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Abstract
Can transformers learn to perform algorith-001
mic tasks reliably across previously unseen002
input/output domains? While pre-trained lan-003
guage models show solid accuracy on bench-004
marks incorporating algorithmic reasoning, as-005
sessing the reliability of these results necessi-006
tates an ability to cleanse models’ functional007
capabilities from memorization. In this paper,008
we propose an algorithmic benchmark compris-009
ing six tasks of infinite input domains where010
we can also disentangle and trace the correct,011
robust algorithm necessary for the task. This012
allows us to assess (i) models’ ability to extrap-013
olate to unseen types of inputs, including new014
lengths, value ranges or input domains, but also015
(ii) to assess the robustness of the functional016
mechanism in recent models through the lens017
of their attention maps. We make the imple-018
mentation of all our tasks and interoperability019
methods publicly available.1020

1 Introduction021

The neural architecture of Transformer (Vaswani022

et al., 2017) presents a backbone for a vast ma-023

jority of modern language processing applications.024

A growing body of these applications, including025

code generation, conversational assistants, or data026

processing automatization, require Transformers to027

exhibit robust reasoning, i.e., an ability to identify028

and combine relevant pieces of information to infer029

new information (Yu et al., 2024).030

A critical component of the Transformer’s rea-031

soning process is the Attention mechanism (Bah-032

danau et al., 2014), which derives the representa-033

tion of each newly generated token by weighing034

the representations of previous tokens.035

Despite the theoretical expressivity of Trans-036

formers in modelling even complex reasoning037

tasks (Lin et al., 2021; Merrill and Sabhar-038

wal, 2024), Transformers often depend on over-039

simplified, non-robust, or spurious features of040

1See the supplementary materials.

Figure 1: Examples of reference attention maps we
use to evaluate the models’ attention reasoning patterns.
From top to bottom, you can see the attention scores
with reference tokens highlighted in red, for addition,
value assignment and FFLM task.

data (Mikula et al., 2024) causing even high-end 041

models to fail in unexpected scenarios. This un- 042

reliability currently presents a critical bottleneck 043

across a variety of applications. Bridging this gap 044

requires fundamental improvements not only in ar- 045

chitecture (Ye et al., 2025; Veličković et al., 2025) 046

but also evaluation to rigorously assess how robust 047

is the reasoning process of our models. 048

In this work, we contribute to bridging this gap 049

by creating a new evaluation suite that presents a 050

collection of diverse reasoning tasks. 051

Each task has a solver algorithm, which gener- 052

ates a step-by-step solution and traces which past 053

tokens are necessary for correctly generating the 054

next one. This allows us to construct reference 055

attention maps representing the ground truth rea- 056

soning patterns a successful model has to exhibit 057

and compare it to the models’ actual attention map. 058

We find that this comparison exposes some aspects 059

of the model’s internal reasoning process, is highly 060

predictive of the models’ reliability, and can iden- 061

tify sources of errors in the models’ reasoning pro- 062

cess. 063

We apply our benchmark to assess two differ- 064
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ent facets of generalization of existing language065

models: (i) existing models’ ability to robustly ex-066

ecute the task given a clear instruction of the task,067

uncovering the robustness of models’ instruction-068

following capabilities, and (ii) models’ ability to069

learn to generalize our with unlimited data, under-070

lying the inherent limitations of existing architec-071

tures.072

We find that current state-of-the-art models are073

able to learn to robustly execute algorithms on ar-074

bitrary in-distribution inputs. We also find that the075

errors that models exhibit in-distribution (ID) are076

not connected with not attending significant tokens.077

However, when evaluating models on out-of-078

distribution data (OOD), especially longer inputs,079

models struggle to apply the reasoning attention080

pattern they learned in ID and make prediction er-081

rors rooted in not attending the correct tokens.082

Our benchmark will empower future work in083

improving language models to not only assess the084

empirical improvements on our benchmarks but085

also to understand the implications of different ar-086

chitectural refinements on the robustness of models’087

internal functioning cleansed from other covariates088

such as memorization.089

2 Related Work090

Closest to our work, CRLS-Text (Markeeva et al.,091

2024) is a benchmark specialising in algorith-092

mic reasoning implementing many traditional al-093

gorithms and trains and evaluates recent state-of-094

the-art LLMs. We build upon the methodology of095

CRLS-Text and extend it to allow for, not only ac-096

cessing the performance, but also to provide means097

for interpretation and investigation of the results by098

means of the reference attention maps.099

BIG-Bench (Srivastava et al., 2023) is a mas-100

sive benchmark comprised of more than 200 tasks,101

many of which specialize in evaluating algorithmic102

reasoning, e.g. addition or dyck languages. How-103

ever, as a fixed test set, it is hard to use it to robustly104

evaluate models on extrapolation, while the recent105

work finds that BIG-Bench was indeed leaked into106

the training data of recent models (Fajcik et al.,107

2024), including Qwen. We extend the tasks from108

BIG-Bench into configurable generators capable109

of generating infinite data, allowing training and110

evaluation while avoiding data contamination.111

Flip-Flop Language Modeling is a synthetic task112

introduced by Liu et al. (2023). Authors introduce113

this simple algorithmic task to analyze hallucina-114

tions caused by attention glitches. We extend this 115

idea and implement novel analysis of attention on 116

a number of diverse algorithmic tasks. 117

3 AttentionSpan: Dataset and Evaluation 118

Suite 119

To evaluate the reasoning robustness of Transform- 120

ers, we introduce AttentionSpan, a framework for 121

analyzing models’ attention patterns in step-by-step 122

reasoning tasks. 123

AttentionSpan is composed of synthetic tasks 124

with a highly controlled setting. Task instances 125

(problems) can be randomly generated in arbitrary 126

quantity and with configurable difficulty. The con- 127

figuration also allows for systematic ID/IID splits 128

that we also apply in our evaluations, including in- 129

put lengths, ranges or domain. We detail provided 130

configurations of AttentionSpan’s tasks in E. 131

Every problem has a single unambiguous solu- 132

tion, consisting of a deterministic sequence of steps 133

that can be verified algorithmically. 134

A key contribution of our work is that every solu- 135

tion includes a reference attention mask that exactly 136

specifies which past tokens are needed for correctly 137

inferring the next one. It is important to mention 138

that the reference maps are constructed in such way 139

that they are independent of how the model imple- 140

ments the given algorithm. The indicated reference 141

token are always crucial to completing the task. 142

As we demonstrate in our experiments, reference 143

attention masks are a powerful tool for inspecting 144

the errors of transformers’ reasoning. We argue 145

that they might facilitate future work in improving 146

model reliability via architectural adjustments. 147

In the remainder of the Section, we describe the 148

tasks in our suite. Examples of inputs and outputs 149

can be found in Table 1. 150

3.1 String Reversal 151

This task requires the model to generate the input 152

sequence in the reverse order. The task generator 153

can be configured by the character set and the range 154

of the input length. 155

3.2 Long Multiplication 156

Long multiplication is parametrized by the digit 157

length of two operands and optional padding. The 158

solution contains a sequence of intermediate prod- 159

ucts, which are then summed together into the final 160

result. The digit ordering is consistent with the 161

long addition task. 162
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Task Example Input Corresponding Output
String Reversal d h 1 3 h 8 2 h j 2 8 3 j 2 3 H = H 3 2 j 3 8 2 j h 2 8 h 3 1 h d
Long Addition 1240 + 4335 + 3440 = 8916
Long Multiplication 9900 * 9900 = 1980 + 0198 + 0000 + 0000 = 1089
FFLM w 1 1 i 1 1 f 1 0 r 1 0 f 1 0 r 1 1
Value Assignment B1 E0 D1 A1 C0 ABBEDACABCD 11101101101
Successor 234 235 236 237 238 239 240

Table 1: Example instances of our tasks. The spacing is adjusted for clarity and does not denote a separator of
tokens. How the tasks handle tokenization is described in greater detail in Appendix C

3.3 Long Addition163

This task consists of adding several multi-digit164

numbers. The digits are ordered from the least sig-165

nificant to the most significant. The ordering of the166

digits is given by the standard addition algorithm167

where we compute the lower order digits first in or-168

der to be able to propagate the carry to the topmost169

digit. The problem generator can be parametrized170

by the number of operands, their length in digits,171

and whether short numbers are padded with zeros.172

As a subtask of long multiplication, it provides fur-173

ther insight into the inner functioning of models on174

these arithmetic tasks.175

3.4 Successor176

The Successor task requires a model to generate a177

sequence of natural numbers starting from a given178

initial value. It can be parametrized by the length179

of the series and the allowed range of the start-180

ing value. This is a straightforward task requiring181

precise representations of how digits form natural182

numbers.183

3.5 Value Assignment184

In this task, the problem specifies a translation table185

from an input alphabet to an output alphabet. The186

model is then required to translate an input string,187

symbol by symbol. The character sets, and the188

string length can be configured. Value assignment189

is a subtask of many algorithmic tasks where we190

work with symbolic representations.191

3.6 Flip Flop Language Modeling192

Flip Flop Language Modeling, as introduced by193

Liu et al. represents a simulation of memory com-194

posed of a single one-bit registers. We extend this195

into multiple registers problem, adding a new flip196

command that flips the value of the specific register.197

The input is a sequence of read, write, ignore, and198

flip instructions, each with the register index speci-199

fied as a first operand. The sequence ends with a200

read instruction, and the solution is the bit value 201

currently stored at the selected register. The param- 202

eters of the task can specify how many registers are 203

used, the length of the instruction sequence, and 204

whether flip commands are used. 205

4 Experiments and Evaluation 206

Using the newly constructed benchmark, we aim to 207

understand to what extent recent language models 208

are capable of robustly representing and executing 209

the underlying algorithms of our tasks. Towards 210

this goal, we train and evaluate a popular LLama- 211

3.2-1B-Instruct model on all tasks in two settings. 212

First, we fine-tune the trained model with instruc- 213

tion in a few-shot setting. Secondly, we train the 214

same architecture from scratch without instructions 215

or few-shot examples. Differences in evaluations 216

between the two variants can be attributed to the 217

pre-training and instruction fine-tuning. Training 218

setup and hyperparameter search are described in 219

Appendix D. 220

We evaluate the models’ accuracy separately on 221

ID and OOD data to measure their robustness to 222

changes in problem length (See Appendix E). Next, 223

we relate these results to the model’s ability to focus 224

on relevant tokens, as provided by our dataset. To 225

inspect which tokens the model considers in each 226

reasoning step, we employ attention rollout (Abnar 227

and Zuidema, 2020), a method for aggregating all 228

models intermediate attention maps. 229

Using this aggregated attention map, we com- 230

pute the proportion of attention scores allocated to 231

tokens that our reference attention map identifies 232

as necessary for correct prediction (See details in 233

Appendix B). In particular, we measure and com- 234

pare these metrics on the test instances where the 235

model makes correct and erroneous predictions to 236

uncover a possible pattern across error cases in the 237

attention scores. 238
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Model
Type

Task ID OOD

Acc. Attn Score Acc. Attn Score

Fr
om

Sc
ra

tc
h String Reversal 5.21 0.0578 0 0.0248

Long Addition 9.37 0.1713 0 0.0891
Long Multiplication 18 0.1302 0 0.0827
FFML 68.75 0.0129 50.2 0:0047

Value Assignment 4.17 0.3060 0 0.0683
Successor 100 0.4069 0 0.1450

Fi
ne

tu
ne

d

String Reversal 95.83 0.0836 53.83 0.0448
Long Addition 96.87 0.1380 1.61 0.0779
Long Multiplication 86 0.0432 0 0.0257
FFML 100 0.1854 99.2 0.1461
Value Assignment 100 0.1668 0 0.0378
Successor 100 0.4425 65.73 0.3770

Table 2: Performance of models trained from scratch and finetuned on various tasks. The changes in the mean Attn
Score between ID and OOD are statistically significant in all cases.

5 Results and Discusssion239

Task OOD Acc. Attn Score (Correct) Attn Score (Error)

String Reversal 53.83 0.0455 0.0236
Successor 65.73 0.4141 0.3685
FFML 99.2 0.1948 0.3829

Table 3: Error in prediction significantly correlates with
low attention score on reference tokens. The change in
mean Attn Score is statistically significant in all cases.

Table 2 shows that models trained from scratch240

struggle with convergence and rarely generalize to241

OOD data, even with large sample sizes.242

In contrast, an initialization from a pre-trained243

model dramatically improves the efficiency of con-244

vergence, achieving non-trivial performance al-245

ready after using just tens or hundreds of samples.246

To a limited extent, resulting models can generalize247

to OOD data, even though the resulting accuracy248

consistently falls behind the ID performance.249

We further analyze the distribution of attention250

scores on reference tokens. Welch’s t-test confirms251

a significant difference between ID and OOD data,252

with average attention scores dropping on OOD253

inputs. This may be due to longer sequences dis-254

persing attention (Veličković et al., 2025) or an255

inability to reliably identify key tokens.256

Finally, in tasks where models perform well on257

in-distribution data, errors in OOD evaluations are258

often associated with a marked reduction in at-259

tention on reference tokens (see Table 3 and Ap-260

pendix A). This pattern suggests one class of error,261

where insufficient attention directly contributes to262

faulty predictions. By contrast, tasks such as FFML263

show stable or even increased attention scores dur- 264

ing errors, implying that different error mecha- 265

nisms are at work. Importantly, because the OOD 266

evaluation is not compromised by sequence length 267

effects, the significant changes in attention scores 268

for some tasks clearly reflect distinct classes of 269

inference problems. 270

6 Conclusion 271

In this work, we introduced a novel algorithmic 272

benchmark designed to assess both the extrapo- 273

lation and reasoning capabilities of Transformer- 274

based models robustly to memorization. Our eval- 275

uation framework, which leverages configurable 276

tasks and reference attention maps, provides a trans- 277

parent and fine-grained analysis of models’ internal 278

reasoning processes beyond traditional accuracy 279

metrics. This allows us to show that models trained 280

from scratch struggle with generalization while 281

pre-training projects into significant and consistent 282

improvements on out-of-distribution inputs. 283

Importantly, our attention-based evaluation re- 284

vealed that errors in reasoning are often associated 285

with a dispersion of attention to relevant tokens. 286

This finding not only validates our approach for 287

diagnosing internal model behaviors but also lays 288

the foundation for future architectural refinements 289

aimed at enhancing robustness. By releasing our 290

benchmark and methodologies, we hope to foster 291

further research into the reliability and interpretabil- 292

ity of Transformer models, ultimately contributing 293

to the development of much-needed, robust AI sys- 294

tems for dynamic, real-world applications. 295
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Limitations296

We identify several limitations of our work and297

mention what we believe are the main ones be-298

low. First, our interpretability of models’ inter-299

nal functioning builds upon the assumption that300

models robustly executing the correct algorithm301

should fully attend only to tokens that are relevant302

to the algorithm. Nevertheless, we note that even303

a model with a systematic dispersion of attention304

across irrelevant tokens might still be able to ro-305

bustly execute algorithm, as long as the irrelevant306

attended tokens do not significantly alter the atten-307

tion’s output representations. Therefore, there is308

not a necessary equivalence between the model’s309

robustness and accuracy of attention with respect310

to our references. However, in the situation where311

the model does not attend the relevant tokens at all,312

we can still claim that the model does not represent313

the task’s correct/robust algorithm.314

Further, we acknowledge our focus only on a sin-315

gle model architecture as a limitation of our analy-316

ses. While at the time of writing, Llama model fam-317

ily represents a state-of-the-art among open-source318

models, we note that some trends, e.g. which tasks319

can/can not be learned can still be model-specific.320

Nevertheless, we focus our contribution instead to321

broadening a set of tasks and assuring a reliabil-322

ity of attention labels, leaving the investigation of323

further models to future work.324

Finally, we note the limitation in using a sin-325

gle interpretability method in our analyses in Sec-326

tion 4 (Attention rollout). While we argue that327

this method best represents the computation flow328

within the transformer across tokens, it still does329

not take into account some computation parts of the330

model, such as the impact of feed-forward layers331

which might, theoretically, exclude the impact of332

even some attended tokens.333
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Figure 2: In String Reversal, the model must learn a
diagonal attention pattern. In ID evaluation (left), the
model attributes high scores to all reference tokens. In
OOD (right), it fails to do so for some tokens (high-
lighted in red), leading to prediction errors.
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A OOD Evaluation of String Reversal406

B Attention Score on Reference Tokens407

The proportion attention score attributed to refer-408

ence tokens is computed per each row of the ag-409

gregated attention, that is for each predicted token,410

separately. This attributes to the need to investigate411

the proportion of information that has influenced412

a given output representation or output token. The413

result is then averaged across the whole sample or414

the whole batch to get an idea of how the model415

attributes attentions score on a given distribution of416

data.417

C Tokenization of training and evaluation418

samples419

With the exclusion of the instruction prompt, we420

tokenize the few-shot examples and the data points421

themselves into single character-level tokens. This422

is important to prepare the reference attention maps.423

Without tokenizing like this it would be possible424

to evaluate the attention patterns because differ-425

ent tokenization schemes wildly change the nature426

of the task and distribution of critical information427

between tokens. However, the fine-tuned models428

were able to parse this representation and fit the429

task as can be seen in the resulting accuracies after 430

training. 431

D Training Hyperparameters 432

The following configuration summarizes the setup 433

used for fine-tuning (or training from scratch) of 434

our models. 435

Model: 436

• Name: meta-llama/Llama-3.2-1B-Instruct 437

• Architecture Configuration: 438

– Attention Dropout Probability: 0.0 439

– Hidden Dropout Probability: 0.0 440

Training Hyperparameters: 441

• Epochs: 1 442

• Batch Size: 4 443

• Optimizer: AdamW 444

• Optimizer Parameters: 445

– Learning Rate: 5× 10−6 446

– β1: 0.95 447

– β2: 0.999 448

– Weight Decay: 0.2 449

These hyperparameters are chosen on the basis 450

of a hyperparameter search that was executed on 451

String Reversal and Addition tasks, the results of 452

the search was averaged over these two tasks. The 453

hyperparameter search can be reproduced by run- 454

ning the prepared script in our codebase. 455

The conclusion of the hyperparameter search 456

was that, for both tasks, smaller batch size, smaller 457

learning and weight decay were effective in in- 458

creasing accuracy in OOD. The effect of using 459

dropout in attention or hidden layers was highly 460

task-dependent and inconclusive, so we decided 461

not to use it. 462

All our experiments were run on a single Nvidia 463

A100 GPU card and required less than 12 hours to 464

converge. As we document in our codebase, our 465

experiments employ HuggingFace Transformers 466

library (Wolf et al., 2020) v4.48.1 and PyTorch 467

v2.5.1. 468
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E OOD Evaluation469

E.1 Long Addition Task Evaluation470

Parameters471

The following configuration details the evaluation472

setup for the Long Addition task.473

In-distribution:474

• 2 operands475

• Each number is 1-4 digits long476

Out-of-distribution:477

• 2 operands478

• Each number is 5-10 digits long479

E.2 FFML Task Evaluation Parameters480

The following configuration details the evaluation481

setup for the FFML task.482

In-distribution:483

• Use the flip command484

• Each string is composed of 10 commands485

• Each instance works with 2 different registers486

Out-of-distribution:487

• Use the flip command488

• Each string is composed of 11-100 commands489

• Each instance works with 2 different registers490

E.3 Long Multiplication Task Evaluation491

Parameters492

The following configuration details the evaluation493

setup for the Long Multiplication task.494

In-distribution:495

• Each number is 1-3 digits long496

Out-of-distribution:497

• Each number is 4-6 digits long498

E.4 String Reversal Task Evaluation499

Parameters500

The following configuration details the evaluation501

setup for the String Reversal task.502

In-distribution:503

• Each string is 1-10 characters long504

• The character set is composed of at least 50505

unique characters506

Out-of-distribution: 507

• Each string is 11-50 characters long 508

• The character set is composed of at least 50 509

unique characters 510

E.5 Successor Task Evaluation Parameters 511

The following configuration details the evaluation 512

setup for the Successor task. 513

In-distribution: 514

• The starting number is between 1 and 90 515

• The length of the series is 2-4 numbers 516

Out-of-distribution: 517

• The starting number is between 100 and 900 518

• The length of the series is 5-6 numbers 519

E.6 Value Assignment Evaluation Parameters 520

The following configuration details the evaluation 521

setup for the Value Assignment task. 522

In-distribution: 523

• The number of unique tuples in the translation 524

table is 5 525

• The length of the string to be translated is 5 526

Out-of-distribution: 527

• The number of unique tuples in the translation 528

table is 10-50 529

• The length of the string to be translated is 530

10-20 531
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