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ABSTRACT

Prompt tuning, which focuses on learning continuous text prompts for adapting
large vision-language models, has attracted much attention in recent years. While
prior works show promising performance over the hand-crafted prompts, they typ-
ically use cross-entropy loss for learning prompts, which limits their generaliza-
tion capability in many real-world scenarios. Motivated by the effectiveness of
contrastive learning for improved generalization, we introduce Contrastive Prompt
Tuning (CPT), an incredibly simple yet highly efficient framework that explic-
itly optimizes for the learned prompts to be consistent with the image space. In
particular, combined with cross-entropy loss, our contrastive losses help learning
prompts so that the model has consistent predictions across different views of an
image while also maintaining the consistency of pairwise similarities among dif-
ferent images. Extensive experiments on a battery of datasets demonstrate that
our proposed method significantly outperforms the existing methods in improving
model’s generalization, while also achieving consistent improvements in few-shot
in-domain performance for a wide variety of vision-language models.

1 INTRODUCTION

Large vision-language models (VLMs) (Radford et al., 2021; Jia et al., 2021; Li et al., 2021; 2022;
Wu et al., 2021), with appropriately designed text prompts have achieved promising progress on
several downstream recognition tasks. For instance, one can prepend a category name with a prompt
“a photo of a” (e.g., “a photo of a cat”) and then use as input to the CLIP (Radford et al., 2021) text
encoder to classify images. However, identifying the right hand-crafted prompt is a non-trivial task,
which often requires significant amount of time and domain-specific heuristics.

This has motivated much work on prompt tuning (Zhou et al., 2022b;a; Lu et al., 2022), which aims
to learn soft prompts using few labeled data from the downstream tasks, while keeping the pretrained
model parameters fixed. Although ubiquitous in finding better prompts compared to hand-crafted
ones, the prompts learned using such methods often have poor generalization to different natural
distribution shifts (i.e, when transferred to recognizing new classes within the same or different
datasets or even recognizing same classes across different domains of data). We argue that such
a problem is caused by the use of only cross-entropy loss for learning prompts, which has shown
sub-optimal generalization and instability in many works (Liu et al., 2016; Cao et al., 2019).

Meanwhile, recent research shows that representations learned with contrastive learning have larger
intra-class variations and hence are more generalizable over their supervised counterparts (Sun et al.,
2019; Islam et al., 2021; Zhao et al., 2020). However, despite recent progress, self-supervised con-
trastive objectives have never been used for prompt learning in VLMs. Motivated by this, in this
paper, we explore the following natural, yet important question: whether and how contrastive learn-
ing could be exploited for improved generalization of prompts in vision-language models?

To this end, we introduce Contrastive Prompt Tuning (CPT), a simple yet effective framework that
explicitly optimizes for the learned prompts to be consistent in the image space. Specifically, given
a few labeled examples, we augment the standard cross-entropy loss with two additional contrastive
loss terms driven by an hypothesis that contrastive losses can improve generalization by making
the model outputs invariant to small input perturbations. The first term helps learning prompts by
encouraging the model to have consistent predictions across different views of an image while the
second term maintains the consistency of pairwise similarities among different images. To the best
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Figure 1: Prompt Generalization in Vision-Language Models. Figure shows four testing scenarios and the
corresponding bar charts comparing the average performance of CoOp (Zhou et al., 2022b) and CPT on CLIP
with ResNet50 (Radford et al., 2021). Our CPT approach, which learns the prompts to be consistent in the
image space, outperforms CoOp across all the settings. Best viewed in color.

of our knowledge, our work is the first to successfully integrate a self-supervised contrastive learning
objective for prompt tuning of vision-language models.

We evaluate the generalization of CPT in four different image classification settings that can occur
naturally in real-world scenarios: seen-to-unseen classes adaptation within a dataset, cross-dataset
transfer, domain generalization and the standard few-shot classification setting without any distribu-
tion shift, as shown in Figure 1. Extensive experiments on a battery of datasets (in total 15) with a
diverse set of vision-language models (in total 10 models) demonstrate the superiority of CPT over
existing methods. For the setting of seen-to-unseen classes generalization with CLIP-RN50 (Rad-
ford et al., 2021), CPT yields an average 4.2% improvement over CoOp (Zhou et al., 2022b), while
also very competitive with the most recent SOTA method (Zhou et al., 2022a) that requires an
additional specialized meta-network for learning prompts (17 times more trainable parameters com-
pared to CPT). The gains over CoOp are as large as 3.5% and 1.2% for the cross-dataset transfer
and domain generalization settings without the need for additional unlabeled data. Further, CPT
consistently outperforms CoOp while it is on par or better than SOTA adaptation methods (e.g., Tip-
Adapter (Zhang et al., 2021)) with significantly less number of trainable parameters in the few-shot
in-domain setting. In summary, our findings conclusively show that CPT improves performance of
prompt tuning across most evaluations by a significant margin, an encouraging signal for the general
utility of contrastive learning in the context of generalizable prompt tuning for VLMs.

Our approach also brings another advantage in terms of easy implementation compared to many
recent adaptation methods (e.g., CoCoOp (Zhou et al., 2022a), UPL (Huang et al., 2022), ProDA (Lu
et al., 2022), Tip-Adapter (Zhang et al., 2021)): with only few lines of code change in PyTorch,
CPT can be applied to a wide variety of vision-language models, like, CLIP (Radford et al., 2021),
DeCLIP (Li et al., 2021), FILIP (Yao et al., 2021), CLOOB (Fürst et al., 2021), and CyCLIP (Goel
et al., 2022). We hope our simple approach and efforts in benchmarking the results of different
methods will open up avenues for future research in prompt learning for VLMs. We will make all
our codes, data and models publicly available upon acceptance.

2 RELATED WORK

Vision-Language Models. Much progress has been made in developing VLMs using single-
stream (Chen et al., 2020b; Li et al., 2019; Su et al., 2019; Li et al., 2020) or dual-stream
paradigms (Radford et al., 2021; Jia et al., 2021; Li et al., 2021; Goel et al., 2022; Tan & Bansal,
2019; Li et al., 2022). Our approach is most related to the dominant dual-stream paradigm that de-
couples the image encoder and text encoder and extracts features for images and texts respectively.
Representative works like CLIP (Radford et al., 2021) and ALIGN (Jia et al., 2021) have greatly rev-
olutionized computer vision by allowing zero-shot transfer to a variety of downstream classification
tasks. A very few methods have recently attempted learning transferable features more efficiently,
using additional supervision (Li et al., 2021; Mu et al., 2021), finer-grained interactions (Yao et al.,
2021), modern Hopfield networks (Fürst et al., 2021), optimal transport distillation (Wu et al., 2021),
cycle consistency (Goel et al., 2022), and hierarchical feature alignment (Gao et al., 2022). Orthog-
onal to developing new learning strategies or VLM architectures, our work addresses the emerging
problem of efficiently adapting large pretrained vision-language models to downstream applications.
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Prompt Tuning. Prompt tuning for efficient adaptation of vision-language models has been stud-
ied from multiple perspectives (Zhou et al., 2022b; Huang et al., 2022). Inspired by prompt tun-
ing from NLP (Zhong et al., 2021; Lester et al., 2021), CoOp (Zhou et al., 2022b) minimizes the
prediction error using the cross-entropy loss with respect to the learnable prompt vectors. While
ProDA (Lu et al., 2022) learns diverse prompts from data to handle the variance of visual repre-
sentations, UPL (Huang et al., 2022) proposes an unsupervised prompt learning framework without
requiring any annotations of the target dataset. A test-time prompt tuning framework that does not
need any training data or annotations to optimize the prompt is also proposed in (Shu et al., 2022).
Similar in spirit, CLIP-Adapter (Gao et al., 2021) and Tip-Adapter (Zhang et al., 2021) propose
to adapt vision-language models by training an additional adapter network on top of the pretrained
models using a small set of labeled data. While these approaches show reasonable improvements
over hand-crafted prompts, they often suffer from poor generalization under different data distribu-
tion shifts. Recently, CoCoOp (Zhou et al., 2022a) utilizes a Meta-Net to generate image-dependent
prompt vectors for improved generalization. Alternately, we propose a much simpler yet effective
method which leverages contrastive losses to learn more generalizable prompts without any addi-
tional network, making it significantly more parameter efficient than CoCoOp. In addition, CPT
makes prompt learning extremely fast and more computationally efficient than CoCoOp, which is
unwieldy to train and requires very small batch sizes during training for memory constraints.

Contrastive Learning. Contrastive learning is becoming increasingly attractive for learning robust
representations of both unimodal (Chen et al., 2020a; Grill et al., 2020; He et al., 2020; Oord et al.,
2018) and multimodal data (Yuan et al., 2021; Akbari et al., 2021; Radford et al., 2021). Many
variants have been recently proposed that learn representations by modeling the relationship between
different instances (Dwibedi et al., 2021; Zheng et al., 2022; Abbasi Koohpayegani et al., 2020; Wei
et al., 2020). Contrastive learning has also been used in supervised settings, where labels are used
to guide the choice of positive and negative pairs (Khosla et al., 2020). While our approach is
inspired by these methods, we propose contrastive prompt tuning for improving generalization in
vision-language models, which to our best knowledge has not been explored in the literature.

3 METHODOLOGY

Given a pretrained vision-language model (e.g., CLIP Radford et al. (2021)), the goal of our pro-
posed CPT is to learn a single prompt using only a few labeled training images for efficient yet
generalizable adaptation of the model to several downstream tasks. Below we first describe basic
functioning of VLMs with prompt tuning, then we elaborate on the technical details and the working
principle of CPT in Section 3.2. An overview of our approach is illustrated in Figure 2.

3.1 PRELIMINARIES

Vision-Language Models. Dual stream VLMs jointly train an image encoder f(.) and a text en-
coder g(.) on data composed of image-text pairs. Given an image x, the image encoder maps it to
the feature space and outputs the l2-normalized image embedding z = f(x)/||f(x)||2 ∈ Rd of di-
mension d. Similarly, the corresponding natural language description of x is preprocessed using an
embedding layer to get t and is then fed to the text encoder to obtain the normalized text embedding
w = g(t)/||g(t)||2 ∈ Rd. Recent VLMs (e.g. CLIP Radford et al. (2021), DeCLIP Li et al. (2021),
etc.) use variants of the InfoNCE loss (Oord et al., 2018) to train on large image-text data with the
idea of learning perception from supervision contained in natural language.

Prompt Engineering. Once the encoders f(.) and g(.) are pretrained, using them for zero-shot pre-
diction requires designing specific text descriptions (a.k.a prompts) to pair the test images. Given the
C class names of a downstream task, generally a default prompt of “a photo of a {class}”
is used to generate the natural language class descriptions {tc}Cc=1 resulting in text embeddings
{wc}Cc=1. For a test image x with embedding z, the prediction probability is calculated as:

p(y|x) = ez
Twy/τ∑C

c=1 e
zTwc/τ

(1)

Prompt engineering focusses on designing prompts customised to the downstream dataset to signif-
icantly improve zero-shot performance. E.g. “a photo of a {label}, a type of pet”
is a more appropriate prompt for a pet classification dataset. However, prompt engineering is a
manual, intuition-guided trial and error process, which can take a long time for appropriate design.
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Figure 2: An overview of our Contrastive Prompt Tuning (CPT) approach. CPT learns prompt by aug-
menting the cross entropy loss with two self-supervised contrastive losses. The instance contrastive (InsCon)
loss encourages learning instance discriminative features invariant to different views. The relational consis-
tency (RelCon) loss makes the logit space consistent with the image space with respect to various inter-image
semantic relationships. Despite being frustratingly simple, CPT is effective in learning generalizable prompts
without any additional use of parameters. See Section 3 for more details. Best viewed in color.

Prompt Tuning. In order to overcome the inefficiency of handcrafted prompts, prompt tuning
attempts to learn continuous vectors of each token position utilizing a few labeled data. Specifically,
M learnable vectors {vi}Mi=1 along with the C class name word embeddings {ci}Ci=1 are used to
form the prompts as {tc}Cc=1 = {v1,v2, ...,vM , cc}Cc=1. The vectors vi’s can be optimized to adapt
to a downstream task by propagating gradients of any loss function through the text encoder g(.).
Till now, the use of only cross-entropy loss for prompt tuning has limited the generalization ability
of the prompt to various real-world downstream tasks.

3.2 CPT: CONTRASTIVE PROMPT TUNING

We propose Contrastive Prompt Tuning (CPT) which leverages self-supervised contrastive learn-
ing to learn prompts that are more generalizable to unseen classes and domains. Specifically, we
achieve this by encouraging the prompt to be instance-wise discriminative while retaining the inter-
relationships between various images. As shown in Figure 2, given a few-shot dataset with C classes
and the VLM encoders {f(.), g(.)}, our goal is to learn the M prompt vectors t = {v1,v2, ...,vM}.
Given a batch of labeled images xb = {xi, yi}bi=1 of batchsize b, we first obtain three different views
of the images xb

view1, xb
view2, and xb

view3 using a weak, strong, and weak augmentation, respectively.
The images are then forwarded through the image encoder f(.) to obtain the corresponding im-
age embeddings z1, z2, and z3 each of dimension b × d. On the other hand, the learnable prompt
vectors t along with the C class name word embeddings {ci}Mi=1 are used to form the prompts as
{tc}Cc=1 = {v1,v2, ...,vM , cc}Cc=1 and then are forwarded through the text encoder g(.) to obtain
the text embedding w of dimension C × d. Prediction logits are then computed as l1 = z1w

T,
l2 = z2w

T, l3 = z3w
T each of dimension b × C. In order to capture the categorical information

from the given ground truth labels, we apply a cross-entropy loss on the logit l1 as:

LCE(xi, yi) = −
C∑

k=1

(yi)k log(softmax(l1i))k (2)

Use of only cross-entropy loss in few-shot setting is prone to overfitting to small training data and
restricts generalization of learned prompts to unseen images. In order to tackle this, we incorporate
two additional contrastive losses as follows. First, we apply an instance contrastive loss (Chen et al.,
2020a) on the logits l1 and l2 such that the prompt learns to predict different views of same image
(positives) similarly, while views of different images (negatives) differently as follows:

LInsCon(l1, l2) = − log
exp(sim(l1i, l2i)/τ)∑b

j=1 1[j ̸=i] exp(sim(l1i, l2j)/τ)
(3)

where, sim(u,v) = uT v/||u||||v|| denotes cosine similarity between l2-normalized vectors u and
v, and τ is temperature parameter. LInsCon encourages the prompt to learn instance discriminative
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features from the images. Moreover, it is essential for a good prompt to capture various semantic
relationships between different images to be generalizable across distribution shifts. Thus, inspired
by (Fang et al., 2021), we propose to use a relational consistency loss for prompt learning as follows:

LRelCon(F ,M) =
1

b

b∑
i=1

DKL(pi||qi) =
b∑

i=1

b∑
j=1

(pi)j log
(pi)j
(qi)j

(4)

where, DKL(.) represents Kullback-leibler (KL) divergence, F , M are the feature similarity matrix
and the logit similarity matrix obtained as the outer products z1 ⊗ z3 and l2 ⊗ l3. pi’s and qi’s
are the softmax normalized rows of M, F , with sharpening temperatures τl and τz respectively, as
shown in Figure 2. With this cross-modal design, we want to learn prompts to make the logit space
consistent with various inter-image semantic relationships in the image feature space. Note that we
only use the features of weakly augmented views to compute the feature similarity matrix F , since
using aggressive augmentations can distort and hamper the capture of semantic information between
different images. Finally, we iteratively optimize the total loss function Ltotal = LCE + λ(LInsCon +
LRelCon) and update the learnable prompt through standard backpropagation. λ is a weight to balance
the impact of contrastive loss terms. To reduce the number of hyper-parameters, we use the same
weight λ for both LInsCon and LRelCon in all our experiments. Note that the pretrained vision-language
model is frozen and the prompt is the only learnable parameter in our approach.

Additionally, we incorporate a memory buffer of size 100× of the batch size, to instill information
from a diverse set of images and their views, which we find is essential for learning a generalizable
prompt. Furthermore, as a regularizer and making learning prompts invariant to the position of the
class token, we randomly choose the position of the class token between “start”, “mid”, and “end” in
every iteration following an uniform distribution. Algorithm 1 summarizes the proposed approach
in PyTorch-style pseudocode. Once the training is completed, the learned prompt can be used with
the class embeddings appended at the end for any desired downstream task.

Algorithm 1 : CPT in a PyTorch-like style.

1 # image_encoder f, text_encoder g
2 # I[b, h, w, c] - minibatch of images
3 # T[b, l] - minibatch of texts
4 # feature memory buffer - FMB [d, 100b]
5 # logits memory buffer - LMB [n_cls, 100b]
6 # generate views
7 I_view1 = weak_aug(I)
8 I_view2 = strong_aug(I)
9 I_view3 = weak_aug(I)

10 # extract feature representations
11 z1 = f(I_view1) #[b, d]
12 z2 = f(I_view2) #[b, d]
13 z3 = f(I_view3) #[b, d]
14 dequeue_and_enqueue(FMB, z3)
15 w = g(Prompt Vector) #[n_cls, d]
16 # obtain logits [b, n_cls]
17 l1 = (z1 @ w.T)
18 l2 = (z2 @ w.T)

19 l3 = (z3 @ w.T)
20 dequeue_and_enqueue(LMB, l3)
21 # compute cross-entropy loss
22 loss_CE = CrossEntropy(l1, labels)
23 # compute instance-wise contrastive loss
24 loss_InsCon = SimCLR(l2, l3)
25 # compute relational consistency loss
26 feat_sim_mat = softmax(z1 @ FMB.T / tau_z,

dim=1) # [b, 100b]
27 logit_sim_mat = softmax(l2 @ LMB.T / tau_l

, dim=1) # [b, 100b]
28 loss_RelCon = torch.sum(-feat_sim_mat *

log(logit_sim_mat), dim=-1).mean()
29 # total loss
30 loss = loss_CE + lossInsCon + loss_RelCon
31 # compute gradients and optimize
32 loss.backward()
33 optimizer.step()

4 EXPERIMENTS

In this section, we examine our contrastive prompt tuning approach to answer three key research
questions. Q1: To what extent contrastive learning benefits generalization of prompt tuning when
learned prompts are transferred across different classes and datasets? Q2: Can CPT be universally
effective across a wide range of pretrained VLMs of different sizes? Q3: Beyond generalization,
can CPT still improve prompt tuning in few-shot classification setting without distribution shift?

4.1 EXPERIMENTAL SETUP

Datasets. Following (Zhou et al., 2022b;a), we evaluate the performance of CPT using 15
downstream classification datasets, including general object recognition (ImageNet (Deng et al.,
2009) and Caltech101 (Fei-Fei et al., 2004)), fine-grained object recognition (OxfordPets (Parkhi
et al., 2012), StanfordCars (Krause et al., 2013), Flowers102 (Nilsback & Zisserman, 2008),
Food101 (Bossard et al., 2014) and FGVCAircraft (Maji et al., 2013)), scene recognition
(SUN397 (Xiao et al., 2010)), texture recognition (DTD (Cimpoi et al., 2014)), satellite image recog-
nition (EuroSAT (Helber et al., 2019), action recognition (UCF101 (Soomro et al., 2012)), and four
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CLIP RN-50 (↑4.2%) CLIP RN-101 (↑3.4%) CLIP ViT-B/32 (↑1.3%) CLIP ViT-B/16 (↑4.0%) DeCLIP RN-50 (↑2.1%)

DeCLIP ViT-B/32 (↑1.4%) FILIP ViT-B/32 (↑2.3%) CLOOB RN-50 (↑1.9%) CLOOB RN-50x4 (↑1.4%) CyCLIP RN-50 (↑1.8%)

Figure 3: Seen to Unseen Classes Adaptation. Figure shows bar charts comparing the average performance
on 11 datasets of CPT with CoOp on seen classes (S), unseen classes (U), and their harmonic mean (H) on 10
varieties of VLM backbones. Our CPT approach outperforms CoOp consistently on all the models. The blue
bars represent CoOp, green bars represent CPT. Best viewed in color.

variants of ImageNet with domain shifts (ImageNetV2 (Recht et al., 2019), ImageNet-Sketch (Wang
et al., 2019), ImageNet-A (Hendrycks et al., 2021b) and ImageNet-R (Hendrycks et al., 2021a)). We
use the first 11 datasets for seen-to-new classes adaptation, cross-dataset transfer and few-shot clas-
sification experiments. For domain generalization experiments, we use ImageNet as source dataset
and four of its variants as target datasets. We use the standard splits provided in (Zhou et al., 2022b)
for training and the original test/validation set for testing on all datasets.

Models. We experiment with 10 publicly available pretrained VLMs of varying architectures
and sizes from CLIP (Radford et al., 2021), DeCLIP (Li et al., 2021), FILIP (Yao et al., 2021),
CLOOB (Fürst et al., 2021), and CyCLIP (Goel et al., 2022): CLIP ResNet-50, CLIP ResNet-101,
CLIP ViT-B/32, CLIP ViT-B/16, DeCLIP ResNet-50, DeCLIP ViT-B/32, FILIP ViT-B/32, CLOOB
ResNet-50, CLOOB ResNet-50x4, CyCLIP ResNet-50.

Baselines. We compare our approach with the following baselines. (1) Zero-shot CLIP that uses
hand-crafted prompts for downstream classification, (2) CoOp (Zhou et al., 2022b) that learns
prompt by only minimizing the cross-entropy loss, (3) a state-of-the-art prompt tuning method for
CLIP, CoCoOp Zhou et al. (2022a) that uses an additional meta-network for predicting prompts,
(4) linear-probe CLIP that uses a logistic regression classifier on the features of training images.
We also compare with recent CLIP adaptation methods including CLIP-Adapter (Gao et al., 2021),
and Tip-Adapter (Zhang et al., 2021) in few-shot classification settings. We directly quote numbers
reported in published papers when possible or use the source code released by CoOp (Zhou et al.,
2022b) authors under same experimental settings for a fair comparison.

Implementation Details. Following (Zhou et al., 2022b), we set the number of tokens in each
prompt to 16 with random intialization for all the experiments except for the seen-to-unseen classes
adaptation and experiments in Table 2 and Table 3, where we set it to 4 and initialize with the word
embeddings of “a photo of a” as in (Zhou et al., 2022a). For few-shot classification, we follow
CLIP (Radford et al., 2021), which learns with 1, 2, 4, 8, and 16 labeled samples per class on each
downstream task. The loss weight coefficient is set to λ = 0.1. The temperature values τ , τz and τl
are set to 0.5, 0.04 and 0.07, respectively. We use a batch size of either 8 or 32, except in ImageNet
for which we used a batch size of 128, and train for either 50 or 200 epochs based on the dataset
with a learning rate of 0.002. For generating multiple views, we compose strong augmentations
using RandAug, color jittering, random grayscaling and blurring, while for weak augmentation we
simply use random resized cropping and random horizontal flipping. We run all the experiments for
three times with different random seeds and report the mean numbers in all our testing scenarios.
We use one NVIDIA Tesla A100 GPU for training all our models.

4.2 GENERALIZATION FROM SEEN TO UNSEEN CLASSES

Following (Zhou et al., 2022a), we show the generalization performance of different prompt tuning
methods, namely CoOp (Zhou et al., 2022b) and CoCoOp (Zhou et al., 2022a) including CPT by
training on seen (base) classes while evaluating on both seen and unseen (new) classes.

Comparison with Vanilla Prompt Tuning (CoOp). We first compare our approach CPT
with the vanilla prompt tuning, CoOP to show how much performance improvement CPT can
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achieve across different VLMs. As shown in Figure 3, CPT consistently outperforms CoOp
in improving generalization performance across a wide variety of models. The gains over
CoOp are as large as 4.2% on CLIP-RN-50, conforming the hypothesis that contrastive learn-
ing can significantly improve generalization of learned prompts to recognize unseen classes.
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Figure 4: Absolute improve-
ment over CoOp w/ CLIP RN-
50. Bar charts show improve-
ment over CoOp on seen and un-
seen classes for each datasets.

Figure 4 shows absolute improvement over CoOp on both seen and
unseen classes for each of the 11 downstream datasets. As expected,
CPT improves the performance of CoOp in unseen classes on all
datasets (see Figure 4(top)), while performance drops marginally in
the base classes of few datasets (see Figure 4(bottom)).

Comparison with CoCoOp. Table 1 shows the comparison of our
CPT approach with CoCoOp including Zero-shot CLIP (ZS CLIP)
and CoOp under the same experimental settings (w/ CLIP ViT-
B/16). As expected, CPT significantly outperforms ZS CLIP on
all datasets as handcrafted prompts are naturally worse in general-
ization, while learnable prompts has the ability to learn the intri-
cate differences between the finely differing categories from data.
When compared to CoCoOp, CPT achieves very competitive aver-
age performance without requiring any additional meta-network as
in CoCoOp (Zhou et al., 2022a). However, by simply ensembling
two learned prompts, CPT 2E can outperform CoCoOp on majority
of the datasets, to obtain the best average performance of 77.1%
across all datasets. This is especially significant as our approach
achieves greater performance at the cost of significantly less num-
ber of trainable parameters compared to CoCoOp (8.6× lower).

Table 1: Generalization from seen to unseen classes. We report accuracy with CLIP ViT-B/16 model on the
seen classes (S), unseen classes (U), and the harmonic mean of both of them (H). CPT outperforms CoOp by
+4.0% while performing at par with parameter heavy CoCoOp. To compete with CoCoOp, we adopt a 2×
ensemble CPT 2E which easily outperforms CoCoOp while still having significantly less parameters.

Method #Params Average ImageNet Caltech101 OxfordPets StanfordCars Flowers102
S U H S U H S U H S U H S U H S U H

ZS CLIP – 69.3 74.2 71.7 72.4 68.1 70.2 96.8 94.0 95.4 91.2 97.3 94.1 63.4 74.9 68.7 72.1 77.8 74.8

CoOp 2.05K 82.7 63.2 71.7 76.5 67.9 71.9 98.0 89.8 93.7 93.7 95.3 94.5 78.1 60.4 68.1 97.6 59.7 74.1

CoCoOp 35.38K 80.5 71.7 75.8 76.0 70.4 73.1 98.0 93.8 95.8 95.2 97.7 96.4 70.5 73.6 72.0 94.9 71.84 81.7

CPT 2.05K 82.5 69.9 75.7 76.4 69.1 72.6 98.0 94.3 96.1 95.4 97.8 96.6 74.5 71.6 73.0 97.5 66.6 79.2

CPT 2E 4.10K 83.2 71.8 77.1 76.6 70.6 73.5 98.2 94.3 96.2 95.9 98.2 97.1 75.6 72.3 73.9 97.7 72.2 83.0

Method #Params Food101 FGVCAircraft SUN397 DTD EuroSAT UCF101
S U H S U H S U H S U H S U H S U H

ZS CLIP – 90.1 91.2 90.7 27.2 36.3 31.1 69.4 75.4 72.2 53.2 59.9 56.4 56.5 64.1 60.0 70.5 77.5 73.9

CoOp 2.05K 88.3 82.3 85.2 40.4 22.3 28.8 80.6 65.9 72.5 79.4 41.2 54.2 92.2 54.7 68.7 84.7 56.1 67.5

CoCoOp 35.38K 90.7 91.3 91.0 33.4 23.7 27.7 79.7 76.9 78.3 77.0 56.0 64.9 87.5 60.0 71.2 82.3 73.5 77.6

CPT 2.05K 89.9 90.9 90.4 38.7 28.4 32.8 80.9 74.4 77.5 80.3 47.7 59.8 92.2 58.1 71.3 83.5 70.3 76.3

CPT 2E 4.10K 90.2 91.4 90.8 40.5 31.6 35.5 81.5 76.3 78.8 81.8 51.5 63.2 93.1 57.7 71.2 84.3 73.8 78.7

4.3 CROSS-DATASET TRANSFER
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Figure 5: Cross Dataset Transfer.

In this section, we show CPT’s ability to transfer learned
prompt beyond a single dataset. This is fundamentally more
challenging compared to generalizing well while remaining
within the same data distribution. In this setting, we train using
the generic and natural image dataset ImageNet and test the ef-
ficacy of the learned prompt in 10 different datasets comprising
of images coming from finegrained categories like Cars, Flow-
ers, Food, Aircraft etc or texture classification like DTD. As
seen from Figure 5, while using CLIP RN-50 as the backbone,
CPT demonstrates better transferability than CoOp on all the
datasets, leading to an average accuracy of 57.0%, which is
+3.5% better than CoOp. Likewise for CLIP ViT-B/16, Ta-
ble 2 shows that performance of CPT is comparatively better
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than CoOp which uses same number of learnable parameters. We also achieve similar performance
to CoCoOp while being 8.6× parameter efficient with 2× ensemble CPT and 17.2× parameter effi-
cient with CPT. In summary, these results show that a contrastively learned prompt not only transfers
the knowledge to very different settings but also does it in much more parameter efficient manner.

Table 2: Cross-dataset transfer. Promtps trained on ImageNet using CPT are more generalizable to other
datasets than CoOp, while competent with CoCoOp. A simple 2× ensemble CPT 2E fills the gap while being
8.6× parameter efficient. All the baseline use CLIP ViT-B/16 backbone under the same experimental settings.

Source Target

# Params IN1K Caltech Pets Cars Flowers Food Aircraft SUN DTD EuroSAT UCF Avg
CoOp 2.05K 71.5 93.7 89.1 64.5 68.7 85.3 18.5 64.2 41.9 46.4 66.6 63.9
CoCoOp 35.38K 71.0 94.4 90.1 65.3 71.9 86.1 22.9 67.4 45.7 45.4 68.2 65.7
CPT 2.05K 71.3 94.1 90.2 64.8 70.6 85.9 21.8 66.3 43.6 46.0 68.0 65.1
CPT 2E 4.10K 71.6 94.2 90.3 64.5 70.9 86.3 21.7 66.8 45.3 47.7 69.3 65.7

4.4 DOMAIN GENERALIZATION

Domain or distribution shifts are very common in the real-world. In order to study the robust-
ness of the learned prompts to out-of-distribution data, following (Zhou et al., 2022a), we learned
a prompt on the ImageNet dataset and tested its performance on 4 of its specially designed bench-
marks possessing distribution shift, like ImageNetV2, ImageNet-Sketch, etc. Table 3 clearly shows
the dominating performance of CPT over CoOp and CoCoOp even with a single prompt. Using
an additional prompt to ensemble even pushes the performance further by 0.38% on average over
the target datasets, while still using 8.6 times less parameters than CoCoOp. This highlights the
effectiveness of CPT in learning domain invariant prompts while being highly parameter efficient.

Table 3: Domain generalization. Prompts learned on ImageNet are transferred to four of its domain-shifted
variants. CPT outperforms both CoOp and CoCoOp, while using same numer of tunable parameters as CoOp.

Source Target

# Params ImageNet ImageNetV2 ImageNet-Sketch ImageNet-A ImageNet-R
CoOp 2.05K 71.5 64.2 48.0 49.7 75.2

CoCoOp 35.38K 71.0 64.1 48.8 50.6 76.2

CPT 2.05K 71.3 64.1 49.0 50.7 76.4

CPT 2E 4.10K 71.6 64.6 49.2 51.1 76.8

4.5 FEW-SHOT CLASSIFICATION

77x fewer parameters

Figure 6: Comparison with SOTA meth-
ods using CLIP RN-50. CPT achieves very
competitive performance while being highly
parameter efficient. Best viewed in color.

Beyond generalization, we also consider the standard
few-shot classification setting in which we study the per-
formance on test data belonging to the same classes and
the same domain as the training data.

Comparison with CoOp. Figure 7 shows the results on
7 different VLMs. While using CLIP RN-50 with single
labeled images per class, CoOp outperforms handcrafted
prompts (Zero shot) by 0.8% on average, while CPT pro-
vides 4.1% improvement. When compared to CoOp, the
gain is particularly significant in the low-shot scenarios,
which are practically important cases. E.g. for CLIP RN-
50 backbone, the improvement over CoOp in 1-shot is 5.9
times that in 16-shot, which concretely affirms the advan-
tage of self-supervised contrastive learning in overcom-
ing overfitting and better generalization. Similarly, in the
one-shot setting of DeCLIP ViT-B/32, CPT outperforms
CoOp by +1.1%, showing its effectiveness in few-shot classification across different models.

Comparison with SOTA Methods. Figure 6 compares different methods in terms of number of
parameters vs. average accuracy over all the 11 datasets. We observe that by just using two prompts

8
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Figure 7: Few-shot Classification. CPT consistently outperforms CoOp across all seven VLMs, showing the
effectiveness of contrastive prompt tuning for efficient adaptation of pretrained models. We report the average
accuracy across the 11 datasets for each few-shot setting. Best viewed in color.

for ensembling, CPT 2E achieves the same performance as the current SOTA method Tip-Adapter-
F (Zhang et al., 2021), while using a significant 77 times fewer trainable parameters. Despite being
very simple, CPT establishes new SOTA performance for parameter efficient adaptation of CLIP.

4.6 ABLATION STUDIES
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Figure 8: Ablation Studies. Left: variation
of accuracy with the number of learnable to-
kens in ImageNet 1-shot using CLIP RN-50.
Right: studies the effect of different values
of the hyperparameter λ.

Effect of Losses. To study the effectiveness of both the
self-supervised contrastive losses, we obtain the few-shot
classification performance by using either of the losses
LInsCon and LRelCon, independently with LCE. For Im-
ageNet 1-shot CLIP RN-50 setting, using only LInsCon
yields an accuracy of 62.4% while using only LRelCon pro-
duces 62.3%. The best performance of 62.9% was ob-
tained when both losses are employed, showing the ef-
fectiveness of both instance discrimination and relational
consistency in learning effective generalizable prompts.

Number of Learnable Prompt Tokens. In Figure 8(left), we study the effect of number of learned
prompt tokens on few-shot classification performance for the 1-shot setting in ImageNet dataset. An
interesting observation is that the performance for CoOp increases with the reduction in the number
of tokens (an increase of 3.9% from 16 to 1 tokens). This highlights the problem of overfitting in
the low-shot setting and how CoOp is prone to it. On the other hand, CPT maintains a very stable
performance (a drop of only 0.4% from 1 to 16 tokens) across the number of tokens, demonstrating
the importance of contrastive learning in learning effective prompts in low-shot settings.

Initialization of Prompts. We initialized the learnable prompts with word embeddings of a hand-
crafted prompt before training, and saw no major changes in the performance. E.g. learning 4 tokens
for ImageNet 1-shot using “a photo of a” as initialization gave 61.1% accuracy compared to 61.2%
using random initialization, in consistent with the findings in (Zhou et al., 2022b).

Effect of Hyperparameters. Figure 8(right) shows the effect of loss coefficient λ, where we vary
λ with values 0.001, 0.01, 0.1, 1.0 for 1-shot setting in every dataset and find λ = 0.1 to be the
best value and use it for all experiments. Study of performance by varying τl can be found in the
Appendix A. Additional experimental results are also included in the Appendix.

5 CONCLUSION

In this paper, we explore contrastive prompt tuning for improved generalization in pretrained vision-
language models. Specifically, we augment the standard cross-entropy loss with two additional
contrastive losses that optimizes for the learned prompts to be consistent with the image space. The
first loss encourages learning instance discriminative features invariant to different views, while the
second one makes the logit space consistent with the image space with respect to various inter-
image semantic relationships. We demonstrate the effectiveness of our approach on multiple diverse
datasets, outperforming state-of-the-art methods, without any additional use of parameters.
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A ADDITIONAL EXPERIMENTS

In this section, we provide some additional experimental results and figures considering different
VLM backbones:
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Figure 9: Cross-Dataset performances Figure shows bar charts comparing generalization performance of
prompts trained on ImageNet towards 10 other datasets using CPT and CoOp with DeCLIP ViT-B/32 backbone.
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Figure 10: Domain Generalization. Figure shows bar charts comparing cross-domain generalization perfor-
mance of prompts trained using CPT and CoOp on two VLM backbones. Evidently from the results, prompt
learned using CPT are more robust to distribution shifts.
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Figure 11: Ablation on sharpening temperature τl. To study the effect of varying the sharpening temper-
ature for the relational contrastive loss, we fix the value of τz to 0.04 and vary τl to values 0.01, 0.04, 0.07,
0.10 and find the best performance at τl = 0.07.
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Figure 12: Few-Shot Classification using CLIP RN-50 Figure shows performance few-shot classification
performance for each of the 11 datasets using the CLIP RN-50 VLM backbone.
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Figure 13: Few-Shot Classification using CLIP ViT-B/32 Figure shows performance few-shot classification
performance for each of the 11 datasets using the CLIP ViT-B/32 VLM backbone.
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