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ABSTRACT

Designing control policies whose performance level is guaranteed to remain above
a given threshold in a span of environments is a critical feature for the adoption
of reinforcement learning (RL) in real-world applications. The search for such
robust policies is a notoriously difficult problem, often cast as a two-player game,
whose formalization dates back to the 1970’s. This two-player game is strongly
related to the so-called dynamic model of transition function uncertainty, where
the environment dynamics are allowed to change at each time step. But in practical
applications, one is rather interested in robustness to a span of static transition
models throughout interaction episodes. The static model is known to be harder to
solve than the dynamic one, and seminal algorithms, such as robust value iteration,
as well as most recent works on deep robust RL, build upon the dynamic model.
In this work, we propose to revisit the static model. We suggest an analysis of
why solving the static model under some mild hypotheses is a reasonable endeavor,
based on an equivalence with the dynamic model, and formalize the general
intuition that robust MDPs can be solved by tackling a series of static problems.
We introduce a generic meta-algorithm called IWOCS, which incrementally
identifies worst-case transition models so as to guide the search for a robust policy.
Discussion on IWOCS sheds light on new ways to decouple policy optimization
and adversarial transition functions and opens new perspectives for analysis.
We derive a deep RL version of IWOCS and demonstrate it is competitive with
state-of-the-art algorithms on classical benchmarks.

1 INTRODUCTION

One major obstacle in the way of real-life deployment of reinforcement learning (RL) algorithms is
their inability to produce policies that retain, without further training, a guaranteed level of efficiency
when controlling a system that somehow differs from the one they were trained upon. This property is
referred to as robustness, by opposition to resilience, which is the ability to recover, through continued
learning, from environmental changes. For example, when learning control policies for aircraft sta-
bilization using a simulator, it is crucial that the learned controller be able to control a span of aircraft
configurations with different geometries, or masses, or in various atmospheric conditions. Depending
on the criticality of the considered application, one will prefer to optimize the expected performance
over a set of environments (thus weighting in the probability of occurrence of a given configuration)
or, at the extreme, optimize for the worst case configuration. Here, we consider such worst case
guarantees and revisit the framework of robust Markov Decision Processes (MDPs) (Iyengar, 2005).

Departing from the common perspective which views robust MDPs as two-player games, we investi-
gate whether it is possible to solve them through a series of non-robust problems. The two-player
game formulation is called the dynamic model of transition function uncertainty, as an adversarial
environment is allowed to change the transition dynamics at each time step. The solution to this
game can be shown to be equivalent, for stationary policies and rectangular uncertainty sets, to that
of the static model, where the environment retains the same transition function throughout the time
steps. Our first contribution is a series of arguments which cast the search for a robust policy as a
resolution of the static model (Section 2). We put this formulation in perspective of recent related
works in robust RL (Section 3). Then, we introduce a generic meta-algorithm which we call IWOCS
for Incremental Worst-Case Search (Section 4). IWOCS builds upon the idea of incrementally
identifying worst case transition functions and expanding a discrete uncertainty set, for which a robust
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policy can be approximated through a finite set of non-robust value functions. We instantiate two
IWOCS algorithms, one on a toy illustrative problem with a discrete state space, then another on
popular, continuous states and actions, robust RL benchmarks where it is shown to be competitive
with state-of-the art robust deep RL algorithms (Section 5).

2 PROBLEM STATEMENT

Reinforcement Learning (RL) (Sutton & Barto, 2018) considers the problem of learning a decision
making policy for an agent interacting over multiple time steps with a dynamic environment. At each
time step, the agent and environment are described through a state s P S, and an action a P A is
performed; then the system transitions to a new state s1 according to probability T ps1|s, aq, while
receiving reward rps, a, s1q. The tuple MT “ pS,A, T, rq forms a Markov Decision Process (MDP)
(Puterman, 2014), which is often complemented with the knowledge of an initial state distribution
p0psq. Without loss of generality and for the sake of readability, we will consider a unique starting
state s0 in this paper, but our results extend straightforwardly to a distribution p0psq. A stationary
decision making policy is a function πpa|sq mapping states to distributions over actions (writing πpsq
the action for the special case of deterministic policies). Training a reinforcement learning agent
in MDP MT consists in finding a policy that maximizes the expected γ-discounted return from s0:
Jπ
T “ Er

ř8

t“0 γ
trpst, at, st`1q|s0, at „ π, st`1 „ T s “ V π

T ps0q, where V π
T is the value function of

π in MDPMT , and γ P r0, 1q. An optimal policy inMT will be noted π˚
T and its value function V ˚

T . A
convenient notation is the state-action value functionQπ

T ps, aq “ Es1„T rrps, a, s1q`γV π
T ps1qs of pol-

icy π in MDP MT , and the corresponding optimal Q˚
T . Key notations are summarized in Appendix B.

Robust MDPs, as introduced by Iyengar (2005) or Nilim & El Ghaoui (2005), introduce an additional
challenge. The transition functions T are picked from an uncertainty set T and are allowed to change
at each time step, yielding a sequence T “ tTtutPN. A common assumption, called sa-rectangularity,
states that T is a Cartesian product of independent marginal sets of distributions on S, for each
state-action pair. The value of a stationary policy π in the sequence of MDPs induced by T “ tTtutPN
is noted V π

T . The pessimistic value function for π is V π
T psq “ minT V

π
T psq, where the agent plays a

sequence of actions at P A drawn from π, against the environment, which in turn picks transition
models Tt P T so as to minimize the overall return. The robust value function is the largest such
pessimistic value function and hence the solution to V ˚

T psq “ maxπ minT V
π
T psq. The robust MDP

problem can be cast as the zero-sum two-player game, where π̂ denote the decision making policy of
the adversarial environment, deciding Tt P T based on previous observations. Then, the problem
becomes maxπ minπ̂ V

π
π̂ psq, where V π

π̂ is the expected value of a trajectory where policies π and
π̂ play against each other. Hence, the optimal policy becomes the minimax policy, which makes it
robust to all possible future evolutions of the environment’s properties.

Robust Value Iteration. Following Iyengar (2005, Theorem 3.2), the optimal robust value
function V ˚

T psq “ maxπ minT V
π
T psq is the unique solution to the robust Bellman equation

V psq “ maxa minT Es1„T rrps, a, s1q ` γV ps1qs “ LV psq. This directly translates into a robust
value iteration algorithm which constructs the Vn`1 “ LVn sequence of value functions (Satia &
Lave Jr, 1973; Iyengar, 2005). Such robust policies are, by design, very conservative, in partic-
ular when the uncertainty set is large and under the rectangularity assumption. Several attempts
at mitigating this intrinsic over-conservativeness have been made from various perspectives. For
instance, Lim et al. (2013) propose to learn and tighten the uncertainty set, echoing other works that
incorporate knowledge about this set into the minimax resolution (Xu & Mannor, 2010; Mannor
et al., 2012). Other approaches (Wiesemann et al., 2013; Lecarpentier & Rachelson, 2019; Goyal &
Grand-Clement, 2022) propose to lift the rectangularity assumption and capture correlations in uncer-
tainties across states or time steps, yielding significantly less conservative policies. Ho et al. (2018)
and Grand-Clément & Kroer (2021) retain the rectangularity assumption and propose algorithmic
schemes to tackle large but discrete state and action spaces.

The static model. In many applications, one does not wish to consider non-stationary transition func-
tions, but rather to be robust to any transition function from T which remains stationary throughout
a trajectory. This is called the static model of transition function uncertainty, by opposition to the
dynamic model where transition functions can change at each time step. Hence, the static model’s
minimax game boils down to maxπ minT V

π
T psq. If the agent is restricted to stationary policies

πpa|sq, then maxπ minT V
π
T psq “ maxπ minT V

π
T psq (Iyengar, 2005, Lemma 3.3), that is the static
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and dynamic problems are equivalent, and the solution to the dynamic problem is found for a static
adversary.1 In this paper, we will only consider stationary policies.

No-duality gap. Wiesemann et al. (2013, Equation 4 and Proposition 9) introduce an important
saddle point condition stating that maxπ minT V

π
T psq “ minT maxπ V

π
T psq. 2

Incrementally solving the static model. Combining the static and dynamic models equivalence
and the no-duality gap condition, we obtain that, for rectangular uncertainty sets and stationary
policies, the optimal robust value function V ˚

T psq “ maxπ minT V
π
T psq “ maxπ minT V

π
T psq “

minT maxπ V
π
T psq “ minT V

˚
T psq. The key idea we develop in this paper stems from this formu-

lation. Suppose we are presented with MT0 and solve it to optimality, finding V ˚
0 psq “ V ˚

T0
psq.

Then, suppose we identify MT1 as a possible better estimate of a worst case MDP in T than T1. We
can solve for V ˚

T1
and V ˚

1 psq “ mintV ˚
T0

psq, V ˚
T1

psqu is the robust value function for the discrete
uncertainty set T1 “ tT0, T1u. The intuition we attempt to capture is that by incrementally identifying
candidate worst case MDPs, one should be able to define a sequence of discrete uncertainty sets
Ti “ tTjujPr0,is whose robust value function V ˚

i decreases monotonously, and may converge to
V ˚. In other words, it should be possible to incrementally robustify a policy by identifying the
appropriate sequence of transition models and solving individually for them, trading the complexity
of the dynamic model’s resolution for a sequence of classical MDP problems. The algorithm we
propose in Section 4 follows this idea and searches for robust stationary policies for the dynamic
model, using the static model, by incrementally growing a finite uncertainty set.

3 RELATED WORK

Robust RL as two-player games. A common approach to solving robust RL problems is to cast
the dynamic formulation as a zero-sum two player game, as formalized by Morimoto & Doya (2005).
In this framework, an adversary, denoted by π̂ : S Ñ T , is introduced, and the game is formulated as
maxπ minπ̂ Er

ř8

t“0 γ
trpst, at, st`1q|s0, at „ πp¨|stq, Tt “ π̂pst, atq, st`1 „ Ttp¨|st, atqs. Most

methods differ in how they constrain π̂’s action space within the uncertainty set. A first family of
methods define π̂pstq “ Tref ` ∆pstq, where Tref denotes the reference transition function. Among
this family, Robust Adversarial Reinforcement Learning (RARL) (Pinto et al., 2017) applies external
forces at each time step t to disturb the reference dynamics. For instance, the agent controls a planar
monopod robot, while the adversary applies a 2D force on the foot. In noisy action robust MDPs
(NR-MDP) (Tessler et al., 2019) the adversary shares the same action space as the agent and disturbs
the agent’s action πpsq. Such gradient-based approaches incur the risk of finding stationary points
for π and π̂ which do not correspond to saddle points of the robust MDP problem. To prevent this,
Mixed-NE (Kamalaruban et al., 2020) defines mixed strategies and uses stochastic gradient Langevin
dynamics. Similarly, Robustness via Adversary Populations (RAP) (Vinitsky et al., 2020) introduces
a population of adversaries, compelling the agent to exhibit robustness against a diverse range of
potential perturbations rather than a single one, which also helps prevent finding stationary points
that are not saddle points. Aside from this first family, State Adversarial MDPs (Zhang et al., 2020;
2021; Stanton et al., 2021) involve adversarial attacks on state observations, which implicitly define a
partially observable MDP. The goal in this case is not to address robustness to the worst-case transition
function but rather against noisy, adversarial observations. A third family of methods considers
the general case of π̂pstq “ Tt where Tt P T . Minimax Multi-Agent Deep Deterministic Policy
Gradient (M3DDPG) (Li et al., 2019) is designed to enhance robustness in multi-agent reinforcement
learning settings, but boils down to standard robust RL in the two-agents case. Max-min TD3
(M2TD3) (Tanabe et al., 2022) considers a policy π, defines a value function Qps, a, T q which
approximates Qπ

T ps, aq “ Es1„T rrps, a, s1q ` γV π
T ps1qs, updates an adversary π̂ so as to minimize

Qps, πpsq, π̂psqq by taking a gradient step with respect to π̂’s parameters, and updates the policy π
using a TD3 gradient update in the direction maximizing Qps, πpsq, π̂psqq. As such, M2TD3 remains
a robust value iteration method which solves the dynamic problem by alternating updates on π and π̂,
but since it approximates Qπ

T , it is also closely related to the method we introduce in the next section.

Regularization. Derman et al. (2021); Eysenbach & Levine (2022) also highlighted the strong
link between robust MDPs and regularized MDPs, showing that a regularized policy learned during

1This does not imply the solution to the static model is the same as that of the dynamic model in the general
case: the optimal static π may be non-stationary and solving the static model is known to be NP-hard.

2The static-dynamic equivalence and the no-duality gap property’s context is recalled in Appendix A.
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interaction with a given MDP was actually robust to an uncertainty set around this MDP. Kumar et al.
(2023) propose a promising approach in which they derive the adversarial transition function in a
closed form and demonstrate that it is a rank-one perturbation of the reference transition function.
This simplification results in more streamlined computation for the robust policy gradient.

Domain randomization (DR) (Tobin et al., 2017) learns a value function V psq “

maxπ ET„UpT qV
π
T psq which maximizes the expected return on average across a fixed (generally

uniform) distribution on T . As such, DR approaches do not optimize the worst-case performance.
Nonetheless, DR has been used convincingly in applications (Mehta et al., 2020; OpenAI et al., 2019).
Similar approaches also aim to refine a base DR policy for application to a sequence of real-world
cases (Lin et al., 2020; Dennis et al., 2020; Yu et al., 2018).

For a more complete survey of recent works in robust RL, we refer the reader to the work of Moos
et al. (2022). To the best of our knowledge, the approach sketched in the previous section and
developed in the next one is the only one that directly addresses the static model. For that purpose, it
exploits the equivalence with the dynamic model for stationary policies and solves the dual of the
minimax problem, owing to the no-duality gap property.

4 INCREMENTAL WORST-CASE SEARCH

In order to search for robust policies, we consider the no-duality gap property: the best performance
one can expect in the face of transition function uncertainty maxπ minT V

π
T ps0q, is also the worst per-

formance the environment can induce for each transition function’s optimal policy minT V
˚
T ps0q. If

the value V π
T ps0q was strictly concave/convex with respect to π/T respectively, we could hope to solve

for the robust policy through a (sub)gradient ascent/descent method. Unfortunately, it seems V π
T ps0q

easily admits more convoluted optimization landscapes, involving stationary points, local minima and
maxima. The maxπ problem often benefits from regularization (Geist et al., 2019). Although one
could study regularization for the minT problem (Grand-Clément & Petrik, 2022) or the equivalence
with a regularized objective (Derman et al., 2021), we turn towards a simpler process conceptually.

Algorithm. We consider a (small) discrete set of MDPs Ti “ tTjujPr0,is, for which we derive the
corresponding optimal value functions Q˚

Tj
. Then we define Qi as the function that maps any pair

s, a to the smallest expected optimal outcome Qips, aq “ minjPr0,istQ
˚
Tj

ps, aqu. The corresponding
greedy policy is πipsq “ argmaxaQips, aq and is a candidate for the robust policy. Let us define
Ti`1 “ argminTPT V

πi

T ps0q. Then, if V πi

Ti`1
ps0q “ Qips0, πips0qq, we have found a robust policy

for all transition models in T . Otherwise, we can solve forQ˚
Ti`1

, append Ti`1 to Ti to form Ti`1, and
repeat. Consequently, the idea we develop is to incrementally expand Ti by solving minTPT V

πi

T ps0q

using optimization methods that can cope with ill-conditioned optimization landscapes. We call
Incremental Worst Case Search (IWOCS) this general method, which we summarize in Algorithm 1.

Algorithm 1: Incremental Worst-Case Search meta-algorithm (in blue: the sub-algorithms)
Input: T , T0, max number of iterations M , tolerance on robust value ϵ
for i “ 0 to M do

Find Q˚
Ti

“ maxπQ
π
Ti

/* Non-robust policy optimization */
1 Define Ti “ tTjujPr0,is

2 Define Qi : s, a ÞÑ minjPr0,istQ
˚
Tj

ps, aqu /* Ti-robust value function */

3 Define πipsq “ argmaxapQips, aqq /* Candidate policy */
4 Find Ti`1 “ argminTPT V

πi

T ps0q /* Identify worst T */
5 if |V πi

Ti`1
ps0q ´Qips0, πips0q| ď ϵ then

6 return πi, Ti`1, V πi

Ti`1
ps0q /* Early termination condition */

return πM , TM`1, V πM

TM`1
ps0q

Rectangularity. One should note that Ti is a subset of a (supposed) sa-rectangular uncertainty set,
but is not sa-rectangular itself, so there is no guarantee that the static-dynamic equivalence holds in Ti,
and Qi is a pessimistic value function for the static case only, on the Ti uncertainty set. However, one
can consider the sa-rectangular set T̃i “

Ś

s,atTjp¨|s, aqujPr0,is composed of the cartesian product
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of all local tTjp¨|s, aqujPr0,is sets for each s, a pair.
Property 1. Qips, aq ě Q˚

T̃i
ps, aq ě Q˚

T ps, aq,@s, a.

The proof follows directly from the fact that Ti Ă T̃i Ă T . We abusively call Qi the Ti-robust value
function. In s0, Qi coincides with the robust value function for the static model of uncertainty with
respect to the Ti uncertainty set.
Property 2. Qi`1ps, aq ď Qips, aq,@i, s, a.
The proof is immediate as well since Qi`1 is taken over the same finite set of functions as Qi,
complemented with Q˚

Ti`1
. Hence the Qi functions form a monotonically decreasing sequence.

Since Qi is lower bounded (by Q˚
T ), IWOCS is necessarily convergent (but not necessarily to Q˚

T ).
Choosing Ti`1. One could define a variant of Algorithm 1 which picks Ti`1 using another criterion
than the worst-case transition model for πi, for instance by drawing Ti`1 uniformly at random,
without loosing the two properties above. This underlines that the procedure for choosing Ti`1

is a heuristic part of IWOCS. In all cases, the sequence of Qi remains monotonous and hence
convergence in the limit remains guaranteed. Specifically, if, in the limit, Ti converges to T (under
some appropriate measure on uncertainty sets), then Qi converges to the robust value function by
definition. Whether this occurs or not, strongly depends on how Ti`1 is chosen at each iteration. In
particular, premature stopping can occur if Ti`1 is among Ti. We conjecture choosing the worst-case
transition model for πi is an intuitive choice here, and reserve further theoretical analysis on this
matter for future work. One bottleneck difficulty of this selection procedure for Ti`1 lies in solving
the minT problem accurately enough. However this difficulty is decoupled from that of the policy
optimization process, which is only concerned with static MDPs.

Illustration.

Figure 1: Windy
walk grid-world.

We implement an IWOCS algorithm on a toy example, using value iteration (VI)
as the policy optimization algorithm and a brute force search across transition
functions to identify worst-case MDPs (V πi

T ps0q is evaluated through Monte-
Carlo rollouts). Detailed pseudo-code is provided in Appendix D. The goal here
is to illustrate the behavior of IWOCS, compare it to the seminal robust value
iteration (RVI) algorithm, and validate empirically that IWOCS is able to find
worst-case static MDPs and robust policies.

This vanilla IWOCS is evaluated on the “windy walk” grid-world MDP illustrated on Figure 1, where
an agent wishes to navigate from a starting position S to a goal G. Actions belong to the discrete
tN,S,E,W u set and transitions are deterministic, except in the “corridors”, where wind can knock
back the agent to the left. In the topmost corridor, the probability of being knocked left is α, in
the middle corridor it is α3 and it is α6 in the bottom corridor (details in Appendix D). Hence, the
uncertainty set is fully parameterized by α, which takes 25 discrete values, uniformly distributed in
r0, 0.5s. Rewards are ´1 at each time step and the goal is an absorbing state yielding zero reward.
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Figure 2: Convergence to V ˚ vs
Bellman iterates.

Figure 2 illustrates how IWOCS converges to the robust value
function V ˚. RVI builds the sequence Vn`1 “ LVn and we plot
|Vnps0q´V ˚

T ps0q| versus the number of robust Bellman iterates
n. On the other hand, IWOCS requires its first policy optimiza-
tion to terminate before it can report its first Qips0, πips0qq.
Thus, we plot |Qips0, πips0qq ´ V ˚

T ps0q| after a fixed number
of 100 standard Bellman backups for VI. It is important to note
that one iterate of the standard Bellman operator requires solv-
ing a maxa in each state, while an iterate of the robust Bellman
operator requires solving a more costly maxa minT problem in each state. Therefore, the x-axis does
not account for computational time (see Appendix O for a short discussion on complexity). IWOCS
finds the worst-case static model after two iterations and converges to the same value as RVI.

5 DEEP IWOCS

We now turn towards challenging robust control problems and introduce an instance of IWOCS meant
to accommodate large and continuous state and action spaces, using function approximators such as
neural networks. This instance of IWOCS uses Soft Actor Critic (SAC) Haarnoja et al. (2018) as
the policy optimization method. One motivation for using SAC is that it has been proven to yield a
locally robust policy around the MDP it is trained upon (Eysenbach & Levine, 2022).
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5.1 METHOD

Accounting for regularization terms. Since SAC learns a regularized Q-function which accounts
for the policy’s entropy, and lets the importance of this term vary along the optimization, orders of
magnitude may change between QTi and QTj . To avoid the influence of this regularization term
when defining the Ti-robust Q-function, we train an additional unregularized Q-network which only
takes rewards into account. We call πT the policy network which approximates the optimal policy of
the regularized MDP based on T . This policy’s (regularized) value function is approximated by the
Q1

T network (our implementation uses double Q-networks as per the common practice — all details
in Appendix E), while an additional QT network (double Q-network also) tracks the unregularized
value function of πT . The Ti-robust Q-function is defined with respect to this unregularized value
function as Qips, aq “ minjPr0,istQTj

ps, aqu.

Partial state space coverage. In large state space MDPs, it is likely that interactions will not explore
the full state space. Consequently, the different QTj

functions are trained on replay buffers whose
empirical distribution’s support my vary greatly. Evaluating neural networks outside of their training
distribution is prone to generalization errors. This begs for indicator functions specifying on which
ps, aq pair each QT is relevant. We chose to implement such an indicator function using predictive
coding (Rao & Ballard, 1999) on the dynamical model Tj . Note that other choices can be equally
good (or better), such as variance networks (Neklyudov et al., 2019), ensembles of neural networks
(Lakshminarayanan et al., 2016) or 1-class classification (Béthune et al., 2023). Our predictive coding
model for Tj predicts T̂jps, aq “ s1 for deterministic dynamics, by minimizing the expected value of
the loss ℓpT̂jps, aq; s1q “ }T̂jps, aq ´ s1}1. At inference time, along a trajectory, we consider QTj

has been trained on sufficient data in st, at, if ℓpT̂jpst´1, at´1q; stq ď ρj , ie. if the prediction error
for st is below the threshold ρj (details about tuning ρj in Appendix F). We redefine Q˚

Tj
to be `8

in all states where ℓpT̂jpst´1, at´1q; stq ą ρj , so that it does not participate in the definition of Qi.

Worst case identification. When V πi

T ps0q is non differentiable with respect to T (or T ’s parameters),
one needs to fall back on black-box optimization to find Ti`1 “ argminTPT V

πi

T ps0q. We turn to
evolutionary strategies, and in particular CMA-ES (Hansen & Ostermeier, 2001) for that purpose,
for its ability to escape local minima and efficiently explore the uncertainty set T even when the
latter is high-dimensional (hyperparameters in Appendix E). Note that making V π

T ps0q differentiable
with respect to T is feasible by making the critic network explicitly depend on T ’s parameters, as
in the work of Tanabe et al. (2022). We do not resort to such a model, as it induces the risk for
generalization errors, but it constitutes a promising alternative for research. To evaluate V πi

T ps0q for a
given T , we run a roll-out from s0 by applying πipsq in each encountered state s. Since we consider
continuous action spaces and keep track of the critics QTj

, Q1
Tj

and the actor πTj
for all Tj P Ti, we

can make direct use of πTj which is designed to mimic an optimal policy in MTj . Specifically, in s,
we evaluate j˚ “ argminjďiQ

˚
Tj

ps, πTj psqq, and apply πipsq “ πj˚ psq. If no Q˚
Tj

is valid in s, we
fall back to a default policy trained with domain randomization.

5.2 EMPIRICAL EVALUATION

Experimental framework. This section assesses the proposed algorithm’s worst-case performance
and generalization capabilities. Experimental validation was performed on optimal control problems
using the MuJoCo simulation environments3 (Todorov et al., 2012). The algorithm was benchmarked
against state-of-the-art robust reinforcement learning methods, including M2TD3 (Tanabe et al.,
2022), M3DDPG (Li et al., 2019), and RARL (Pinto et al., 2017). We also compare with Domain
Randomization (DR) (Tobin et al., 2017) for completeness. For each environment, two versions
of the uncertainty set are considered, following the benchmarks reported by Tanabe et al. (2022).
In the first one, T is parameterized by a global friction coefficient and the agent’s mass, making
T isomorphic to R2. In the second one, a third, environment-dependent parameter is included
(details in Appendix I). To ensure a fair comparison we also aligned with the sample budget of
Tanabe et al. (2022): performance metrics were collected after 4 million steps for environments
with a 2D uncertainty set and after 5 million steps for those with a 3D uncertainty set. All reference
methods optimize a single policy along these 4 or 5 million steps, but IWOCS optimizes a sequence
of non-robust policies, for which we divided this sample budget: we constrained IWOCS to train

3Note that these do not respect the rectangularity assumption.
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its default policy and each subsequent SAC agent for a fixed number of interaction steps, so that the
sum is 4 or 5 million steps.4 All results reported below were averaged over 10 distinct random seeds.

Worst-case performance. Table 1 reports the normalized worst-case scores comparing IWOCS,
M2TD3, SoftM2TD3, M3DDPG, RARL, and DR using TD3. The worst-case score for all final
policies are evaluated by defining a uniform grid over the transition function’s parameter space and
performing roll-outs for each transition model. To obtain comparable metrics across environments,
we normalized each method’s score v using the vanilla TD3 (trained on the environment with default
transition function parameters) reference score vTD3 as a minimal baseline and the M2TD3 score
vM2TD3 as target score: pv´vTD3q{|vM2TD3´vTD3|. Hence this metric reports how much a method
improves upon TD3, compared to how much M2TD3 improved upon TD3. The non-normalized
scores are reported in Appendix J. This instance of IWOCS demonstrates competitive performance,
outperforming all other methods in 7 out of the 11 environments (note that we did not report results
on environments from the literature that feature a simpler 1D uncertainty set). IWOCS permits a 2.04-
fold improvement on average across environments, over the state-of-the-art M2TD3. It seems that Ant
is an environment where IWOCS struggles to reach convincing worst case scores (and Humanoid to
a lesser extent). We conjecture this is due to the wide range of possible mass and friction parameters,
which make the optimization process very noisy (almost zero mass and friction is a worst-case T
making the ant’s movement rather chaotic and hence induces a possibly misleading replay buffer) and
may prevent the policy optimization algorithm to yield good non-robust policies and value functions
given its sample budget. However, IWOCS provides a major (up to 7-fold) improvement on Hopper.

Table 1: Avg. of normalized worst-case performance over 10 seeds for each method.

Environment IWOCS M2TD3 SoftM2TD3 M3DDPG RARL (DDPG) DR (TD3)

Ant 2 ´0.23 ˘ 0.43 1.00 ˘ 0.04 0.92 ˘ 0.06 ´0.72 ˘ 0.05 ´1.32 ˘ 0.04 0.02 ˘ 0.05
Ant 3 0.17 ˘ 0.55 1.00 ˘ 0.09 0.97 ˘ 0.18 ´0.36 ˘ 0.20 ´1.28 ˘ 0.06 0.61 ˘ 0.03
HC 2 1.12 ˘ 0.20 1.00 ˘ 0.05 1.07 ˘ 0.05 ´0.02 ˘ 0.02 ´0.05 ˘ 0.02 0.84 ˘ 0.04
HC 3 1.63 ˘ 0.36 1.00 ˘ 0.14 1.39 ˘ 0.15 ´0.03 ˘ 0.05 ´0.13 ˘ 0.05 1.10 ˘ 0.04
Hopper 2 5.74 ˘ 0.05 1.00 ˘ 0.05 1.09 ˘ 0.06 0.46 ˘ 0.06 0.61 ˘ 0.17 0.87 ˘ 0.03
Hopper 3 6.87 ˘ 1.70 1.00 ˘ 0.09 0.68 ˘ 0.08 0.22 ˘ 0.04 0.56 ˘ 0.17 0.73 ˘ 0.13
HS 2 0.80 ˘ 0.14 1.00 ˘ 0.12 1.25 ˘ 0.16 0.98 ˘ 0.12 0.88 ˘ 0.13 1.14 ˘ 0.14
HS 3 0.80 ˘ 0.28 1.00 ˘ 0.11 0.96 ˘ 0.07 0.97 ˘ 0.07 0.88 ˘ 0.13 0.86 ˘ 0.06
IP 2 2.82 ˘ 0.00 1.00 ˘ 0.37 0.38 ˘ 0.08 ´0.00 ˘ 0.00 ´0.00 ˘ 0.00 0.15 ˘ 0.01
Walker 2 1.16 ˘ 0.42 1.00 ˘ 0.14 0.83 ˘ 0.15 0.04 ˘ 0.04 ´0.08 ˘ 0.01 0.71 ˘ 0.17
Walker 3 1.60 ˘ 0.34 1.00 ˘ 0.23 1.03 ˘ 0.20 0.06 ˘ 0.05 ´0.10 ˘ 0.01 0.65 ˘ 0.19

Aggregated 2.04 ˘ 0.18 1.0 ˘ 0.13 0.96 ˘ 0.05 0.14 ˘ 0.06 0.0 ˘ 0.07 0.70 ˘ 0.08

Average performance. While our primary aim is to maximize the worst-case performance, we
also appreciate the significance of average performance in real-world scenarios. Table 2 reports the
normalized average score (non-normalized scores in Appendix J) obtained by the resulting policy
over a uniform grid of 100 transition functions in 2D uncertainty sets (1000 in 3D ones). Interestingly,
M3DDPG and RARL feature negative normalized scores and perform worse on average than vanilla
TD3 on most environments (as M2TD3 on 3 environments). DR and IWOCS display the highest
average performance. Although this outcome was anticipated for DR, it may initially seem surprising
for IWOCS, which was not explicitly designed to optimize mean performance. We posit this might be
attributed to two factors. First, in MDPs which have not been identified as worst-cases, encountered
states are likely to have no valid QTj value function. In these MDPs, if we were to apply any of
the πTj

, its score could be as low as the worst cast value (but not lower, otherwise the MDP should
have been identified as a worst case earlier). But since IWOCS’ indicator functions identify these
states as unvisited, the applied policy falls back to the DR policy, possibly providing a slightly
better score above the worst case value for these MDPs. Second, the usage of indicator functions
permits defining the IWOCS policy as an aggregate of locally optimized policies, possibly avoiding
averaging issues. As for the worst-case scores, IWOCS does not perform well on Ant environments.
However, it provides better average scores than both DR and M2TD3 on the Humanoid benchmarks.

4Additional experiments allowing more samples to SAC at each iteration of IWOCS showed only marginal
performance gains. This also illustrates how IWOCS can accomodate sub-optimal value functions and policies.
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Table 2: Avg. of normalized average performance over 10 seeds for each method.

Environment IWOCS M2TD3 SoftM2TD3 M3DDPG RARL DR (TD3)

Ant 2 0.45 ˘ 0.51 1.00 ˘ 0.02 1.04 ˘ 0.00 ´0.13 ˘ 0.12 ´1.04 ˘ 0.02 1.28 ˘ 0.03
Ant 3 ´3.56 ˘ 2.96 ´1.00 ˘ 0.44 ´0.36 ˘ 0.46 ´6.98 ˘ 0.44 ´8.94 ˘ 0.18 0.92 ˘ 0.22
HalfCheetah 2 1.74 ˘ 0.26 1.00 ˘ 0.03 1.10 ˘ 0.04 ´1.08 ˘ 0.07 ´1.94 ˘ 0.03 1.84 ˘ 0.09
HalfCheetah 3 1.90 ˘ 0.32 1.00 ˘ 0.07 1.17 ˘ 0.03 ´1.43 ˘ 0.14 ´2.48 ˘ 0.05 2.33 ˘ 0.12
Hopper 2 1.90 ˘ 0.80 1.00 ˘ 0.07 0.74 ˘ 0.12 ´0.40 ˘ 0.11 1.86 ˘ 0.92 0.36 ˘ 0.08
Hopper 3 6.17 ˘ 3.30 ´1.00 ˘ 0.23 ´1.20 ˘ 0.13 ´2.20 ˘ 0.37 1.63 ˘ 1.53 1.17 ˘ 0.23
HumanoidStandup 2 3.00 ˘ 3.00 ´1.00 ˘ 0.67 0.67 ˘ 0.83 ´1.83 ˘ 0.67 ´3.00 ˘ 1.33 0.50 ˘ 0.67
HumanoidStandup 3 1.87 ˘ 4.12 1.00 ˘ 0.75 0.38 ˘ 0.37 0.00 ˘ 0.50 ´1.75 ˘ 0.87 0.38 ˘ 0.87
InvertedPendulum 2 2.86 ˘ 0.00 1.00 ˘ 0.68 1.06 ˘ 0.46 ´1.10 ˘ 0.25 ´0.47 ˘ 0.32 2.47 ˘ 0.03
Walker 2 1.03 ˘ 0.45 1.00 ˘ 0.06 0.83 ˘ 0.16 ´0.53 ˘ 0.11 ´1.21 ˘ 0.02 0.91 ˘ 0.15
Walker 3 1.19 ˘ 0.50 1.00 ˘ 0.13 0.96 ˘ 0.18 ´0.57 ˘ 0.09 ´1.43 ˘ 0.04 1.13 ˘ 0.10

Aggregated 1.68 ˘ 1.47 0.45 ˘ 0.28 0.58 ˘ 0.25 ´1.47 ˘ 0.25 ´1.70 ˘ 0.48 1.20 ˘ 0.23

Overall, it performs better than all other methods on 7 out of the 11 environments and is only slightly
outperformed by DR on 2 more.

Ablation study. We replace CMA-ES by a plain grid search across the uncertainty set, in order to
assess whether it effectively found adequate worst-case transition models. Results are reported in
Appx K. Note that contrarily to CMA-ES, this grid search will not scale to larger uncertainty set dimen-
sions, but provides a safe baseline for optimization performance. The main take-away is that IWOCS
performance is not affected by the optimization method: CMA-ES seems to reliably find worst-cases.

Tracking the convergence of IWOCS. IWOCS aims at solving iteratively the robust optimization
problem by covering the worst possible case at each iteration. Consequently, we could expect the
value of the candidate robust policy πi to increase throughout iterations. Figure 3 reports the score of
πi across iterations, averaged over 10 optimization runs, along with the observed standard deviation,
on all 3D uncertainty sets. In the three environments where IWOCS dominates over other reference
methods, we observe a nice steady increase in value, with limited standard deviations across runs.
Notably, in the Hopper environment, the search for a worst-case environment seems very beneficial
to IWOCS, enabling a large leap in score over the first iteration (causing the 7-fold increase reported
in Table 1). Results on the Ant benchmark seem to confirm the conjecture made to explain the poor
behavior of IWOCS: the large variance in πi scores tend to indicate that optimizing for non-robust
policies is somewhat noisy and might prevent finding robust policies overall.
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Figure 3: Worst-case performance for each iteration of IWOCS on 3D uncertainty sets

Worst case paths in the uncertainty set. IWOCS seems to reliably find worst case MDPs and
policies in a number of cases. Table 3 permits tracking the worst case MDPs and policies along
iterations for the HalfCheetah 2D environment (all other results in Appendix L). Specifically, it
reports the score of the first optimized policy JπT0

T0
, then the parameters ψ1

1 and ψ1
2 (friction and

mass) of the worst case transition function T1, and the value Jπ0

T1
of the candidate robust policy π0 in

T1. The next columns repeats these values for later iterations. Each line corresponds to a different
random seed. At iteration 0, the first trained policy πT0 displays a large variance in score across runs,
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Table 3: Halfcheetah 2, worst parameters search for each iteration over 10 seeds.

J
πT0

T0
ψ1
1 ψ1

2 Jπ0

T1
J
πT1

T1
ψ2
1 ψ2

2 Jπ1

T2
J
πT2

T2
ψ3
1 ψ3

2 Jπ2

T3

0 5753.2 4.0 7.0 2128.3 20559.5 4.0 0.1 3626.3 9724.7 4.0 7.0 3745.6
1 109.755 4.0 7.0 2027.0 3732.0 4.0 7.0 3827.6 6183.4 4.0 7.0 3827.6
2 5897.4 0.1 7.0 2354.0 9930.0 4.0 7.0 2497.4 3670.5 4.0 7.0 3874.4
3 6396.9 4.0 7.0 2473.0 3815.1 4.0 0.6 3053.9 6022.4 4.0 7.0 3825.5
4 2143.26 0.1 7.0 1633.3 3807.9 4.0 7.0 1978.4 6282.5 4.0 7.0 1978.4
5 4476.0 4.0 7.0 1983.2 13040.2 4.0 0.1 2597.4 3694.9 4.0 0.1 2822.3
6 6275.2 4.0 7.0 -91.1 3639.7 4.0 0.1 3448.4 5347.6 4.0 7.0 3986.0
7 6213.8 0.1 7.0 1587.1 2046.31 4.0 7.0 2411.1 3757.7 4.0 7.0 3769.5
8 6409.8 4.0 7.0 2053.8 3709.9 4.0 0.1 3182.3 3712.3 4.0 7.0 3872.9
9 6801.4 0.1 0.1 2341.4 3620.1 0.5 4.4 3619.3 5737.3 0.6 6.8 5431.3

avg 5047.6 1849.0 6790.1 3024.2 5413.3 3713.4
std 2210.6 740.5 5940.3 623.4 1886.8 876.3

as is often the case with deep RL methods (SAC included). In turn, it is no surprise that the identified
worst case MDPs differ from one line to the other and that their scores features some variability either.
However, all instances of T1 tend to lie on some corner of the uncertainty set. As IWOCS moves on
to iteration 1, then 2, worst-case MDPs tend to concentrate on the same corner (the true worst-case
MDP) and robust scores tend to increase (as Figure 3 showed in the 3D case).

Exploring the variance and convergence of IWOCS. The reader might notice IWOCS seems to
feature higher variance than previous state-of-the-art methods (Table 1) in its overall worst-case score.
This seems to indicate that, while solving the maxπ minT value optimization problem, IWOCS takes
quite different paths in pπ, T q-space across random seeds, leading to a variety of solutions. It is
important to note first that these solutions are, despite their variance in score, consistently of better
quality than that of previous methods. From a topological perspective, one can picture that IWOCS
reaches a variety of good stationary points, depending on noise in the optimization process, while
avoiding lower quality ones. We conjecture this might be attributed to the decoupling between worst
case search and best policy search in IWOCS: adding Ti to Ti´1 in IWOCS is a min problem which
avoids possible stationary points encountered when solving the minmax problem of robust VI. The
large variance in solutions found might be due to many stationary points in the Jπ

T objective function
which, in turn indicate that IWOCS would benefit from regularization terms. We reserve a finer
analysis on this topic for future work. This also brings up the question of IWOCS’ convergence. As
indicated in Section 2, the incremental worst-case search yields a monotonous sequence of value
functions which is bounded by the robust value function. Consequently, IWOCS’ search process is
guaranteed to converge, but there is no formal guarantee that it will converge to the true robust value
function. Although this is still an open question, this monotonicity argument was sufficient in the toy
example and IWOCS yields more robust policies than its competitors on the difficult benchmarks.

6 CONCLUSION

The search for robust policies in uncertain MDPs is a long-standing challenge. In this work, we
proposed to revisit the static model of transition function uncertainty, which is equivalent to the
dynamic model in the case of sa-rectangular uncertainty sets and stationary policies. We proposed
to exploit this equivalence and the no-duality-gap property to design an algorithm that trades the
resolution of a two-player game, for a sequence of one-player MDP resolutions. This led to the
IWOCS (Incremental Worst-Case Search) meta-algorithm, which incrementally builds a discrete,
non-sa-rectangular uncertainty set and a sequence of candidate robust policies. An instance of
IWOCS, using SAC for policy optimization, and CMA-ES for worst-case search, appeared as a
relevant method on popular robust RL benchmarks, and outperformed the state-of-the-art algorithms
on a number of environments. IWOCS proposes a new perspective on the resolution of robust MDPs
and robust RL problems, which appears as a competitive formulation with respect to traditional
methods. It also poses new questions, like the tradeoffs between policy optimization precision and
overall robustness, gradient-based methods for worst-case search, bounds due to approximate value
functions, or validity of using Qi as a surrogate of the robust value function for the Ti uncertainty set.
All these open interesting avenues for future research.
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Appendix
A KEY RESULTS FROM THE LITERATURE

In order to ease the reading of this paper, we recall the two theoretical results that Section 2 builds
upon. We reproduce the text from the original papers (Iyengar, 2022; Wiesemann et al., 2013) but, for
the sake of consistency, we use the notations of the present paper and indicate [in brackets] whenever
we adjusted the original notation. All results quoted below apply to sa-rectangular uncertainty sets.

Definition of the static and dynamic models, in the introduction of section 3 of (Iyengar, 2005).

(i) Static model: The adversary is restricted to choose the same, but unknown,
[T p¨|s, aq] every time the state-action pair ps, aq is encountered.
(ii) Dynamic model: The adversary is allowed to choose a possibly different con-
ditional measure [T p¨|s, aq] every time the state-action pair ps, aq is encountered.
[...]
As mentioned in the introduction, the goal of the robust formulation is to systemati-
cally mitigate the effect of errors associated with estimating the state transitions;
i.e., the state transition is, in fact, fixed but the decision maker is only able to
estimate it to within a set. Thus, the static model is appropriate for this scenario.
However, computing the optimal policy for the static model is NP-hard, therefore,
we will restrict attention to the dynamic model. Clearly the value function in the
dynamic model is a lower bound for the value function in the static model. We
contrast the implications of the two models in Lemma 3.3.

Equivalence of the value functions under the static and dynamic models (Iyengar, 2005, Lemma
3.3).

Lemma 3.3 (Dynamic vs. static adversary). Let [π : S Ñ A be a] stationary policy.
Let V π and V̂ π be the value of the π in the dynamic and static model respectively.
Then V π “ V̂ π .
[...]
In the proof of the result we have implicitly established that the “best-response” of
dynamic adversary when the decision maker employs a stationary policy is, in fact,
static [...].

Non-equivalence of the static and dynamic models for non-stationary policies, at the end of
Section 3 of (Iyengar, 2005)

Lemma 3.3 highlights an interesting asymmetry between the decision maker and
the adversary that is a consequence of the fact that the adversary plays second.
While it is optimal for a dynamic adversary to play static (stationary) policies
when the decision maker is restricted to stationary policies, it is not optimal for the
decision maker to play stationary policies against a static adversary.

No-duality gap property (Wiesemann et al., 2013, Equation 4).

To date, the literature on robust MDPs has focused on (s, a)-rectangular ambiguity
sets. For this class of ambiguity sets, it is shown in (Iyengar, 2005) and (Nilim
& El Ghaoui, 2005) that the worst-case expected total reward [...] is maximized
by a deterministic stationary policy for finite and infinite horizon MDPs. Optimal
policies can be determined via extensions of the value and policy iteration. For
some ambiguity sets, finding an optimal policy, as well as evaluating (2) for a
given stationary policy, can be achieved in polynomial time. Moreover, the policy
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improvement problem satisfies the following saddle point condition

sup
π

inf
TPT

E

«

8
ÿ

t“0

γtrpst, at, st`1q|s0

ff

“ inf
TPT

sup
π

E

«

8
ÿ

t“0

γtrpst, at, st`1q|s0

ff

B NOTATIONS

Table 4 recalls all key notations used throughout the paper. The first block in Table 4 is for standard
(non-robust) MDP quantities (used in Section 2 and after), the second for standard robust MDP
quantities (Section 2 and after), the third for IWOCS-specific quantities (Section 4 and after), and
finally the fourth for Deep-IWOCS notations (Section 5 and after).

Table 4: Key notations

Symbol Meaning

MT “ pS,A, T, rq MDP with transition kernel T
π Stationary policy S Ñ A
V π
T , Qπ

T State and state-action value functions of policy π in MT

Jπ
T Scalar value V π

T ps0q of initial state under π in MT

π˚
T Optimal policy in MT

V ˚
T , Q˚

T Optimal state and state-action value functions in MT

T Uncertainty set
V π
T Value function of policy π under sequence of transition kernels T
V π
T , Qπ

T Pessimistic value function of policy π for uncertainty set T
V ˚
T , Q˚

T Robust value function for uncertainty set T
Ti Non-sa-rectangular discrete uncertainty set
T̃i sa-rectangular uncertainty superset of Ti
Qi Ti-robust value function
πT SAC’s approximation of π˚

T
QT SAC’s approximation of Q˚

T
Q1

T SAC’s estimate of πT ’s regularized value function
T̂j Predictive coding model for Tj

C COMPUTING RESOURCES

All experiments were run on a desktop machine (Intel i9, 10th generation processor, 64GB RAM)
with a single NVIDIA RTX 3090 GPU. Averages, medians, and standard deviations were computed
from 10 independent repetitions of each experiment.

D WINDY-WALK GRIDWORLD

The windy-walk environment used in Section 4 is a discrete grid-world environment illustrated in
Figure 4. It features 36 discrete states corresponding to positions on the grid, and 4 discrete actions
corresponding to cardinal moves. Six states are unreachable and correspond to walls, defining three
corridors. The transition model is deterministic by default, except in the corridors where the wind
blows. This transition model is parameterized by a scalar parameters α. In the Northern corridor:

• the W action moves West with probability 1,
• the N and S actions leave the position unchanged with probability 1 ´ α and the agent is

pushed West with probability α,
• the E action moves East with probability 1 ´ α and West with probability α.

The middle corridor works the same way, but with probability α3 instead of α. In the Southern
corridor:
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• the W action moves West with probability 1,

• the N (resp. S) action move the agent respectively North (resp. South) with probability
1 ´ α6 (unless it runs into a wall in which case the position is unchanged), and West with
probability α6,

• the E action moves East with probability 1 ´ α6 and West with probability α6.

Rewards are -1 for all transitions and the G state is an absorbing goal states yielding zero reward.
The agent always starts in state S. Consequently, windy-walk is a stochastic shortest path. For small
values of α, the optimal policy is to go straight from S to G, but as α increases, the wind blows
harder, and it becomes more interesting to make a detour through the middle then Southern corridors.
The corresponding robust MDP problem features an uncertainty set spanned by 25 discrete values of
α, uniformly distributed in r0, 0.5s.

The instance of IWOCS evaluated in Section 4 uses value iteration as a policy optimization algorithm
and a brute-force grid search as a search method for worst-case transition functions, as summarized
in Algorithm 2. In Algorithm 2 we abusively write Tα the transition model parameterized by α.

In the experiments of Section 4, value iteration is run until a tolerance of 10´3 is met. γ is set to
0.95. Monte-Carlo estimates of V πi

T ps0q use 300 independent rollouts (of length at most 104) from
the starting state.

Figure 4: Windy walk grid-world.

Algorithm 2: IWOCS with value iteration and brute force worst-case search
Input: T , T0, max number of iterations M , tolerance on robust value ϵ
for i “ 0 to M do

Find Q˚
Ti

“ value_iterationpTiq /* Non-robust policy optimization
*/

1 Define Ti “ tTjujPr0,is

2 Define Qi : s, a ÞÑ minjPr0,istQ
˚
Tj

ps, aqu /* Ti-robust value function */

3 Define πipsq “ argmaxapQips, aqq /* Candidate policy */
4 V πi

Ti`1
ps0q “ `8

5 for α P T do /* Identify worst T */
6 Ṽ “ Monte-Carlo_rolloutspπiq

7 if Ṽ ă V πi

Ti`1
ps0q then

8 V πi

Ti`1
ps0q “ Ṽ

9 Ti`1 “ Tα

10 if |V πi

Ti`1
ps0q ´Qips0, πips0q| ď ϵ then

11 return πi, Ti`1, V πi

Ti`1
ps0q /* Early termination condition */

return πM , TM`1, V πM

TM`1
ps0q
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E SOFT ACTOR-CRITIC AND CMA-ES HYPERPARAMETERS

Our code is available at https://anonymous.url.

Deep IWOCS uses SAC (Haarnoja et al., 2018) for policy optimization and trains jointly a predictive
coding model to predict the outcome of a state-action pair. Specifically, a single network called
“enhanced critic” is trained to predict the regularized value function Q1ps, aq, the unregularized value
function Qps, aq and a prediction of the transition outcome T̂ ps, aq. The network’s architecture is
summarized in Figure 5a. All activation functions are ReLU except for the output layers (identity
functions). Note that one more layer was necessary to appropriately estimate Q compared to Q1. Our
implementation also uses double critics as per the common practice, to avoid overestimating Q and
Q1 (totally independent networks, no shared layers). Given a replay buffer D, learning Q minimizes
the loss

LQ “ Es,a,s1„D,a1„π

“

Qps, aq ´ rr ` γQ´ps1, a1qs
‰2
,

where Q´ is a target network, updated through Polyak averaging. Similarly, Q1 minimizes

L1
Q “ Es,a,s1„D,a1„π

“

Q1ps, aq ´ rr ` γpQ1´ps1, a1q ´ α log πpa1|s1qqs
‰2
.

Finally, T̂ minimizes

LT̂ “ Es,a,s1„D

”

}T̂ ps, aq ´ s1}1

ı

.

These three objective functions are minimized in turn with three distinct Adam optimizers to account
for possible different orders of magnitude.

(a) Enhanced critic (b) Actor

Figure 5: Network architectures

The actor network is a standard SAC actor trained with respect to the regularized Q-function Q1.
The network’s architecture is depicted in Figure 5b. All activation functions are ReLU, except for
the output values (identify for µ and tanh for log σ as per the common practice). The output action
drawn from the network’s output is run through an additional tanh function following the usual SAC
implementations.

The search for worst case transition functions is performed by using the CMA-ES black-box opti-
mization method (Hansen & Ostermeier, 2001). The implementation used is the reference one of
https://github.com/CyberAgentAILab/cmaes, off-the-shelf.

All hyperparameter values for SAC and CMA-ES are summarized in Table 5. These values are the
same across all experiments.
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Table 5: Hyperparameters of SAC

Hyperparameter Value
Learning rate actor 3e-4
Learning rate critic 1e-3
Adam epsilon 1e-5
Adam pβ1, β2q (0.9, 0.999)
Batch size 256
Memory size 1e6
Gamma 0.99
Polyak update 0.995
Number of steps before training 1e4

CMA-ES generations 6
CMAS-ES population size 100
CMA ES mean 0.5
CMA ES std 0.5

F ADAPTIVE THRESHOLDING FOR PREDICTIVE CODING

As introduced in Section 5, the SAC-based implementation of IWOCS used in the experiments
exploits a predictive coding mechanism in order to characterize each policy’s training distribution
support and to avoid using a given πTi

on samples outside its training distribution. Policy πTi
and

value function QTi
are deemed usable in state st along the current trajectory if st was accurately

predicted by the dynamics model T̂ipst´1, at´1q. Specifically, we consider a threshold ρi on the
prediction error and consider QTi

and πTi
to be viable in st if ℓpT̂ipst´1, at´1q, stq ď ρi, with

ℓpT̂ipst´1, at´1q, stq “ }T̂ipst´1, at´1q ´ st}1. In states where QTi
is non-viable, we arbitrarily set

its value to `8 so that it does not participate inQips, aq “ minjďitQTj ps, aqu. We noted in the main
text that alternative characterizations of the support distribution were possible, and we do not claim
the present choice outperforms the alternatives. Notably, all choices induce a number of parameters
to tune (here ρi). This leads to a number of design choices that make the implementation somehow
more convoluted than the simple principle of IWOCS. While the main text kept things focused on
the principles of IWOCS, we provide here a full pseudo-code (which is more representative of the
provided code) for the sake of completeness. Appendix E already covered the network structure, the
training losses and the training hyperparameters for SAC and CMA-ES. Hence, the present section
focuses on how to adjust each ρi.

Training of the enhanced critic network does not provide a usable value for ρi and experimental
results demonstrated that accurate characterization of the training distribution’s support required
per-MDP tuning. Since ρi needs to be tuned for πTi

during iteration i (and is kept fixed thereafter),
we couple its search with that of the worst case transition model to permit better overall efficiency.
Specifically, at iteration i, we consider a discrete set R of possible values for threshold ρi. For each
value in R, we identify the worst case transition model. Then, we keep the value of ρi that enabled
the best pessimistic value. In a sense, this makes ρi a parameter of the candidate robust policy. This
parameter is single-dimensional and hence its optimization is computationally undemanding. We
emphasize that this tuning mechanism is both very naive and arbitrary. It is naive since it performs
a grid search over discrete values of ρi, where it could have exploited optimization methods. It is
arbitrary in the sense that it picks ρi by keeping as a selection heuristic the overall goal of identifying
robust policies.

Algorithm 3 summarizes the complete IWOCS process with adaptive thresholding for predictive
coding. In the experiments of Section 5, R is a discrete set of 10 values evenly spaced between 0.1
and 1.
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Algorithm 3: Deep IWOCS with adaptive threshold
Input: T , T0, maximum number of iterations M , discrete thresholds set R
for i “ 0 to M do

Find QTi , πTi , T̂i “ SACpTiq // Non-robust SAC and pred coding
1 Define Ti “ tTjujPr0,is

2 Define V̂ “ ´8 // candidate worst value
3 for ρ P R do // loop over thresholds

4 Define Q̃Ti
ps, aq “

"

`8 if ℓpT̂ipst´1, at´1q; stq ą ρ for s “ st
QTips, aq otherwise.

5 Define Q̃ips, aq “ minjďitQ̃Tj
ps, aqujPr0,is,@s, a // Ti-robust value

function

6 Define J˚psq “ argminjďi Q̃Tj
ps, πTj

psqq,@s

7 Define π̃ipsq “

"

πdefaultpsq if Q̃ips, aq “ `8,
πTj˚ psq with j˚ P J˚psq otherwise. // Candidate policy

8 Find T̃i`1, V
π̃i

T̃i`1
ps0q “CMA-ESpV π̃i

T ps0qq // Identify worst T

9 if V πi

T 1
i`1

ps0q ě V̂ then // keep best ρ

10 ρj “ ρ

11 Ti`1 “ T̃i`1, πi “ π̃i, V πi

Ti`1
ps0q “ V π̃i

T̃i`1
ps0q, Qi “ Q̃i

12 if |V πi

Ti`1
ps0q ´Qips0, πips0q| ď ϵ then

13 return πi, Ti`1, V πi

Ti`1
ps0q // Early termination condition

return πM , TM`1, V πM

TM`1
ps0q

G SAMPLE BUDGETS

In order to enable a fair comparison with the results of Tanabe et al. (2022) which we report in Table 1,
we evaluate IWOCS with the same overall sample budget, ie. 4 million samples in 2D uncertainty set
environments and 5 million samples in 3D uncertainty set environments.

In 2D environments, the default DR policy is trained for 1.6 ¨ 106 steps, then 3 IWOCS iterations of
8 ¨ 105 each are run, for a total of 4 ¨ 106 collected samples.

In 3D environments, the default DR policy is trained for 1.8 ¨ 106 steps, then 4 IWOCS iterations of
8 ¨ 105 each are run, for a total of 5 ¨ 106 collected samples.

No fine-tuning of these training durations was performed.

H COMPUTATIONAL OVERHEAD DUE TO IWOCS

In Table 6 we report the average wall-clock time needed for our implementation of SAC to cover
the 4 (resp. 5) million samples allocated for 2D (resp. 3D) environments without IWOCS. Then, we
report the time required by IWOCS to cover the same sample budget. This permits a fair evaluation
of the overhead computational cost of IWOCS, without the bias due to implementation optimizations.

I UNCERTAINTY SETS IN MUJOCO ENVIRONMENTS

The experiments of Section 5 follow the evaluation protocol proposed by Tanabe et al. (2022) and
based on MuJoCo environments (Todorov et al., 2012). These environments are designed with 2D or
3D uncertainty sets. Table 7 lists all environments evaluated, along with their uncertainty sets. The
uncertainty sets column defines the ranges of variation for the parameters within each environment.
The reference parameters column indicates the nominal or default values. The uncertainty parameters
column describes the physical meaning of each parameter.
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Environment SAC IWOCS
Ant 2 18h 44h
Ant 3 22.5h 76h
Halfcheetah 2 20h 43h
Halfcheetah 3 25h 66h
Walker 2 19h 47h
Walker 3 24h 64h
Hopper 2 20h 44h
Hopper 3 25h 65h
HumanoidStandup 2 18h 49h
HumanoidStandup 3 22.5h 68h

Table 6: Average wall-clock time for plain SAC and for IWOCS for the same number of samples.

Table 7: List of environment and parameters for the experiements

Environment Uncertainty set T Reference values Uncertainty
parameters

Ant 2 r0.1, 3.0sˆr0.01, 3.0s p0.33, 0.04q torso mass; front left
leg mass

Ant 3 r0.1, 3.0s ˆ

r0.01, 3.0s ˆ

r0.01, 3.0s

p0.33, 0.04, 0.06q torso mass; front left
leg mass; front right

leg mass
HalfCheetah 2 r0.1, 4.0s ˆ r0.1, 7.0s p0.4, 6.36q world friction; torso

mass
HalfCheetah 3 r0.1, 4.0s ˆ

r0.1, 7.0s ˆ r0.1, 3.0s

p0.4, 6.36, 1.53q world friction; torso
mass; back thigh

mass
Hopper 2 r0.1, 3.0s ˆ r0.1, 3.0s p1.00, 3.53q world friction; torso

mass
Hopper 3 r0.1, 3.0s ˆ

r0.1, 3.0s ˆ r0.1, 4.0s

p1.00, 3.53, 3.93q world friction; torso
mass; thigh mass

HumanoidStandup 2 r0.1, 16.0sˆr0.1, 8.0s p8.32, 1.77q torso mass; right foot
mass

HumanoidStandup 3 r0.1, 16.0s ˆ

r0.1, 5.0s ˆ r0.1, 8.0s

p8.32, 1.77, 4.53q torso mass; right foot
mass; left thigh mass

InvertedPendulum 2 r1.0, 31.0s ˆ

r1.0, 11.0s

p4.90, 9.42q pole mass; cart mass

Walker 2 r0.1, 4.0s ˆ r0.1, 5.0s p0.7, 3.53q world friction; torso
mass

Walker 3 r0.1, 4.0s ˆ

r0.1, 5.0s ˆ r0.1, 6.0s

p0.7, 3.53, 3.93q world friction; torso
mass; thigh mass

J NON-NORMALIZED RESULTS

Table 8 reports the non-normalized worst case scores, averaged across 10 independent runs for each
benchmark. Table 9 reports the average score obtained by each agent across a grid of environments,
also averaged across 10 independent runs for each benchmark.

K ABLATION STUDIES

In this Section, we report the performance of IWOCS*, which is exactly the Deep IWOCS algorithm
of Section 5 where the search for worst case environment parameters is not performed using CMA-ES
but with a grid search over parameter space. Note that this grid search is the same as in the work
of Tanabe et al. (2022). Each dimension is uniformly split across 10 points, yielding a 100 (resp.
1000) points grid for 2D (resp. 3D) environments. Grid search has the advantage of uniform coverage
of the uncertainty set, and the drawback of inability to find solutions outside the grid. Conversely,
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Table 8: Avg. ˘ std. error of worst-case performance over 10 seeds for each method

Environment IWOCS M2TD3 SoftM2TD3M2-
DDPG

M3DDPGRARL
(DDPG)

DR
(TD3)

TD3
(ref)

Ant 2
`

ˆ103
˘

1.0 ˘

1.1
4.13˘

0.11
3.92˘

0.14
0.95˘

0.20
´0.25˘

0.13
´1.77˘

0.09
1.64˘

0.13
1.59˘

0.08
Ant 3

`

ˆ103
˘

´0.8˘

0.6
0.10˘

0.10
0.07˘

0.20
´1.13˘

0.28
´1.38˘

0.22
´2.38˘

0.07
´0.32˘

0.03
´0.99˘

1.13
HalfCheetah 2

`

ˆ103
˘

3.0 ˘

0.63
2.61˘

0.16
2.82˘

0.16
2.54˘

0.23
´0.58˘

0.06
´0.70˘

0.05
2.12˘

0.13
´0.53˘

0.06
HalfCheetah 3

`

ˆ103
˘

1.9 ˘

0.55
0.93˘

0.21
1.53˘

0.23
1.20˘

0.22
´0.66˘

0.08
´0.81˘

0.07
1.09˘

0.06
´0.61˘

0.08
Hopper 2

`

ˆ102
˘

29.6˘

0.25
5.33˘

0.28
5.79˘

0.29
4.30˘

0.57
2.58˘

0.29
3.34˘

0.89
4.68˘

0.15
0.21˘

0.04
Hopper 3

`

ˆ102
˘

18.7˘

4.6
2.84˘

0.25
1.98˘

0.22
2.25˘

0.29
0.73˘

0.11
1.64˘

0.46
2.10˘

0.35
0.14˘

0.03
HumanoidStandup 2

`

ˆ104
˘

5.32˘

0.8
6.50˘

0.70
7.94 ˘

0.90
6.24˘

0.54
6.37˘

0.72
5.78˘

0.73
7.31˘

0.78
0.73˘

0.07
HumanoidStandup 3

`

ˆ104
˘

5.06˘

1.6
6.20˘

0.64
5.99˘

0.37
5.96˘

0.58
6.01˘

0.38
5.54˘

0.76
5.41˘

0.34
0.57˘

0.04
InvertedPendulum 2

`

ˆ102
˘

10˘0 3.56˘

1.32
1.36˘

0.30
1.10˘

0.62
0.02˘

0.00
0.02˘

0.00
0.57˘

0.02
0.03˘

0.00
Walker 2

`

ˆ103
˘

3.6 ˘

1.2
3.14˘

0.39
2.64˘

0.43
0.85˘

0.12
0.39˘

0.11
0.06˘

0.04
2.31˘

0.50
0.28˘

0.07
Walker 3

`

ˆ103
˘

3.0 ˘

0.6
1.94˘

0.40
2.00˘

0.35
0.82˘

0.13
0.28˘

0.09
0.00˘

0.02
1.32˘

0.34
0.17`

0.06

Table 9: Avg. ˘ std. deviation of average performance over 10 seeds for each method

Environment IWOCS M2TD3 SoftM2TD3M3DDPG RARL DR
(TD3)

TD3
(ref)

Ant 2
`

ˆ103
˘

3.69 ˘

1.60
5.44 ˘

0.05
5.56 ˘

0.01
1.86 ˘

0.38
´1.00˘

0.06
6.32 ˘

0.09
2.28 ˘

0.09
Ant 3

`

ˆ103
˘

1.38 ˘

1.48
2.66 ˘

0.22
2.98 ˘

0.23
´0.33˘

0.22
´1.31˘

0.09
3.62 ˘

0.11
3.16 ˘

1.00
HalfCheetah 2

`

ˆ103
˘

5.63 ˘

0.44
4.35 ˘

0.05
4.52 ˘

0.07
0.77 ˘

0.12
´0.70˘

0.05
5.79 ˘

0.15
2.63 ˘

0.20
HalfCheetah 3

`

ˆ103
˘

4.98 ˘

0.42
3.79 ˘

0.09
4.02 ˘

0.04
0.58 ˘

0.18
´0.81˘

0.07
5.54 ˘

0.16
2.47 ˘

0.18
Hopper 2

`

ˆ103
˘

3.38 ˘

0.78
2.51 ˘

0.07
2.26 ˘

0.12
1.15 ˘

0.11
3.34 ˘

0.89
1.89 ˘

0.08
1.54 ˘

0.17
Hopper 3

`

ˆ103
˘

3.0 ˘

0.99
0.85 ˘

0.07
0.79 ˘

0.04
0.49 ˘

0.11
1.64 ˘

0.46
1.50 ˘

0.07
1.15 ˘

0.14
HumanoidStandup 2

`

ˆ105
˘

1.21 ˘

0.18
0.97 ˘

0.04
1.07 ˘

0.05
0.92 ˘

0.04
0.85 ˘

0.08
1.06 ˘

0.04
1.03 ˘

0.03
HumanoidStandup 3

`

ˆ105
˘

1.16 ˘

0.33
1.09 ˘

0.06
1.04 ˘

0.03
1.01 ˘

0.04
0.87 ˘

0.07
1.04 ˘

0.07
1.01 ˘

0.03
InvertedPendulum 2

`

ˆ102
˘

10 ˘ 0 6.13 ˘

1.42
6.26 ˘

0.95
1.76 ˘

0.51
3.07 ˘

0.66
9.18 ˘

0.07
4.05 ˘

0.52
Walker 2

`

ˆ103
˘

4.78 ˘

0.90
4.72 ˘

0.12
4.37 ˘

0.32
1.63 ˘

0.22
0.26 ˘

0.05
4.54 ˘

0.31
2.70 ˘

0.20
Walker 3

`

ˆ103
˘

4.58 ˘

0.83
4.27 ˘

0.21
4.21 ˘

0.30
1.65 ˘

0.15
0.21 ˘

0.07
4.48 ˘

0.16
2.60 ˘

0.18
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Table 10: Avg. ˘ std. error of worst-case performance over 10 seeds between IWOCS and IWOCS*

Environment IWOCS* IWOCS

Ant 2
`

ˆ103
˘

1.2 ˘ 1.3 1.0 ˘ 1.1
Ant 3

`

ˆ103
˘

´0.8 ˘ 0.2 ´0.8 ˘ 0.6
Halfcheetah 2

`

ˆ103
˘

3.0 ˘ 0.6 3.0 ˘ 0.63
Halfcheetah 3

`

ˆ103
˘

1.3 ˘ 0.41 1.9 ˘ 0.55
Hopper 2

`

ˆ102
˘

29.9 ˘ 0.20 29.6 ˘ 0.25
Hopper 3

`

ˆ102
˘

22.9 ˘ 2.6 18.7 ˘ 4.6
Humanoid 2

`

ˆ104
˘

5.6 ˘ 1.7 5.32 ˘ 0.8
Humanoid 3

`

ˆ104
˘

4.8 ˘ 2.8 5.06 ˘ 1.6
Inverted Pendulum 2

`

ˆ102
˘

10.0 ˘ 0 10.0 ˘ 0
Walker 2

`

ˆ103
˘

3.7 ˘ 0.4 3.6 ˘ 1.2
Walker 3

`

ˆ103
˘

3.3 ˘ 0.9 3.0 ˘ 0.6

Table 11: Avg. ˘ std. error of normalized worst-case performance over 10 seeds between IWOCS
and IWOCS*

Environment IWOCS* IWOCS

Ant 2 ´0.15 ˘ 0.51 ´0.23 ˘ 0.43
Ant 3 0.17 ˘ 0.18 0.17 ˘ 0.55
Halfcheetah 2 1.12 ˘ 0.96 1.12 ˘ 0.20
Halfcheetah 3 1.24 ˘ 0.84 1.63 ˘ 0.36
Hopper 2 5.80 ˘ 0.04 5.74 ˘ 0.05
Hopper 3 8.43 ˘ 0.96 6.87 ˘ 1.70
Humanoid 2 0.84 ˘ 0.29 0.80 ˘ 0.14
Humanoid 3 0.75 ˘ 0.50 0.80 ˘ 0.28
Inverted Pendulum 2 2.82 ˘ 0.00 2.82 ˘ 0.00
Walker 2 1.20 ˘ 1.26 1.16 ˘ 0.42
Walker 3 1.77 ˘ 1.69 1.60 ˘ 0.34

CMA-ES is a noisy optimization procedure but can in theory approximate any continuous minimum.
Tables 10 and 11 report the comparison between IWOCS and IWOCS*. It appears no algorithm
seems to outperform the other with statistical significance (more than one standard deviation). The
only exception is Half-Cheetah 3 where IWOCS outperforms IWOCS*. We conclude that CMA-ES
is indeed able to efficiently solve the minT problem in Algorithm 1 and that, at least, the error it
makes is no worse than that of a uniform grid search and has marginal repercussions on the final
performance.

L WORST-CASE PATHS

Table 3 illustrated the path followed by the successive identified worst-case transition functions Ti
in the 2D uncertainty set of the HalfCheetah 2 environment, across 10 independent optimization
runs. For the sake of completeness, we provide here the same results for all environments, which
permit drawing similar conclusions. Tables 12 and 13 start by recalling the physical meaning of each
transition function’s parameters. Then, Tables 14 to 24 follow the same logic as Table 3 and report
the evolution of worst-case parameters and values on all other environments than HalfCheetah 2.

M MEDIAN SCORES

Table 1 reported the worst case score obtained by all algorithms, averaged across 10 independent
runs. Table 25 reports the median rather than the average across these runs.

Similarly, Table 2 reported the average score across a span of environments, averaged across 10
independent runs. Table 26 reports also the median across these runs rather than the average.
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Table 12: Physical meaning of transition function parameters in 2D environments

Environment ψ1 ψ2

Ant 2 torso mass front left leg mass
Halfcheetah 2 world friction torso mass
Hopper 2 world friction torso mass
HumanoidStandup 2 torso mass right thigh mass
Walker 2 world friction torso mass
InvertedPendulum 2 pole mass cart mass

Table 13: Physical meaning of transition function parameters in 3D environments

Environment ψ1 ψ2 ψ3

Ant 3 torso mass front left leg mass front right leg mass
Halfcheetah 3 world friction torso mass back thigh mass
Hopper 3 world friction torso mass thigh mass
HumanoidStandup 3 torso mass left thigh mass right foot mass
Walker 3 world friction torso mass thigh mass

Unfortunately it was not possible to relate these figures to competitor methods as only averages are
reported in the work of Tanabe et al. (2022).

N HOW MANY VALID POLICIES IN s ?

The Deep-IWOCS method proposed in Section 5 introduced indicator functions constraining the use
of a given policy to a subset of states. Depending on the environment and uncertainty parameters, we
expect some policies to remain within the same set of explored states, while others will cover a very
different state distribution. To quantify this aspect, we ran an experiment where the IWOCS final
policy is run on each benchmark, across a grid of transition functions. For each encountered state, we
count how many policies are valid. Figure 6 reports the corresponding histograms (note the log-scale
on the y-axis).

Obviously, the number of valid policies is capped by the number of iterations performed by IWOCS (3
in 2D environments, 4 in 3D ones). Depending on the environment, we observe a wide variety of state
coverages. For instance, optimizing policies for different transition functions of HalfCheetah induce
very different state distributions and very few states feature more than one valid policy. Conversely,
in Ant or Hopper environments, there seems to be a larger number of states that belong to the training
distribution of several policies.

O DISCUSSION ON THE COMPLEXITY OF IWOCS

Recall that the complexity of robust value iteration (RVI) in discrete state and action MDPs is
OpCnS logp1{ϵq{ logp1 ´ γqq, where nS is the number of states, ϵ is the tolerance for the robust
value function and C is the cost of computing maxa minT ER,S1 rR` γV pS1qs in a given s (Iyengar,
2005). In discrete state and action spaces, computing the value of the expectation has cost O(nS). The
minT has to be solved once for every state and action and it’s a search over measures on S. Let c be
its cost, and nA be the number of actions, then the cost of the maxa minT operation is OpcnSnAq for
a sa-rectangular uncertainty set and the overall complexity of RVI is Opcn2SnA logp1{ϵq{ logp1´γqq.

Recall also that the complexity of value iteration (VI) is Opn2SnA logp1{ϵq{ logp1 ´ γqq (VI is a
special case of RVI with a singleton as uncertainty set, so c “ 1). The ratio between the two
complexity bounds is c.

Comparing IWOCS and RVI is a delicate matter because IWOCS is not based on a contraction
mapping and has no convergence guarantees to the robust value function. Consequently, comparisons
should be taken with a grain of salt. Yet, it is legitimate to wonder whether one can analyse the time
complexity of IWOCS versus RVI. One iteration of IWOCS in discrete state and action spaces, as
presented in Section 4, has the complexity of VI for the policy search part, plus the complexity of
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Table 14: Walker 3 worst parameters for each iteration over 10 seeds

Jπ0

T0
ψ1
1 ψ1

2 ψ1
3 Jπ0

T1
Jπ1

T1
ψ2
1 ψ2

2 ψ2
3 Jπ1

T2
Jπ2

T2
ψ3
1 ψ3

2 ψ3
3 Jπ2

T3
Jπ3

T3
ψ4
1 ψ4

2 ψ4
3 Jπ3

T4

0 5773.2 4.0 5.0 6.0 3159.6 5698.0 3.0 0.3 0.3 3339.8 4142.3 4.0 0.3 0.2 3426.7 174.3 4.0 2.9 6.0 3186.7
1 885.1 4.0 0.1 0.1 3469.4 4977.1 4.0 5.0 6.0 1833.3 782.7 0.3 5.0 0.1 2327.9 3851.3 4.0 5.0 5.8 2847.7
2 5194.5 4.0 5.0 6.0 3671.0 3233.1 4.0 5.0 6.0 3488.4 3875.6 4.0 5.0 0.1 4206.2 4891.6 4.0 1.6 6.0 3515.8
3 5743.1 4.0 5.0 6.0 2149.0 3688.3 4.0 5.0 6.0 2763.6 2997.6 4.0 5.0 4.3 2453.2 4261.8 4.0 5.0 6.0 2525.5
4 3967.8 4.0 0.1 0.1 2644.8 4760.4 4.0 0.1 0.1 2997.1 998.9 4.0 5.0 6.0 2674.0 3767.1 4.0 5.0 6.0 2884.0
5 4934.1 4.0 5.0 6.0 2843.1 6709.4 4.0 0.1 0.1 3108.7 4610.2 4.0 5.0 6.0 2048.6 3287.5 4.0 2.2 6.0 2333.4
6 5101.6 1.5 5.0 6.0 470.5 651.4 4.0 5.0 6.0 2910.4 2932.1 0.1 0.1 0.1 3183.0 4042.3 2.4 5.0 6.0 4286.7
7 4218.4 4.0 0.6 6.0 3862.5 3392.6 4.0 0.1 6.0 3885.9 3926.7 4.0 0.1 6.0 3885.9 5802.3 4.0 0.1 6.0 3885.9
8 5418.9 1.9 5.0 6.0 3765.5 4164.1 4.0 5.0 6.0 4825.9 5430.6 4.0 5.0 6.0 4954.7 4424.0 4.0 5.0 6.0 4954.8
9 5121.6 1.4 0.1 0.1 3752.2 4333.7 0.3 1.7 2.4 4000.5 69.7 0.1 0.1 0.1 4435.4 3814.6 0.1 0.1 0.1 4435.4

mean 4635.8 2978.8 4160.8 3315.4 2976.6 3359.5 3831.7 3485.6
std 1440.5 1046.7 1629.7 810.8 1793.1 989.1 1463.0 880.1

Table 15: Walker 2 worst parameters for each iteration over 10 seeds

Jπ0

T0
ψ1
1 ψ1

2 Jπ0

T1
Jπ1

T1
ψ2
1 ψ2

2 Jπ1

T2
Jπ2

T2
ψ3
1 ψ3

2 Jπ2

T3

0 4265.4 4.0 5.0 4108.0 4256.9 4.0 5.0 4134.6 5258.1 4.0 5.0 4094.9
1 3997.2 4.0 5.0 4353.9 5036.0 4.0 1.9 4515.3 2955.4 4.0 5.0 4422.6
2 5801.6 4.0 0.1 3428.5 201.6 4.0 5.0 3505.1 652.8 4.0 5.0 4320.2
3 5314.0 4.0 5.0 5181.1 3173.4 4.0 3.5 5250.7 3145.4 4.0 3.8 5161.9
4 5912.1 4.0 0.1 3524.2 5382.1 4.0 0.1 3360.3 3120.6 4.0 0.1 3360.3
5 567.9 4.0 5.0 1663.0 37.9 4.0 5.0 4543.1 4932.0 4.0 5.0 4306.8
6 5677.3 4.0 4.5 3481.8 4431.5 4.0 5.0 4243.9 4629.9 4.0 5.0 3710.1
7 4739.0 4.0 0.1 4693.6 2332.3 4.0 0.1 4595.2 2862.6 4.0 0.1 4870.1
8 5370.4 4.0 5.0 3316.4 4710.1 4.0 0.1 3297.3 4265.2 4.0 5.0 3164.1
9 157.6 4.0 5.0 1879.1 5101.4 4.0 0.1 3155.3 3163.5 4.0 5.0 1776.1

mean 4180.2 3562.9 3466.3 4060.1 3498.5 3918.7
std 2112.3 1123.1 1991.5 697.8 1341.5 975.4

finding a worst case transition function in an sa-rectangular uncertainty set, which is OpcnSnAq.
Hence, the overall complexity for M iterations of IWOCS is OpMpn2SnA logp1{ϵq{ logp1 ´ γq `

cnSnAqq. Compared to RVI (depending on M which we cannot easily quantify), this bound will be
smaller when c is large, which is the case when one deals with complex uncertainty sets and without
further hypotheses.

This short discussion provides a rationale to why IWOCS might be a time-efficient algorithm in large
scale robust RL problems.
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Table 16: InvertedPendulum 2 worst parameters for each iteration over 10 seeds

Jπ0

T0
ψ1
1 ψ1

2 Jπ0

T1
Jπ1

T1
ψ2
1 ψ2

2 Jπ1

T2
Jπ2

T2
ψ3
1 ψ3

2 Jπ2

T3

0 1000 16.8 8.5 1000.0 1000 16.8 8.5 1000.0 1000 16.8 8.5 1000.0
1 1000 11.8 4.2 1000.0 1000 11.8 4.2 1000.0 1000 11.8 4.2 1000.0
2 1000 25.3 2.4 1000.0 1000 25.3 2.4 1000.0 1000 25.3 2.4 1000.0
3 1000 16.0 4.5 1000.0 1000 16.0 4.5 1000.0 1000 16.0 4.5 1000.0
4 1000 27.9 10.9 1000.0 1000 27.9 10.9 1000.0 1000 27.9 10.9 1000.0
5 402 16.5 8.0 1000.0 1000 16.5 8.0 1000.0 1000 16.5 8.0 1000.0
6 1000 11.3 9.7 1000.0 1000 11.3 9.7 1000.0 1000 11.3 9.7 1000.0
7 1000 22.6 4.3 1000.0 1000 22.6 4.3 1000.0 1000 22.6 4.3 1000.0
8 1000 9.8 5.7 1000.0 1000 9.8 5.7 1000.0 274 9.8 5.7 1000.0
9 1000 20.8 4.8 1000.0 1000 20.8 4.8 1000.0 1000 20.8 4.8 1000.0

avg 940.2 1000 1000.000 1000.000 927.400 1000.000
std 189.1 0 0 0 229.5 0

Table 17: Halfcheetah 3 worst parameters for each iteration over 10 seeds

Jπ0

T0
ψ1
1 ψ1

2 ψ1
3 Jπ0

T1
Jπ1

T1
ψ2
1 ψ2

2 ψ2
3 Jπ1

T2
Jπ2

T2
ψ3
1 ψ3

2 ψ3
3 Jπ2

T3
Jπ3

T3
ψ4
1 ψ4

2 ψ4
3 Jπ3

T4

0 2861.4 4.0 0.1 0.1 572.7 4226.3 4.0 0.1 0.1 1329.2 3577.5 4.0 7.0 3.0 1221.3 4490.9 4.0 7.0 0.1 1781.1
1 6543.0 4.0 7.0 0.1 650.8 3645.6 4.0 7.0 3.0 1932.2 4250.6 0.1 0.1 3.0 1835.7 5277.7 4.0 7.0 3.0 1863.6
2 6227.7 0.1 0.1 3.0 338.1 4273.2 4.0 7.0 3.0 1116.4 3593.7 4.0 7.0 0.2 1133.7 3549.4 0.1 0.1 0.1 1659.6
3 4943.3 4.0 7.0 3.0 824.7 10990.4 4.0 0.1 3.0 2016.6 11954.7 4.0 1.2 3.0 2380.5 15077.8 4.0 0.1 3.0 2402.4
4 5377.0 4.0 0.1 0.4 1019.4 15130.2 0.1 7.0 3.0 85.4 12553.3 4.0 7.0 3.0 1414.6 10673.7 4.0 0.1 0.1 1016.5
5 4849.7 0.1 0.1 3.0 812.0 6698.7 0.3 0.2 0.3 4363.3 7513.8 0.3 0.2 0.3 4363.3 3612.6 0.3 0.2 0.3 4363.3
6 6547.4 0.1 7.0 3.0 -109.3 3572.7 0.3 0.3 0.5 2414.9 5265.6 0.3 0.3 0.5 2414.9 4027.0 0.3 0.3 0.5 2414.9
7 3896.5 4.0 7.0 0.1 158.4 18261.8 4.0 7.0 3.0 2315.3 3598.3 4.0 7.0 3.0 1996.3 4339.0 4.0 2.3 3.0 2307.8
8 6481.7 4.0 7.0 3.0 1077.4 4013.2 4.0 7.0 0.1 2415.3 3697.0 4.0 0.1 3.0 2428.4 17035.0 4.0 0.1 3.0 2503.1
9 5853.4 4.0 7.0 0.2 1676.7 6602.8 4.0 7.0 3.0 1955.0 6720.0 4.0 0.9 3.0 2047.2 3677.4 4.0 0.9 3.0 2047.2

mean 5358.1 702.1 7741.5 1994.4 6272.4 2123.6 7176.0 2235.9
std 1242.0 508.2 5277.3 1102.1 3444.8 922.7 5150.4 873.2

Table 18: Halfcheetah 2 worst parameters for each iteration over 10 seeds

Jπ0

T0
ψ1
1 ψ1

2 Jπ0

T1
Jπ1

T1
ψ2
1 ψ2

2 Jπ1

T2
Jπ2

T2
ψ3
1 ψ3

2 Jπ2

T3

0 5753.2 4.0 7.0 2128.3 20559.6 4.0 0.1 3626.3 9724.8 4.0 7.0 3745.6
1 109.8 4.0 7.0 2027.0 3732.0 4.0 7.0 3827.6 6183.5 4.0 7.0 3827.6
2 5897.5 0.1 7.0 2354.0 9930.0 4.0 7.0 2497.4 3670.6 4.0 7.0 3874.4
3 6396.9 4.0 7.0 2473.0 3815.1 4.0 0.6 3053.9 6022.4 4.0 7.0 3825.5
4 2143.3 0.1 7.0 1633.3 3807.9 4.0 7.0 1978.4 6282.5 4.0 7.0 1978.4
5 4476.0 4.0 7.0 1983.2 13040.2 4.0 0.1 2597.4 3694.9 4.0 0.1 2822.3
6 6275.2 4.0 7.0 -91.1 3639.7 4.0 0.1 3448.4 5347.6 4.0 7.0 3986.0
7 6213.8 0.1 7.0 1587.1 2046.3 4.0 7.0 2411.1 3757.7 4.0 7.0 3769.5
8 6409.9 4.0 7.0 2053.8 3709.9 4.0 0.1 3182.3 3712.3 4.0 7.0 3872.9
9 6801.4 0.1 0.1 2341.4 3620.1 0.5 4.4 3619.3 5737.4 0.6 6.8 5431.3

mean 5047.7 1849.0 6790.1 3024.2 5413.4 3713.3
std 2210.7 740.6 5940.3 623.4 1886.9 876.3

Table 19: Hopper 3 worst parameters for each iteration over 10 seeds

Jπ0

T0
ψ1
1 ψ1

2 ψ1
3 Jπ0

T1
Jπ1

T1
ψ2
1 ψ2

2 ψ2
3 Jπ1

T2
Jπ2

T2
ψ3
1 ψ3

2 ψ3
3 Jπ2

T3
Jπ3

T3
ψ4
1 ψ4

2 ψ4
3 Jπ3

T4

0 2959.1 3.0 0.1 0.1 1167.7 1016.4 3.0 3.0 4.0 2618.9 1479.5 3.0 3.0 4.0 2660.0 3605.8 2.8 1.8 2.4 2731.0
1 864.7 3.0 0.1 0.1 1224.4 1333.9 2.8 0.5 0.7 2763.3 1720.0 2.1 0.6 0.8 2801.2 3247.3 0.8 0.6 0.9 2747.6
2 716.7 3.0 0.1 0.1 1068.8 3381.1 3.0 3.0 4.0 2572.9 3702.9 3.0 3.0 4.0 2572.9 1197.7 3.0 3.0 4.0 2572.9
3 1222.3 3.0 0.1 0.1 1158.5 417.2 3.0 3.0 4.0 2272.9 4193.7 0.4 0.6 0.6 2657.4 3189.8 0.4 0.1 0.4 2142.3
4 2533.3 3.0 0.1 0.1 1164.8 3033.3 2.1 0.6 0.5 2696.7 2586.3 1.7 2.0 0.9 2682.9 2808.7 3.0 0.1 0.1 2223.6
5 1022.2 0.7 0.4 0.4 1999.0 1902.1 1.4 1.8 3.0 2746.7 1559.3 1.6 0.2 0.1 1891.8 3220.8 3.0 0.1 0.1 2731.3
6 1704.2 3.0 0.1 0.1 1152.3 994.7 2.9 0.6 0.8 2361.9 1845.2 0.1 0.1 0.1 1503.0 3462.2 3.0 1.9 1.2 2158.1
7 2458.2 3.0 0.1 0.1 1173.5 3504.1 2.3 3.0 4.0 2744.1 780.8 2.1 3.0 4.0 2706.2 3662.7 2.0 3.0 0.1 2882.2
8 1019.8 3.0 0.1 0.1 1045.1 516.7 3.0 3.0 4.0 2590.0 3786.4 1.4 0.5 4.0 2457.6 1649.9 3.0 3.0 4.0 2623.2
9 768.0 3.0 0.1 0.1 1125.6 3429.2 2.0 2.0 3.4 2353.4 3491.4 3.0 3.0 4.0 2273.7 1392.0 1.1 0.2 0.2 2547.5

mean 1526.8 1228.0 1952.9 2572.1 2514.6 2420.7 2743.7 2536.0
std 832.5 275.9 1264.7 181.4 1196.2 418.5 954.6 267.8
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Table 20: Hopper 2 worst parameters for each iteration over 10 seeds

Jπ0

T0
ψ1
1 ψ1

2 Jπ0

T1
Jπ1

T1
ψ2
1 ψ2

2 Jπ1

T2
Jπ2

T2
ψ3
1 ψ3

2 Jπ2

T3

0 821.3 3.0 0.1 3091.5 3431.0 3.0 2.9 3101.6 3709.7 2.6 1.5 3061.0
1 636.4 3.0 0.1 2854.2 1318.7 3.0 3.0 3169.6 2055.3 2.9 0.2 1847.3
2 829.4 3.0 3.0 2982.7 2967.9 3.0 0.6 2875.3 1951.7 1.7 0.5 3012.2
3 976.6 3.0 0.1 2906.8 1231.2 1.4 2.6 3294.3 3736.7 3.0 0.6 2902.8
4 872.5 3.0 0.1 3166.5 3601.7 3.0 3.0 3102.7 1338.4 2.9 2.3 3028.8
5 2467.8 3.0 0.1 2720.5 1308.5 1.6 3.0 2995.4 2090.7 2.6 0.2 3112.0
6 1363.3 1.8 0.2 2410.1 3066.3 0.9 3.0 2893.4 1852.3 2.9 2.9 3032.2
7 943.7 3.0 0.1 2952.7 1431.0 1.5 3.0 3061.7 834.7 0.1 3.0 3027.3
8 1177.2 3.0 0.9 2899.6 3491.6 1.4 0.2 3024.6 1491.0 2.3 0.1 3003.1
9 3411.0 3.0 0.1 3027.0 3553.9 1.8 2.9 3283.7 1437.3 3.0 0.1 2689.2

mean 1349.9 2901.2 2540.2 3080.2 2049.8 2871.6
std 889.4 212.9 1068.0 142.9 961.6 378.4

Table 21: Ant 3 worst parameters for each iteration over 10 seeds

Jπ0

T0
ψ1
1 ψ1

2 ψ1
3 Jπ0

T1
Jπ1

T1
ψ2
1 ψ2

2 ψ2
3 Jπ1

T2
Jπ2

T2
ψ3
1 ψ3

2 ψ3
3 Jπ2

T3
Jπ3

T3
ψ4
1 ψ4

2 ψ4
3 Jπ3

T4

0 2118.9 0.1 0.0 1.2 -613.8 5659.7 3.0 0.0 1.8 -916.5 6973.9 3.0 2.2 0.0 -963.8 6298.0 1.6 1.0 0.3 -98.9
1 1513.4 2.1 1.1 0.5 -188.3 901.9 0.3 0.2 2.8 -151.0 7378.7 0.3 0.2 2.8 -151.0 1856.7 2.1 3.0 3.0 -1469.4
2 5615.7 1.6 2.1 0.0 -1229.9 4238.6 3.0 2.1 3.0 -1542.7 1620.0 3.0 2.1 3.0 -1542.7 3002.5 3.0 2.1 3.0 -1542.7
3 -6.9 2.5 2.1 1.9 -942.4 420.8 1.9 0.0 3.0 -948.5 6022.8 3.0 3.0 0.0 271.4 2891.4 3.0 3.0 0.0 271.4
4 6455.8 1.0 1.7 0.3 -998.6 903.3 0.1 3.0 3.0 -336.2 -6.0 0.1 3.0 3.0 -336.2 861.7 0.1 3.0 3.0 -336.2
5 4932.0 0.6 0.4 2.9 -574.9 6406.5 0.2 2.5 2.2 944.5 893.2 0.1 3.0 3.0 768.9 2012.7 1.9 1.1 1.0 245.3
6 4036.4 1.8 0.9 0.2 -1189.2 1183.7 1.1 1.6 0.9 -852.1 2000.7 2.6 2.2 0.8 -852.0 4910.0 2.6 2.2 0.8 -852.0
7 4989.9 0.5 0.8 1.5 -1174.4 7149.6 1.1 0.0 0.0 -625.6 3224.3 3.0 3.0 0.0 -420.7 7073.9 3.0 3.0 3.0 -150.3
8 1013.7 0.1 0.0 3.0 -698.5 5122.7 3.0 3.0 0.0 746.8 -0.8 3.0 3.0 0.0 746.8 7215.3 3.0 3.0 2.5 -888.1
9 5693.1 3.0 0.0 0.0 -230.2 923.3 3.0 3.0 0.1 48.9 2420.4 0.8 2.3 2.5 -1042.7 3157.8 0.1 2.2 0.1 -663.1

mean 3636.2 -784.0 3291.0 -363.2 3052.7 -352.2 3928.0 -548.4
std 2278.6 384.2 2669.8 782.1 2785.7 775.8 2289.3 646.8

Table 22: Ant 2 worst parameters for each iteration over 10 seeds

Jπ0

T0
ψ1
1 ψ1

2 Jπ0

T1
Jπ1

T1
ψ2
1 ψ2

2 Jπ1

T2
Jπ2

T2
ψ3
1 ψ3

2 Jπ2

T3

0 334.6 0.1 1.0 -530.0 5991.2 3.0 3.0 4926.7 5675.8 3.0 3.0 4926.7
1 3814.7 0.3 0.4 -1217.9 4217.9 0.8 2.7 -91.6 3002.6 1.9 2.5 812.6
2 90.0 1.3 0.2 -284.3 4617.7 2.3 2.8 -130.4 2558.6 2.3 2.8 -130.4
3 7028.6 0.8 0.4 -1111.3 5489.5 0.1 0.4 4867.3 563.4 0.2 0.6 4987.1
4 2692.2 1.2 2.4 1765.6 11.0 0.7 0.9 -448.8 5211.9 1.0 0.8 -361.8
5 189.2 0.8 0.5 -550.0 6698.5 0.6 0.3 2513.5 4153.0 0.2 1.7 126.8
6 5507.9 1.2 0.6 -317.4 5366.6 0.9 0.6 -1738.6 5327.7 0.9 0.6 -1738.6
7 7135.3 0.3 0.1 -1889.3 1077.5 2.6 1.8 409.8 6587.1 1.8 1.4 -214.7
8 60.2 0.7 1.6 -381.2 3493.4 0.3 1.9 630.1 6718.4 0.3 1.9 630.1
9 5846.8 0.6 1.8 120.7 5218.9 1.0 0.6 911.9 7165.3 0.4 0.2 1762.9

mean 3270.0 -439.5 4218.2 1185.0 4696.4 1080.1
std 2979.0 966.0 2146.9 2233.2 2113.4 2233.0

Table 23: Humanoid 3 worst parameters for each iteration over 10 seeds

Jπ0

T0
ψ1
1 ψ1

2 ψ1
3 Jπ0

T1
Jπ1

T1
ψ2
1 ψ2

2 ψ2
3 Jπ1

T2
Jπ2

T2
ψ3
1 ψ3

2 ψ3
3 Jπ2

T3
Jπ3

T3
ψ4
1 ψ4

2 ψ4
3 Jπ3

T4

0 162787.3 11.6 2.2 3.7 63777.7 55351.3 12.5 2.2 4.0 55424.1 150555.6 14.7 1.0 2.6 67996.1 165042.5 5.6 1.7 2.3 69635.1
1 69734.9 13.3 4.4 2.2 50795.2 128973.5 6.8 2.4 0.1 48109.7 141463.0 6.8 2.4 0.1 48109.7 76982.5 6.8 2.4 0.1 48109.7
2 114519.9 14.2 3.9 0.1 34651.3 147848.4 13.3 3.8 2.6 34657.0 159586.1 13.3 3.8 2.6 34657.0 159965.9 13.3 3.8 2.6 34657.0
3 135133.6 3.4 3.6 7.1 35652.5 66055.7 15.2 3.6 0.4 42160.9 139086.8 2.4 0.2 6.3 44978.4 121269.4 2.4 0.2 6.3 44978.4
4 63038.4 14.7 4.2 3.8 26449.9 208955.3 3.8 4.5 4.7 29254.3 152341.9 3.8 4.5 4.7 29254.3 154287.1 14.3 0.4 0.4 29789.3
5 30299.9 13.1 1.9 0.8 25853.1 166377.0 9.6 2.6 7.7 35389.8 218770.6 16.0 5.0 8.0 58698.7 171419.5 4.9 3.0 3.3 29918.3
6 97248.9 14.8 3.8 0.3 44581.9 89458.9 13.4 4.9 6.0 56668.7 101301.8 10.1 3.4 1.8 61737.6 143184.0 10.1 3.4 1.8 61737.6
7 53534.5 14.3 1.8 1.3 43299.9 61420.6 8.6 3.0 1.4 40005.2 151359.1 6.1 1.2 7.1 62190.9 92987.9 7.7 0.5 0.5 41136.6
8 76997.8 15.6 2.7 3.0 37371.1 117196.9 12.0 0.5 4.0 56593.5 113955.7 12.0 0.5 4.0 56593.5 149949.0 13.3 0.5 0.7 54796.9
9 202835.2 14.6 4.2 3.9 153604.2 39919.8 10.6 4.6 0.7 141281.9 142541.7 10.6 4.6 0.7 150635.1 139585.8 10.6 4.6 0.7 150635.1

mean 100613.0 51603.7 108155.7 53954.5 147096.2 61485.1 137467.4 56539.4
std 53535.8 37581.6 55167.9 32210.3 31025.0 33718.3 31259.5 35591.2
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Table 24: Humanoid 2 worst parameters for each iteration over 10 seeds

Jπ0

T0
ψ1
1 ψ1

2 Jπ0

T1
Jπ1

T1
ψ2
1 ψ2

2 Jπ1

T2
Jπ2

T2
ψ3
1 ψ3

2 Jπ2

T3

0 78293.6 13.3 2.7 56554.6 122494.6 12.1 4.8 58367.5 151787.6 11.7 6.7 58896.8
1 107439.5 13.6 5.8 32057.0 147989.1 12.3 4.0 34210.3 140336.8 2.2 0.3 44547.7
2 119721.4 12.6 0.1 42117.4 158982.0 7.5 4.7 53170.1 78200.1 7.5 4.7 53170.1
3 50555.7 15.7 5.2 59878.2 143796.3 14.1 3.7 70100.0 87890.5 14.1 3.7 70100.0
4 75409.0 13.2 2.3 39404.6 94033.2 1.4 0.1 71365.4 238079.6 1.4 0.1 71365.4
5 67846.3 13.7 0.9 43642.5 151772.1 11.4 4.6 63760.4 215882.7 13.1 2.4 60936.7
6 89674.2 3.2 0.3 29934.6 108442.9 10.0 5.7 40954.1 147999.7 10.4 0.2 43334.3
7 160686.9 8.6 1.6 55290.8 47858.6 8.7 0.2 51295.9 147361.0 8.7 0.2 51295.9
8 57969.2 14.7 5.4 36889.2 111322.2 14.0 0.1 52196.3 117439.7 14.0 0.1 52196.3
9 88735.1 13.9 0.3 32775.8 156550.1 9.5 5.7 38304.1 161132.0 13.9 0.3 40780.7

mean 89633.1 42854.5 124324.1 53372.4 148611.0 54662.4
std 32671.8 10882.7 35152.7 12869.5 49870.6 10633.2

Table 25: Median of the worst-case scores across 10 independent runs.

Environment Median Performance
Ant 2 378
Ant 3 -499
Halfcheetah 2 3826
Halfcheetah 3 2177
Hopper 2 3019
Hopper 3 2598
Humanoid 2 52683
Humanoid 3 46544
InvertedPendulum 2 1000
Walker 2 4200
Walker 3 3351

Table 26: Median of the average (on transition functions) scores across 10 independent runs.

Environment Median Performance
Ant 2 3827
Ant 3 1296
Halfcheetah 2 5690
Halfcheetah 3 5030
Hopper 2 3396
Hopper 3 3012
Humanoid 2 123401
Humanoid 3 111418
InvertedPendulum 2 1000
Walker 2 5084
Walker 3 4566
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Figure 6: Counting how many policies are valid in each state
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