
Transformers over Directed Acyclic Graphs

Yuankai Luo
Beihang University

luoyk@buaa.edu.cn

Veronika Thost∗
MIT-IBM Watson AI Lab, IBM Research

veronika.thost@ibm.com

Lei Shi∗
Beihang University

leishi@buaa.edu.cn

Abstract

Transformer models have recently gained popularity in graph representation learn-
ing as they have the potential to learn complex relationships beyond the ones
captured by regular graph neural networks. The main research question is how to
inject the structural bias of graphs into the transformer architecture, and several
proposals have been made for undirected molecular graphs and, recently, also for
larger network graphs. In this paper, we study transformers over directed acyclic
graphs (DAGs) and propose architecture adaptations tailored to DAGs: (1) An
attention mechanism that is considerably more efficient than the regular quadratic
complexity of transformers and at the same time faithfully captures the DAG struc-
ture, and (2) a positional encoding of the DAG’s partial order, complementing the
former. We rigorously evaluate our approach over various types of tasks, ranging
from classifying source code graphs to nodes in citation networks, and show that
it is effective in two important aspects: in making graph transformers generally
outperform graph neural networks tailored to DAGs and in improving SOTA graph
transformer performance in terms of both quality and efficiency.

1 Introduction

Graph-structured data is ubiquitous in various disciplines [Gilmer et al., 2017, Zitnik et al., 2018,
Sanchez-Gonzalez et al., 2020] and hence graph representation learning has the potential to provide
huge impact. There are various types of graph neural networks (GNNs), the majority of which is
based on a so-called message-passing scheme where node representations are computed iteratively
by aggregating the embeddings of neighbor nodes [Gilmer et al., 2017]. Yet, this mechanism in its
basic form has limited expressivity [Xu et al., 2018] and research is focusing on extensions.

Transformer models have recently gained popularity in graph learning as they have the potential to
learn complex relationships beyond the ones captured by regular GNNs, in a different way [Dwivedi
and Bresson, 2020, Kreuzer et al., 2021]. Technically, they can be considered as graph neural
networks operating on fully-connected computational graphs, decoupled from the input graphs. The
main research question in this context is how to inject the structural bias of the given input graphs
(i.e., which nodes are actually connected) into the transformer architecture by adapting their attention
and positional encoding appropriately. Several promising proposals have been made to encode
undirected molecular graphs [Ying et al., 2021, Ross et al., 2022] and recent works take into account
the scalability challenge [Dwivedi et al., 2022], also over larger network graphs [Rampášek et al.,
2022, Chen et al., 2022b].

∗Corresponding author.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

Figure 1: Overview of our DAG attention. A mask matrix restricts the receptive �eld of the node under
consideration to nodes that are directly reachable in the DAG. Our positional encoding (right), additionally
captures its position as its depth in the DAG.

We focus ondirected acyclic graphs(DAGs), which are of special interest across various domains;
examples include parsing results of source code [Allamanis et al., 2018], logical formulas [Crouse
et al., 2019], and conversational emotion recognition [Shen et al., 2021], as well as probabilistic
graphical models and neural architectures [Zhang et al., 2018, 2019, Knyazev et al., 2021]. In a DAG,
the edges de�ne a partial order over the nodes. This partial order represents an additional strong
inductive bias, which offers itself to be integrated into the models.

In fact, various kinds of neural networks tailored to DAG structures have been proposed over the
years; from early descriptions of recursive neural networks over DAGs [Sperduti and Starita, 1997,
Frasconi et al., 1998], which have pointed out a similarity to sequence learning, to more recent
works, such as DAG-RNN [Shuai et al., 2016], DAG-LSTM [Crouse et al., 2019], D-VAE [Zhang
et al., 2019], and DAGNN [Thost and Chen, 2021]. The latter models focus on encoding the entire
DAG; in a nutshell, they compute the embedding in a message-passing fashion by iterating over the
DAG nodes in an asynchronous way, given by the partial order, and thereafter aggregating the �nal
node representations into one for the DAG. This procedure yields state-of-the-art performance in
terms of quality, but its asynchronous nature leads to comparatively (to regular GNNs) very slow
runtime performance. The more parallel computation of transformers would seem to make them
more suitable models and [Dong et al., 2022] have recently proposed one such model, PACE, which
shows convincing performance in terms of both quality and ef�ciency.

In this paper, we focus ontransformers over DAGsmore generally, motivated by the highly �exible,
parallel, and expressive nature of their computation. In particular, their success in sequence learning
opens up the question how they can be tailored to DAGs, which are essentially sequential graphs.
Based on the above-mentioned insights in DAG learning, we propose a straightforward and ef�cient
DAG attention framework , whicheffectively biases any transformer towards DAGs.

• As outlined in Figure 1, we (1) adapt the attention mechanism by restricting the receptive �eld of
each node to its predecessor and successor nodes so that it faithfullycaptures the DAG structure -
in terms of its reachability relation- and at the same time getsconsiderably more ef�cientthan the
regular quadratic complexity; and (2) employ the positional encoding in a complementary way, to
further bias the computation towards the DAG topology, by explicitlyencoding the node depth.

• We show that the attention is not restricted effectively, even if it seems so technically. Moreover,
we draw a connection to the random walk theory.

• We rigorously evaluate our proposal in ablation studies and show that it successfully improves
different kinds of baseline transformers, from vanilla transformers [Vaswani et al., 2017] to state-
of-the-art graph transformers [Wu et al., 2021, Chen et al., 2022a, Rampášek et al., 2022, Wu
et al., 2022], over various types of DAG data. Our experiments range from classifying source
code graphs to nodes in citation networks, and even go far beyond related works' problem scope.
Most importantly, our proposal is proveneffective in two important aspects: in making graph

2

transformers generally outperform graph neural networks tailored to DAGs and in improving SOTA
graph transformer performance in terms of both quality and ef�ciency.

• Finally, our DAG attention framework can be implemented in two possible and rather straightfor-
ward ways, either on top of existing transformer models, or based on message-passing GNNs. Our
implementation is available at https://github.com/LUOyk1999/DAGformer.

2 Background and Related Works

Directed Acyclic Graphs. We refer to agraphas tupleG = (V; E; X), with node setV , edge set
E � V � V , and node featuresX 2 Rn � d, with each row representing the feature vector of one node,
with number of nodesn and feature dimensiond, the features of nodev are denoted byxv 2 Rd.
A directed acyclic graph(DAG) is a directed graph without directed cycles. For a DAGG, we can
de�ne a uniquestrong partial order6 on the node setV , such that, for all pairs of nodesu; v 2 V ,
u 6 v if and only if there is a directed path fromu to v. We de�ne thereachability relation6 over a
DAG based on that partial order. That is,u 6 v if and only if v is reachable fromu; further, if u 6 v,
thenu is called apredecessorof v, andv is asuccessorof u. All nodes without predecessors are
sourcenodes, and all nodes without successors aresinknodes. We further de�ne a restricted form of
reachability6 K with u 6 k v if and only if there is a directed path of length at mostk from u to v.
Thedepthof a nodev 2 V is de�ned below. Thedepthof a DAG is the maximum depth over its
nodes.

depth(v) =

(
0 if v is a source node
1 + max

(u;v)2 E
depth(u) otherwise

Message-Passing Graph Neural Networks.Most moderngraph neural networks(GNNs) are or
can be formulated in terms of themessage-passing architecture, a framework proposed in [Gilmer
et al., 2017]. In that architecture, node representations are computed iteratively by aggregating the
embeddings of their neighbor nodes (i.e., the messages), and a �nal graph representation can be
obtained by aggregating the node embeddings. Yet, in its basic form, this mechanism has limited
expressivity [Xu et al., 2018] and graph neural networks remain an active research area. Notable
works we compare to include thegraph convolutional network (GCN) [Kipf and Welling, 2017],
a very early, basic architecture; thegraph attention network (GAT) [Veli �cković et al., 2018],
aggregating the neighbor node embeddings using attention; thegraph isomorphism network (GIN)
[Xu et al., 2018], which integrates extra MLP layers into message passing for increased expressivity;
and theprincipal neighbourhood aggregation (PNA)model [Corso et al., 2020], a recent proposal
focusing on adapting the aggregation mechanism to the node under consideration (e.g., scaling based
on its degree). For a broader overview of the �eld, we refer the reader to [Wu et al., 2020].

Transformers on Graphs. Transformer models [Vaswani et al., 2017] have gained popularity in
graph learning as they have the potential to learn complex relationships beyond the ones captured
by regular GNNs and in a different way. The architecture is composed of two main parts: aself-
attention moduleand a feed-forward neural network, each followed by a residual connection with
a normalization layer. Formally, the self-attention projects the input node featuresX using three
matricesWQ 2 Rd� dK , WK 2 Rd� dK andWV 2 Rd� dK to the corresponding representations for
query (Q), key (K), and value (V), and is described as follows :

Q = XW Q ; K = XW K ; V = XW V ;

Attention (X) = softmax

QK T

p
dK

!

V : (1)

Over graphs, we focus on computing node instead of token embeddings (recall Figure 1). Technically,
transformers can be considered as message-passing GNNs operating on fully-connected computational
graphs, decoupled from the input graphs. The main research question in the context of graphs is
how to inject the structural bias of the given input graphs by adapting their attention and by adding
extensions to the original features, via so-called positional encodings (PEs).Graph Transformer
[Dwivedi and Bresson, 2020] represents an early work using Laplacian eigenvectors as positional
encodings, and various extensions and other models have been proposed since then [Min et al.,
2022]. For instance, [Mialon et al., 2021] proposed a relative PE [Shaw et al., 2018] by means of
kernels on graphs to bias the self-attention calculation. Notably,GraphTrans [Wu et al., 2021]

3

was the �rst hybrid architecture, using a stack of message-passing GNN layers before the regular
transformer layers. Finally, [Chen et al., 2022a] have reformulated the self-attention mechanism as a
kernel smoother as shown below and incorporated structure information into theirstructure-aware
transformer (SAT) architecture by extracting a subgraph representation rooted at each node before
attention computation:

Attention (xv) =
X

u2 V

� (xv ; xu)
P

w2 V � (xv ; xw)
f (xu) ; 8v 2 V; (2)

with f (x) = W V x, and non-symmetric exp. kernel� :

� (x; x 0) = exp
�

h' (x)W Q ; ' (x0)W K i
p

dK

�
; ' (x) =

�
x in vanilla transformer
GNNG (x) in SAT

whereh�; �i is the dot product onRd and GNNG (x) is an arbitrary GNN model. Most of the
aforementioned works focus on the classi�cation of smaller graphs, such as molecules; yet, recently,
GraphGPS [Rampášek et al., 2022] is also considering larger graphs and the area is focusing on the
development of scalable models; for instance,Nodeformer [Wu et al., 2022] is designed to address
the issue of scalability and expressivity in node classi�cation. Altogether, the transformer architecture
opens new and promising avenues for graph representation learning, beyond message-passing GNNs.

Neural Networks over DAGs.The additional strong inductive bias present in DAGs has motivated
researchers to formulate special neural architectures tailored to this kind of graphs [Sperduti and
Starita, 1997, Frasconi et al., 1998]. Various types of models have been proposed over the years in
many different application areas. There are works in the context of syntactic graphs, [Tai et al., 2015,
Shuai et al., 2016] logical formulas [Crouse et al., 2019], source code representations [Allamanis
et al., 2018] and neural architectures [Zhang et al., 2018, 2019, Knyazev et al., 2021]. We particularly
compare to the most recent proposalsS-VAE andD-VAE [Zhang et al., 2019]; and toDAGNN from
[Thost and Chen, 2021], who also showed thatusing attention for neighbor node aggregation is
bene�cial in several DAG tasks.

While the models can be formulated in terms of the message-passing framework [Thost and Chen,
2021], their processing is special for GNNs: they compute a graph embedding by iterating over the
DAG nodesin an asynchronous way, given by the partial order, and starting from the source nodes
(or the other way around, from the sink nodes). That is, the messages are passed along the partial
order of the DAG and, at any point during computation, capture the information of the subgraph
consisting of all the predecessors of the node currently under consideration. Thereafter, a �nal graph
representations can be obtained by aggregating the embeddings of all sink nodes. In contrast to
regular message-passing GNNs, these customized works for DAGs usually focus on encoding graphs
(i.e., instead of nodes or edges, which are other common GNN targets) and pass messages over
the entire graph, while regular GNNs consider a �xed radius - usually rather small - around each
node and essentially obtain a neighborhood embedding. Furthermore, the nature of the proposed
architectures shows thatrecurrent techniqueshave proven especially useful,analogy to learning over
sequences. In summary, these DAG models are elegant and effective, yielding state-of-the-art results,
but their asynchronous nature leads to very slow and practically inhibitive performance compared to
regular GNNs.

Transformers over DAGs. We are aware of only few proposals for transformers tailored to DAGs.
[Huang et al., 2022] developed a Directed Acyclic Transfomer in the context of machine translation
in order to simultaneously capture multiple translations within the decoded DAG, but the model's
encoder is a vanilla transformer. [Kotnis et al., 2021] proposed BIQE, which leverages the depth of
nodes in DAG paths as positional encodings, with a speci�c focus on answering complex queries in
knowledge graphs. [Gagrani et al., 2022] proposed Topoformer, which is also an encoder-decoder
model but has been developed for �nding optimal topological orders in DAGs. Since the study entirely
focuses on the latter goal (e.g., in terms of training objective and evaluation) it is very speci�c and
different from our more general study. The DAG encoder itself is also rather different in that it uses a
Laplacian PE, as it is used with regular graph transformers; and a more complex attention mechanism,
which does not only model the reachability but also several other relations over the graph. Closest to
our method isPACE [Dong et al., 2022], which similarly focuses on modeling the sequential nature
of DAGs inside a transformer model and independently of a speci�c application in mind. However,
(1) it applies a rather complex, node-speci�c positional encoding, whereas our PE only distinguishes

4

node depth; (2) the attention is based on the directed transitive closure, while we use reachability
and show that this provides better quality; and (3) it's implemented using regular transformers, with
runtime complexityO(jV j2d), while we propose a much more ef�cient and scalable implementation
based on message passing. Altogether,our proposal is simpler and considerably more ef�cient. In
addition, we do not propose a single model but a framework which can be �exibly applied on top of
existing graph transformers and thus complement any custom, graph-speci�c transformer and adapt
it to DAGs.

3 Transformers for Directed Acyclic Graphs

Transformers have revolutionized deep learning, in particular sequence learning, and yield promising
performance over graphs. Furthermore, we posit that their bene�ts actually match well the above-
mentioned shortcomings of DAG neural networks. Therefore we developed a graph transformer
framework tailored to DAGs. See Figure 1 for an overview.

3.1 Attention based on DAG Reachability

In contrast to regular graphs, the partial order in DAGs creates particular relations between connected
nodes, in the sense that a given node's predecessors and successors are most likely more important to
it than other graph nodes. Note that this intuition is also captured in the processing of DAG neural
networks. Hence the reachability relation suggests itself to be exploited in our architecture. We apply
it to restrict the receptive �eld of nodes during attention to their predecessors and successors in the
graph. [Vaswani et al., 2017] already mentioned the possibility to use restricted attention in order
to reduce complexity and, indeed, our proposal does not only yield an architecture which is biased
towards the DAG structure, but additionally a considerably more ef�cient model.

While graphs to classify are usually of manageable size, graph learning in general may face much
larger ones. For this reason, we formulate our model in a more general way, based on a bounded
reachability relation, representing the receptive �eld of each node:Nk (v) = f (u; v) 2 6 k g [
f (v; u) 2 6 k g. We adapt Equation (2) for ourreachability-based attention (DAGRA):

Attention DAG (xv) =
X

u2 N k (v)

� (xv ; xu)
P

w2 N k (v) � (xv ; xw)
f (xu) ; 8v 2 V:

The numberk represents a hyperparameter and can be chosen according to the data. In our ablation
study (see Section 4),k = 1 yielded best performance consistently. Observe that this choice of
k = 1 is still very different from both regular GNNs, which usually considerably restrictk, and
regular transformers (Eq. 1), whose receptive �eld is not restricted at all (i.e., in terms of reachability).

3.2 Positional Encodings based on DAG Depth

As outlined in Section 2, positional encodings have been recognized as important and proven effective
for incorporating graph structure into transformers. Observe that the sequential nature of DAGs
makes them possess special position information, the depth of a node within the DAG. We propose to
include this knowledge in the form ofdirected acyclic graph positional encodings (DAGPE)as
follows, exactly as suggested for the original transformer architecture [Vaswani et al., 2017]:

PE(v;2i) = sin
� depth(v)

10000
2 i
d

�
; PE(v;2i +1) = cos

� depth(v)

10000
2 i
d

�
;

whered is the node feature dimension andi the index of the dimension under consideration.

DAG Attention. We obtain the following model, combining DAGRA and DAGPE, forv 2 V :

Attention (xv) =
X

u2 N k (v)

� (xv + PEv ; xu + PEu)
P

w2 N k (v)
� (xv + PEv ; xw + PEw)

f (xu) : (3)

Our attention incorporates both similarity of node features and of node depths. We argue that
these are the most critical aspects of DAGs and our evaluation will show their impact and general
effectiveness. In particular, note that most kinds of DAG data (e.g., citation networks) do not require
us distinguishing between predecessor or successor nodes of same depth.

5

3.3 Expressive Power of DAG Attention

Technically, we restrict the attention to reachable nodes and, in this way, obtain considerable ef�ciency
gains. Yet, our architecture is tailored to the special DAG structure, and we can show that this design
offers similar expressivity to regular transformers.

It is important to note that in our framework, all nodes directly communicate with at least one source
node (i.e., node without predecessors) by the DAG structure. This is speci�cally the case because we
do not restrict the radiusk of the receptive �eld, but considerk = 1 . Hence, 2 layers are always
enough to establish communication beyond any two nodes that have a common source node. Observe
that this is often the case in practice; especially in DAG classi�cation, many kinds of DAGs contain
only a single source node (e.g., ogbg-code2 Hu et al. [2020] and NA Zhang et al. [2019]).

For DAGs withm source nodes we need2m layers for full communication, if we assume the DAG
to be connected. In the latter case, every pair of source nodes has a common successor through
which communication can happen. Further, connectedness is a reasonable assumption, otherwise
communication is likely not needed in most scenarios.

3.4 Theoretical Intuition

We have shown that our architecture's bias emphasizes DAG relationships while re-directing the
remaining relationships in the regular transformer's full attention matrix though the source nodes.
This can also be shown to be in line with random walk theory, we draw a connection to PageRank
[Brin, 1998, Gasteiger et al.]. Speci�cally, we consider aPageRank variant that takes the root node
into account - personalized PageRank.We de�ne the root nodex via the teleport vectori x , which is
a one-hot indicator vector. The personalized PageRank can be obtained for nodex using the recurrent
equation� G (i x) = (1 � �)A rw � G (i x)+ �i x , with teleport (or restart) probability� 2 (0; 1]. Solving
this equation, we obtain:� G (i x) = � (I n � (1 � �)A rw) � 1i x , whereA rw = AD � 1, with A andD
being the adjacency and the degree matrix, respectively [Gasteiger et al.]. We invert the directions
of the edges inG to create a reverse DAG~G. We can show that, for every nodex, only nodesy
not reachable fromx (i.e.,y =2 N1 (x)) will satisfy that� G (i x)[y] + � ~G (i x)[y] (the y-th element of
� ~G (i x)) equals 0. The proof is provided in Appendix A. This means that for the random walk's limit
distribution, the probability of nodes that are not reachable fromx is 0.

3.5 Implementation

We describe two ways of implementing our model, especially DAGRA, based upon transformers and
message-passing GNNs, respectively.

Masked Attention for Transformers. As shown in Figure 1, we can implement DAG attention in a
very straightforward fashion using a mask that masks out node pairs based on the DAG reachability
relation as follows (compare to Equation(1)), with the attention maskM being de�ned as a symmetric
matrix over node pairs(v; u) 2 V � V .

Attention (X) = softmax

QK T

p
dK

+ M

!

V ; M (v; u) =
�

0 if u 2 Nk (v)
�1 otherwise:

While this masking represents a simple technique to extend and bias existing transformer models
to DAGs, the resulting architecture does not bene�t from the restricted node set to be considered,
leading to unnecessary, costly matrix operations during attention calculation. Moreover, it consumes
O(jV j2) of additional memory to storeM . Thus, the runtime complexity per layer is stillO(jV j2d)
for the vanilla transformer - and may be even higher, depending on the underlying transformer.

DAG Attention using Message Passing.Based on the formulation in Equation(3), we propose to
follow the message-passing scheme; that is, for a nodev, we computeNk (v) and only aggregate
messages from the nodes in that set to compute the DAG attention. For the latter aggregation, we can
use readily available frameworks, such as PyG [Fey and Lenssen, 2019]. We analyze the complexity
of this proposal.

6

Table 1: Statistics of the datasets we used.

ogbg-code2 NA Self-citation Cora Citeseer Pubmed

graphs 452,741 19,020 1,000 1 1 1
Avg # nodes 125.2 8.0 59.1 2,708 3,327 19717

Avg n1 9.78 7.00 4.30 20.88 5.33 60.56

3.6 Computational Complexity

Clearly, the time complexity of the proposed model is lower than that of the standard transformer.
We consider two computation steps:

Computing DAG Reachability. To obtainNk , we compute the transitive closure ofE for each node
in the graph using a breadth-�rst search starting at the node and iteratively expandingNk based on
E. Hence, the overall complexity of this step isO(jE jjV j). Observe that, during training, we can
consider this step as pre-processing since it only has to be run once, in the very beginning.

DAG Attention. The matrix productQK T of self-attention has a costO(jV j2d) which is quadratic
in the number of nodes inG, and hence especially critical for large graphs. Yet, for our DAG attention,
we only aggregate messages from reachable nodes. Therefore, the time complexity of reachability
relation attention isO(jV j � nk � d), wherenk is the average size ofNk . In the worst case, we
havenk = jV j � 1, but we assume thatnk << jV j in general. Especially for sparse graphs, the

complexity gets signi�cantly lower, i.e.,O(jV j � deg
k

� d), wheredegis the average node degree.

Finally, observe that directed rooted trees represent a special kind of DAGs broadly seen across
domains, such as abstract syntax trees of source code [Allamanis et al., 2018]. For them, the runtime
of DAG attention scales almost linearly, as illustrated in the following theorem.
Theorem 1. In a directed rooted treeT, the runtime of DAG attention isO(jV j � k � � + � d),
where� + is the maximal outdegree ofT. Whenk = 1 , the runtime of DAG attention isO(jV j �
depth(T) � � + � d).

The proof is provided in Appendix A. Note that when� + is small,d is a constant anddepth(T) is
O(log jV j), the runtime of DAG attention is almost linear injV j. Indeed, we observed this on the
ogbg-code2 dataset in our experiments.

4 Evaluation

We evaluate our proposed architecture on several datasets, comparing it to competitive baselines.
Ablation studies also provide more insight into the composition of our model. Primarily, the following
questions are investigated:

• DoesDAG attention have the expected effects andimproves existing graph transformersboth
in terms of quality and ef�ciency?

• Is DAG bias encoded through bothDAGRA & DAGPE , and how does DAGPE compare to others?
• How does thesize of the receptive �eld- the main difference between regular GNNs and trans-

formers - affect the performance?

4.1 Experiment Setting

Datasets.Table 1 shows the diversity of the datasets we used; see Appendix B for full details.

• ogbg-code2[Hu et al., 2020]. A large dataset of ASTs derived from Python methods. The node
features are syntax tokens. The multi-task classi�cation task is to predict the �rst 5 tokens of the
function name.

• NA [Zhang et al., 2019]. A dataset with much smaller graphs, containing neural architecture
DAGs generated by the ENAS software. Each node's features represent a certain neural network
component type. The (regression) task is to predict the architecture performance on CIFAR-10.

• Self-citation [ARC, 2021, Luo et al., 2023]. Each DAG in the academic self-citation represents a
scholar's academic self-citation network [ARC, 2021]. Each paper has two node attributes: the

7

Table 2:Code graph classi�cationon ogbg-code2. The
baseline results were taken from the OGB leaderboard.

Model Valid F1 (%) Test F1 (%) Time(epoch)

GIN 13.7� 0.2 14.9� 0.2 181s
GCN 14.0� 0.2 15.1� 0.2 127s

GIN-Virtual 14.4� 0.3 15.8� 0.2 155s
GCN-Virtual 14.6� 0.1 16.0� 0.2 198s

GAT 14.4� 0.2 15.7� 0.2 134s
PNA 14.5� 0.3 15.7� 0.3 427s

DAGNN 16.1� 0.4 17.5� 0.5 6018s
PACE 16.3� 0.3 17.8� 0.2 2410s

Transformer 15.5� 0.2 16.7� 0.2 1817s
DAG+Transformer 17.4 � 0.1 18.8� 0.2 591s

GraphTrans 16.6� 0.1 18.3� 0.2 1117s
DAG+GraphTrans 17.0 � 0.2 18.7� 0.2 526s

GraphGPS 17.4� 0.2 18.9� 0.2 1919s
DAG+GraphGPS 17.6� 0.1 19.3� 0.2 608s

SAT (SOTA) 17.7� 0.2 19.4� 0.3 2437s
DAG+SAT 18.5� 0.1 20.2� 0.2 681s

Table 3:Node classi�cationresults for the self-
citation dataset; AP (%) and ROC-AUC (%).

Model AP" ROC-AUC"

GIN 57.7� 1.8 79.7� 0.2
GCN 58.8� 0.4 79.9� 0.2

GIN-Virtual 57.4� 1.2 79.5� 0.4
GCN-Virtual 58.9� 0.2 80.0� 0.1

GAT 55.3� 3.7 77.9� 1.4
PNA 62.4� 0.7 81.0� 0.4

DAGNN 61.2� 0.6 81.0� 0.3
PACE 52.1� 1.8 75.9� 0.7

Transformer 56.8� 1.8 78.7� 0.3
DAG+Transformer 63.8 � 0.8 82.2� 0.5

GraphGPS 61.6� 2.6 81.3� 0.6
DAG+GraphGPS 63.5� 1.2 80.8� 0.5

SAT 59.8� 1.7 79.8� 0.7
DAG+SAT 62.7� 1.5 80.6� 0.7

NodeFormer 39.6� 0.6 69.4� 0.3
DAG+NodeFormer 64.9� 0.8 81.7� 0.8

publication year and total citation count (excluding the papers whose citation category is to be
inferred). Here we consider the node-level task of predicting whether a paper is highly-cited or not
- as a proxy for its impact.

• Cora, Citeseer, Pubmed[Sen et al., 2008]. Established, medium-sized citation graphs. Only for
our method, we removed a small number of cyclic citation links to make them DAGs.

Baselines.We chose two basic message-passing GNNs,GCN andGIN; extensions of these models
using a virtual node connected to all other graph nodes; the graph attention networkGAT, as it
showed especially good performance in [Thost and Chen, 2021];MixHop [Abu-El-Haija et al.,
2019],LDS-GNN [Franceschi et al., 2019],IDGL [Chen et al., 2020] andPNA, as more recent
GNN proposals. In terms of transformer models, we considered vanillaTransformer (TF) , Graph
Transformer (GT) , GraphTrans, SAT, GraphGPS andNodeFormer which achieved state-of-the-
art performance (SOTA). Lastly, we consider neural networks tailored to DAGs:S-VAE, D-VAE,
DAGNN and the current SOTA,PACE. For more detailed descriptions, see Section 2.

DAG+ Models. We implemented our DAG attention on top of vanilla Transformer, GraphTrans, SAT,
GraphGPS and NodeFormer only (1) modifying their self-attention module by restricting attention in
terms of reachability and (2) using DAGPE instead of the original one. We note that there are various
alternatives for the latter (e.g., concatenation etc.), therefore we opted for the most simple solution
which, at the same time, provides a very direct comparison. Moreover, on ogbg-code2 we did not use
any PE since [Chen et al., 2022a] showed that they do not make real impact and we observed the
same in preliminary experiments. For fair comparisons, we use the same hyperparameters (including
the number of layers, batch size, hidden dimension etc.) and readout as baseline transformers. Given
one of the baseline transformers M, we denote the modi�ed model using DAG attention byDAG+M .
Unless explicitly speci�ed otherwise, we chosek = 1 in all experiments. Full details on the
experimental setup and hyperparameters are provided in the Appendix B.

4.2 Results and Discussion

Overall Performance, Tables 2, 3, 4 and 5.First, observe that the results are very consistent,
although the datasets differ greatly in size, DAG sizes, DAG shape (e.g., in ogbg-code2 we have
trees), and nature of data (e.g., node features). The message-passing GNNs represent standardized
baselines but do not reach the performance of networks tailored to DAGs, such as DAGNN. Note that
the latter is however comparatively bad on the node-level task. This can be explained by its processing.
It computes node representations in the order of the partial order, and hence the representations of
nodes in the beginning of the order contain only few information about the entire graph. Intuitively,
transformers should be able to capture this information, but the transformers we tested do neither
perform better, not even the ones tailored to graphs. This shows that they are missing information
captured by those message-passing neural networks that were tailored to DAGs. The results clearly
show that our DAG attention is successful in providing good improvements, over the best graph

8

Table 4: Node classi�cation accuracy(%).The baseline
results were taken from [Wu et al., 2022].

Model Cora Citeseer Pubmed

GCN 87.06� 0.34 75.75� 0.37 88.16� 0.14
GAT 86.85� 0.30 75.92� 0.26 86.90� 0.22

MixHop 87.59� 0.52 73.64� 0.73 89.32� 0.25
IDGL 87.88� 0.34 74.32� 0.51 89.22� 0.14

LDS-GNN 87.82� 0.62 75.22� 0.23 OOM
PACE 79.47� 0.63 73.65� 1.23 OOM

Transformer 75.92� 0.86 72.23� 1.06 OOM
DAG+Transformer 87.80 � 0.53 74.42� 0.22 89.01� 0.13

SAT 75.18� 0.62 74.88� 0.73 OOM
DAG+SAT 87.48� 0.37 76.64� 0.26 89.17� 0.15

NodeFormer 88.80� 0.26 76.33� 0.59 89.32� 0.25
DAG+NodeFormer 90.49� 0.17 78.24� 0.33 89.44� 0.24

Table 5:Regression.Predictive performance of
latent representations over NA.

Model RMSE# Pearson's r"

GCN 0.482� 0.003 0.871� 0.001
S-VAE 0.521� 0.002 0.847� 0.001
D-VAE 0.375� 0.003 0.924� 0.001
DAGNN 0.264� 0.004 0.964� 0.001
PACE 0.254� 0.002 0.964� 0.001

Transformer 0.285� 0.004 0.957� 0.001
GT 0.275� 0.003 0.961� 0.001

DAG+Transformer 0.253 � 0.002 0.966� 0.001

GraphGPS 0.306� 0.004 0.950� 0.001
DAG+GraphGPS 0.267� 0.005 0.964� 0.001

SAT 0.298� 0.003 0.952� 0.001
DAG+SAT 0.262� 0.004 0.964� 0.001

Table 6: Ablation results.

Ablation ogbg-code2 NA Self-citation
Valid F1 Test F1 RMSE# Pearson's r" AP " ROC-AUC"

DAG+TF 0.1731� 0.0014 0.1895� 0.0014 0.253� 0.002 0.966� 0.001 0.638� 0.008 0.822� 0.005
(-) DAGRA 0.1546� 0.0018 0.1670� 0.0015 0.284� 0.003 0.957� 0.001 0.573� 0.011 0.790� 0.003
(-) DAGPE 0.1739� 0.0013 0.1879� 0.0015 0.263� 0.002 0.963� 0.001 0.594� 0.028 0.782� 0.018
(+) RWPE - - 0.267� 0.003 0.962� 0.001 0.628� 0.014 0.819� 0.010
(+) LapPE - - 0.271� 0.002 0.961� 0.001 0.609� 0.017 0.786� 0.015
(+) SPD Ying et al. [2021] 0.1749� 0.0011 0.1881� 0.0017 - - 0.639� 0.006 0.823� 0.004
(+) Edge Direction 0.1751� 0.0018 0.1870� 0.0021 - - 0.636� 0.015 0.817� 0.005
TF 0.1546� 0.0018 0.1670� 0.0015 0.285� 0.004 0.957� 0.001 0.568� 0.018 0.787� 0.003

DAG+SAT 0.1821� 0.0013 0.1982� 0.0010 0.262� 0.004 0.964� 0.001 0.627� 0.015 0.806� 0.007
(-) DAGRA 0.1773� 0.0023 0.1937� 0.0028 0.292� 0.003 0.954� 0.001 0.598� 0.031 0.800� 0.012
(-) DAGPE 0.1846� 0.0010 0.2018� 0.0021 0.282� 0.002 0.958� 0.001 0.623� 0.014 0.806� 0.005
(+) SPD Ying et al. [2021] 0.1851� 0.0008 0.1991� 0.0018 - - 0.627� 0.016 0.810� 0.006
(+) Edge Direction 0.1839� 0.0014 0.1978� 0.0028 - - 0.623� 0.013 0.804� 0.007
SAT 0.1773� 0.0023 0.1937� 0.0028 0.298� 0.003 0.952� 0.001 0.598� 0.017 0.798� 0.007

transformer SAT and even better ones over vanilla Transformer. On ogbg-code2, the improvement
is smaller for GraphTrans and SAT. However, this benchmark task is heavily dependent on other
features (e.g., language understanding) and hence presents a special challenge; in this regard, the NA
and self-citation datasets contain “cleaner” graphs. It is interesting to see that our framework lifts
the transformers from below the level of DAGNN to above, in terms of all metrics, over these two
datasets. Lastly, we observe that the PACE transformer tailored to DAGs is similarly outperformed
by our simpler, but more effective technique. Nevertheless, the overall conclusion holds in general:
Over all datasets, our DAG attention makes the transformers outperform (1) the original transformers
and (2) the neural networks tailored to DAGs. This shows that the DAG-speci�c bias provided by
DAG attention is the right bias. We investigated this in more detail in our ablation experiments.

Ablation Study, Table 6. Recall that our DAG attention is composed of the reachability-based
attention (DAGRA) and DAGPE modules. To justify this design, (1) our ablation studies removing
DAGRA and DAGPE individually con�rm the impact of both modules; (2) we also experimented
with replacing DAGPE with LapPE [Dwivedi and Bresson, 2020] and the random-walk-based RWPE
[Dwivedi et al., 2021] to show that the DAG-speci�c nature of our PE is of advantage; (3) we experi-
mented with adding attention bias which captures the graph structure more directly (e.g., shortest-path
Ying et al. [2021] and edge directionality), although they are implicit in DAGPE; interestingly, the
more direct representation does not make a noticeable difference. For ease of comparison and inter-
pretation (i.e., in terms of magnitude), we also provide the baseline transformer results. Overall, it
can be observed that our DAG attention yields highly consistent performance improvements, although
occasionally the advantage is less pronounced. This shows that our architecture design provides the
right bias on top of (graph) transformers, which makes the improved models better �t for DAGs.

Impact of Size of Receptive FieldNk .
(1) Averagen1 , Table 1. Compared to the often only two to three hops considered in message-
passing GNNs, ourk = 1 might seem unrealistic. However, as we show in the table, for two of our
three and very different datasets, we have thatn1 is much smaller than the worst case sizejV j. NA

9

	Introduction
	Background and Related Works
	Transformers for Directed Acyclic Graphs
	Attention based on DAG Reachability
	Positional Encodings based on DAG Depth
	Expressive Power of DAG Attention
	Theoretical Intuition
	Implementation
	Computational Complexity

	Evaluation
	Experiment Setting
	Results and Discussion

	Conclusions
	Proofs
	Experimental Details
	Computing Environment
	Dataset Details
	Hyperparameters and Reproducibility

	Model Visualization
	Additional Results
	Semi-supervised Node Classification
	MalNet-Tiny

	Further Related Works

