

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 ENHANCING LEARNING WITH NOISY LABELS VIA ROCKAFELLIAN RELAXATION

Anonymous authors

Paper under double-blind review

ABSTRACT

Labeling errors in datasets are common, arising in a variety of contexts, such as human labeling and weak labeling. Although neural networks (NNs) can tolerate modest amounts of these errors, their performance degrades substantially once the label error rate exceeds a certain threshold. We propose the Rockafellian Relaxation Method (RRM) – an architecture-independent, loss reweighting approach to enhance the capacity of neural network methods to accommodate noisy labeled data. More precisely, it functions as a wrapper, modifying any methodology’s training loss - particularly, the supervised component. Experiments indicate RRM can provide an increase to accuracy across classification tasks in computer vision and natural language processing (sentiment analysis). This observed potential for increase holds irrespective of dataset size, noise generation (synthetic/human), data domain, and adversarial perturbation.

1 INTRODUCTION

Labeling errors are systematic in practice, stemming from various sources. For example, the reliability of human-generated labels can be negatively impacted by incomplete information, or the subjectivity of the labeling task – as is commonly seen in medical contexts, in which experts can often disagree on matters such as the location of electrocardiogram signal boundaries Frenay & Verleysen (2014), prostate tumor region delineation, and tumor grading (Nir et al., 2018). As well, labeling systems, such as Mechanical Turk² often find expert labelers being replaced with unreliable non-experts (Snow et al., 2008). The impact of these errors on classification performance can be severe for machine learning approaches (Zhu & Wu, 2004), including, most notably, NNs (Krause et al., 2016; Zhang et al., 2017).

In this paper, we propose a loss-reweighting methodology for the task of training a classifier on datasets with labeling errors. More precisely, we provide a meta-algorithm that may “wrap” a loss-minimization methodology to enhance performance. The method relates to optimistic and robust distributional optimization formulations aimed at addressing adversarial training (AT), which underscores our numerical experiments on NNs that suggest this method of training can provide test performance robust to high levels of labeling error, and to some extent, feature perturbation as well. Overall, we tackle the prevalent challenge of label contamination in training data, which is a critical obstacle for deploying robust machine learning models. The approach utilizes Rockafellian Relaxations (Royston et al., 2023) in addressing contaminated labels without the need for clean validation sets or sophisticated hyper-parameters - common constraints of current methodologies. This distinct capability represents a key contribution, making our approach more practical for handling industrial datasets.

We discuss related works and our contributions in Section 2. In Section 3 we discuss our methodology and provide theoretical justifications. We conclude with numerical experiments/results in section 4.

2 RELATED WORK

In *loss adjustment* methods, individual training example losses are typically adjusted multiple times throughout the training process prior to NN updates. These methods can be further grouped into loss

²<http://mturk.com>

054 correction, loss reweighting, label refurbishment, and meta-learning (Song et al., 2020). Our approach
 055 has some resemblance to *loss reweighting* methods wherein each training example is assigned a
 056 unique weight, where smaller weights are assigned to examples that have likely been contaminated.
 057 For example, Ren et al. (2018); Shu et al. (2019) learn sample weights through the use of a noise-free
 058 validation set. Chang et al. (2017) assign sample weights based on prediction variances, and Zhang
 059 et al. (2021) examine the structural relationship among labels to assign sample weights. However, we
 060 view the need by these methods for a clean dataset, or at least one with sufficient class balance, as a
 061 shortcoming, and our method, in contrast, makes no assumption on the availability of such a dataset.

062 Recent state-of-the-art methods explore training-time interventions based on sample selection Wang
 063 et al. (2023), training dynamics, and hybrid semi-supervised methods. Xia et al. (2023) select
 064 high-discrepancy samples based on disagreement between multiple models. Kim et al. (2021)
 065 use feature-space neighborhood consistency to identify those likely to be informative/uncorrupted.
 066 Bai et al. (2021) analyze early stopping in noisy settings, arguing for patience-based mechanisms
 067 balancing memorization and underfitting. Nishi et al. (2021) use data augmentations for robustness
 068 and find that stronger augmentations, when paired with consistency objectives, significantly improve
 069 generalization in noisy-label regimes. ProMix (Xiao et al., 2023), DivideMix (Li et al., 2020) and CC
 070 (Zhao et al., 2022), treats noisy-label training as a semi-supervised learning problem, combining loss
 071 modeling with consistency regularization. Wang et al. (2022) propose scalable penalized regression to
 072 detect noise using sparsity-aware optimization, offering a fully unsupervised and efficient alternative
 073 to traditional clean-set-dependent approaches. While many of these methods achieve state-of-the-art,
 074 we show that some of their performances can be enhanced by using Rockafellian Relaxation during
 075 training.

076 There exist many other approaches to mitigate the effect of label noise (Song et al., 2020; Frenay
 077 & Verleysen, 2014), and can be categorized into: (1) robust architectures (Lee et al., 2019; Han
 078 et al., 2018; Goldberger & Ben-Reuven, 2017; Sukhbaatar et al., 2015; Chen & Gupta, 2015); (2)
 079 robust regularization (Shorten & Khoshgoftaar, 2019; Krogh & Hertz, 1991; Srivastava et al., 2014;
 080 Ioffe & Szegedy, 2015); and (3) robust loss functions. Robust loss functions including robust mean
 081 absolute error (MAE) (Ghosh et al., 2017), early learning regularization (ELR) (Liu et al., 2020), and
 082 generalized cross entropy (GCE) (Zhang & Sabuncu, 2018) are more robust than categorical cross
 083 entropy (CCE); however, our method is not dependent on a particular loss function, and it is possible
 084 that arbitrary loss functions, including robust MAE and ELR, can be wrapped by our method with
 085 ease.

086 3 METHODOLOGY

087 3.1 MISLABELING

088 Let \mathcal{X} denote a *feature* space, with \mathcal{Y} a corresponding *label* space. Then $\mathcal{Z} := \mathcal{X} \times \mathcal{Y}$ will be
 089 a collection of feature-label pairs, with an unknown probability distribution D . Throughout the
 090 forthcoming discussions, $\{(x_i, y_i)\}_{i=1}^N$ will denote a sample of N feature-label pairs, for which
 091 some pairs will be mislabeled. More precisely, we begin with a collection (x_i, \tilde{y}_i) drawn i.i.d. from
 092 D , but there is some unknown set $\mathcal{C} \subsetneq \{1, \dots, N\}$ denoting (contaminated) indices for which
 093 $y_i = \tilde{y}_i$ if and only if $i \notin \mathcal{C}$. For indices $i \in \mathcal{C}$, y_i is some incorrect label - the particular choice of
 094 noise/contamination matters not. Indeed, we experiment with human-generated, as well as uniform
 095 label noise in Section 4. We also consider non-uniform noise in Appendix Section D.

096 3.2 ROCKAFELLIAN RELAXATION METHOD (RRM)

097 Let there be given an NN architecture, for which when the parameter θ (to be optimized/learned) is
 098 set, takes as input any feature x and outputs a prediction \hat{y} . Towards optimizing the choice of θ , a
 099 prediction loss $J(\theta; x, y)$ is employed to evaluate the prediction \hat{y} with respect to y . More precisely,
 100 training typically (e.g., Li et al. (2020); Xiao et al. (2023); Zhao et al. (2022)) involves assembling,
 101 from (noisily) labeled data, a loss $\mathcal{L}(\theta)$ given by

$$102 \mathcal{L}(\theta) := \frac{1}{N} \sum_{i=1}^N J(\theta; x_i, y_i) + r(\theta), \quad (1)$$

108 where a regularization term $r(\theta)$ is added to, effectively, an expected loss in which each member i
 109 is drawn with probability $p_i = 1/N$. Without loss of generality, we will proceed by assuming that
 110 $r(\theta) = 0$; otherwise, any prediction loss $J(\theta; x, y)$ could be redefined as $J(\theta; x, y) + r(\theta)$.
 111

112 However, if we have noisily-labeled data, we might desire to remove those members that are affected;
 113 in other words, if $\mathcal{C} \subsetneq \{1, \dots, N\}$ is the set of contaminated observations, then we might desire instead
 114 to have $p_i = 0$ when $i \in \mathcal{C}$, and $p_i = \frac{1}{N-|\mathcal{C}|}$ otherwise. In this work, we consider modification of
 115 those methods that optimize a loss \mathcal{L} resembling equation 1, with the intention of aligning the p_i
 116 values closer to these desired (but unknown) p . We call this procedure the *Rockafellian Relaxation*
 117 *Method* (RRM), for its use of a Rockafellian Relaxation (Royset et al., 2023). More precisely, with
 118 $\Delta(N) \subseteq \mathbb{R}^N$ denoting the standard probability simplex, and p^N denoting the uniformly weighted
 119 (empirical) distribution $\{p_i^N\}_{i \in [N]} = \{1/N\}$, we consider the problem
 120

$$\min_{\theta} \underbrace{\min_{p \in \Delta(N)} \mathbb{E}_{(x,y) \sim p} [J(\theta; x, y)] + \gamma \cdot d_{TV}(p^N, p)}_{\parallel} \quad (2)$$

$$\mathcal{L}_{RRM}(\theta) := \min_{u \in U} \sum_{i=1}^N \left(\frac{1}{N} + u_i \right) \cdot J(\theta; x_i, y_i) + \frac{\gamma}{2} \|u\|_1,$$

123 where $U := \{u \in \mathbb{R}^N : \sum_{i=1}^N u_i = 0, \frac{1}{N} + u_i \geq 0 \quad \forall i = 1, \dots, N\}$, $\gamma > 0$, and $d_{TV}(p^N, p) :=$
 124 $\frac{1}{2} \sum_i |p_i^N - p_i|$.
 125

126 In words, given a method that optimizes some training loss \mathcal{L} , we can “wrap” this method with the
 127 RRM procedure by instead optimizing \mathcal{L}_{RRM} . In doing so, in addition to θ , we obtain via equation 2
 128 an alternative distribution p that may now replace the empirical, at the cost of γ per unit of *total*
 129 *variation*. Equivalently, any such alternative distribution is a loss-reweighting $u \in U$; indeed, any
 130 $u \in U$ yields a $p^u \in \Delta(N)$ via $p_i^u := 1/N + u_i$, so that $\frac{1}{2} \|u\|_1$ is the total variation distance between
 131 the empirical distribution and p^u .
 132

133 3.3 ANALYSIS AND INTERPRETATION OF ROCKAFELLIAN RELAXATION

134 Although problem (2) is nonconvex in general, it is amenable to a block coordinate descent approach
 135 that iteratively cycles between updating θ and u . Towards this, we begin by demonstrating that the
 136 computation of $\mathcal{L}_{RRM}(\theta)$ for any fixed θ , i.e., the inner-minimization (over $u \in U$) in equation 2,
 137 amounts to a tractable linear program. The following result characterizes the complete set of solutions
 138 to this linear program, and in doing so, provides an interpretation of the role that γ plays in the
 139 loss-reweighting action of RRM.
 140

141 **Theorem 3.1.** *Let $\gamma > 0$ and $\{c_i = J(\theta; x_i, y_i)\}_{i=1}^N$ for some θ , with $c_{min} := \min_i c_i$, and
 142 $c_{max} := \max_i c_i$. Write $I_{min} := \{i : c_i = c_{min}\}$, $I_{mid} := \{i : c_i \in (c_{min}, c_{min} + \gamma)\}$,
 143 $I_{big} := \{i : c_i = c_{min} + \gamma\}$, and for any $S_1 \subseteq I_{min}$, $S_2 \subseteq I_{big}$, define the polytope*

$$144 U_{S_1, S_2}^* := \left\{ u^* : \begin{array}{l} u_i^* \geq 0 \quad \forall i \in I_{min}, \quad u_i^* = 0 \quad \forall i \in S_1 \cup I_{mid}, \quad u_i^* \leq 0 \quad \forall i \in I_{big} \\ u_i^* = -\frac{1}{N} \quad \forall i \in S_2, \quad u_i^* = -\frac{1}{N} \quad \forall i : c_i > c_{min} + \gamma. \end{array} \right\}.$$

145 Then

$$146 \arg \min_{u \in U} \sum_{i=1}^N \left(\frac{1}{N} + u_i \right) \cdot c_i + \frac{\gamma}{2} \|u\|_1 = \text{conv} \left(\bigcup_{S_1, S_2} U_{S_1, S_2}^* \right). \quad (3)$$

147 The theorem explains that the construction of any optimal solution u^* essentially reduces to cat-
 148 egorizing each of the losses among $\{c_i = J(\theta; x_i, y_i)\}_{i=1}^N$ as “small” or “big”, according to their
 149 position in the partitioning of $[c_{min}, \infty) = [c_{min}, c_{min} + \gamma] \cup [c_{min} + \gamma, \infty)$. For losses that occur
 150 at the break points of c_{min} and $c_{min} + \gamma$, this classification can be arbitrary - hence, the use of S_1
 151 and S_2 set configurations to capture this degree of freedom. In particular, those points with losses c_i
 152 exceeding $c_{min} + \gamma$ are down-weighted to zero and effectively removed from the dataset. And in the
 153 event that $c_{max} - c_{min} < \gamma$, no loss reweighting occurs.
 154

155 Although Theorem 3.1 establishes that there are a plethora of valid loss-reweightings, one particular
 156 solution is intuitive, simple (efficient) to execute, and offers tunable control over the reweighting. It
 157 is obtained by setting $S_1 = S_2 = \emptyset$ in Theorem 3.1.
 158

162 **Corollary 3.1.1.** Let $\gamma > 0$ and θ be given, yielding losses $\{c_i = J(\theta; x_i, y_i)\}_{i=1}^N$. Define $\chi(\theta) :=$
 163 $\{i : c_i > c_{min} + \gamma\}$ and let $u^*(\theta)$ given by $\{u_i^*(\theta)\}_{i \in I_{min}} = \{\frac{|\chi(\theta)|}{N \cdot |I_{min}|}\}$, $\{u_i^*(\theta)\}_{i \in I_{mid} \cup I_{big}} = \{0\}$,
 164 and $u_i^*(\theta) = \frac{-1}{N}$ for all $i \in \chi(\theta)$. Then $u^*(\theta)$ solves the linear program $\mathcal{L}_{RRM}(\theta)$, equiv., the inner
 165 minimization of equation 2.

166 In words, given any θ , there is always an optimal reweighting (for problem $\mathcal{L}_{RRM}(\theta)$) in which
 167 $|\chi(\theta)|$ - many samples are removed from training; specifically, it transfers $\frac{|\chi(\theta)|}{N}$ probability mass
 168 away from the group of highest-cost examples and uniformly re-distributes among I_{min} . Further, as
 169 γ crucially determines $\chi(\theta)$, we see that by tuning γ we can control the fraction of samples that are
 170 pruned, a method that we expand upon in the forthcoming Section 3.5.1, and for which we executed
 171 in many experiments of Section 4.1.

172 If over the course of an iterative algorithmic scheme, e.g., Algorithm 1, $\chi(\theta)$ converges to some
 173 set, then this set is effectively removed even if the training of θ might proceed. The experiments of
 174 Section 4.2.2 (see Table 6) display such convergent behavior.

177 3.4 RRM AND OPTIMISTIC WASSERSTEIN DISTRIBUTIONALLY ROBUST OPTIMIZATION

178 In this section, we discuss RRM's relation to distributionally robust and optimistic optimization
 179 formulations. Indeed, (2)'s formulation as a min-min problem bears resemblance to optimistic formu-
 180 lations of recent works, e.g., Nguyen et al. (2019). We will see as well that the minimization in u , as
 181 considered in Theorem 3.1, relates to an approximation of a data-driven Wasserstein Distributionally
 182 Robust Optimization (DRO) formulation (Staib & Jegelka, 2017).

185 3.4.1 LOSS-REWEIGHTING VIA DATA-DRIVEN WASSERSTEIN FORMULATION

186 For this discussion, as it relates to reweighting, we will lift the feature-label space $\mathcal{Z} = \mathcal{X} \times \mathcal{Y}$.
 187 More precisely, we let $\mathcal{W} := \mathbb{R}_+$ denote a space of *weights*. Next, we say $\mathcal{W} \times \mathcal{Z}$ has an unknown
 188 probability distribution \mathcal{D} such that $\pi_{\mathcal{Z}} \mathcal{D} = D$ and $\Pi_{\mathcal{W}} \mathcal{D}(\{1\}) = 1$. In words, all possible (w.r.t.
 189 D) feature-label pairs have a weight of 1. Finally, we define an *auxiliary loss* $\ell : \mathcal{W} \times \mathcal{Z} \times \Theta$ by
 190 $\ell(w, z; \theta) := w \cdot J(x, y; \theta)$, for any $z = (x, y) \in \mathcal{Z}$.

191 Given a sample $\{(1, x_i, y_i)\}_{i=1}^N$, just as in Section 3.2, we can opt not to take as granted the resulting
 192 empirical distribution \mathcal{D}_N because of the possibility that $|\mathcal{C}|$ -many have incorrect labels (i.e., $y_i \neq \tilde{y}_i$).
 193 Instead, we will admit alternative distributions obtained by shifting the \mathcal{D}_N 's probability mass
 194 off "contaminated" tuples $(1, x_i, y_i)_{i \in \mathcal{C}}$ to possibly $(0, x_i, y_i)$, $(1, x_i, \tilde{y}_i)$, or even some other tuple
 195 $(1, x_j, \tilde{y}_j)$ with $j \notin \mathcal{C}$ for example - equivalently, eliminating, correcting, or replacing the sample,
 196 respectively. In order to admit such favorable corrections to \mathcal{D}_N , we can consider the optimistic
 197 (Nguyen et al., 2019; Staib & Jegelka, 2017) data-driven problem

$$199 \min_{\theta} \left(v_N(\theta) := \min_{\tilde{\mathcal{D}}: W_1(\mathcal{D}_N, \tilde{\mathcal{D}}) \leq \epsilon} \mathbb{E}_{\tilde{\mathcal{D}}} [\ell(w, z; \theta)] \right), \quad (4)$$

200 in which for each parameter tuning θ , $v_N(\theta)$ measures the expected auxiliary loss with respect to the
 201 most favorable distribution within an ϵ -prescribed W_1 (1-Wasserstein) distance of \mathcal{D}_N . It turns out
 202 that a budgeted deviation of the weights alone (and not the feature-label pairs) can approximate (up
 203 to an error diminishing in N) $v_N(\theta)$. More precisely, we derive the following approximation along
 204 similar lines to Staib & Jegelka (2017).

205 **Proposition 3.1.** Let $\epsilon > 0$, and suppose for any θ , $\max_{(x, y) \in \mathcal{Z}} |J(\theta; x, y)| < \infty$. Then there exists
 206 $\kappa \geq 0$ such that for any θ , the following problem

$$207 \begin{aligned} v_N^{MIX}(\theta) := & \min_{u_1, \dots, u_N} \sum_{i=1}^N \left(\frac{1}{N} + u_i \right) \cdot J(\theta; x_i, y_i) + \gamma_{\theta} \|u\|_1 \\ 208 & \text{s.t. } u_i + \frac{1}{N} \geq 0 \quad i = 1, \dots, N \end{aligned}$$

209 satisfies $v_N(\theta) + \frac{\kappa}{N} \geq v_N^{MIX}(\theta) \geq v_N(\theta)$. In particular, $-\gamma_{\theta} \leq \min_i J(\theta; x_i, y_i)$, and, for any u^*
 210 solving $v_N^{MIX}(\theta)$, it holds that $u_i^* = -\frac{1}{N}$ for i such that $J(\theta; x_i, y_i) > \gamma_{\theta}$.

216 In summary, while the optimistic Wasserstein formulation would permit correction to \mathcal{D}_N with a
 217 combination of reweighting and/or feature-label revision, the above indicates that a process focused
 218 on reweighting alone could accomplish a reasonable approximation; further, upon comparison to (2), we
 219 see that RRM is a constrained version of this approximating problem, that is,

$$\mathcal{L}_{RRM}(\theta) \geq v_N^{MIX}(\theta) \geq v_N(\theta).$$

222 Hence, RRM is optimistic but not as much as the data-driven Wasserstein approach.

224 3.5 A-RRM/RRM ALGORITHM

226 Towards solving problem (2) in the two decisions θ and u , we proceed iteratively with a block-
 227 coordinate descent heuristic outlined in Algorithm 1, whereby we update the two separately in
 228 cyclical fashion. In other words, we update θ while holding u fixed, and we update u whilst holding
 229 θ fixed. The update of θ is an SGD step on a batch of s -many samples. The update of u is a linear
 230 program, but can also be executed instantaneously via Corollary 3.1.1.

231 **Algorithm 1** (Adversarial) Rockafellian Relaxation Algorithm (A-RRM/RRM)

232 **Require:** Loss Function $J(\theta; x, y)$, training perturbation $\epsilon \in [0, 1]$, Number of epochs σ , Batch size
 233 $s \geq 1$, learning rate $\eta > 0$, threshold $\gamma > 0$, reweighting step $\mu \in (0, 1)$. (optional) contamination
 234 estimate $C' \in [0, 1]$.
 235 $u \leftarrow 0 \in \mathbb{R}^N$
 236 $Iter \leftarrow 0$
 237 **repeat**
 238 $Iter \leftarrow Iter + 1$
 239 $\theta \leftarrow \text{GradientSteps}(\sigma, s, \eta, \epsilon, \theta, u)$
 240 **if** C' provided **then**
 241 $\ell_{1-C'} \leftarrow \max\{\ell : \frac{|\{j:J(\theta; x_j^b, y_j^b) > \ell\}|}{N} \geq C'\}$
 242 $\gamma \leftarrow \ell_{1-C'} - \min_i J(\theta; x_i^b, y_i^b)$
 243 $\mu \leftarrow 1$
 244 **end if**
 245 $u \leftarrow \text{Re-weight}(\gamma, \mu)$
 246 **until** Desired Validation Accuracy or Loss, or $Iter$ is sufficiently large
 247 Return θ

248 **Algorithm 2** $\text{GradientSteps}(\sigma, s, \eta, \epsilon, \theta, u)$

249 **Require:** $\sigma \in \mathbb{Z}_{\geq 1}$, $s \in \mathbb{Z}_{\geq 1}$, $u \in U$, $\eta > 0$, $\epsilon \in [0, 1]$, θ
 250 **for** $e = 1, \dots, \sigma$ **do**
 251 **for** $b = 1, \dots, \lceil \frac{N}{s} \rceil$ **do**
 252 $\{(x_i^b, y_i^b)\}_{i=1}^s \leftarrow$ draw batch from $\{(x_i, y_i)\}_{i=1}^N$
 253 **for** $i = 1, \dots, s$ **do**
 254 $x_i^b \leftarrow x_i^b + \epsilon \cdot \text{sign}(\nabla_x J(\theta; (x_i^b, y_i^b)))$
 255 **end for**
 256 $\theta \leftarrow \theta - \eta \sum_{i=1}^s (\frac{1}{N} + u_i) \cdot \nabla_\theta J(\theta; (x_i^b, y_i^b))$
 257 **end for**
 258 **end for**
 259 Return θ

260 **Algorithm 3** $\text{Re-weight}(\gamma, \mu)$

261 **Require:** threshold $\gamma > 0$, re-weighting step $\mu \in (0, 1)$.
 262 $u^* \leftarrow \min_{u \in U} \sum_{i=1}^N (\frac{1}{N} + u_i) \cdot J(\theta; x_i, y_i) + \gamma \|u\|_1$
 263 Return $u \leftarrow \mu u^* + (1 - \mu)$

264 ¹A minimizer can be obtained via a linear program solver or explicitly via the solution of Corollary 3.1.1.

270 Apart from the learning rate η that is (industry) standard in gradient-based algorithms, Algorithm
 271 1 can be parameter-less; more precisely, the step-size μ and threshold γ parameters can in fact be
 272 auto-tuned, in a manner that follows from Corollary 3.1.1, so as to precisely control how many
 273 examples are pruned in each re-weighting step, as might be desired or guided by a contamination
 274 estimate C' .
 275

276 3.5.1 AUTO-TUNING: PRECISE SAMPLE PRUNING WITH A CONTAMINATION ESTIMATE C'

277 As outlined in Algorithm 1, if an estimate C' of the true contamination C is on hand, then by setting
 278 $\gamma = \ell_{1-C'} - \min_i J(\theta; x_i, y_i)$, where $\ell_{1-C'}$ is approximately the $(1 - C')$ -th quantile of the costs,
 279 or equivalently, $\max\{J(\theta; x_i, y_i) : \frac{\{j: J(\theta; x_j, y_j) > J(\theta; x_i, y_i)\}}{N} \geq C'\}$, then the fraction of observations
 280 $\frac{|x|}{N} = \frac{|\{i: J(\theta; x_i, y_i) > \gamma + \min_j J(\theta; x_j, y_j)\}|}{N}$ that the reweighting of Corollary 3.1.1 “prunes” is at least
 281 C' . Sections 4.1, 4.2.1 experiments implement this form of RRM, and we examine how RRM
 282 enhancement scales with the quality of the estimate C' in Appendix Section B experiments.
 283

284 3.5.2 RRM ($\epsilon = 0$) AND A-RRM ($\epsilon > 0$)

285 We will refer to Algorithm 1 as RRM or A-RRM, when $\epsilon = 0$ or $\epsilon > 0$, respectively. The only
 286 difference lies in the execution of (Algorithm 2’s) GradientSteps.
 287

288 When $\epsilon = 0$, GradientSteps simply executes σ iterations of SGD. But if $\epsilon > 0$, then
 289 GradientSteps additionally executes a Fast Gradient Sign Method (FGSM) (Goodfellow et al.,
 290 2015) adversarial attack, whereby each time a batch $(x_i^b, y_i^b)_{i=1}^s$ is drawn, every x_i^b is perturbed via
 291 $x_i^b + \epsilon \cdot \text{sign}(\nabla_x J(\theta, x_i^b, y_i^b))$. We note that other adversarial perturbation methods can be substituted
 292 in place of this choice of attack. Then a Stochastic gradient descent (SGD) step is taken.
 293

294 3.5.3 ON COMPLEXITY

295 Each iteration of Algorithm 1 is comprised of two different tasks: 1.) GradientSteps and 2.)
 296 Re-weight. Task 1’s gradient step calculations are entirely standard practice. Task 2 amounts
 297 to solving the polynomial-sized (in training data) linear program of equation 3, for which general
 298 theoretical efficiency is well-established and either a commercial solver (e.g. CPLEX 12.8.0) would
 299 suffice, or, even quicker, the solution of Corollary 3.1.1 could be derived with a single pass over
 300 the list of losses (see experiments of Sections 4.1, 4.2.1). We especially note that Re-weight is
 301 only executed after all the σ - many epochs of GradientSteps have concluded. In summary, the
 302 scaling of computation with larger datasets is not limiting in nature. We refer the reader to Section
 303 4.2.1 and Appendix Section C for experiments on MNIST-3 and CIFAR-10 with average computation
 304 times of Algorithm 3 (Re-weight) reported.
 305

306 4 EXPERIMENTS AND RESULTS

307 4.1 RRM ENHANCEMENT IN REAL-WORLD NOISE EXPERIMENTS

308 We experimented on the CIFAR-N (Wei et al., 2022), Clothing-1M (Xiao et al., 2015), and Food-
 309 101N (Lee et al., 2018) datasets which all exhibit real-world noise. Specifically, for each dataset, we
 310 identified a handful of top performing methods to wrap, and then compared the resulting performance
 311 against the leaderboard performers for that dataset.
 312

313 CIFAR-10N/100N furnishes CIFAR-10/100 with human-annotated, noisy labels from Amazon
 314 Mechanical Turk, and the top two performers for this dataset are ProMix and Divide-Mix. Clothing1M
 315 is a dataset composed of 1 million images scraped from online shopping websites, with labels derived
 316 from accompanying text, and the top two performers for this dataset are LRA-diffusion and CC.
 317 Food-101N consists of 310009 noisily-labeled training images collected from the web, and the top
 318 two performers for this dataset are LRA-diffusion and SURE.
 319

320 We chose to wrap ProMix, Divide-Mix, CC, and CCE to compare against the three leaderboards.
 321

322 ProMix, Divide-Mix, and CC all exhibit a training loss of the form $\mathcal{L}(\theta) := \mathcal{L}_X(\theta) + r(\theta)$, where
 323 $r(\theta) := \lambda_{\mathcal{U}} \mathcal{L}_{\mathcal{U}}(\theta) + \mathcal{L}_{\text{aux}}(\theta)$. In words, the loss combines a supervised component \mathcal{L}_X , a $(\lambda_{\mathcal{U}}$ -
 weighted) semi-supervised component $\lambda_{\mathcal{U}} \mathcal{L}_{\mathcal{U}}$, and some additional auxiliary loss \mathcal{L}_{aux} . In particular,

324 these methods use some procedure to select a subset X of labeled data for which to formulate an
 325 average loss of the form $\mathcal{L}_X(\theta) = \frac{1}{|X|} \sum_{i \in X} J(\theta; x_i, y_i)$ for some classification loss J . While these
 326 methods endeavor for X to be clean of noisy-labeled data, this cannot be guaranteed in practice.
 327

328 In the wrapping of these methods by RRM, we replace the training loss \mathcal{L} with equation 2's \mathcal{L}_{RRM} .
 329 We do so similarly for CCE with $r(\theta) = 0$. More precisely, after every σ gradient steps (see Algorithm
 330 2) for θ , we fix the current θ and execute a reweighting by solving for u (see Algorithm 3). For
 331 ProMix, Divide-Mix, and CC, $\sigma = 10$. For CCE, $\sigma = 1$. As for γ , this was set by employing
 332 Section 3.5.1's use of a conservative estimate C' of label error rate 0.5, 0.5, 0.4, and 0.2 for datasets
 333 CIFAR-10N, CIFAR-100N, Clothing1M, and Food101N, respectively.
 334

335 As for any hyperparameter of ProMix, Divide-Mix, or CC, in our experiments we simply re-used those
 336 reported in their respective papers' (Xiao et al., 2023; Li et al., 2020; Zhao et al., 2022) experimental
 337 setup.

338 **CIFAR-N Results:** Table 1 lists the top published accuracies for comparison, with asterisks marking
 339 state-of-the-art. On CIFAR-100N, we achieved state-of-the-art accuracy with both the wrappings of
 340 ProMix and Divide-Mix. On CIFAR-10N, wrapping enhanced Divide-Mix while ProMix's accuracy
 341 was virtually unaffected.

342 Table 1: CIFAR-N Test Accuracies.

Method\Dataset	CIFAR-10N (Worst)	CIFAR-100N (Noisy Fine)
ProMix (+ RRM)	96.34* (96.32)	73.79 (74.19*)
Divide-Mix (+ RRM)	92.56 \pm 0.42 (94.75** \pm 0.08)	71.13 \pm 0.48 (73.98** \pm 0.05)
SOP	93.24 \pm 0.21	67.87 \pm 0.23
ELR+	91.09 \pm 1.60	66.72 \pm 0.07
Co-Teaching+	83.26 \pm 0.17	57.88 \pm 0.24
GCE	80.66 \pm 0.35	56.73 \pm 0.30

351 **Clothing1M and Food-101N Results:** Tables 2 and 3 list the top published accuracies by methods on
 352 Clothing1M and Food-101N respectively for comparison, with asterisks marking state-of-the-art. On
 353 Clothing1M, we enhanced a top-performer in CC to perform virtually as well as the best performing
 354 LRA-diffusion method. We also examined to what extent conventional training with CCE loss, a
 355 common baseline, could be enhanced by RRM to accommodate noisy-labeling. Along these lines,
 356 upon wrapping CCE, we found that it now outperformed some noisy label methods (JoCoR and
 357 GCE) on Clothing1M. On Food-101N, we achieved a top accuracy by wrapping the traditional CCE
 358 method.

360 Table 2: Clothing1M Test Accuracies.

Method\Dataset	Clothing1M
CC (+ RRM)	75.4 (75.69**)
CCE (+ RRM)	68.94 (71.48 \pm 0.25)
LRA-diffusion	75.7*
ELR+	74.81
DivideMix	74.76
Knockoffs-SPR	75.2
Meta-Weight-Net	73.72

361 Table 3: Food-101N Test Accuracies.

Method\Dataset	Food-101N
CCE (+ RRM)	81.67 (84.21)
LRA-diffusion	93.42*
SURE	88.0**
LongReMix	87.39
CleanNet	83.95

370 In Tables 1, 2, and 3, wherever confidence intervals are omitted, this is because they are in fact not
 371 reported by the authors of that method.

373 4.2 RRM ENHANCEMENT ACROSS LEVELS OF LABEL NOISE AND ADVERSARIAL 374 PETURBATION

375 Unlike the previous section's comparisons with state-of-the-art methods, here the focus is on how
 376 RRM enhancement of various methods scales with C through synthetically generated label noise
 377 experiments on CIFAR-10 (Alex, 2009) and MNIST-10 (LeCun & Cortes, 2010). We refer to

378 Appendix (Section E) for further experimentation on Toxic Comments, IMDb and Tissue Necrosis
 379 datasets.
 380

381 4.2.1 SYNTHETIC EXPERIMENTS WITH ONLY LABEL NOISE
 382

383 **Implementation Details:** We employ symmetric noise at a rate of C on 50000 CIFAR-10 training
 384 labels. The 10000 testing labels are unperturbed. A ResNet-34 architecture is utilized as in Zhang
 385 & Sabuncu (2018), along with their data preprocessing and augmentation scheme. Two sets of
 386 experiments are performed. As a baseline, 180 epochs are performed for CCE, MAE and MSE loss
 387 functions without RRM wrapping. Training label contamination settings of 10%, 20%, and 30% are
 388 utilized. In the other set of experiments, CCE, MAE and MSE loss functions are wrapped with RRM
 389 and executed 12 iterations with $\sigma = 15$ epochs per iteration, also for a total of 180 epochs. Stochastic
 390 gradient descent (SGD) with a learning rate (η) of 10.0, momentum of 0.9 with Nesterov momentum
 391 enabled, and a weight decay of 10^{-5} are employed for both sets of experiments. Each experiment is
 392 executed 5 times and the average test set accuracy and standard deviation is reported in Table 4, with
 393 the RRM results placed in parentheses.
 394

395 **Analysis:** As Table 4 indicates, both CCE and MSE methods greatly benefit from an RRM approach
 396 across contamination levels, whereas the benefit of RRM for MAE is less definitive. The additional
 397 computation time incurred from the Re-weight(γ, μ) step is an average of 3.88 seconds per
 398 execution of every iteration, for a total of 46.56 seconds.
 399

400 Table 4: **CIFAR-10** Test accuracy (%) comparison between CCE, MAE, and MSE loss functions
 401 across contamination levels. RRM-wrapped accuracy results are in parentheses. Values marked with
 402 (\dagger) are from Zhang & Sabuncu (2018). Values marked with (*) are the best.
 403

Method	Contamination C		
	10%	20%	30%
CCE (+RRM)	89.94 ± 0.29 (92.20 \pm 0.26)	$86.98 \pm 0.44^\dagger$ (90.44 \pm 0.31)	81.90 ± 0.86 (88.49 \pm 0.33)
MAE (+RRM)	92.04 ± 0.25 (90.10 \pm 3.56)	$83.72 \pm 3.84^\dagger$ (87.82 \pm 4.07)	88.28 ± 3.52 (82.98 \pm 6.55)
MSE (+RRM)	91.83 ± 0.25 (93.04* \pm 0.17)	89.43 ± 0.37 (91.43* \pm 0.32)	86.34 ± 0.22 (89.95* \pm 0.55)

404 We refer the reader to Appendix Section C for experiments with higher levels of contamination.
 405

406 4.2.2 SYNTHETIC EXPERIMENTS WITH BOTH LABEL NOISE AND ADVERSARIAL
 407 PERTURBATION
 408

409 In the following experiment we evaluate RRM in a setting of both adversarial feature perturbation
 410 and label contamination.
 411

412 **Adversarial Training (AT) Baseline:** As baseline, we execute a standard adversarial training (AT)
 413 approach, in which we execute A-RRM, omitting the Re-weight step. Indeed, it is common to
 414 perform training on data augmented with adversarial examples crafted through FGSM (Madry et al.,
 415 2018). Further, using this benchmark, we may highlight the value of re-weighting.
 416

417 **Test-set Perturbation ϵ_{test} :** In the experiments, upon conclusion of the A-RRM training for which
 418 a trained θ^* is obtained, we executed an FGSM attack on each member (x, y) of the test set via
 419 $x + \epsilon_{test} \cdot \nabla J(\theta^*; x, y)$. In this way, we explore the harm to performance that a misalignment between
 420 our training perturbation ϵ and a true test-set perturbation ϵ_{test} could have.
 421

422 **Implementation Details:** We employ symmetric noise at a rate of C on 60000 MNIST-10 training
 423 labels. The 10000 testing labels are unperturbed. Twenty percent of the training data is set aside for
 424 validation purposes. We adopt a basic CNN architecture with a few convolutional layers. The first
 425 layer has a depth of 32, and the next two layers have a depth of 64. Each convolutional layer employs
 426 a kernel of size three and the ReLU activation function followed by a max-pooling layer employing
 427 a kernel of size 2. The last convolutional layer is connected to a classification head consisting of a
 428 100-unit dense layer with ReLU activation, followed by a 10-unit dense layer with softmax activation.
 429 Categorical cross-entropy is employed for the loss function. Using Tensorflow 2.10 (Abadi et al.,
 430 2015), 50 iterations of A-RRM are executed with $\sigma = 10$ epochs per iteration for a total of 500
 431 epochs for a given hyperparameter setting. For A-RRM, the hyperparameter settings of μ and γ at
 0.5 and 2.0, respectively, are based on a search to optimize validation set accuracy. Separately, we

432 perform a comparable 500 epochs using AT only. Both AT and A-RRM employ stochastic gradient
 433 descent (SGD) with a learning rate (η) of 0.1. An $\epsilon = 1.0$ is used for all training image perturbations.
 434

435 **Performance Analysis:** For each of the 0%, 5%, 10%, 20%, and 30% training label contamination
 436 levels, we compare adversarial training (AT) and A-RRM performance under various regimes of
 437 test set perturbation ($\epsilon_{test} \in \{0.0, 0.1, 0.25, 0.5, 1.0\}$). In Table 5 we show the test set accuracy
 438 achieved when validation set accuracy peaks. We can see that training with an $\epsilon = 1.0$ and testing
 439 with lower ϵ_{test} levels of 0.00, 0.10, and 0.25, results in a drastic degradation in accuracy for AT for
 440 contamination levels greater than 0%. This performance collapse is not observed when using A-RRM.
 441 Given that the ϵ employed during training may not match test/production environment (ϵ_{test}), our
 442 findings suggest that A-RRM can confer a greater benefit than AT in these scenarios.
 443

444 **Convergence of u :** Table 6 tracks the evolution of the u_i -values across 49 iterations of Algorithm
 445 1 for 9600 contaminated and 38400 clean MNIST training samples at 20% contamination. After
 446 the first iteration, nearly all $u_i \approx 0$. By iteration 10, many contaminated samples already exhibit
 447 negative u_i -values, while most clean samples remain near zero. By iteration 49, 9286 of the 9600
 448 contaminated samples fall in $(-2.08, -1.56] \cdot 10^{-5}$, effectively canceling their nominal probability
 449 $1/N = 2.08 \cdot 10^{-5}$, so they are pruned from training. In contrast, most clean samples (35246 of
 450 38400) retain their nominal probability $1/N = 2.08 \cdot 10^{-5}$. This selective downweighting explains
 451 A-RRM’s advantage over AT: A-RRM suppresses contaminated data in situ, a critical property when
 452 test-time perturbations are unknown or milder than those used during training.
 453

454 Table 5: **MNIST-10** Test accuracy (%) for AT and A-RRM under different levels of contamination C ,
 455 training perturbation $\epsilon = 1.0$, and test-set adversarial perturbation ϵ_{test} .

		C									
		0%		5%		10%		20%		30%	
		AT	A-RRM	AT	A-RRM	AT	A-RRM	AT	A-RRM	AT	A-RRM
ϵ_{test}	0.00	97	96	63	95	57	97	58	96	26	86
	0.10	95	93	64	92	71	94	61	93	20	82
	0.25	93	90	83	91	88	92	84	90	74	81
	0.50	91	88	94	91	94	90	90	88	97	80
	1.00	86	83	95	90	94	86	88	83	98	77

462 Table 6: **MNIST-10** Evolution of u across $|C| = 9600$ contaminated data points and $N - |C| = 38400$
 463 clean data points. Note that $1/N = 2.08 \cdot 10^{-5}$.

		1. iteration		10. iteration		49. iteration	
		C	$[N] \setminus C$	C	$[N] \setminus C$	C	$[N] \setminus C$
	$\gg 0$	0	1	0	4	0	25
	≈ 0	8844	38385	2058	37524	91	35246
	(-0.52, 0.00)	0	0	7	36	146	1655
	(-1.04, -0.52]	0	0	41	45	43	155
	(-1.56, -1.04]	756	14	415	174	34	168
	(-2.08, -1.56]	0	0	7079	617	9286	1151

476 5 CONCLUSION

477 RRM is a novel loss reweighting procedure that enhances learning with noisy labels, as our ex-
 478 periments demonstrate across datasets and noise schemes. In fact, we achieve state-of-the-art
 479 performance on CIFAR-100N when wrapping ProMix and DivideMix. Further, our experiments indi-
 480 cate improvements that persist across model architectures and applications. The method is virtually
 481 hyperparameter-free, upon using an auto-tuning feature to control the Re-weight pruning action
 482 with an estimate of label contamination. Our experiments further show that RRM boosts the test
 483 accuracy of both standard and noise-robust methods, and that A-RRM shows promise in extending
 484 these gains to settings with combined adversarial perturbations and label noise, yielding models more
 485 resilient to both. For more experiments showcasing enhancement, please see the Appendix.

486 REFERENCES
487

488 Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S.
489 Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew
490 Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath
491 Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah,
492 Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent
493 Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg,
494 Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale machine learning on
495 heterogeneous systems, 2015. URL <https://www.tensorflow.org/>. Software available
496 from tensorflow.org.

497 Krizhevsky Alex. Learning multiple layers of features from tiny images. <https://www.cs.toronto.edu/kriz/learning-features-2009-TR.pdf>, 2009.

498

499 Mohamed Amgad, Habiba Elfandy, Hagar Hussein, Lamees A Atteya, Mai A T Elsebaie, Lamia S
500 Abo Elnasr, Rokia A Sakr, Hazem S E Salem, Ahmed F Ismail, Anas M Saad, Joumana Ahmed,
501 Maha A T Elsebaie, Mustafijur Rahman, Inas A Ruhban, Nada M Elgazar, Yahya Alagha, Mo-
502 hamed H Osman, Ahmed M Alhusseiny, Mariam M Khalaf, Abo-Alela F Younes, Ali Abdulkarim,
503 Duaa M Younes, Ahmed M Gadallah, Ahmad M Elkashash, Salma Y Fala, Basma M Zaki,
504 Jonathan Beezley, Deepak R Chittajallu, David Manthey, David A Gutman, and Lee A D Cooper.
505 Structured crowdsourcing enables convolutional segmentation of histology images. *Bioinformatics*,
506 35(18):3461–3467, 02 2019. ISSN 1367-4803. doi: 10.1093/bioinformatics/btz083. URL
507 <https://doi.org/10.1093/bioinformatics/btz083>.

508 Yingbin Bai, Erkun Yang, Bo Han, Yanhua Yang, Jiatong Li, Yinian Mao, Gang Niu, and
509 Tongliang Liu. Understanding and improving early stopping for learning with noisy labels.
510 In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.), *Ad-
511 vances in Neural Information Processing Systems*, volume 34, pp. 24392–24403. Curran Asso-
512 ciates, Inc., 2021. URL https://proceedings.neurips.cc/paper_files/paper/2021/file/cc7e2b878868cbae992d1fb743995d8f-Paper.pdf.

513

514 Haw-Shiuan Chang, Erik Learned-Miller, and Andrew McCallum. Active bias: Training more
515 accurate neural networks by emphasizing high variance samples. *Advances in Neural Information
516 Processing Systems*, 30, 2017.

517

518 Xinlei Chen and Abhinav Gupta. Webly supervised learning of convolutional networks. In *Proceed-
519 ings of the IEEE international conference on computer vision*, pp. 1431–1439, 2015.

520

521 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of
522 deep bidirectional transformers for language understanding. In Jill Burstein, Christy Doran,
523 and Thamar Solorio (eds.), *Proceedings of the 2019 Conference of the North American Chapter
524 of the Association for Computational Linguistics: Human Language Technologies, Volume 1
525 (Long and Short Papers)*, pp. 4171–4186, Minneapolis, Minnesota, June 2019. Association for
526 Computational Linguistics. doi: 10.18653/v1/N19-1423. URL <https://aclanthology.org/N19-1423/>.

527

528 Benoit Frenay and Michel Verleysen. Classification in the presence of label noise: A survey. *IEEE
529 Transactions on Neural Networks and Learning Systems*, 25(5):845–869, 2014. doi: 10.1109/
530 TNNLS.2013.2292894.

531

532 Rui Gao and Anton Kleywegt. Distributionally robust stochastic optimization with wasserstein
533 distance. *Mathematics of Operations Research*, 48(2):603–655, 2023. doi: 10.1287/moor.2022.1275.
534 URL <https://doi.org/10.1287/moor.2022.1275>.

535

536 Aritra Ghosh, Himanshu Kumar, and P. S. Sastry. Robust loss functions under label noise for deep
537 neural networks. In *Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence,
538 AAAI’17*, pp. 1919–1925. AAAI Press, 2017.

539 Jacob Goldberger and Ehud Ben-Reuven. Training deep neural-networks using a noise adaptation
layer. In *International conference on learning representations*, 2017.

540 Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
 541 examples. In Yoshua Bengio and Yann LeCun (eds.), *3rd International Conference on Learning
 542 Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings*,
 543 2015. URL <http://arxiv.org/abs/1412.6572>.

544

545 Bo Han, Jiangchao Yao, Gang Niu, Mingyuan Zhou, Ivor Tsang, Ya Zhang, and Masashi Sugiyama.
 546 Masking: A new perspective of noisy supervision. *Advances in neural information processing
 547 systems*, 31, 2018.

548

549 Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
 550 and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In *International
 551 Conference on Learning Representations*, 2022. URL <https://openreview.net/forum?id=nZeVKeFYf9>.

552

553 Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
 554 reducing internal covariate shift. In *International conference on machine learning*, pp. 448–456.
 555 pmlr, 2015.

556

557 Taehyeon Kim, Jongwoo Ko, Sangwook Cho, JinHwan Choi, and Se-Young Yun. FINE samples for
 558 learning with noisy labels. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan (eds.),
 559 *Advances in Neural Information Processing Systems*, 2021. URL <https://openreview.net/forum?id=QZpx42n0BWr>.

560

561 Jonathan Krause, Benjamin Sapp, Andrew Howard, Howard Zhou, Alexander Toshev, Tom Duerig,
 562 James Philbin, and Li Fei-Fei. The unreasonable effectiveness of noisy data for fine-grained
 563 recognition. In *Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The
 564 Netherlands, October 11–14, 2016, Proceedings, Part III* 14, pp. 301–320. Springer, 2016.

565

566 Anders Krogh and John Hertz. A simple weight decay can improve generalization. *Advances in
 567 neural information processing systems*, 4, 1991.

568

569 Yann LeCun and Corinna Cortes. MNIST handwritten digit database. 2010. URL <http://yann.lecun.com/exdb/mnist/>.

570

571 Kimin Lee, Sukmin Yun, Kibok Lee, Honglak Lee, Bo Li, and Jinwoo Shin. Robust inference via
 572 generative classifiers for handling noisy labels. In *International conference on machine learning*,
 573 pp. 3763–3772. PMLR, 2019.

574

575 Kuang-Huei Lee, Xiaodong He, Lei Zhang, and Linjun Yang. Cleannet: Transfer learning for scalable
 576 image classifier training with label noise. In *Proceedings of the IEEE Conference on Computer
 577 Vision and Pattern Recognition (CVPR)*, 2018.

578

579 Junnan Li, Richard Socher, and Steven Hoi. Dividemix: Learning with noisy labels as semi-supervised
 580 learning, 02 2020.

581

582 Sheng Liu, Jonathan Niles-Weed, Narges Razavian, and Carlos Fernandez-Granda. Early-learning
 583 regularization prevents memorization of noisy labels. *Advances in neural information processing
 584 systems*, 33:20331–20342, 2020.

585

586 Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng, and Christopher
 587 Potts. Learning word vectors for sentiment analysis. In *Proceedings of the 49th Annual Meeting
 588 of the Association for Computational Linguistics: Human Language Technologies*, pp. 142–150,
 589 Portland, Oregon, USA, June 2011. Association for Computational Linguistics. URL <http://www.aclweb.org/anthology/P11-1015>.

590 Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
 591 Towards deep learning models resistant to adversarial attacks. In *6th International Conference on
 592 Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference
 593 Track Proceedings*. OpenReview.net, 2018. URL <https://openreview.net/forum?id=rJzIBfZAb>.

594 Viet Anh Nguyen, Soroosh Shafieezadeh Abadeh, Man-Chung Yue, Daniel Kuhn, and Wolfram
 595 Wiesemann. Optimistic distributionally robust optimization for nonparametric likelihood ap-
 596 proximation. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and
 597 R. Garnett (eds.), *Advances in Neural Information Processing Systems*, volume 32. Curran Asso-
 598 ciates, Inc., 2019. URL https://proceedings.neurips.cc/paper_files/paper/2019/file/b49b0133825194a67e0660a5557deb0a-Paper.pdf.

600 Guy Nir, Soheil Hor, Davood Karimi, Ladan Fazli, Brian F. Skinnider, Peyman Tavassoli, Dmitry
 601 Turbin, Carlos F. Villamil, Gang Wang, R. Storey Wilson, Kenneth A. Iczkowski, M. Scott Lucia,
 602 Peter C. Black, Purang Abolmaesumi, S. Larry Goldenberg, and Septimiu E. Salcudean. Automatic
 603 grading of prostate cancer in digitized histopathology images: Learning from multiple experts.
 604 *Medical Image Analysis*, 50:167–180, 2018. ISSN 1361-8415. doi: <https://doi.org/10.1016/j.media.2018.09.005>. URL <https://www.sciencedirect.com/science/article/pii/S1361841518307497>.

607 Kento Nishi, Yi Ding, Alex Rich, and Tobias Höllerer. Augmentation strategies for learning with
 608 noisy labels. In *IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2021,*
 609 *virtual, June 19-25, 2021*, pp. 8022–8031. Computer Vision Foundation / IEEE, 2021. doi:
 610 [10.1109/CVPR46437.2021.00793](https://doi.org/10.1109/CVPR46437.2021.00793). URL https://openaccess.thecvf.com/content/CVPR2021/html/Nishi_Augmentation_Strategies_for_Learning_With_Noisy_Labels_CVPR_2021_paper.html.

614 Dominika Petríková and Ivan Cimrák. Survey of recent deep neural networks with strong annotated
 615 supervision in histopathology. *Computation*, 11(4), 2023. ISSN 2079-3197. doi: [10.3390/computation11040081](https://doi.org/10.3390/computation11040081). URL <https://www.mdpi.com/2079-3197/11/4/81>.

617 Mengye Ren, Wenyuan Zeng, Bin Yang, and Raquel Urtasun. Learning to reweight examples for
 618 robust deep learning. In *International Conference on Machine Learning*, 2018.

620 Johannes O. Royset and Roger J-B Wets. *An Optimization Primer*. Springer, 2021.

621 Johannes O. Royset, Louis L. Chen, and Eric Eckstrand. Rockafellian relaxation and stochastic
 622 optimization under perturbations. *Mathematics of Operations Research (to appear)*, 2023.

624 Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert, a distilled version
 625 of bert: smaller, faster, cheaper and lighter, 2020. URL <https://arxiv.org/abs/1910.01108>.

627 Connor Shorten and Taghi M Khoshgoftaar. A survey on image data augmentation for deep learning.
 628 *Journal of big data*, 6(1):1–48, 2019.

630 Jun Shu, Qi Xie, Lixuan Yi, Qian Zhao, Sanping Zhou, Zongben Xu, and Deyu Meng. Meta-
 631 weight-net: Learning an explicit mapping for sample weighting. *Advances in neural information
 632 processing systems*, 32, 2019.

633 Rion Snow, Brendan O’Connor, Daniel Jurafsky, and Andrew Ng. Cheap and fast – but is it good?
 634 evaluating non-expert annotations for natural language tasks. In Mirella Lapata and Hwee Tou Ng
 635 (eds.), *Proceedings of the 2008 Conference on Empirical Methods in Natural Language Processing*,
 636 pp. 254–263, Honolulu, Hawaii, October 2008. Association for Computational Linguistics. URL
 637 <https://aclanthology.org/D08-1027>.

639 Hwanjun Song, Minseok Kim, Dongmin Park, and Jae-Gil Lee. Learning from noisy labels with
 640 deep neural networks: A survey. *CoRR*, abs/2007.08199, 2020. URL <https://arxiv.org/abs/2007.08199>.

642 Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
 643 Dropout: a simple way to prevent neural networks from overfitting. *The Journal of Machine
 644 Learning Research*, 15(1):1929–1958, 2014.

646 Matthew Staib and Stefanie Jegelka. Distributionally robust deep learning as a generalization of
 647 adversarial training. In *NIPS workshop on Machine Learning and Computer Security*, volume 3,
 pp. 4, 2017.

648 Sainbayar Sukhbaatar, Joan Bruna, Manohar Paluri, Lubomir Bourdev, and Rob Fergus. Training
 649 convolutional networks with noisy labels. In *3rd International Conference on Learning
 650 Representations, ICLR 2015*, 2015.

651

652 Yikai Wang, Xinwei Sun, and Yanwei Fu. Scalable penalized regression for noise detection in
 653 learning with noisy labels. pp. 346–355, 06 2022. doi: 10.1109/CVPR52688.2022.00044.

654 Yikai Wang, Yanwei Fu, and Xinwei Sun. Knockoffs-spr: Clean sample selection in learning with
 655 noisy labels. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 46(5):3242–3256,
 656 2023.

657

658 Jiaheng Wei, Zhaowei Zhu, Hao Cheng, Tongliang Liu, Gang Niu, and Yang Liu. Learning with
 659 noisy labels revisited: A study using real-world human annotations. In *International Conference
 660 on Learning Representations*, 2022.

661 Xiaobo Xia, Bo Han, Yibing Zhan, Jun Yu, Mingming Gong, Chen Gong, and Tongliang Liu.
 662 Combating noisy labels with sample selection by mining high-discrepancy examples. In *2023
 663 IEEE/CVF International Conference on Computer Vision (ICCV)*, pp. 1833–1843, 2023. doi:
 664 10.1109/ICCV51070.2023.00176.

665 Ruixuan Xiao, Yiwen Dong, Haobo Wang, Lei Feng, Runze Wu, Gang Chen, and Junbo Zhao. Promix:
 666 combating label noise via maximizing clean sample utility. In *Proceedings of the Thirty-Second
 667 International Joint Conference on Artificial Intelligence, IJCAI '23*, 2023. ISBN 978-1-956792-03-
 668 4. doi: 10.24963/ijcai.2023/494. URL <https://doi.org/10.24963/ijcai.2023/494>.

669

670 Tong Xiao, Tian Xia, Yi Yang, Chang Huang, and Xiaogang Wang. Learning from massive noisy
 671 labeled data for image classification. In *CVPR*, 2015.

672 Qizhe Xie, Zihang Dai, Eduard Hovy, Thang Luong, and Quoc Le. Unsupervised data augmentation
 673 for consistency training. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.),
 674 *Advances in Neural Information Processing Systems*, volume 33, pp. 6256–6268. Curran Asso-
 675 ciates, Inc., 2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/file/44feb0096faa8326192570788b38c1d1-Paper.pdf.

676

677 Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding
 678 deep learning requires rethinking generalization. In *International Conference on Learning
 679 Representations*, 2017. URL <https://openreview.net/forum?id=Sy8gdB9xx>.

680

681 HaiYang Zhang, XiMing Xing, and Liang Liu. Dualgraph: A graph-based method for reasoning
 682 about label noise. In *2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition
 683 (CVPR)*, pp. 9649–9658, 2021. doi: 10.1109/CVPR46437.2021.00953.

684

685 Zhilu Zhang and Mert R. Sabuncu. Generalized cross entropy loss for training deep neural networks
 686 with noisy labels. In *Proceedings of the 32nd International Conference on Neural Information
 687 Processing Systems, NIPS'18*, pp. 8792–8802, Red Hook, NY, USA, 2018. Curran Associates Inc.

688

689 Ganlong Zhao, Guanbin Li, Yipeng Qin, Feng Liu, and Yizhou Yu. Centrality and consistency:
 690 Two-stage clean samples identification for learning with instance-dependent noisy labels. In Shai
 691 Avidan, Gabriel Brostow, Moustapha Cissé, Giovanni Maria Farinella, and Tal Hassner (eds.),
 692 *Computer Vision – ECCV 2022*, pp. 21–37, Cham, 2022. Springer Nature Switzerland. ISBN
 978-3-031-19806-9.

693

694 Xingquan Zhu and Xindong Wu. Class noise vs. attribute noise: A quantitative study. *Artificial
 intelligence review*, 22:177–210, 2004.

695

696

697

698

699

700

701

702 A APPENDIX/SUPPLEMENTAL MATERIAL
703704 A.1 SECTION 3 PROOFS
705706 **Theorem 3.1.** Let $\gamma > 0$ and $\{c_i = J(\theta; x_i, y_i)\}_{i=1}^N$ for some θ , with $c_{\min} := \min_i c_i$, and
707 $c_{\max} := \max_i c_i$. Write $I_{\min} := \{i : c_i = c_{\min}\}$, $I_{\text{mid}} := \{i : c_i \in (c_{\min}, c_{\min} + \gamma)\}$,
708 $I_{\text{big}} := \{i : c_i = c_{\min} + \gamma\}$, and for any $S_1 \subseteq I_{\min}$, $S_2 \subseteq I_{\text{big}}$, define the polytope

709
$$U_{S_1, S_2}^* := \left\{ u^* : \begin{array}{l} u^* \in U \\ u_i^* \geq 0 \quad \forall i \in I_{\min}, \quad u_i^* = 0 \quad \forall i \in S_1 \cup I_{\text{mid}}, \quad u_i^* \leq 0 \quad \forall i \in I_{\text{big}} \\ u_i^* = -\frac{1}{N} \quad \forall i \in S_2, \quad u_i^* = -\frac{1}{N} \quad \forall i : c_i > c_{\min} + \gamma. \end{array} \right\}.$$

710

711 Then

712
$$\arg \min_{u \in U} \sum_{i=1}^N \left(\frac{1}{N} + u_i \right) \cdot c_i + \frac{\gamma}{2} \|u\|_1 = \text{conv} \left(\bigcup_{S_1, S_2} U_{S_1, S_2}^* \right). \quad (3)$$

713

714 *Proof.* For any set C , let $\iota_C(x) = 0$ and $\iota_C(x) = \infty$ otherwise. We recognize that u^* is a solution
715 of the minimization problem if and only if it is a minimizer of the function h given by

716
$$h(u) = \sum_{i=1}^N \left(c_i/N + u_i c_i + \frac{\gamma}{2} |u_i| + \iota_{[0, \infty)}(1/N + u_i) \right) + \iota_{\{0\}} \left(\sum_{i=1}^N u_i \right)$$

717

718 Thus, because $h(u) > -\infty$ for all $u \in \mathbb{R}^N$ and h is convex, u^* is a solution of the minimization
719 problem if and only if $0 \in \partial h(u^*)$. We proceed by characterizing ∂h .720 Consider the univariate function h_i given by

721
$$h_i(u_i) = c_i/N + u_i c_i + \frac{\gamma}{2} |u_i| + \iota_{[0, \infty)}(1/N + u_i).$$

722

723 For $u_i \geq -1/N$, the Moreau-Rockafellar sum rule reveals that

724
$$\partial h_i(u_i) = c_i + \begin{cases} \left\{ \frac{\gamma}{2} \right\} & \text{if } u_i > 0 \\ \left[-\frac{\gamma}{2}, \frac{\gamma}{2} \right] & \text{if } u_i = 0 \\ \left\{ -\frac{\gamma}{2} \right\} & \text{if } -1/N < u_i < 0 \\ \left(-\infty, -\frac{\gamma}{2} \right] & \text{if } u_i = -1/N. \end{cases}$$

725

726 For $u = (u_1, \dots, u_N) \in [-1/N, \infty)^N$, we obtain by Proposition 4.63 in Royset & Wets (2021) that

727
$$\partial \left(\sum_{i=1}^N h_i \right)(u) = \partial h_1(u_1) \times \dots \times \partial h_N(u_N).$$

728

729 Let h_0 be the function given by $h_0(u) = \iota_{\{0\}}(\sum_{i=1}^N u_i)$. Again invoking the Moreau-Rockafellar
730 sum rule while recognizing that the interior of the domain of $\sum_{i=1}^N h_i$ intersects with the domain of
731 h_0 , we obtain

732
$$\partial h(u) = \partial \left(\sum_{i=1}^N h_i \right)(u) + \partial h_0(u) = \partial h_1(u_1) \times \dots \times \partial h_N(u_N) + \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix} \mathbb{R}$$

733

734 for any $u = (u_1, \dots, u_N)$ with $u_i \geq -1/N$, $i = 1, \dots, N$, and $\sum_{i=1}^N u_i = 0$. Hence, $u^* \in U$ is
735 optimal if and only if for some $\lambda \in \mathbb{R}$,

736
$$\lambda \in \begin{cases} \left\{ c_i + \frac{\gamma}{2} \right\} & \text{if } u_i^* > 0 \\ \left[c_i - \frac{\gamma}{2}, c_i + \frac{\gamma}{2} \right] & \text{if } u_i^* = 0 \\ \left\{ c_i - \frac{\gamma}{2} \right\} & \text{if } u_i^* \in (-1/N, 0) \\ \left(-\infty, c_i - \frac{\gamma}{2} \right] & \text{if } u_i^* = -1/N. \end{cases} \quad (5)$$

737

738 It follows that any such λ must then satisfy $\lambda \leq c_{\min} + \frac{\gamma}{2}$, as the above list of cases indicate for
739 arbitrary i and no matter the value of u_i^* , for any optimal $u^* \in U$.

We proceed to show that in fact, $u^* \in U$ solves equation 3 if and only if $\lambda = c_{min} + \frac{\gamma}{2}$ satisfies the conditions of equation 5 with respect to u^* for all i . Suppose $u^* \in U$ is optimal and that there exists a corresponding λ satisfying equation 5 for all i , and that it satisfies $\lambda < c_{min} + \frac{\gamma}{2}$. Then for any optimal $u^* \in U$, there exists no i for which $u_i^* > 0$, otherwise $c_i = \lambda - \frac{\gamma}{2} < c_{min}$, an impossibility. This means any optimal $u^* \in U$ must satisfy $u^* \leq 0$, for which then we would conclude that in fact $u^* = 0$, and is the unique optimal solution, which in turn yields that $\lambda - \frac{\gamma}{2} \leq c_i \leq \lambda + \frac{\gamma}{2} < c_{min} + \gamma$ for all i . This last inequality reveals that $\lambda^* := c_{min} + \frac{\gamma}{2}$ is compatible with the unique optimal solution $u^* = 0 \in U$ in such a case. In summary, if a $\lambda < c_{min} + \frac{\gamma}{2}$ is compatible with all optimal solutions $u^* \in U$, then $\lambda^* := c_{min} + \frac{\gamma}{2}$ is as well.

It follows that $u^* \in U$ solves equation 3 if and only if $\lambda = c_{min} + \frac{\gamma}{2}$ satisfies the conditions of equation 5 with respect to u_i^* for all i ; hence, the result follows. \square

Corollary 3.1.1. *Let $\gamma > 0$ and θ be given, yielding losses $\{c_i = J(\theta; x_i, y_i)\}_{i=1}^N$. Define $\chi(\theta) := \{i : c_i > c_{min} + \gamma\}$ and let $u^*(\theta)$ given by $\{u_i^*(\theta)\}_{i \in I_{min}} = \{\frac{|\chi(\theta)|}{N \cdot |I_{min}|}\}$, $\{u_i^*(\theta)\}_{i \in I_{mid} \cup I_{big}} = \{0\}$, and $u_i^*(\theta) = -\frac{1}{N}$ for all $i \in \chi(\theta)$. Then $u^*(\theta)$ solves the linear program $\mathcal{L}_{RRM}(\theta)$, equiv., the inner minimization of equation 2.*

Proof. Clearly, $u^* \in U$. Let $c_i = J(\theta^*; x_i, y_i)$ for $i = 1, \dots, N$. In the proof of Theorem 3.1, it was shown that $u \in U$ solves equation 3 if and only if $\lambda = c_{min} + \frac{\gamma}{2}$ satisfies the conditions of equation 5 with respect to u_i^* for all i . Therefore, with $S_1 = S_2 = \emptyset$, Theorem 3.1 indicates that $u^* \in U_{S_1, S_2}^*$ and hence must solve equation 3. \square

Proposition 3.1. *Let $\epsilon > 0$, and suppose for any θ , $\max_{(x,y) \in \mathcal{Z}} |J(\theta; x, y)| < \infty$. Then there exists $\kappa \geq 0$ such that for any θ , the following problem*

$$v_N^{MIX}(\theta) := \min_{u_1, \dots, u_N} \sum_{i=1}^N \left(\frac{1}{N} + u_i \right) \cdot J(\theta; x_i, y_i) + \gamma_\theta \|u\|_1$$

$$\text{s.t. } u_i + \frac{1}{N} \geq 0 \quad i = 1, \dots, N$$

satisfies $v_N(\theta) + \frac{\kappa}{N} \geq v_N^{MIX}(\theta) \geq v_N(\theta)$. In particular, $-\gamma_\theta \leq \min_i J(\theta; x_i, y_i)$, and, for any u^ solving $v_N^{MIX}(\theta)$, it holds that $u_i^* = -\frac{1}{N}$ for i such that $J(\theta; x_i, y_i) > \gamma_\theta$.*

Proof. Fix θ . Then for any $z = (x, y) \in \mathcal{Z}$, the function $\ell(\cdot, z, \theta)$ is linear, and hence Lipschitz with constant $\ell(1, z, \theta) = J(\theta; x, y) \leq \max_{(x,y) \in \mathcal{Z}} |J(\theta; x, y)| < \infty$.

By Lemma 3.1 of Staib & Jegelka (2017) and/or Corollary 2 of Gao & Kleywegt (2023),

$$v_N^{MIX}(\theta) := \min_{\tilde{w}^1, \dots, \tilde{w}^N \geq 0} \frac{1}{N} \sum_{i=1}^N \ell(\tilde{w}^i, z^i; \theta)$$

$$\text{s.t. } \frac{1}{N} \sum_{i=1}^N |\tilde{w}^i - w^i| \leq \epsilon$$

provides the stated approximation of $v(\theta)$.

Upon introducing the change of variable $u_i = \frac{\tilde{w}^i}{N} - \frac{1}{N}$, and applying a Lagrange multiplier γ_θ to the ϵ -budget constraint (any convex dual optimal multiplier), we recover

$$\min_{u_1, \dots, u_N} \sum_{i=1}^N \ell(u_i + \frac{1}{N}, z^i; \theta) + \gamma_\theta \sum_{i=1}^N |u_i|$$

$$\text{s.t. } u_i + \frac{1}{N} \geq 0 \quad i = 1, \dots, N$$

\square

810 **B CASE OF CONSERVATIVE ESTIMATE $C' > C$**
811812 We repeated the experimental setup of Section 4.2.1 to evaluate the benefit of RRM for MSE, but
813 now with an estimate $C' > C$ provided to RRM.
814815 **Analysis:** Upon comparing Table 7 with Table 4, we confirm that as the estimate C' is made larger
816 and larger than C , conferred benefit by RRM is reduced and is generally not as high as when $C' = C$.
817 However, despite this, RRM-wrapping still generally outperforms MSE alone.
818819
820 Table 7: **CIFAR-10** Test accuracy (%) of RRM-wrapped MSE with Conservative Estimate C' of C
821 on classification task .

		Contamination C		
		10%	20%	30%
C'	$C + 10\%$	91.73 ± 0.28	90.60 ± 0.40	88.47 ± 0.73
	$C + 5\%$	92.55 ± 0.15	91.29 ± 0.41	89.43 ± 0.64

825 **C ENHANCING (ROBUST) LOSS FUNCTION METHODOLOGIES WITH RRM**
826827 RRM can enhance the performance of common loss functions that do not account for label contamina-
828 tion, including categorical cross-entropy (CCE), mean absolute error (MAE), and mean squared error
829 (MSE). In fact, the following experiments indicate RRM can even enhance those methods devised
830 with robustness to noisy labels, such as early-learning regularization (ELR).
831832 Table 8: **MNIST-3** Test accuracy (%) comparison of CCE, MAE, and MSE against ELR across
833 contamination levels. RRM-wrapped accuracy results are in parentheses.

Method	Contamination Level		
	55%	60%	65%
ELR (+ RRM)	98 (99)	97 (98)	82 (87)
CCE (+ RRM)	90 (98)	77 (96)	46 (67)
MAE (+ RRM)	98 (98)	96 (98)	62 (68)
MSE (+ RRM)	90 (98)	74 (97)	45 (87)

834
835 **Dataset:** In this experiment, we divide MNIST-3 into a training set of 18623 examples (5923 0's,
836 6742 1's, and 5958 2's), and 3147 testing examples.
837838 **Architecture:** We used a simple fully-connected architecture consisting of a few layers. The first
839 two layer consists of 320 units, and the third layer consists of 200 units. Each of these dense layers
840 employs the ReLU activation function. The output layer consists of a 3-unit dense layer with softmax
841 activation. In total, there are 417880 trainable parameters.
842843 **Experiment:** Using Tensorflow 2.10 (Abadi et al., 2015), 100 epochs of training are performed for
844 each of the baseline loss functions (ELR, CCE, MAE, and MSE) and training label contamination
845 levels of 55%, 60%, and 65% for a total 12 baseline experiments. In order to assess the benefit of our
846 method, the RRM algorithm is executed for each of the baseline loss functions and contamination
847 levels. More specifically, 10 iterations of RRM are executed with $\sigma = 10$ epochs per iteration for a
848 total of 100 epochs. For RRM, the hyperparameter settings of μ and γ are set to 0.5 and 0.4, although
849 auto-tuning could have been implemented as in Section 4.2. All methods employ stochastic gradient
850 descent (SGD) with a learning rate (η) of 0.1. The test set accuracy of each experiment is shown in
851 Table 8, with the RRM experimental results placed in parentheses.
852853 **Takeaway:** For every method tested, the RRM-wrapped approach confers a test set performance bene-
854 fit over the baseline approach. The additional computation time incurred from the Re-weight(γ, μ)
855 step is an average of 2.86 seconds per execution of every iteration, for a total of 28.6 additional
856 seconds.
857

864 D NON-UNIFORM LABEL CONTAMINATION EXPERIMENT
865

866 Although we explicitly state the use of uniform label noise in Section 3.1, which is indeed a very
867 common scheme in the literature, our analysis in fact did not rely on this assumption. Towards
868 providing insight into the non-uniform case, we have repeated the experiments of Section 4.2.2
869 that produced Table 5, but now with non-uniform label noise. More precisely, after uniformly at
870 random selecting C percent of the training pairs, we proceed to contaminate the label y_i in each
871 pair (x_i, y_i) in the following non-uniform manner, as outlined below in the transition kernel matrix
872 of (True Label, Contaminated Label) entries. For example, if the true label $y_i = 5$, then instead
873 of uniformly at random drawing an alternative digit \tilde{y}_i from among $\{0, 1, \dots, 9\} \setminus \{5\}$ we have

$$\tilde{y}_i = \begin{cases} 0 & w.p.0.051 \\ 1 & w.p.0.017 \\ 2 & w.p.0. \\ 3 & w.p.0.627 \end{cases}$$

880 Table 9: Contamination Kernel
881

		Contaminated									
		0	1	2	3	4	5	6	7	8	9
Original	0	0	0.0769	0.0769	0.1538	0	0.0769	0.3846	0	0.1538	0.0769
	1	0	0	0.3333	0.1111	0	0.1111	0.1111	0	0.3333	0
	2	0.0968	0.0645	0	0.2581	0.0323	0	0.0968	0.1935	0.2581	0
	3	0	0	0.1250	0	0	0.1250	0	0.1250	0.6250	0
	4	0.1111	0.0370	0.0741	0.0741	0	0.0741	0.2222	0.0370	0.1111	0.2593
	5	0.0508	0.0169	0	0.6271	0.0169	0	0.1525	0	0.1017	0.0339
	6	0.2353	0.1765	0.0588	0.0588	0.0588	0.1765	0	0	0.2353	0
	7	0.0500	0.2250	0.2000	0.1250	0	0	0	0	0.2000	0.2000
	8	0.1071	0.0357	0.1071	0.3571	0.1071	0.0714	0.0714	0.1071	0	0.0357
	9	0.0638	0.1702	0	0.2128	0.1702	0.1702	0.0213	0.0851	0.1064	0

893 These entries were generated by the confusion matrix of an imperfect MNIST classifier. The results
894 from this new experiment confirm the performance benefits that were observed (compare to Table 5
895 under conditions of uniform label contamination.

896
897 Table 10: **MNIST-10** Test accuracy (%) for AT and A-RRM under different levels of contamination
898 C , training perturbation $\epsilon = 1.0$, and test-set adversarial perturbation ϵ_{test} .

		C									
		0%		5%		10%		20%		30%	
		AT	A-RRM								
ϵ_{test}	0.00	96.5	97.3	93.6	95.6	60.4	87.8	32.2	92.4	58.3	89.2
	0.10	93.4	95.2	89.3	92.4	63.2	84.7	42.5	89.5	56.1	81.7
	0.25	92.4	93.1	87.9	90.6	86.9	86.3	80.6	89.3	69.0	79.8
	0.50	92.0	90.9	90.3	89.8	94.4	91.2	92.9	89.2	85.2	81.6
	1.00	89.4	85.5	90.3	86.8	94.9	92.6	93.9	86.6	81.8	77.8

900 E ADDITIONAL DATA EXPERIMENTS
901911 E.1 TOXIC COMMENTS
912

913 **Dataset:** Toxic Comments³ is a multi-label classification problem from JIGSAW that consists of
914 Wikipedia comments labeled by humans for toxic behavior. Comments can be any number (including
915 zero) of six categories: toxic, severe toxic, obscene, threat, insult, and identity hate. We convert this
916 into a binary classification problem by treating the label as either none of the six categories or at least
917

³<https://kaggle.com/competitions/jigsaw-toxic-comment-classification-challenge>

918 one of the six categories. This dataset is a public dataset used as part of the Kaggle Toxic Comment
 919 Classification Challenge.
 920

921 **Architecture:** We use a simple model with only a single convolutional layer. A pretrained embedding
 922 from FastText is first used to map the comments into a 300 dimension embedding space, followed
 923 by a single convolutional layer with a kernel size of two with a ReLU activation layer followed by
 924 a max-pooling layer. We then apply a 36-unit dense layer, followed by a 6 unit dense layer with
 925 sigmoid activation. Binary cross-entropy is used for the loss function.
 926

927 **Experiment:** We use the Toxic Comments dataset to test the efficacy of RRM on low prevalence
 928 text data. The positive (toxic) comments consist of only 3% of the data and we contaminate anywhere
 929 from 1% to 20% of the labels. There are a total of 148,000 samples, and we set aside 80% for
 930 training and 20% for test. $\sigma = 2$ with 3 iterations of the heuristic algorithm results in a total of 6
 931 epochs, and ERM is run for a total of 6 epochs to make the results comparable. Since the data is
 932 highly imbalanced, we look at the area under the curve of the precision/recall curve to assess the
 933 performance of the models. Unsurprisingly, as the noise increase, the model performance decreases.
 934 We note that RRM outperforms ERM across all noise levels tested, though as the noise increase, the
 935 gap between RRM and ERM decreases.
 936

937 Table 11: **Toxic Comments** Comparison of training and test area under the precision/recall curve for
 938 ERM and RRM at noise levels ranging from 1% to 20%.

Method	Percentage Contaminated Training Data					
	1%	5%	7%	10%	15%	20%
ERM (train)	0.2904	0.2006	0.1589	0.1302	0.1073	0.0920
RRM (train)	0.6875	0.4458	0.3805	0.3087	0.2438	0.1966
ERM (test)	0.5861	0.3970	0.3246	0.2550	0.2013	0.1717
RRM (test)	0.6705	0.4338	0.3619	0.2824	0.2208	0.1861

944 **Takeaway:** The Toxic Comment example presents another challenging classification problem,
 945 characterized by a low prevalence target class amidst label noise. Our experiments demonstrate that
 946 as the amount of label noise increases, standard methods become increasingly ineffective. However,
 947 RRM remains reasonably robust under varying degrees of label contamination. Therefore, RRM
 948 could be a valuable addition to the set of tools being developed to enhance the robustness of AI-based
 949 decision engines.
 950

951 E.2 IMDB 952

953 **Dataset (Maas et al., 2011):** A binary classification dataset consisting of 50000 movie reviews each
 954 assigned a positive or negative sentiment label. 25000 reviews are selected randomly for training and
 955 the remaining are used for testing. 25%, 30%, 40%, and 45% of the labels of the training reviews
 956 are randomly selected and swapped from positive sentiment to negative sentiment, and vice versa, to
 957 achieve four training datasets of desired levels of label contamination.
 958

959 **Architecture:** Transformer architectures have achieved SOA performance on the IMDb dataset
 960 sentiment analysis task (Devlin et al., 2019; Xie et al., 2020). As such, we adopt a reasonable trans-
 961 former architecture to assess RRM. We utilize the DistilBERT (Sanh et al., 2020) architecture with
 962 low-rank adaptation (LoRA) (Hu et al., 2022) for large language models, which reduces the number
 963 of trainable weights from 67584004 to 628994. In this manner, we reduce the computational burden,
 964 while maintaining excellent sentiment analysis performance. Binary cross-entropy is employed for
 965 the loss function.
 966

967 **Experiment:** Twenty percent of the training data is set aside for validation purposes. Using Pytorch
 968 2.1.0, 30 iterations of RRM are executed, with $\sigma = 10$ epochs per iteration for a total of 300 epochs
 969 for a given hyperparameter setting. For RRM, the hyperparameter settings of μ and γ at 0.5 and 0.4,
 970 respectively, are based on a search to optimize validation set accuracy. For contrast, we perform a
 971 comparable 300 epochs using ERM. Both ERM and RRM employ stochastic gradient descent (SGD)
 972 with a learning rate (η) of 0.001. In Table 12 we record both the test set accuracy achieved when
 973 validation set accuracy peaks, as well as the maximum test set accuracy. At these high levels of
 974 contamination RRM consistently achieves a better maximum test set accuracy.
 975

972
 973 Table 12: **IMDb** Test accuracy (%) for ERM and RRM under different levels of contamination. Test
 974 set accuracy at peak validation accuracy and maximum test set accuracy are recorded.

Method	Percentage Contaminated Training Data			
	25%	30%	40%	45%
ERM	90.2, 90.2	89.5, 89.6	86.4, 86.6	80.7, 81.1
RRM	90.1, 90.4	90.2, 90.4	88.4, 88.7	76.9, 82.6

975
 976
 977
 978
 979
 980
 981
Takeaway: We demonstrate that RRM can confer benefits to the sentiment analysis classification
 982 task using pre-trained large models under conditions of high label contamination. The success of
 983 fine-tuning in LLMs depends, in large part, on access to high quality training examples. We have
 984 shown that RRM can mitigate this need by allowing effective training in scenarios of high training
 985 data contamination. As such, resource allocation dedicated to dataset curation may be lessened by
 986 the usage of RRM.
 987

988
 989
 990 E.3 TISSUE NECROSIS
 991

992
 993 **Dataset:** A binary classification dataset consisting of 7874 256x256-pixel hematoxylin and eosin
 994 (H&E) stained RGB images derived from (Amgad et al., 2019). The training dataset consists of 3156
 995 images labeled non-necrotic, as well as 3156 images labeled necrotic. The training images labeled
 996 non-necrotic contain no necrosis. However, only 25% of the images labeled necrotic contain necrotic
 997 tissue. This type of label error can be expected in cases of weakly-labeled Whole Slide Imagery (WSI).
 998 Here, an expert pathologist will provide a slide-level label for a potentially massive slide consisting of
 999 gigapixels, but they lack time or resources to provide granular, segmentation-level annotations of the
 1000 location of the pathology in question. Also, the diseased tissue often occupies a small portion of the
 1001 WSI, with the remainder consisting of normal tissue. When the gigapixel-sized WSI is subsequently
 1002 divided into sub-images of manageable size for typical machine-learning workflows, many of the
 1003 sub-images will contain no disease, but will be assigned the "weak" label chosen by the expert for the
 1004 WSI. The test dataset consists of 718 necrosis and 781 non-necrosis 256x256-pixel H&E images,
 1005 which were also derived from (Amgad et al., 2019). For both the training and test images, (Amgad
 1006 et al., 2019) provide segmentation-level necrosis annotations, so we are able to ensure a pristine test
 1007 set, and, in the case of the training set, we were able to identify the contaminated images for the
 1008 purpose of algorithm evaluation.

1008 **Architecture:** Consistent with the computational histopathology literature (Petríková & Cimrák,
 1009 2023), we employ a convolutional neural network (CNN) architecture for this classification task. In
 1010 particular, a ResNet-50 architecture with pre-trained ImageNet weights is harnessed. The classifi-
 1011 cation head is removed and replaced with a dense layer of 512 units and ReLU activation function,
 1012 followed by an output layer with a single unit using a sigmoid activation function. All weights, with
 1013 the exception of the new classification head are frozen, resulting in 1050114 trainable parameters out
 1014 of 24637826. Binary cross-entropy is employed for the loss function.

1015 **Experiment:** Twenty percent of the training data is set aside for validation purposes, including
 1016 hyperparameter selection. 60 iterations of RRM are executed, with $\sigma = 10$ epochs per iteration, for a
 1017 total of 600 epochs for a given hyperparameter setting. For RRM, the hyperparameter settings of μ
 1018 and γ at 0.5 and 0.016, respectively, are based on a search to optimize validation set accuracy. For
 1019 contrast, we perform a comparable 600 epochs using ERM. Both ERM and RRM employ stochastic
 1020 gradient descent (SGD) with a learning rate (η) of 5.0 and 1.0, respectively. RRM achieves a test set
 1021 accuracy at peak validation accuracy of **74.6**, and a maximum test set accuracy **77.2**, whereas ERM
 1022 achieves 71.7 and 73.2, respectively. RRM appears to confer a performance benefit under this regime
 1023 of weakly labeled data.

1024 **Takeaway:** In the Tissue Necrosis example, we demonstrate that RRM also confers accuracy benefits
 1025 to the necrosis identification task provided weakly labeled WSIs. Again, RRM can mitigate the need
 for expert-curated, detailed pathology annotations, which are costly and time-consuming to generate.

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

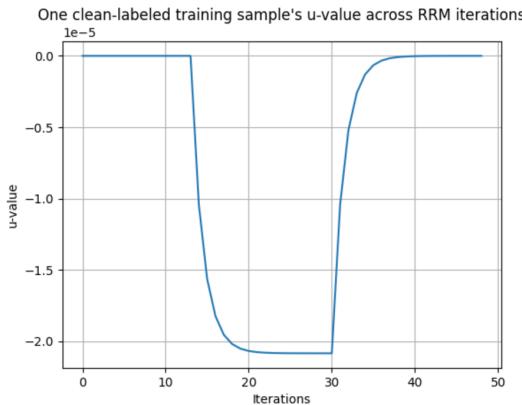


Figure 1: The evolution of one clean-labeled training sample’s u -value across training iterations. We note that its sample weight $\frac{1}{N} + u_i \approx 0$ at around iteration 30 before then recovering to $\frac{1}{N} + u_i \approx \frac{1}{N}$ by the conclusion of training.

F SUPPLEMENT TO TABLE 6 EXPERIMENTS

In this section, we supplement the experiment of Table 6 with a follow-up investigation into individual u -value trajectories.

F.1 CLOSE-CALLS

In Table 6, it is shown that the set of samples down-weighted to zero is not precisely \mathcal{C} and some (Type-1) errors were made. Upon closer examination, an interesting behavior was observed - namely, that some samples initially down-weighted to zero were later restored to nonzero weight. In other words, these samples were close to being erroneously removed from training.

We re-ran the results of our Table 6 experiment, this time tracking all u -value trajectories. We found that of the 38400 clean-labeled samples, 37058 of them were never down-weighted to zero at any time during training. Of the remaining 1342 clean-labeled samples, 626 had sample weights $\frac{1}{N} + u_i \approx 0$ upon conclusion of training, i.e., were down-weighted to zero (Type 1 errors), whereas 716 of them were “**close-calls**”, i.e., had sample weights of $\frac{1}{N} + u_i \approx 0$ at some iteration before then recovering by the conclusion of training to have a positive sample weight $\frac{1}{N} + u_i \geq \frac{1}{2N} > 0$.

We find these results interesting because the observed behavior indicates RRM can recover a borderline but ultimately learnable sample that was assigned to near-zero weight early.

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

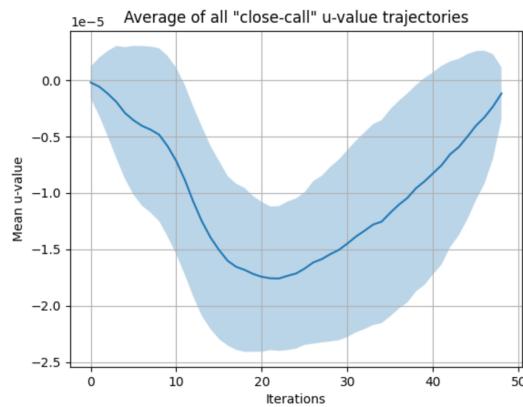
1108

1109

1110

1111

1112 Figure 2: We identified all “close-call” clean-labeled samples, i.e., those which had sample weights of
 1113 $\frac{1}{N} + u_i \approx 0$ at some iteration before then recovering by the conclusion of training to have a positive
 1114 sample weight $\frac{1}{N} + u_i \geq \frac{1}{2N} > 0$. The average (over these 716 “close-calls”) u-value trajectory is
 1115 plotted, with shading indicating one standard deviation.



1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133