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Abstract

The deployment of mixture-of-experts (MoE)
large language models (LLMs) presents signif-
icant challenges due to their high memory de-
mands. These challenges become even more
pronounced in multi-tenant environments, where
shared resources must accommodate multiple
models, limiting the effectiveness of conventional
virtualization techniques. This paper addresses
the problem of efficiently serving multiple fine-
tuned MoE-LLMs on a single GPU. We propose a
serving system that employs similarity-based ex-
pert consolidation to reduce the overall memory
footprint by sharing similar experts across mod-
els. To ensure output quality, we introduce run-
time partial reconfiguration, dynamically replac-
ing non-expert layers when processing requests
from different models. As a result, our approach
achieves competitive output quality while main-
taining throughput comparable to serving a sin-
gle model, and incurs only a negligible increase
in time-to-first-token (TTFT). Experiments on a
server with a single NVIDIA A100 GPU (80GB)
using Mixtral-8x7B models demonstrate an 85%
average reduction in turnaround time compared to
NVIDIA’s multi-instance GPU (MIG). Further-
more, experiments on Google’s Switch Trans-
former Base-8 model with up to four variants
demonstrate the scalability and resilience of our
approach in maintaining output quality compared
to other model merging baselines, highlighting its
effectiveness.
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1. Introduction

Incorporating the Mixture-of-Experts (MoE) concept (Ja-
cobs et al., 1991; Jordan & Jacobs, 1994) into transformer-
based large language models (LLMs) (He et al., 2024) has
enabled an expansion in model parameters, improving the
quality of generated outputs across various language tasks
(Shazeer et al., 2017; 2018; Fedus et al., 2022; Du et al.,
2022; Kim et al., 2021; Zuo et al., 2021; Lin et al., 2021a;
Rajbhandari et al., 2022). Rather than using a single block
(e.g., a feed-forward layer), MoE-based models employ a
gating system and multiple parallel instances of the block
(known as experts) with identical structures. During the for-
ward pass calculation, based on the current input, the gating
system assigns weights to each expert, and one or more top
experts will be selected to produce the block’s output. This
allows the model to scale in size while imposing negligible
computation overhead (in the case of selecting only one
expert).

However, such scaling comes with its own drawbacks. MoE
LLMs have significantly higher memory footprints and do
not fit in most of the recently developed GPU memories.
For example, Google’s Switch Transformer (Fedus et al.,
2022) model has a total of 1.6 trillion parameters which
occupies 3.1 TB of memory (16 bits for each parameter).
Therefore, for deployment in constrained environments, the
model parameters should be partitioned between CPU and
GPU memories. Accordingly, in the calculation of forward
pass, repetitive host-to-device copy operations will be re-
quired which stall the inference pipeline and limit the overall
throughput of the system.

At the same time, an increasing number of private entities
are adopting customized MoE-based LLMs to meet their
specific needs and ensure the required output quality. These
LLMs are typically fine-tuned versions of a general-purpose
model, trained on specific datasets (Jiang et al., 2024) which
should be deployed in local settings for efficiency and cus-
tomization purposes. However, most of these entities lack
access to sufficient GPU memory to accommodate large
models, as they typically have only a limited number of
GPUs. This issue becomes even more challenging when
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multiple entities attempt to perform inference with their cus-
tomized models simultaneously in the described constrained
environment and must share resources.

Current research efforts to improve MoE inference effi-
ciency and performance focus on reducing the overall mem-
ory footprint (Lin et al., 2023; Xiao et al., 2023; Huang
et al., 2024; Eliseev & Mazur, 2023; Dettmers & Zettle-
moyer, 2023) and host-to-device communication overhead
(Kamabhori et al., 2024; Eliseev & Mazur, 2023; Xue et al.,
2024; Suvizi et al., 2024) of a single MoE model. Quanti-
zation and mixed precision approaches directly reduce the
memory footprint, which allow the server to fit more pa-
rameters in GPU memory. In another direction, previously
proposed expert caching mechanisms identify the most fre-
quently used experts and prioritize them for loading into
GPU memory. As a result, these approaches reduce the com-
munication overhead by increasing the probability of future
required experts being available on the GPU. However, these
approaches face considerable performance degradation in
the case of a system that supports the inference of multiple
MoEs.

Conventional virtualization and sharing techniques, such
as space and time sharing (El-Araby et al., 2009; Li et al.,
2011; Huang et al., 2010), are also inefficient for this class
of problem. Space-sharing approaches, like NVIDIA Multi-
Instance GPU (MIG) (Choquette et al., 2021), divide the
available GPU resources among the requesting users, which
amplifies the communication overhead. In contrast, in time
sharing approaches, requests for different models cause the
currently loaded model to be offloaded and another model
to be uploaded onto the GPU, a process that can take up to
two minutes.

In this paper, to optimize the performance and availability
of a multi-model inference system, we propose a serving
system which is expected to achieve a throughput compara-
ble to serving a single model. This feature will be supported
at the cost of a slight increase in time-to-first-token (TTFT)
and decrease in generated output quality. Although this
paper focuses specifically on fine-tuned LLMs with iden-
tical architectures and text generation tasks, the proposed
technique is applicable to MoEs with different sizes and
number of parameters. In summary, we make the following
contributions:

» Expert Loading on GPU via Similarity-Based Consol-
idation: We propose to find a middle point between
different fine-tuned models being served. Since experts
are the major contributor to the model’s large size, we
propose to find the most similar experts and load them
as common experts in a round-robin approach to reduce
the overall memory footprint.

* Runtime Partial Reconfiguration: Despite having a

lower number of parameters compared to experts, the
contribution of non-expert layers is paramount in the
forward pass calculation. Therefore, to serve requests
for a certain model, we instantly reconfigure the system
by only swapping the non-expert layers loaded on the
GPU with non-expert layers of the requested model.

* We implement and deploy our serving approach on a
system equipped with a single NVIDIA A100 GPU. To
evaluate the impact of our method on generated output
quality, we benchmark two model families—Mixtral-
8x7B and Google Switch Transformer Base-8, on tasks
such as language generation and instruction following.
We use a Poisson distribution with varying arrival rates
to assess the quality of service (QoS) provided by our
approach, and compare it against NVIDIA MIG as a
baseline.

2. System Overview and Problem Statement
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Figure 1. Diagram of an inference system with a single NVIDIA
A100 GPU.

The components of a single-GPU inference system are de-
picted in Figure 1. In this single-GPU system, the models
are originally stored in the hard disk. For every ML serving
application, the parameters must first be loaded into the
host’s main memory. If the inference is to be performed
on the accelerator, the model parameters will be transferred
from the host’s main memory to the GPU’s memory. After
the load is completed, the model will be ready for inference,
and for every new request, the inputs are copied to the GPU,
processed, and the results are written back to the CPU’s
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Figure 2. Expert-to-expert distance between Mixtral base and Instruct model: Despite being fine-tuned for different tasks, experts in the

same positions exhibit similarity.

main memory.

However, when handling an MoE LLM, the model does
not completely fit in the accelerator’s memory. Originally
proposed in (Eliseev & Mazur, 2023), offloading techniques
load the non-expert parameters of the model to GPU initially

and fill the remaining space with as many experts as possible.

When performing inference for a sparse MoE model, if the
required expert is not available on GPU’s memory, it must
be transferred from the CPU’s memory through the PCle
link, which stalls the inference process and slows the token
generation speed.

In this paper, we consider a single-GPU inference system
that has to support two or more MoE LLMs. For such
a problem, accelerator resources must be shared and the
conventional virtualization approaches are considered as
follows:

Time Sharing. For this approach, there will be a queue that
handles requests coming from the users. If the next request’s
requested model matches with the currently loaded model,
the inference will be performed. However, in the case of
miss-match, the entire model must be offloaded to the CPU’s
main memory, and the requested model must be uploaded
onto the GPU. Due to the large size of the discussed models
and based on our experiments, each model swap can take
up to 2 minutes, which introduces a considerable delay in
the inference process.

Space Sharing. For space-sharing, the resources on the
GPU should be split among the models we are trying to
serve. The A100 NVIDIA GPU consists of seven GPU
slices and starting with NVIDIA Ampere architecture each
slice is capable of operating independently. Each slice
comes with its own memory (DRAM and L2 slices), a
GPU Processing Cluster (GPC), and host-to-device link
bandwidth. On an A100, each GPC consists of 7 Texture
Processing Clusters (TPCs), and each TPC is comprised of

2 streaming multiprocessors (SMs). NVIDIA MIG (Cho-
quette et al., 2021) allows us to make different partitions
using different numbers of GPU slices. For example, in Fig-
ure 1, the system is partitioned into two equal GPU instances
which can simultaneously and independently support infer-
ence for two models.

3. Approach

3.1. Parameter Layout on GPU: A Consolidated Middle
Ground

In the described environment, the parameters of the MoE
model can be grouped into three categories: on-device non-
expert weights, on-device expert weights, and off-device
expert weights. The on-device expert weights constitute
the majority of the parameters loaded into GPU memory.
Accordingly, in this section, we present the algorithm that
generates a unified layout for the on-device expert weights,
which is used during the initial model load.

As shown in Figure 2, the expert-to-expert distances be-
tween a fine-tuned Instruct model and a base model are not
equal. In this context, we flatten the weights of an expert
block into a 1D tensor and define the distance as the L2
distance between experts from different models. As de-
picted, the distance between experts generally increases in
the deeper layers, which aligns with the experiments con-
ducted in (Shen et al., 2024). While the distances between
same expert positions are in the range of 3.6 to 4.9, expert-
to-expert distances with different layer and expert numbers
can vary from 150 to 250. This observation leads us to
propose using the experts interchangeably.

Therefore, to find the most similar experts and generate a
unified layout, we associate a degree of similarity to each
expert coordinate specified by layer and expert numbers. In
the case of having only two models for serving, the degree
of similarity for each location is the expert-to-expert dis-
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Algorithm 1 Initial Expert Loader

Algorithm 2 Inference Orchestrator

Input: List of models M, expert capacity C'
# Iterate over layers and experts
for (iL,iE) € {1,--- , L} x{1,--- ,E} do
# Iterate over all model pairs
for (i,j) € M x M do
distance[iL][iE] + distance[il][iE]+
| Mi].expert[iL][iE]—M]j].expert[iL][iE]|2
end for
end for
# Initialize counter for expert assignments
Initialize count + 0
# Assign experts based on sorted similarity
for (iL,iF) in sorted (distance) while count
< Cdo
count < count +1
idz + count mod |[M|
map(iL|[iE] + MJidz].id
Load M(idz].expert[iL][iE] to GPU
end for
# Load non-expert model weights
Set loadedModel to the first model id in M
Load non-expert weights of 1oadedModel to GPU

tance for a given (layer, expert) pair. However, for higher
number of models, the distance for each expert location is
computed as the sum of distances across all model-to-model
combinations.

Subsequently, each expert location will be ranked based
on the defined similarity measure, with the highest rank
indicating the greatest similarity, corresponding to the low-
est distance. To generate the initial loader’s expert map,
starting from the highest rank, each expert location will be
assigned to a specific fine-tuned model using a round-robin
approach. For instance, if we are serving two models, the
expert locations with odd ranks will be assigned to the first
model, while those with even ranks will be assigned to the
second model. Although the time spent generating this ex-
pert map can be substantial and depends on the number of
models, this process only needs to be performed once for
each combination prior to load time and can be done offline.

This approach sets the granularity of model merging at
the expert level and ensures that the loaded parameters are
equally representative of all the models being served. After
generating the expert map, the parameters should be loaded
to the GPU memory. Based on the available GPU memory
and the size of non-expert parameters, the total number of
experts that can fit on the GPU will be calculated. To start,
non-expert parameters of a randomly selected model from
our model list will be loaded to GPU’s memory. Follow-
ing this, the loader begins with the highest-ranked expert
locations, and transfers their corresponding parameters.

Input: prompt

targetModel

if targetModel is not loadedModel then
Load targetModel non-experts on GPU

end if

# Tokenize the input prompt and embed it into activations

prompt, requested model

repeat
act = tokenize and embed prompt.
# Process the token through all transformer layers

for iL =1to L do
# Apply the multi-headed attention
act =
layers[iL] .MultiheadAttention (act)
# Determine which expert to use
(iL,iF) =layers[iL] .gate (act)
ifmap[iL] [¢E£] is not on GPU then
# Load expert from CPU if not on GPU
Load targetModel.expert [¢L] [tF] to
GPU
act =
targetModel .expert [¢L] [¢F] (act)
else
# Use the preloaded expert
id=map [iL] [iF]
act = M[id] .expert [iL] [iF] (act)
end if
Apply Add & Norm and compute act of next
layer
end for
Predict next Token using act
Concatenate next Token to the end of prompt
until next Token is eos or required number of output
tokens generated

As summarized in Algorithm 1, the loader’s inputs are a list
of models being served and the total expert capacity. At the
beginning of the loading process, all the models’ weights are
stored on CPU’s main memory. By the end of the process, a
fraction of each model’s parameters is loaded onto the GPU,
collectively forming a unified model ready for inference.
Moreover, the generated map is a table that keeps track of
each expert and its corresponding model id which will route
each input in performing forward pass calculations.

3.2. Inference Orchestration

The loader, as explained in Algorithm 1, loads experts from
different models. While this approach significantly reduces
the memory footprint required to serve all the models, it may
decrease the quality of output generation for tasks specific
to each model variant.

The Mixtral model evaluated in this paper contains 1,605.64
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Figure 3. Inference process for each layer of the consolidated model: In the case of an expert hit, the inference is performed using the
already loaded expert, which may not necessarily belong to the requested model. However, in the case of a miss, the corresponding expert
is loaded from the host’s memory to preserve the quality of the generated output.

million non-expert parameters. It has 32 layers, each with
8 experts, and uses top-2 sparse routing. During each for-
ward pass, a total of 1,605.64 million non-expert parameters
and 32 x 2 x 176.16 million expert parameters (with each
expert contributing 176.16 million parameters) are actively
involved in computations. Consequently, the non-expert pa-
rameters contribute approximately 14.2% to the generated
output.

In contrast to experts, non-expert parameters are always
utilized in each forward pass, regardless of activations. Fur-
thermore, their total size is approximately 3 GB (2 bytes per
parameter). Based on the described system, it takes approxi-
mately a second to transfer all non-expert parameters of a
given model via the host-to-device PCle link. Therefore, for
each new request to the serving system, we propose swap-
ping the currently loaded non-expert parameters with those
of the target M odel, which are transferred to the GPU. Al-
though this process incurs a one-time cost per request and
increases the TTFT, it ultimately enhances the quality of the
generated output.

Accordingly, the inference orchestrator begins handling
each request by comparing the targetModel with the
loadedM odel. If they match, inference is performed imme-
diately. However, if they do not match, the target M odel
non-expert parameters are uploaded to the GPU, replacing
the currently loaded non-expert parameters before proceed-
ing with inference.

As summarized in Algorithm 2, during the inference phase,
each sequence undergoes tokenization and embedding pro-

cesses before arriving at the first layer of the model. Within
each layer, the activations are first processed by a multi-
headed attention layer and then passed to the gate network.
The gate network generates weighted averaging coefficients
for each expert, and in a sparse gating scenario, the top
experts are selected to produce the output of the layer.

As depicted in Figure 3, pairs of layer and expert numbers
((¢L,1E)) are generated, and the status of the requested
expert is retrieved from the expert map. If the expert is
already loaded on the GPU, the corresponding expert’s result
will be calculated, although it is not guaranteed to belong
to the targetModel. However, in the case of an expert
miss (dashed lines in Figure 3), a load request is sent to the
CPU’s main memory. Since all models are stored in the
CPU’s main memory, the requested expert will belong to
the target M odel, preventing further quality degradation.
Finally, after processing all layers, the activations generated
by the last layer pass through the language model head to
produce the output logits.

4. Evaluation Methodology

We evaluate our serving system using the Mixtral-8x7B-v0.1
and Google Switch Transformer Base-8 family of models.
The Mixtral model has 32 layers and 8 experts per layer
and comes in two variants. The Switch Transformer model
comes in four variants and has a total of 96 experts, which
are distributed equally across 12 layers (8 experts per layer).
Since in our design, both QoS and the application output
quality is affected, we evaluate the proposed system through
experiments that independently assess each aspect of its
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functionality.
4.1. Quality of Service

Since the Switch Transformer Base-8 model has a consider-
ably lower memory footprint (1.5 GB) compared to Mixtral
and does not constrain our environment, we use only the
Mixtral model family for this experiment. We evaluate our
proposed system in a scenario where requests arrive inde-
pendently for each model we support. We consider two
separate Poisson processes to generate requests for each
supported model. To demonstrate the system’s responsive-
ness and performance under varying loads, we evaluate the
system at different arrival rates (\). Each request to the
system is a prompt consisting of 20 tokens, with the number
of requested output tokens set to 25. To compare the QoS
of each approach, we measure the average TTFT, average
turnaround time, and the total number of processed requests
(throughput).

We implement our loader and orchestrator using the Py-
Torch (Paszke et al., 2019) framework. Our experiments
are conducted on a server with an AMD 16-Core MILAN
CPU and a single 80GB NVIDIA A100 GPU, connected
via a PCle Gen4 host-to-device interconnect, as outlined
in Section 2. QoS metrics are measured from PyTorch’s
perspective using Python’s time package. It is important to
note that other inference optimizations, such as Flash Atten-
tion (Dao et al., 2022), are complementary to the approach
presented in this paper and fall outside the scope of this
work. To evaluate the system’s performance, we focus on
single-batch requests, providing a controlled setting for our
experiments.

QoS Baselines. We compare our serving system against two
baselines. The first baseline represents a scenario in which a
single Mixtral model is served, but with an arrival rate that is
twice that of each Poisson process used to evaluate the pro-
posed approach. The second baseline involves partitioning
the GPU resources into two using NVIDIA MIG, with each
partition assigned to an independent process that handles
requests for the base and Instruct models, separately.

4.2. Application Quality

The designed serving system must provide access to multi-
ple models. Therefore, for the Mixtral model, we measure
the quality of the generated output using two specific fami-
lies of benchmarks corresponding to each model variant: the
base model and the Instruct model. During the evaluation of
each benchmark family, the non-expert layers of the model
are set to the respective model variant.

For the base model, we evaluate the quality of text genera-
tion using the WikiText2 (Merity et al., 2016), PTB (Marcus
et al., 1994), and C4 (Raffel et al., 2020) datasets. For
each dataset, we assess the models’ generated output by

measuring perplexity using 128 samples, with each sample
consisting of 2048 tokens.

To demonstrate the quality of output for instruct tasks, we
evaluate each model using the MT-Bench (Zheng et al.,
2023) benchmarks. MT-Bench is a benchmark specifically
designed for instruct models and includes 80 instructions
across 8 different categories. Each request prompts the
language model to generate an output, and requests may
include a follow-up instruction to refine the output and fur-
ther improve its quality. The quality of the responses is then
judged by the GPT-4 (Achiam et al., 2023) model, which
assigns each response a grade from 0 to 10.

Moreover, to demonstrate contextual understanding and
general effectiveness of each model variant, we assess their
performance using HellaSwag (Zellers et al., 2019), MMLU
(Hendrycks et al., 2020), and TruthfulQA (Lin et al., 2021b)
benchmarks. For MMLU and TruthfulQA, we use 5-shot
prompts, and for HellaSwag, we use 0-shot prompts. For
MMLU and HellaSwag, we evaluate each model with 1000
random samples, and for TruthfulQA, we evaluate them
with 812 samples.

Baselines. We compare the quality of the generated output
from the proposed consolidated model against the follow-
ing models: Mixtral-8x7B-v0.1-base, Mixtral-8x7B-vO0.1-
Instruct, and Mixtral-8x7B-v0.1-avg. The first two models
are official releases by Mistral-Al. However, proposed in
(Izmailov et al., 2018), the Mixtral-8x7B-v0.1-avg model
is generated by averaging the weights of the first two mod-
els. We include Mixtral-8x7B-v0.1-avg in the comparison
to evaluate the performance of the proposed model against
conventional model-merging approaches. It is important
to note that for benchmarks measuring perplexity, the non-
expert parameters in our approach are from the base model,
while for all other benchmarks, they are from the Instruct
model.

4.3. Scalability

To demonstrate the scalability and applicability of our ap-
proach to other model architectures with a higher num-
ber of fine-tuned variants, we also evaluate our approach
against the Averaging baseline (Izmailov et al., 2018) using
Google’s Switch Transformer Base-8 family of models. For
this experiment, we use the base model provided by Google
along with three other community-provided fine-tuned vari-
ants:

* Model A: emre/switch-base-8
—finetuned-samsum

* Model B: google/switch-base-8

* Model C: glamprou/switch-base-8-sst2

e Model D: glamprou/switch-base-8-mnli
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To evaluate how output quality is affected by the number of
merged models, we consider the following serving scenar-
ios:

e Serving models A & B

¢ Serving models A & B & C

e Serving models A & B & C & D

5. Results

5.1. Performance and Quality of Service

Figure 4 compares the throughput of each serving approach
across varying arrival rates. For NVIDIA MIG, the reported
throughput represents the combined throughput of two in-
dependent GPU instances. At lower arrival rates, all three
approaches exhibit low throughput, which is attributed to
system under-utilization, meaning they can handle all in-
coming requests within the experiment’s time window. As
the arrival rate increases, throughput improves until reach-
ing distinct ridge points for each approach. For both the
proposed system and the single-model serving approach,
the ridge point occurs at A = 0.060, while for NVIDIA
MIG, it is observed at A = 0.040. This indicates that the
proposed system and the single-model approach have higher
capacities and can continue handling more requests at higher
arrival rates, whereas NVIDIA MIG’s performance plateaus
earlier.

Table 2 illustrates the average TTFT and turnaround times.
Single-model serving and the proposed system achieve sig-
nificantly lower TTFT (a maximum of 5.86 seconds) and
turnaround times (a maximum of 49.67 seconds) compared
to NVIDIA MIG, which supports the results depicted in
Figure 4. As demonstrated, each NVIDIA MIG instance
takes an average of 49 seconds to complete a request.

Moreover, comparing the proposed system against the
single-serving approach highlights the overhead of non-
expert runtime reconfiguration. As shown in the TTFT sec-
tion of Table 2, our approach introduces a delay of approxi-
mately half a second on average. However, the actual mea-
sured latency for swapping non-experts is approximately 1.2
seconds, which does not occur for consecutive requests tar-
geting the same targetModel. It is also important to note
that the numbers reported in this subsection are specific to
the requests defined earlier and may vary for prompts with
different lengths and requested numbers of output tokens.

To provide deeper insights into the performance of each
approach, the inference latency for each model layer is
presented in Table 1. As mentioned in (Austin et al., 2025),
during the generation phase of a transformer-based LLM,
the attention kernel is memory-bound. This is because the
results of prior computations, stored in the KV cache, must

Table 1. Latency (milliseconds) of a layer for different hit rates
(out of 2 experts).

. Hit Rate
Attention
Oexpert 1expert 2 experts
Single/
0.72 56.8 29.2 1.2
Proposed
NVIDIA MIG 0.78 104.3 54.1 1.7

Table 2. Average TTFT and turnaround time (seconds) for the pro-
posed and compared serving approaches.

TTFT Turnaround Time
Single 0.89 8.34
Proposed 1.41 8.78
NVIDIA MIG 5.86 49.67

be copied from the GPU’s GMEM to SMEM. Consequently,
each GPU instance in NVIDIA MIG has sufficient compute
resources, and we do not observe a significant increase in
the latency of the attention layer (0.72 — 0.78).

However, the expert block is compute-bound (Austin et al.,
2025). Therefore, when both required experts are avail-
able in GMEM, the latency increase is more noticeable
(1.2 — 1.7). On the other hand, when the hit rate decreases
for the expert block, an overhead (27.8 ms for each expert)
is introduced due to copying experts from the CPU’s DRAM
to the GPU’s GMEM via the PCle link. In our approach,
when serving a single model, the full bandwidth of the PCle
link is available to the process. However, using NVIDIA
MIG with two GPU instances splits the available PCle band-
width between them, nearly doubling the imposed overhead
(51.3 ms for each expert).

5.2. Quality of Generated Output

Table 3 presents a comparative analysis of the generated out-
put quality across various models, evaluating perplexity on
the WikiText, C4, and PTB datasets, as well as performance
metrics on MT-Bench, MMLU, HellaSwag, and Truthful QA
benchmarks. Lower perplexity scores indicate better lan-
guage modeling capabilities, while higher scores indicate
improved performance on the remaining tasks. While the
base model serves as the optimal baseline for text generation,
the proposed approach outperforms the averaged model and
achieves lower perplexity across all datasets, except for PTB,
which has been observed to show irregular performance im-
provements even at higher levels of quantization (Eliseev &
Mazur, 2023).

On MT-Bench, the proposed model outperforms others with
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Figure 4. The throughput of each serving approach is measured in completed requests per minute. Since NVIDIA MIG utilizes two
independent processes to handle requests for different models, the arrival rate for each instance is half of the value shown on the x-axis, and
the reported throughput is the sum of the throughput for both instances. The reported values represent the average over five independent

runs.

Table 3. The quality of the generated output, evaluated across different task families, including language generation (Perplexity), instruction
following (MT-Bench), and general-purpose multiple-choice questions.

Model WikiText| C4| PTB| MT-Bench (out of 10) 1 MMLU 1 HellaSwag 1  Truthful QA 1
(Perplexity) IstTurn  2nd Turn  Avg (5-shot) (0-shot) (5-shot)
base 3.81 724 1359 3.01 2.16 2.60 70.0% 81.1% 66.6%
Instruct 4.12 7.62  14.60 8.28 7.98 8.13 71.2% 83.0% 73.6%
Avg 3.89 738 1344 8.38 7.61 7.99 72.2% 82.0% 73.0%
Proposed 3.85 733 13.90 8.33 7.98 8.16 71.7% 82.2% 70.6%

an average score of 8.16, closely aligning with the high-
quality outputs of the Instruct model. Notably, although the
averaged model demonstrates superior performance in the
first turn, its quality drops significantly when responding to
the follow-up refinement prompt and exhibits high variance.

Additionally, the proposed system achieves competitive re-
sults on MMLU (71.7%), HellaSwag (82.2%), and Truth-
fulQA (70.6%) which demonstrates a balanced performance.
These results highlight the ability of the proposed system
to maintain high output quality at other general-purpose
benchmarks.

5.3. Scalability

Presented in Figure 5, we report the ROUGE-1 scores
(an N-gram based summarization evaluation metric) for
a summarization task on the SAMSum dataset (Gliwa
et al., 2019), which Model A is specifically finetuned
for. As shown, increasing the number of merged mod-
els significantly degrades output quality for the Aver-
aging baseline, with ROUGE-1 scores dropping from

0.49 — 0.42 — 0.33 — 0.25. However, our approach
demonstrates greater resilience, maintaining higher out-
put quality even with more variants, with scores of
0.49 — 0.49 — 0.46 — 0.46. For more detailed results, in-
cluding ROUGE-2, ROUGE-L, and ROUGE-Lsum—which
follow a similar trend—refer to Table 4 in Appendix A.

6. Related Work

Reducing the overhead of the host-to-device link is crucial
for efficiently serving MoE models in constrained environ-
ments and efficient expert scheduling. Therefore, model
compression techniques such as pruning, and quantization
(Lin et al., 2023; Huang et al., 2024; Eliseev & Mazur,
2023; Imani et al., 2024; Dettmers & Zettlemoyer, 2023;
Xiao et al., 2023) have been utilized extensively (Liu et al.,
2024) to speed up the inference process.

Model Pruning Expert pruning in MoE models aims to
reduce the number of parameters while maintaining model
accuracy. This process is typically categorized into struc-
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Figure 5. ROUGE-1 scores (higher is better) on SAMSum dataset for individual models and their combinations, comparing the proposed
approach against the averaging baseline. Model layouts are illustrated beneath each bar. In our approach, a portion of the expert parameters
(squares) and all non-expert parameters (rectangles) are retained from the model specifically trained for the benchmark (Model A, shown
in blue). In contrast, the averaging approach modifies all parameters by averaging across the merged models.

tured and unstructured pruning. Structured pruning methods
focus on reducing the number of experts, with some ap-
proaches directly removing unimportant experts and others
merging them. Importance of an expert can be defined us-
ing different metrics. For example, approaches proposed in
(Chen et al., 2022; Muzio et al., 2024; Park, 2024) identify
the unimportant experts based on frequency and scarcity
and prune non-essential experts while fine-tuning important
ones for target tasks. Moreover, similar to our approach,
authors in (Chowdhury et al., 2024; Yang et al., 2024a) pro-
pose to prune the experts of a fine-tuned model that have
lower L2 distances from the base model. However, these
approaches focus on performance of a single model and do
not consider a multi-model multi-task system.

Multi-Task Model Merging Model merging integrates
multiple models into a single model by performing weight
interpolation at the parameter level, serving as an efficient
alternative (Singh & Jaggi, 2020; Yang et al., 2024b; 2023).
Existing model merging methods include weighted merging
(Matena & Raffel, 2022; Wortsman et al., 2022; Jin et al.,
2022), which assigns varying importance to different mod-
els, and subspace merging (Du et al., 2024; Suvizi et al.,
2025; Yadav et al., 2023), which eliminates unimportant
neurons to reduce task interference. However, these ap-
proaches use static merging strategies, limiting adaptability.
Moreover, techniques such as activation matching, and per-
mutation invariance help minimize discrepancies. Although
these approaches demonstrate improved performance on
considerably smaller models, their applicability for larger
MoE architectures remains unexplored. Additionally, un-
like previous methods that rely solely on static merging,

our approach enhances both efficiency and effectiveness by
integrating dynamic runtime reconfigurability with static
merging.

7. Conclusion

In this paper, we presented an efficient serving system
designed to address the challenges of deploying multi-
ple fine-tuned MoE-based LLMs in single-GPU resource-
constrained settings. By leveraging similarity-based consol-
idation, our approach reduced the overall memory footprint
by sharing similar experts across models. Additionally,
runtime partial reconfiguration allowed non-expert layers
to be dynamically swapped, maintaining competitive out-
put quality. Our evaluation, conducted on a server with
a single NVIDIA A100 GPU, demonstrated the system’s
ability to significantly reduce turnaround time compared to
conventional virtualization approaches like NVIDIA MIG,
resulting in comparable throughput to single-model serving
with only a minimal increase in TTFT. The results also high-
lighted that our approach maintained high output quality,
as evidenced by strong performance across various bench-
marks.
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A. Complete Results of SAMSum Dataset

Table 4 presents the detailed results for the summarization task on SAMSum dataset. As demonstrated, all metrics—including
ROUGE-2, ROUGE-L, and ROUGE-Lsum—follow a similar trend, highlighting the greater resilience of our approach as
the number of served models increases.

Table 4. ROUGE scores (higher is better) on SAMSum dataset for individual models and their combinations.

Model ROUGE-1 ROUGE-2 ROUGE-L ROUGE-Lsum
Model A 0.493 0.250 0.409 0.409
Model B 0.148 0.026 0.128 0.128
Model C 0.052 0.004 0.046 0.046
Model D 0.040 0.009 0.036 0.036

Avg (A, B) 0.422 0.201 0.344 0.344

Avg (A, B, 0) 0.333 0.132 0.277 0.277
Avg (A, B, C,D) 0.256 0.079 0.209 0.209
Proposed (A, B) 0.491 0.245 0.407 0.406
Proposed (A, B, C) 0.460 0.229 0.377 0.377
Proposed (A, B, C, D) 0.463 0.229 0.377 0.377
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