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Abstract

Can transformers learn to perform algorith-
mic tasks reliably across previously unseen
input/output domains? While pre-trained lan-
guage models show solid accuracy on bench-
marks incorporating algorithmic reasoning, as-
sessing the reliability of these results necessi-
tates an ability to cleanse models’ functional
capabilities from memorization. In this paper,
we propose an algorithmic benchmark compris-
ing six tasks of infinite input domains where
we can also disentangle and frace the correct,
robust algorithm necessary for the task. This
allows us to assess (i) models’ ability to extrap-
olate to unseen types of inputs, including new
lengths, value ranges or input domains, but also
(i1) to assess the robustness of the functional
mechanism in recent models through the lens
of their attention maps. We make the imple-
mentation of all our tasks and interoperability
methods publicly available.'

1 Introduction

The neural architecture of Transformer (Vaswani
et al., 2017) presents a backbone for a vast ma-
jority of modern language processing applications.
A growing body of these applications, including
code generation, conversational assistants, or data
processing automatization, require Transformers to
exhibit robust reasoning, i.e., an ability to identify
and combine relevant pieces of information to infer
new information (Yu et al., 2024).

A critical component of the Transformer’s rea-
soning process is the Attention mechanism (Bah-
danau et al., 2014), which derives the representa-
tion of each newly generated token by weighing
the representations of previous tokens.

Despite the theoretical expressivity of Trans-
formers in modelling even complex reasoning
tasks (Lin et al., 2021; Merrill and Sabhar-
wal, 2024), Transformers often depend on over-
simplified, non-robust, or spurious features of

'See the supplementary materials.
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Figure 1: Examples of reference attention maps we
use to evaluate the models’ attention reasoning patterns.
From top to bottom, you can see the attention scores
with reference tokens highlighted in red, for addition,
value assignment and FFLM task.

data (Mikula et al., 2024) causing even high-end
models to fail in unexpected scenarios. This un-
reliability currently presents a critical bottleneck
across a variety of applications. Bridging this gap
requires fundamental improvements not only in ar-
chitecture (Ye et al., 2025; Velickovi¢ et al., 2025)
but also evaluation to rigorously assess how robust
is the reasoning process of our models.

In this work, we contribute to bridging this gap
by creating a new evaluation suite that presents a
collection of diverse reasoning tasks.

Each task has a solver algorithm, which gener-
ates a step-by-step solution and traces which past
tokens are necessary for correctly generating the
next one. This allows us to construct reference
attention maps representing the ground truth rea-
soning patterns a successful model has to exhibit
and compare it to the models’ actual attention map.
We find that this comparison exposes some aspects
of the model’s internal reasoning process, is highly
predictive of the models’ reliability, and can iden-
tify sources of errors in the models’ reasoning pro-
cess.

We apply our benchmark to assess two differ-



ent facets of generalization of existing language
models: (i) existing models’ ability to robustly ex-
ecute the task given a clear instruction of the task,
uncovering the robustness of models’ instruction-
following capabilities, and (ii) models’ ability to
learn to generalize our with unlimited data, under-
lying the inherent limitations of existing architec-
tures.

We find that current state-of-the-art models are
able to learn to robustly execute algorithms on ar-
bitrary in-distribution inputs. We also find that the
errors that models exhibit in-distribution (ID) are
not connected with not attending significant tokens.

However, when evaluating models on out-of-
distribution data (OOD), especially longer inputs,
models struggle to apply the reasoning attention
pattern they learned in ID and make prediction er-
rors rooted in not attending the correct tokens.

Our benchmark will empower future work in
improving language models to not only assess the
empirical improvements on our benchmarks but
also to understand the implications of different ar-
chitectural refinements on the robustness of models’
internal functioning cleansed from other covariates
such as memorization.

2 Related Work

Closest to our work, CRLS-Text (Markeeva et al.,
2024) is a benchmark specialising in algorith-
mic reasoning implementing many traditional al-
gorithms and trains and evaluates recent state-of-
the-art LLMs. We build upon the methodology of
CRLS-Text and extend it to allow for, not only ac-
cessing the performance, but also to provide means
for interpretation and investigation of the results by
means of the reference attention maps.
BIG-Bench (Srivastava et al., 2023) is a mas-
sive benchmark comprised of more than 200 tasks,
many of which specialize in evaluating algorithmic
reasoning, e.g. addition or dyck languages. How-
ever, as a fixed test set, it is hard to use it to robustly
evaluate models on extrapolation, while the recent
work finds that BIG-Bench was indeed leaked into
the training data of recent models (Fajcik et al.,
2024), including Qwen. We extend the tasks from
BIG-Bench into configurable generators capable
of generating infinite data, allowing training and
evaluation while avoiding data contamination.
Flip-Flop Language Modeling is a synthetic task
introduced by Liu et al. (2023). Authors introduce
this simple algorithmic task to analyze hallucina-

tions caused by attention glitches. We extend this
idea and implement novel analysis of attention on
a number of diverse algorithmic tasks.

3 AttentionSpan: Dataset and Evaluation
Suite

To evaluate the reasoning robustness of Transform-
ers, we introduce AttentionSpan, a framework for
analyzing models’ attention patterns in step-by-step
reasoning tasks.

AttentionSpan is composed of synthetic tasks
with a highly controlled setting. Task instances
(problems) can be randomly generated in arbitrary
quantity and with configurable difficulty. The con-
figuration also allows for systematic ID/IID splits
that we also apply in our evaluations, including in-
put lengths, ranges or domain. We detail provided
configurations of AttentionSpan’s tasks in E.

Every problem has a single unambiguous solu-
tion, consisting of a deterministic sequence of steps
that can be verified algorithmically.

A key contribution of our work is that every solu-
tion includes a reference attention mask that exactly
specifies which past tokens are needed for correctly
inferring the next one. It is important to mention
that the reference maps are constructed in such way
that they are independent of how the model imple-
ments the given algorithm. The indicated reference
token are always crucial to completing the task.
As we demonstrate in our experiments, reference
attention masks are a powerful tool for inspecting
the errors of transformers’ reasoning. We argue
that they might facilitate future work in improving
model reliability via architectural adjustments.

In the remainder of the Section, we describe the
tasks in our suite. Examples of inputs and outputs
can be found in Table 1.

3.1 String Reversal

This task requires the model to generate the input
sequence in the reverse order. The task generator
can be configured by the character set and the range
of the input length.

3.2 Long Multiplication

Long multiplication is parametrized by the digit
length of two operands and optional padding. The
solution contains a sequence of intermediate prod-
ucts, which are then summed together into the final
result. The digit ordering is consistent with the
long addition task.



Task Example Input Corresponding Output

String Reversal dh13h82hj283j23H= H32j382jh28h31hd
Long Addition 1240 + 4335 + 3440 = 8916

Long Multiplication | 9900 * 9900 = 1980 + 0198 + 0000 + 0000 = 1089
FFLM wllillf10r10f10rl 1

Value Assignment B1EODI1 A1 CO ABBEDACABCD | 11101101101

Successor 234 235236 237 238 239 240

Table 1: Example instances of our tasks. The spacing is adjusted for clarity and does not denote a separator of
tokens. How the tasks handle tokenization is described in greater detail in Appendix C

3.3 Long Addition

This task consists of adding several multi-digit
numbers. The digits are ordered from the least sig-
nificant to the most significant. The ordering of the
digits is given by the standard addition algorithm
where we compute the lower order digits first in or-
der to be able to propagate the carry to the topmost
digit. The problem generator can be parametrized
by the number of operands, their length in digits,
and whether short numbers are padded with zeros.
As a subtask of long multiplication, it provides fur-
ther insight into the inner functioning of models on
these arithmetic tasks.

3.4 Successor

The Successor task requires a model to generate a
sequence of natural numbers starting from a given
initial value. It can be parametrized by the length
of the series and the allowed range of the start-
ing value. This is a straightforward task requiring
precise representations of how digits form natural
numbers.

3.5 Value Assignment

In this task, the problem specifies a translation table
from an input alphabet to an output alphabet. The
model is then required to translate an input string,
symbol by symbol. The character sets, and the
string length can be configured. Value assignment
is a subtask of many algorithmic tasks where we
work with symbolic representations.

3.6 Flip Flop Language Modeling

Flip Flop Language Modeling, as introduced by
Liu et al. represents a simulation of memory com-
posed of a single one-bit registers. We extend this
into multiple registers problem, adding a new flip
command that flips the value of the specific register.
The input is a sequence of read, write, ignore, and
flip instructions, each with the register index speci-
fied as a first operand. The sequence ends with a

read instruction, and the solution is the bit value
currently stored at the selected register. The param-
eters of the task can specify how many registers are
used, the length of the instruction sequence, and
whether flip commands are used.

4 Experiments and Evaluation

Using the newly constructed benchmark, we aim to
understand to what extent recent language models
are capable of robustly representing and executing
the underlying algorithms of our tasks. Towards
this goal, we train and evaluate a popular LLama-
3.2-1B-Instruct model on all tasks in two settings.
First, we fine-tune the trained model with instruc-
tion in a few-shot setting. Secondly, we train the
same architecture from scratch without instructions
or few-shot examples. Differences in evaluations
between the two variants can be attributed to the
pre-training and instruction fine-tuning. Training
setup and hyperparameter search are described in
Appendix D.

We evaluate the models’ accuracy separately on
ID and OOD data to measure their robustness to
changes in problem length (See Appendix E). Next,
we relate these results to the model’s ability to focus
on relevant tokens, as provided by our dataset. To
inspect which tokens the model considers in each
reasoning step, we employ attention rollout (Abnar
and Zuidema, 2020), a method for aggregating all
models intermediate attention maps.

Using this aggregated attention map, we com-
pute the proportion of attention scores allocated to
tokens that our reference attention map identifies
as necessary for correct prediction (See details in
Appendix B). In particular, we measure and com-
pare these metrics on the test instances where the
model makes correct and erroneous predictions to
uncover a possible pattern across error cases in the
attention scores.



Model Task ID (010)))
Type
Acc. Attn Score Acc. Attn Score
= String Reversal 5.21 0.0578 0 0.0248
g Long Addition 9.37 0.1713 0 0.0891
g Long Multiplication 18 0.1302 0 0.0827
g FFML 68.75 0.0129 50.2 0:0047
S
—
)
Value Assignment 4.17 0.3060 0 0.0683
Successor 100 0.4069 0 0.1450
String Reversal 95.83 0.0836 53.83 0.0448
3 Long Addition 96.87 0.1380 1.61 0.0779
5 Long Multiplication 86 0.0432 0 0.0257
2 FFML 100 0.1854 99.2 0.1461
o Value Assignment 100 0.1668 0 0.0378
Successor 100 0.4425 65.73 0.3770

Table 2: Performance of models trained from scratch and finetuned on various tasks. The changes in the mean Attn
Score between ID and OOD are statistically significant in all cases.

5 Results and Discusssion

Task 00D Acc. Attn Score (Correct)  Attn Score (Error)

String Reversal 53.83 0.0455 0.0236
Successor 65.73 0.4141 0.3685
FFML 99.2 0.1948 0.3829

Table 3: Error in prediction significantly correlates with
low attention score on reference tokens. The change in
mean Attn Score is statistically significant in all cases.

Table 2 shows that models trained from scratch
struggle with convergence and rarely generalize to
OOD data, even with large sample sizes.

In contrast, an initialization from a pre-trained
model dramatically improves the efficiency of con-
vergence, achieving non-trivial performance al-
ready after using just tens or hundreds of samples.
To a limited extent, resulting models can generalize
to OOD data, even though the resulting accuracy
consistently falls behind the ID performance.

We further analyze the distribution of attention
scores on reference tokens. Welch’s t-test confirms
a significant difference between ID and OOD data,
with average attention scores dropping on OOD
inputs. This may be due to longer sequences dis-
persing attention (Velickovi¢ et al., 2025) or an
inability to reliably identify key tokens.

Finally, in tasks where models perform well on
in-distribution data, errors in OOD evaluations are
often associated with a marked reduction in at-
tention on reference tokens (see Table 3 and Ap-
pendix A). This pattern suggests one class of error,
where insufficient attention directly contributes to
faulty predictions. By contrast, tasks such as FFML

show stable or even increased attention scores dur-
ing errors, implying that different error mecha-
nisms are at work. Importantly, because the OOD
evaluation is not compromised by sequence length
effects, the significant changes in attention scores
for some tasks clearly reflect distinct classes of
inference problems.

6 Conclusion

In this work, we introduced a novel algorithmic
benchmark designed to assess both the extrapo-
lation and reasoning capabilities of Transformer-
based models robustly to memorization. Our eval-
uation framework, which leverages configurable
tasks and reference attention maps, provides a trans-
parent and fine-grained analysis of models’ internal
reasoning processes beyond traditional accuracy
metrics. This allows us to show that models trained
from scratch struggle with generalization while
pre-training projects into significant and consistent
improvements on out-of-distribution inputs.

Importantly, our attention-based evaluation re-
vealed that errors in reasoning are often associated
with a dispersion of attention to relevant tokens.
This finding not only validates our approach for
diagnosing internal model behaviors but also lays
the foundation for future architectural refinements
aimed at enhancing robustness. By releasing our
benchmark and methodologies, we hope to foster
further research into the reliability and interpretabil-
ity of Transformer models, ultimately contributing
to the development of much-needed, robust Al sys-
tems for dynamic, real-world applications.



Limitations

We identify several limitations of our work and
mention what we believe are the main ones be-
low. First, our interpretability of models’ inter-
nal functioning builds upon the assumption that
models robustly executing the correct algorithm
should fully attend only to tokens that are relevant
to the algorithm. Nevertheless, we note that even
a model with a systematic dispersion of attention
across irrelevant tokens might still be able to ro-
bustly execute algorithm, as long as the irrelevant
attended tokens do not significantly alter the atten-
tion’s output representations. Therefore, there is
not a necessary equivalence between the model’s
robustness and accuracy of attention with respect
to our references. However, in the situation where
the model does not attend the relevant tokens at all,
we can still claim that the model does not represent
the task’s correct/robust algorithm.

Further, we acknowledge our focus only on a sin-
gle model architecture as a limitation of our analy-
ses. While at the time of writing, Llama model fam-
ily represents a state-of-the-art among open-source
models, we note that some trends, e.g. which tasks
can/can not be learned can still be model-specific.
Nevertheless, we focus our contribution instead to
broadening a set of tasks and assuring a reliabil-
ity of attention labels, leaving the investigation of
further models to future work.

Finally, we note the limitation in using a sin-
gle interpretability method in our analyses in Sec-
tion 4 (Attention rollout). While we argue that
this method best represents the computation flow
within the transformer across tokens, it still does
not take into account some computation parts of the
model, such as the impact of feed-forward layers
which might, theoretically, exclude the impact of
even some attended tokens.
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Figure 2: In String Reversal, the model must learn a
diagonal attention pattern. In ID evaluation (left), the
model attributes high scores to all reference tokens. In
OOD (right), it fails to do so for some tokens (high-
lighted in red), leading to prediction errors.
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A OOD Evaluation of String Reversal
B Attention Score on Reference Tokens

The proportion attention score attributed to refer-
ence tokens is computed per each row of the ag-
gregated attention, that is for each predicted token,
separately. This attributes to the need to investigate
the proportion of information that has influenced
a given output representation or output token. The
result is then averaged across the whole sample or
the whole batch to get an idea of how the model
attributes attentions score on a given distribution of
data.

C Tokenization of training and evaluation
samples

With the exclusion of the instruction prompt, we
tokenize the few-shot examples and the data points
themselves into single character-level tokens. This
is important to prepare the reference attention maps.
Without tokenizing like this it would be possible
to evaluate the attention patterns because differ-
ent tokenization schemes wildly change the nature
of the task and distribution of critical information
between tokens. However, the fine-tuned models
were able to parse this representation and fit the

task as can be seen in the resulting accuracies after
training.

D Training Hyperparameters

The following configuration summarizes the setup
used for fine-tuning (or training from scratch) of
our models.

Model:

¢ Name: meta-llama/Llama-3.2-1B-Instruct

* Architecture Configuration:

— Attention Dropout Probability: 0.0
— Hidden Dropout Probability: 0.0

Training Hyperparameters:
* Epochs: 1

* Batch Size: 4

* Optimizer: AdamW

* Optimizer Parameters:

— Learning Rate: 5 x 1076
- $1: 0.95

— [2: 0.999

— Weight Decay: 0.2

These hyperparameters are chosen on the basis
of a hyperparameter search that was executed on
String Reversal and Addition tasks, the results of
the search was averaged over these two tasks. The
hyperparameter search can be reproduced by run-
ning the prepared script in our codebase.

The conclusion of the hyperparameter search
was that, for both tasks, smaller batch size, smaller
learning and weight decay were effective in in-
creasing accuracy in OOD. The effect of using
dropout in attention or hidden layers was highly
task-dependent and inconclusive, so we decided
not to use it.

All our experiments were run on a single Nvidia
A100 GPU card and required less than 12 hours to
converge. As we document in our codebase, our
experiments employ HuggingFace Transformers
library (Wolf et al., 2020) v4.48.1 and PyTorch
v2.5.1.
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E OOD Evaluation

E.1 Long Addition Task Evaluation
Parameters

The following configuration details the evaluation
setup for the Long Addition task.
In-distribution:

* 2 operands
* Each number is 1-4 digits long
Out-of-distribution:
* 2 operands
* Each number is 5-10 digits long
E.2 FFML Task Evaluation Parameters

The following configuration details the evaluation
setup for the FFML task.
In-distribution:

* Use the flip command

* Each string is composed of 10 commands
 Each instance works with 2 different registers
Out-of-distribution:

» Use the flip command

* Each string is composed of 11-100 commands
* Each instance works with 2 different registers

E.3 Long Multiplication Task Evaluation
Parameters

The following configuration details the evaluation
setup for the Long Multiplication task.
In-distribution:

e Each number is 1-3 digits long
Out-of-distribution:
* Each number is 4-6 digits long

E.4 String Reversal Task Evaluation
Parameters

The following configuration details the evaluation
setup for the String Reversal task.
In-distribution:

 Each string is 1-10 characters long

* The character set is composed of at least 50
unique characters

Out-of-distribution:
* Each string is 11-50 characters long

* The character set is composed of at least 50
unique characters

E.5 Successor Task Evaluation Parameters

The following configuration details the evaluation
setup for the Successor task.
In-distribution:

* The starting number is between 1 and 90

* The length of the series is 2-4 numbers
Out-of-distribution:

* The starting number is between 100 and 900
* The length of the series is 5-6 numbers

E.6 Value Assignment Evaluation Parameters

The following configuration details the evaluation
setup for the Value Assignment task.
In-distribution:

* The number of unique tuples in the translation
table is 5

* The length of the string to be translated is 5
Out-of-distribution:

* The number of unique tuples in the translation
table is 10-50

* The length of the string to be translated is
10-20



