1 − θr

∥∥∥2)(1 + 2

k − 1
)k−1

+ kη2L2

j−1∑
j′=0

(4η2L̃3

2
E
∥∥∥θ(i)r,j′ − θr

∥∥∥2)(1 + 2

k − 1
)k−1 (25)

Based on the inequality (1 + 2
K−1

k−1
) ≤ e2 ≤ 8, we have

E
∥∥∥c(i)r,j

∥∥∥2 ≤ e2E
∥∥∥c(i)r,0

∥∥∥2 + 8k2η4L2

(
2β2σ2 + 4L̃3

2
E
∥∥∥θr−1 − θr

∥∥∥2)+ 4e2kη4L2L̃3

2
j−1∑
j′=0

E
∥∥∥θ(i)r,j′ − θr

∥∥∥2 (26)

By Lemma A.3, we have

E
∥∥∥θ(i)r,k − θr

∥∥∥2 ≤ 2E

∥∥∥∥∥∥
k−1∑
j=0

c
(i)
r,j

∥∥∥∥∥∥
2

+ 2

k−1∑
j=0

E
[
Var

[
θ
(i)
r,j+1 − θ

(i)
r,j | F

(i)
r,j

]]
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(a)

≤ 2k

k−1∑
j=0

E
∥∥∥c(i)r,j

∥∥∥2 + 2

k−1∑
j=0

(
2β2η2σ2 + 4η2L̃3

2
E
∥∥∥θ(i)r,j − θr

∥∥∥2 + 4η2L̃3

2
E
∥∥∥θr−1 − θr

∥∥∥2) (27)

where (a) is due to Eq.(21) and Eq.(22). Plugging Eq.(26) into Eq.(27), we have

E
∥∥∥θ(i)r,k − θr

∥∥∥2 ≤
2k

k−1∑
j=0

{
e2E

∥∥∥c(i)r,0

∥∥∥2 + 8k2η4L2

(
2β2σ2 + 4L̃3

2
E
∥∥∥θr−1 − θr

∥∥∥2)+ 4e2kη4L2L̃3

2
j−1∑
j′=0

E
∥∥∥θ(i)r,j′ − θr

∥∥∥2}

+ 2

k−1∑
j=0

(
2β2η2σ2 + 4η2L̃3

2
E
∥∥∥θ(i)r,j − θr

∥∥∥2 + 4η2L̃3

2
E
∥∥∥θr−1 − θr

∥∥∥2) (28)

Summing up the above equation over k = 0, · · · ,K − 1, we have

K−1∑
k=0

E
∥∥∥θ(i)r,k − θr

∥∥∥2 ≤ K−1∑
k=0

{
2k2e2E

∥∥∥c(i)r,0

∥∥∥2 + 16k4η4L2

(
2β2σ2 + 4L̃3

2
E
∥∥∥θr−1 − θr

∥∥∥2)}

+

K−1∑
k=0

8e2k2η4L2L̃3

2
k−1∑
j=0

j−1∑
j′=0

E
∥∥∥θ(i)r,j′ − θr

∥∥∥2

+

K−1∑
k=0

4kβ2η2σ2 + 8kη2L̃3

2
E
∥∥∥θr−1 − θr

∥∥∥2 + 8η2L̃3

2
k−1∑
j=0

E
∥∥∥θ(i)r,j − θr

∥∥∥2


≤ 2eK3E
∥∥∥c(i)r,0

∥∥∥2 + (8η4K5L2 + 4η2K2)

(
β2σ2 + 2L̃3

2
E
∥∥∥θr−1 − θr

∥∥∥2)
+K2

K−1∑
k=0

8e2η4L2L̃3

2
K−1∑
j=0

K−1∑
j′=0

E
∥∥∥θ(i)r,j′ − θr

∥∥∥2 + K−1∑
k=0

8η2L̃3

2
K−1∑
j=0

E
∥∥∥θ(i)r,j − θr

∥∥∥2
= 2eK3E

∥∥∥c(i)r,0

∥∥∥2 + (8η4K5L2 + 4η2K2)

(
β2σ2 + 2L̃3

2
E
∥∥∥θr−1 − θr

∥∥∥2)
+ (8e2η4K4L2L̃3

2
+ 8η2L̃3

2
K)

K−1∑
j=0

E
∥∥∥θ(i)r,j − θr

∥∥∥2 (29)

With the choice of step-size η satisfying 8e2η4K4L2L̃3

2
+ 8η2L̃3

2
K ≤ 1

2 , after some rearrangement, we have

1

2K

K−1∑
k=0

E
∥∥∥θ(i)r,k − θr

∥∥∥2 ≤ 2eK2E
∥∥∥c(i)r,0

∥∥∥2 + (8η4K4L2 + 4η2K)

(
β2σ2 + 2L̃3

2
E
∥∥∥θr−1 − θr

∥∥∥2)
In summary, we can bound the drift-term as

Dr ≤ 4eK2 1

N

N∑
i=1

E
∥∥∥c(i)r,0

∥∥∥2︸ ︷︷ ︸
Mr

+(16η4K4L2 + 8η2K)

(
β2σ2 + 2L̃3

2
E
∥∥∥θr−1 − θr

∥∥∥2)

Lemma C.3. If λL ≤ 1
24 and η2

[
289
72 (1− β)2 + 8e(λβLR)2

]
≤ β2

288eK2L̃1
2 , we have

R−1∑
r=0

Mr =
1

N

R−1∑
r=0

N∑
i=1

E
∥∥∥c(i)r,0

∥∥∥2 ≤ β2

288eK2L̃1

2

R−2∑
r=−1

(
Σr + E

[
∥∇J (θr)∥2

])
+ 4η2β2eRG0. (30)
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where G0 := 1
N

∑N
i=1 E

[
∥∇Ji (θ0)∥2

]
and L̃1

2
is defined in Lemma C.1.

Proof. Recall that c(i)r,0 := −η (∇Ji(θr) + (1− β)(ur −∇Ji(θr−1))) . Then, it is straightforward to have∥∥∥c(i)r,0

∥∥∥2 ≤ 2η2
(
(1− β)2 ∥ur∥2 + ∥∇Ji (θr)− (1− β)∇Ji(θr−1)∥2

)
≤ 2η2(1− β)2 ∥ur∥2 + 4η2(1− β)2 ∥∇Ji (θr)−∇Ji(θr−1)∥2 + 4η2β2 ∥∇Ji(θr)∥2

≤ 2η2(1− β)2
(
1 + 2(λL)2

)
∥ur∥2 + 4η2β2 ∥∇Ji (θr)∥2

(a)

≤ 289

144
η2(1− β)2 ∥ur∥2 + 4η2β2 ∥∇Ji (θr)∥2 . (31)

where (a) is due to the choice of λ such that λL ≤ 1
24 .

Using the Young’s inequality, we have that for any ζ > 0,

E
[
∥∇Ji (θr)∥2

]
≤ (1 + ζ)E

[
∥∇Ji (θr−1)∥2

]
+

(
1 +

1

ζ

)
E ∥∇Ji (θr)−∇Ji (θr−1)∥2

≤ (1 + ζ)E
[
∥∇Ji (θr−1)∥2

]
+

(
1 +

1

ζ

)
L2E ∥θr − θr−1∥2

≤ (1 + ζ)E
[
∥∇Ji (θr−1)∥2

]
+ 2

(
1 +

1

ζ

)
(λL)2

(
E ∥ur −∇J(θr−1)∥2 + E ∥∇J(θr)∥2

)
= (1 + ζ)E

[
∥∇Ji (θr−1)∥2

]
+ 2

(
1 +

1

ζ

)
(λL)2

(
Σr−1 + E ∥∇J(θr)∥2

)
By unrolling the recursive bound, we have

E
[
∥∇Ji (θr)∥2

]
≤ (1 + ζ)rE

[
∥∇Ji (θ0)∥2

]
+

2

ζ
(λL)2

r−1∑
j=0

(
Σj + E

[
∥∇J (θj)∥2

])
(1 + ζ)r−j

By choosing ζ = 1
r , we have

E
[
∥∇Ji (θr)∥2

]
≤ eE

[
∥∇Ji (θ0)∥2

]
+ 2e(r + 1)(λL)2

r−1∑
j=0

(
Σj + E

[
∥∇J (θj)∥2

])
(32)

Summing up Eq. (31) over r = 0, 1, · · · , R− 1 and then averaing Eq. (31) over all i ∈ N , we have

R−1∑
r=0

Mr ≤
R−1∑
r=0

E

[
289

144
η2(1− β)2∥ur∥2 + 4η2β2 1

N

N∑
i=1

∥∇Ji (θr)∥2
]

≤
R−1∑
r=0

289

72
η2(1− β)2

(
Σr−1 + E[∥∇J(θr−1)∥2]

)
(b)
+ 4η2β2

R−1∑
r=0

 e

N

N∑
i=1

E
[
∥∇Ji (θ0)∥2

]
+ 2e(r + 1)(λL)2

r−1∑
j=0

(
Σj + E

[
∥∇J (θj)∥2

]) (33)

≤ 289

72
η2(1− β)2

R−1∑
r=0

(
Σr−1 + E

[
∥∇J (θr−1)∥2

])
+ 4η2β2

(
eRG0 + 2e(λLR)2

R−2∑
r=0

(
Σr + E

[
∥∇J (θr)∥2

]))
(c)

≤ β2

288eK2L̃1

2

R−2∑
r=−1

(
Σr + E

[
∥∇J (θr)∥2

])
+ 4η2β2eRG0.
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where (b) is due to the upper bound of E
[
∥∇Ji (θr)∥2

]
in Eq.(32) and (c) is due to the choice of η such that

η2
[
289
72 (1− β)2 + 8e(λβLR)2

]
≤ β2

288eK2L̃1
2 .

C.1. Proof of Theorem 6.4

Theorem C.4. (Complete version of Theorem 6.4) Under Assumptions 6.1–6.3, by setting u0 =

1
NB

∑N
i=1

∑B
b=1 gi

(
τ
(i)
b |θ0

)
with

{
τ
(i)
b

}B

b=1

iid∼ p(i)(τ |θ0) and choosing β = min

{
1,
(

NKL̄2∆2

σ4R2

)1/3}
,

λ = min

{
1

24L̄
,
√

βNK
162L̄2

}
, B =

⌈
K

Rβ2

⌉
, and

ηKL̄ ≲ min

{(
L̄∆

G0λL̄R

)1/2

,

(
β

N

)1/2

,

(
β

NK

)1/4
}

in Algorithm 1, then the output of FEDSVRPG-M after R rounds satisfies:

1

R

R−1∑
r=0

E
[
∥∇J (θr)∥2

]
≲

(
L̄∆σ

NKR

)2/3

+
L̄∆

R
, (34)

where L̄ := max{L, L̃1, L̃2, L̃3} and L, L̃1, L̃2, L̃3 are defined in Proposition 1, Lemma C.1 and Lemma C.2, respectively.

Proof. Based on Lemma C.1, we have for any r ≥ 1

Σr ≤ (1− 8β

9
)Σr−1 +

L̃1

2

β
Dr +

3β2σ2

NK
+ 18λ2 L̃2

2

NK
E
∥∥∥∥∇J(θr−1)

∥∥∥∥2
≤ (1− 8β

9
)Σr−1 + 18λ2 L̃2

2

NK
E
∥∥∥∥∇J(θr−1)

∥∥∥∥2 + 3β2σ2

NK

+
L̃1

2

β

(
4eK2Mr + (16η4K4L2 + 8η2K)

)(
β2σ2 + 2L̃3

2
E
∥∥∥θr−1 − θr

∥∥∥2) (35)

where the last inequality is due to Lemma C.2. When r = 0, we have

Σ0 ≤ (1− β)Σ−1 +
3β2σ2

NK
+

L̃1

2

β

(
4eK2M0 + (16η4K4L2 + 8η2K)

)
β2σ2

Summing up the above equation over r from 0 to R− 1, we have

R−1∑
r=0

Σr ≤
(
1− 8β

9

) R−2∑
r=−1

Σr +
18(λL̃2)

2

NK
E

[
R−2∑
r=0

∥∇J (θr)∥2
]
+

3β2σ2

NK
R

+
L̃1

2

β

(
4eK2

R−1∑
r=0

Mr + 8(ηK)2
(
2(ηKL)2 +

1

K

)(
Rβ2σ2 + 2L2

R−1∑
r=0

E
[
∥θr − θr−1∥2

]))
By incorporating Lemma C.3 into the inequality above, we have

R−1∑
r=0

Σr ≤
(
1− 8β

9

) R−2∑
r=−1

Σr +
18(λL̃2)

2

NK
E

[
R−2∑
r=0

∥∇J (θr)∥2
]
+

3β2σ2

NK
R

+
L̃1

2

β
8(ηK)2

(
2(ηKL)2 +

1

K

)(
Rβ2σ2 + 2L2

R−1∑
r=0

E
[
∥θr − θr−1∥2

])
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+
L̃1

2

β
4eK2

{
β2

288eK2L̃1

2

R−2∑
r=−1

(
Σr + E

[
∥∇J (θr)∥2

])
+ 4η2β2eRG0

}

≤

[
1− 8β

9
+

β

72
+

32(ηKL̃1)
2

β
(2(ηKL)2 +

1

K
)(λL)2

]
R−2∑
r=−1

Σr

+

[
18(λL̃2)

2

NK
+

32(ηKL̃1)
2

β
(2(ηKL)2 +

1

K
)(λL)2 +

β

72

]
R−2∑
r=−1

E
[
∥∇J (θr)∥2

]
+

[
8βL̃1

2
(ηK)2(2(ηKL)2 +

1

K
) +

3β2

NK

]
Rσ2 + 16β(eηKL̃1)

2RG0 (36)

Where the last inequality is derived by ∥θr − θr−1∥2 ≤ 2λ2
(
∥∇J (θr−1)∥2 + ∥ur −∇J (θr−1)∥2

)
. We require the

following inequalities to hold, 
32(ηKL̃1)

2

β (2(ηKL)2 + 1
K )(λL)2 ≤ β

18

8L̃1

2
(ηK)2(2(ηKL)2 + 1

K ) ≤ β2

NK

λL̃2 ≤
√

βNK
162 .

(37)

Then, we have that

R−1∑
r=0

Σr ≤
[
1− 8β

9
+

β

72
+

β

18

] R−2∑
r=−1

Σr +

[
β

9
+

β

18
+

β

72

] R−2∑
r=−1

E
[
∥∇J (θr)∥2

]
+

[
β2

NK
+

3β2

NK

]
Rσ2 + 16β(eηKL̃1)

2RG0

≤ (1− 7β

9
)

R−2∑
r=−1

Σr +
2β

9

R−2∑
r=−1

E
[
∥∇J (θr)∥2

]
+

4Rβ2σ2

NK
+ 16β(eηKL̃1)

2RG0

After some rearrangement, we have

R−1∑
r=0

Σr ≤
9

7β
Σ−1 +

2

7

R−2∑
r=−1

E
[
∥∇J (θr)∥2

]
+

36Rβσ2

7NK
+

144

7
(eηKL̃1)

2RG0

Based on Lemma B.1, we have

1

λ
E[J(θR)− J(θ0)] ≥

2

7

R−1∑
r=0

E
[
∥∇J (θr)∥2

]
− 1

35β
Σ−1 −

39Rβσ2

14NK
− 78

7
(eηKL̃1)

2RG0

Notice that u0 = 1
NB

∑
i

∑B
b=1 gi

(
τ
(i)
b |θ0

)
implies Σ−1 = E∥u0 − ∇J(θ0)∥2 ≤ σ2

NB ≤ β2σ2R
NK . Define L̄ :=

max{L, L̃1, L̃2, L̃3} and after some rearrangement, we have

1

R

R−1∑
r=0

E
[
∥∇J (θr)∥2

]
≲

L̄∆

λL̄R
+

Σ−1

βR
+ (ηKL̃1)

2G0 +
βσ2

NK

(a)

≲
L̄∆

λL̄R
+

βσ2

NK
(b)

≲
L̄∆

R
+

L̄∆√
βNK

+
βσ2

NK

(c)

≲
L̄∆

R
+

(
L̄∆σ

NKR

)2/3
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where (a) is due to the fact ηKL̄ ≲
(

L̄∆
G0λLR

) 1
2

; For (b), it holds because λL̄ ≤ min{ 1
24 ,
√

βNK
162 }; For (c), it holds

because β = min

{
1,
(

NKL̄2∆2

σ4R2

)1/3}
.
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D. Federated Hessian Aided Policy Gradient with Momentum

According to the updating rule of FEDHAPG-M, we can rewrite Λ
(i)
r,k as

Λ
(i)
r,k =

(
∇ log p(i)

(
τ
(i)
r,k | θ

(i)
r,k(α)

)T
v
(i)
r,k

)
∇Φi

(
τ
(i)
r,k | θ

(i)
r,k(α)

)
+∇2Φi

(
τ
(i)
r,k | θ

(i)
r,k(α)

)
v
(i)
r,k (38)

where Φi(τ | θ) =
∑H−1

h=0

∑H−1
i=h λiR(i) (si, ai) log πθ (ah, sh) and v

(i)
r,k = θ

(i)
r,k − θr−1. Note that

E
α∼U [0,1],τ∼p(i)

(
τ |θ(i)

r,k(α)
) [Λ(i)

r,k

]
= ∇J

(
θ
(i)
r,k

)
−∇J (θr−1) .

Moreover, we have Λ
(i)
r,k := ∇̂2

i

(
θ
(i)
r,k(α), τ

(i)
r,k

)
v
(i)
r,k where

∇̂2
i

(
θ
(i)
r,k(α), τ

(i)
r,k

)
=∇Φi

(
τ
(i)
r,k | θ

(i)
r,k(α)

)
∇ log p(i)

(
τ
(i)
r,k | θ

(i)
r,k(α)

)T
+∇2Φi

(
τ
(i)
r,k | θ

(i)
r,k(α)

)
.

and E
τ∼p(i)

(
τ |θ(i)

r,k(α)
) [∇̂2

(
θ
(i)
r,k(α), τ

)]
= ∇2Ji

(
θ
(i)
r,k(α)

)
.

Proposition 2. (Lemma 4.1 in (Shen et al., 2019)) Under Assumption 6.1, we have for all θ and i ∈ [N ]∥∥∥∇̂2
i (θ, τ)

∥∥∥2 ≤ H2G4R2
max +M2R2

(1− λ)4
= L̃4

2
.

where τ is a trajectory sampled according to p(i)(τ |θ).

Lemma D.1. If the step-size satisfies λ ≤
√

βNK

72L̃4
2 , we have

Σr ≤ (1− 8β

β
)Σr−1 +

2L2 + 4L̃4

2

β
Dr +

2β2σ2

NK
+

8λ2L̃4

2

NK
E ∥∇J(θr−1)∥2 (39)

holds for r ≥ 1. When r = 0, we have

Σr ≤ (1− 8β

β
)Σr−1 +

2L2 + 4L̃4

2

β
Dr +

2β2σ2

NK
. (40)

Proof.

Σr = E
[
∥ur+1 −∇J(θr)∥2

]
= E

∥∥∥ 1

NK

∑
i,k

βw(i)
(
τ
(i)
r,k | θ

(i)
r,k, θ

(i)
r,k(α)

)
gi

(
τ
(i)
r,k | θ

(i)
r,k

)
+ (1− β)

[
ur + Λ

(i)
r,k

]
−∇J(θr)

∥∥∥2


= E

[∥∥∥∥(1− β)(ur −∇J(θr−1))

+
1

NK

∑
i,k

{
βw(i)

(
τ
(i)
r,k | θ

(i)
r,k, θ

(i)
r,k(α)

)
gi

(
τ
(i)
r,k | θ

(i)
r,k

)
+ (1− β)

(
Λ
(i)
r,k +∇J(θr−1

)
−∇J(θ(i)r,k)

}
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+
1

NK

∑
i,k

[
∇J(θ(i)r,k)−∇J(θr)

] ∥∥∥∥2
]

= (1− β)2Σr−1 + E

∥∥∥∥∥∥ 1

NK

∑
i,k

[
∇J(θ(i)r,k)−∇J(θr)

]∥∥∥∥∥∥
2

︸ ︷︷ ︸
H1

+ 2E

〈(1− β)(ur −∇J(θr−1)),
1

NK

∑
i,k

[
∇Ji(θ(i)r,k)−∇J(θr)

] 〉
︸ ︷︷ ︸

H2

+ E

∥∥∥∥∥∥ 1

NK

∑
i,k

{
βw(i)

(
τ
(i)
r,k | θ

(i)
r,k, θ

(i)
r,k(α)

)
gi

(
τ
(i)
r,k | θ

(i)
r,k

)
+ (1− β)

(
Λ
(i)
r,k +∇J(θr−1)

)
−∇J(θ(i)r,k)

}∥∥∥∥∥∥
2

︸ ︷︷ ︸
H3

(41)

To precede, we bound H1 as

H1 = E

∥∥∥∥∥∥ 1

NK

∑
i,k

[
∇J(θ(i)r,k)−∇J(θr)

]∥∥∥∥∥∥
2

≤ L2

NK

∑
i,k

E
∥∥∥θ(i)r,k − θr

∥∥∥2 = L2Dr (42)

Using Young’s inequality to bound H2, we have

H2 ≤ β(1− β)2E
∥∥∥ur −∇J(θr−1)

∥∥∥2 + 1

β
E
∥∥∥ 1

NK

∑
i,k

∇Ji(θ(i)r,k)−∇J(θr)
∥∥∥2

≤ β(1− β)2Σr−1 +
L2

β

1

NK

∑
i,k

E
∥∥∥θ(i)r,k − θr

∥∥∥2︸ ︷︷ ︸
Dr

(43)

For H3, we bound it as

H3 = E

∥∥∥∥∥∥ 1

NK

∑
i,k

{
βw(i)

(
τ
(i)
r,k | θ

(i)
r,k, θ

(i)
r,k(α)

)
gi

(
τ
(i)
r,k | θ

(i)
r,k

)
+ (1− β)

(
Λ
(i)
r,k +∇J(θr−1)

)
−∇J(θ(i)r,k)

}∥∥∥∥∥∥
2

≤ 2β2 σ2

NK
+ 2(1− β)2

1

N2K2

∑
i,k

E
∥∥∥Λ(i)

r,k +∇J(θr−1)−∇J(θ(i)r,k)
∥∥∥2

(a)

≤ 2β2σ2

NK
+ 2(1− β)2

1

N2K2

∑
i,k

E
∥∥∥Λ(i)

r,k

∥∥∥2
(b)
=

2β2σ2

NK
+ 2(1− β)2

1

N2K2

∑
i,k

E
∥∥∥∇̂2

(
θ
(i)
r,k, τ

(i)
r,k

)
v
(i)
r,k

∥∥∥2 (b)

≤ 2β2σ2

NK
+ 2(1− β)2

1

N2K2

∑
i,k

L̃4

2
E
∥∥∥v(i)r,k

∥∥∥2
≤ 2β2σ2

NK
+ 4(1− β)2L̃4

2 1

NK

∑
i,k

E
∥∥∥θ(i)r,k − θr

∥∥∥2︸ ︷︷ ︸
Dr

+4(1− β)2
L̃4

2

NK
E ∥θr−1 − θr∥2 (44)
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where we use the fact that E[∥X − E[X]∥2] ≤ E[∥X∥2] for (a); for (b), it holds due to Proposition 2.

Plugging the upper bound of H1 (Eq. (42)), H2(Eq. (43)) and H3 (Eq. (44))into Eq.(41), we have
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where (a) is due to the choice of λ such that 8λ2L̃4
2

NK ≤ β
9 , which holds when λ ≤

√
βNK

72L̃4
2 .

Lemma D.2. (Bounding drift-term) If the local step-size satisfies η ≤ min{ L

32e2L̃4
2
K
, 1
KL}, the drift-term can be upper

bounded as:
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where we use the bias-variance decomposition in the last inequality. To precede, we bound the variance term as:
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where we use the fact that E[∥X −E[X]∥2] ≤ E[∥X∥2] for (a). Plugging the upper bound of variance into Eq.(46), we have
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Then for any 1 ≤ j ≤ k − 1 ≤ K − 2, we have
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where we use the fact that ηL ≤ 1
K ≤

1
q+1 and let q = k− 1. By unrolling this recurrence, for any 1 ≤ j ≤ k− 1 ≤ K − 2,

we have
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Based on the inequality (1 + 2
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) ≤ e2 ≤ 8, we have

E
∥∥∥c(i)r,j

∥∥∥2 ≤ e2E
∥∥∥c(i)r,0

∥∥∥2 + 8k2η4L2

(
2β2σ2 + 4L̃4

2
E
∥∥∥θr−1 − θr

∥∥∥2)+ 4e2kη4L2L̃4

2
j−1∑
j′=0

E
∥∥∥θ(i)r,j′ − θr

∥∥∥2 (50)

By Lemma A.3, we have
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where (a) is due to Eq.(47). Plugging Eq.(50) into Eq.(51), we have
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Summing up the above equation over k = 0, · · · ,K − 1, we have
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With the choice of step-size η satisfying 8e2η4K4L2L̃4
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In summary, we can bound the drift-term as
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Proof. The proof is the same as that of Lemma C.3.

D.1. Proof of Theorem 6.5
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where L̂ :=

√
2L2 + 4̃L4

2
and L, L̃4 are defined in Proposition 1 and Proposition 2, respectively.

Proof. Based on Lemma D.1, we have for any r ≥ 1
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Where the last inequality is derived by ∥θr − θr−1∥2 ≤ 2λ2
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Then, we have that
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E. Additional Experiments and Implementation Details
E.1. Details of Tabular Case.

Random MDPs consist of N = 20 environments. In each MDP, both the state and action spaces have a size of 5. We choose
Rmax = 1. The discounted factor λ is 0.9. The state transition kernel is generated randomly (element-wisely Bernoulli
distributed). The number of local updates is set as K = 32. Additionally, the local step-size is chosen to be η = 0.05.

E.2. Details of DRL Case

Experiments Setup We adopted a local step-size of 0.75 and a global step-size of 0.6. We experimented with momentum
coefficients, denoted as β, ranging from 0.2, 0.5, to 0.8. Additional parameters were set as follows: N = 5, Rmax = 120,
and K = 10. All experiments are conducted in a host machine that is equipped with an Intel(R) Core(TM) i9-10900X
CPU that operates at a base frequency of 3.70GHz. This processor boasts 10 cores and 20 threads, with a maximum turbo
frequency of 4300 MHz. It has a total of 125GB of RAMA and 4 NVIDIA GeForce RTX 2080 GPU, compatible with
CUDA Version 11.0. The source code is provided in the supplementary materials.

Experimental Environments The CartPole environment, often referred to as the ”inverted pendulum” problem, is a
classic task in the field of reinforcement learning. In this environment, a pole is attached to a cart, which moves along a
frictionless track. The primary objective is to balance the pole upright by moving the cart left or right, without the pole
falling over or the cart moving too far off the track. At the start of the experiment, the pole is slightly tilted, and the goal
is to prevent it from falling over by applying force to the cart. The environment provides a reward at each time step for
keeping the pole upright. The episode ends when the pole tilts beyond a certain angle from the vertical or the cart moves out
of a defined boundary on the track.

The HalfCheetah environment is another popular benchmark in reinforcement learning, especially within the continuous
control domain. It’s designed to emulate the challenges of agile and efficient locomotion. The agent in this environment
is a two-dimensional, simplified robotic model inspired by the anatomy of a cheetah, albeit it only represents the ”half”
body, often from the waist down, thus the name ”HalfCheetah.” The robotic agent comprises multiple joints and segments,
representing the limbs of the cheetah. The primary goal in the HalfCheetah environment is to control and coordinate the
movements of these joints to make the robot run as fast as possible on a flat surface. At each timestep, the agent receives a
reward based on how fast it’s moving forward minus a small cost for the actions taken (to prevent erratic behaviors). The
challenge lies in efficiently propelling the HalfCheetah forward, optimizing for speed and stability.

The Walker environment is a more complex task that simulates a bipedal agent which needs to learn to walk. Unlike
CartPole, where the challenge is to balance a single pole, the Walker environment involves controlling multiple joints
and limbs of a simulated agent to achieve locomotion. The agent receives rewards based on its forward movement and
is penalized for falling or performing awkward movements. More information about these environments can be found in
Todorov et al. (2012).

Figure 2. Mean rewards over global iterations for the CartPole task under different values of N (agent number): (Left): FEDSVRPG-M;
(Right): FEDHAPG-M. The shaded areas represent the variance of rewards. Complying with theory, increasing N will increase the
rewards. For both algorithms, the local step-size η is 0.05, global step-size λ satisfies λ = ηK and the number of local updates K is 10.
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Ablation Study on Agent Number N . We further provide the ablation study of our FEDSVRPG-M and FEDHAPG-M
algorithms on N (agent number). With large N , environment heterogeneity level increases. We choose β = 0.2 to train
policies in the ablation study. Figure 2 illustrates how different N values (N = 4, 5, and 8) influence the average rewards
in the CartPole task as the number of iterations increases. We find that all policies with larger N values report better
performance throughout the iterations. The color-shaded regions indicate the variance in rewards. Such phenomenon
observed in Figure 2 complies with our theoretical analysis about linear speedup.

Experiments on FEDHAPG-M Algorihtm The table 3 presents the mean testing rewards and variances for the policies
trained by the FedHAPG-M algorithm with various β values and the baseline algorithm (Jin et al., 2022) across two tasks:
CartPole and Walker. For both tasks, the FedHAPG-M algorithm with β = 0.8 outperforms the other configurations in
terms of mean rewards.

Table 3. Mean Rewards and Variances of Policy Trained by FEDHAPG-M with Different Beta Values and Baseline Algorithm

Algorithms CartPole Walker

FEDHAPG-M with β = 0.2 83.46± 7.92 130.93± 7.72
FEDHAPG-M with β = 0.5 86.54± 12.99 287.14± 72.26
FEDHAPG-M with β = 0.8 86.58± 11.21 301.57± 28.04

Baseline algorithm 85.92± 12.17 299.69± 3.02
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