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Abstract

This paper proposes a certifiable defense against
adversarial patch attacks on image classification.
Our approach classifies random crops from the
original image independently and classifies the
original image as the majority vote over predicted
classes of the crops. Leveraging the fact that a
patch attack can only influence a certain number
of pixels in the image, we derive certified robust-
ness bounds for the classifier. Our method is par-
ticularly effective when realistic transformations
are applied to the adversarial patch, such as affine
transformations. Such transformations occur nat-
urally when an adversarial patch is physically in-
troduced in a scene. Our method improves upon
the current state of the art in defending against
patch attacks on CIFAR10 and ImageNet, both in
terms of certified accuracy and inference time.

1. Introduction

Despite their incredible success in many computer vision
tasks, deep neural networks are known to be sensitive to
adversarial attacks; small perturbations to an input image
can lead to large changes in the output. A wide range of
defenses against adversarial attacks have been conducted in
image classification, where the goal of the attacker is sim-
ply to change the predicted label(s) of an image (Kurakin
etal., 2016; Szegedy et al., 2013; Madry et al., 2017). These
works have mainly considered the so-called £,-norm threat
model, where an attacker is allowed to perturb the intensity
at all pixels of the input image by a small amount. In con-
trast, adversarial patch attacks are considered as physically-
realizable alternatives, modeling scenarios where a small
object is placed in the scene so as to alter or suppress clas-

"Bosch Center for Artificial Intelligence, Pittsburgh, PA, USA
Carneige Mellon University, Pittsburgh, PA, USA. Correspon-
dence to: Wan-Yi Lin <wan-yi.lin@us.bosch.com>.

Accepted by the ICML 2021 workshop on A Blessing in Disguise:
The Prospects and Perils of Adversarial Machine Learning. Copy-
right 2021 by the author(s).

sification results (Brown et al., 2017). Here, the attack is
spatially compact, but can change the pixel value to any
value within the allowable range.

This paper develops a practical and provably robust defense
against patch attacks. Inspired by the randomized smooth-
ing defense (Cohen et al., 2019; Levine & Feizi, 2019) for
the £,-norm threat model, our approach classifies randomly
sampled sub-regions or crops of an image independently
and outputs the majority vote across these crops as pre-
dicted class of the input image. This approach is highly
practical, as the crop classifier can be trained using stan-
dard architectures such as VGG (Simonyan & Zisserman,
2014) or ResNet (He et al., 2016) with random cropping as
its data augmentation strategy. This is different from most
existing work on certifiable defenses against patch attacks
(Levine & Feizi, 2020; Xiang et al., 2020; Chiang et al.,
2020) which need extra computation for certification during
training. Also, the proposed approach separates the training
procedure from the patch threat model, thus making the
method flexible against realistic settings of patch attacks —
the same crop classifier can be used to certify patches of the
same size under different transformations such as rotation
and aspect ratio changes, without having to train a different
model for different transformations of the patch.

We summarize our main results on CIFAR10 and ImageNet
in Table 1 in comparison with the current state of the art
certifiable defense against patch attack (Xiang et al., 2020)
with patch transformation. We report certified accuracy,
which is the percentage of test images for which classi-
fication outcome equals to the ground truth label and is
guaranteed to not change under patch attack. Our method
is better in both speed and certified accuracy compared
to De-randomized smoothing (Levine & Feizi, 2020) and
PatchGuard (Xiang et al., 2020) under patch attack with
possible affine transformations of the patch. In addition,
our method outperforms these past approaches on ImageNet
(though not on CIFARI10) in the setting where the patch
aligns with coordinates of the image axes and does not un-
dergo affine transformations as in Table 2, which was the
setting considered in this past work.

We have made several contributions in this paper: first, we
propose a defense against patch attack for image classifica-
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CIFAR10 2.4% patch

ImageNet 2.0% patch

certification acc.  time | certification acc.  time

(clean acc.) in ms (clean acc.) in ms

Proposed method 47.5 (88.4) 0.7 12.2 (55.7) 21.8
De-rand. smoothing 17.5 (83.9) 17.5 3.2(43.1) 703.2
PatchGuard: De-rand. smoothing 18.2 (84.5) 18.2 3.5 (43.6) 734.5
PatchGuard: Bagnets 27.1 (82.6) 0.7 9.6 (54.4) 25.7

Table 1. Worst-case certified accuracy (%), clean accuracy(%), and certification time of the proposed method, De-randomized smoothing
(Levine & Feizi, 2020), and PatchGuard (Xiang et al., 2020) with De-randomized smoothing and Bagnets as base structure. For each
method, we list the worst certified accuracy under affine transformation of the patch at test time. Note that this is different from results in
the original paper where patch transformations at test time are not considered.
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Figure 1. Forward pass of randomized crop defense

tion with certified robustness; second, the proposed method
is fast in computing image certification and robust against
patch transformation; third, the proposed method can be ap-
plied to any image classification model with only minimal
changes to the training process.

2. Background and related work

Test-time adversarial attacks on ML models in general were
studied in (Dalvi et al., 2004; Biggio et al., 2013), though
the area gained considerable momentum when these meth-
ods were applied to deep learning systems to demonstrate
that deep classifiers could be easily fooled by imperceptible
changes to images (Szegedy et al., 2013; Goodfellow et al.,
2014). This imperceptible attack is so-called /,-norm at-
tack, where attacks are permitted to modify any pixel in the
image by (at most) some fixed amount. In this paper, we
consider patch attacks (Brown et al., 2017; Eykholt et al.,
2018), where a particular ‘pattern’ is designed to fool a deep
learning system. There are also two threads of research
in defending against patch attacks: 1) empirical defense
strategies which show stronger empirical robustness but no
analytical guarantees (McCoyd et al., 2020; Naseer et al.,
2019; Hayes, 2018), and 2) certified defenses which provide
analytical lower bounds of classification accuracy under
patch attack. In Chiang et al. (2020), interval bound prop-
agation was used to provide certification, but the method
is not applicable to commonly used image classification
networks such as ResNet50 or VGG16. De-randomized

smoothing (Levine & Feizi, 2020) uses ablation to exhaus-
tively block all possible patch locations while (Zhang et al.,
2020) uses Bagnets (Brendel & Bethge, 2019) with limited
receptive field to contain the number of affected features.
PatchGuard (Xiang et al., 2020) adds additional detection
of patch location and then sets features extracted from the
detected locations to be zero. We will compare our pro-
posed method with De-randomized smoothing (DRS) and
PatchGuard (PG) in the experiments and an overview of the
two prior arts can be found in Appendix D.

3. Provable patch defense with randomized
cropping

A physically-realizable adversarial patch attack can be found
by solving the optimization problem:

%IleaAXE(x,y)NDﬂgNT [é(fg(A(x,é, t))ay)] (1)

where fy : X — ) denotes some hypothesis function; 6
denotes parameters of the model, z € X denotes the input to
the network and § € X the perturbation to the input; A C X
is the set of allowable perturbations; y € ) denotes the true
label; £ : YV x YV — R denotes a loss function that measures
the performance of the image classifier; and 7 : X — X
is the set of transformations that the perturbation § might
go through. The feasible set A denotes a simple allowable
set of values for the patch, which typically would just be
constrained to lie in valid RGB space. Patches overwrite a
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CIFAR10 ImageNet

ours DRS PG+DRS/ | ours DRS PG+DRS /
Patch Size Bagnets smoothing Bagnets
0.4% 65.7 689 69.2/532 | 247 223 24.8/23.1
1.0% 60.2 627 653/41.2 | 20.1 17.7 19.9/18.6
2.0% 552 609 61.1/37.2 | 164 14.0 16.0/13.3
2.4% 523 571 58.1/31.7 | 153 13.1 14.7/11.2
3.0% 37.8 421 43.5/251 | 14.2 11.2 13.01/8.9

Table 2. Certified accuracy (%) over CIFAR10 and ImageNet of our method, De-randomized smoothing (DRS) (Levine & Feizi, 2020),
and PatchGuard (PG)(Xiang et al., 2020). We consider images with p. > 0.95 be certified.

portion of the image with the patch perturbation itself, at a
given location with a given set of transformations, such as
scaling, rotation, and other transformations in 7. We refer
to this combination as the patch application function A :
X XX xT — X, where A(z, d,t) denotes the application
of patch ¢ to image z with transformation ¢. Throughout
this paper, we consider the patch being one connected area
bounded by a rectangle with size p; X p;.

3.1. Randomized cropping defense

Although a patch attack can change the pixel value to any
arbitrary value, it can only influence the pixels within the
patch itself. Therefore, networks extracting features with
compact receptive fields and aggregating such local features
for final classification are more robust against patch attacks.
Based on above observations, we propose a randomized
cropping approach as shown in Fig. 1: given a full-size
test image x as input, we first randomly select n crops
uniformally over all possible locations, where crop size k; X
k; is smaller than image size m; X m; in both dimensions.
Each of the sampled crops (;) then goes through the crop-
based classifier gy and its predicted class (7;) is obtained.
The final classification of x is the majority of {g;}7 ;. The
equivalent pseudo code of Fig. 1 is in Appendix E. We argue
that the training procedure of randomized cropping classifier
fo only requires training the crop classifier gg (see Section
A) without any assumption on attack parameters (size, shape,
and location), hence our method is robust against different
patch shapes given the same patch size. We show supportive
experimental results in Section 4 for this claim.

3.2. Certifiable robustness bound

Here we compute the probability that an image x is certi-
fied robust, i.e., the classification outcome of x cannot be
changed by patch attack of given size. Given a clean image,
we randomly sample n crops {Z;}"_; and obtain the set
of n predicted classes {g; }_; of the crops. Let ny be the
number crops that are predicted as the majority in {g; }7;,

and ny be the number crops that are predicted as the second
majority. If there are fewer than no01 = w + 1 crops
that overlap with the patch, then x is certified robust. There-
fore, p. can be represented as the probability that fewer than
Nato1 crops out of the n sampled crops overlap with the
adversarial patch. The below derivation assumes that the
random selection is uniform over all crop locations with re-
placement. Derivations for uniform sampling crops without
replacement can be found in Appendix F.

Following the argument above, we first compute the proba-
bility that a single sampled crop x; overlaps the adversarial
patch. This probability p, = % can be computed as the
total number of crops overlapping with the patch (denoted
by n44.) divided by the number of all possible crops (n4;).
When the patch is at the center of the image where it can
influence the highest number of crops,

Nadv — mm(pz —|— ]{}Z' — 1,mi — ki + 1)
xmin(p; +k; —1,m; — k; +1), (2)
Naur = (mi — ki +1) x (my — k;j +1).

The probability of certification p,. is equal to the probability
that out of the n crops {Z;}?, at most nat,1 — 1 of them
overlaps with the adversarial patch:

N2tol —

1
pe= > Clsplx(l—p)" ", 3)
1=0

where C' is the binomial coefficient (n choose 7). If p, is
close to 1.0, the input image is certifiably robust under patch
attack. In the experiments we select p. > 0.95. Throughout
this paper, we consider certified accuracy, meaning only
data with predicted class 3’ being the ground truth class will
be considered for certification. Note that because the crops
are randomly sampled, n2:,1 and hence p. is an instance
of a random distribution. We argue that when n is large
enough, there ngy,; and p, will have very small variance.
Experiments to verify this point are in Appendix G.
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CIFAR10 2.4% patch ImageNet 2% patch

ours DRS PG+DRS/ | ours DRS PG+DRS /
Transformation Bagnets smoothing Bagnets
AR 1:1 523 57.1 58.1/31.7 | 164 14.0 16.0/13.3
AR 2.7:1 50.7 65.8 67.2/304 | 15.8 152 17.6/12.4
AR 6:1 475 711 745/27.1 | 122 17.9 19.0/9.6
AR 1:2.7 50.7 40.6 42.4/304 | 15.8 11.3 119/12.4
AR 1:6 475 175 182/27.1 | 122 32 35796
Rotate 45° 48.0 503 52.1/28.1 | 12.4 12.1 12.8/10.1
Worst case 475 175 18.2/27.1 | 12.2 32 3.5/9.6

Table 3. Certified accuracy (%) under patch rotation and different aspect ratio at test time. We consider images with p. > 0.95 be certified.

4. Experimental results

We conduct experiments on two benchmark datasets: CI-
FAR10 and ImageNet. For both datasets we report certified
accuracy as percentage of images that are classified cor-
rectly and can be certified with probability higher than 0.95.
Detailed experiment setup are in Appendix B, and effects of
different parameters are discussed in Appendix C.

Clean accuracy and inference time. Clean model accu-
racy and inference time per image are shown in Table 1. Our
method is faster than both prior methods under all cases.
This is because although multiple forward passes are needed,
the number of crops is smaller than equivalent sub-regions
in Bagnets and crops are much smaller the full images as
in De-randomized smoothing (DRS). PatchGuard with Bag-
nets (PG-Bagnets) is slower than our method in ImageNet
for having to go through logits of all classes sequentially.

4.1. Without patch transformation at test time

We first present the certification accuracy in Table 2 of
our method along with De-randomized smoothing (DRS)
(Levine & Feizi, 2020) and PatchGuard (PG)(Xiang et al.,
2020) with De-randomized smoothing (PG+DRS) and Bag-
nets (PG+Bagnets) as base structure on patch size ranging
from 0.4% to 3% when there’s no patch transformation at
test time, i.e., square patches in both test and train time.
Methods with the highest certified accuracy are highlighted
in bold. We can see that although our method is sub-optimal
for CIFAR10, for ImageNet we have the highest certified
accuracy except for patch size 0.4%. From Table 1 and 2
we can see that on ImageNet our proposed method is the
fastest and with the highest certified accuracy as well as
clean accuracy the certified accuracy — this shows that the
proposed randomized cropping defense is practical in the
aspects of fast certification and high certified accuracy for
the dataset that is closer to real-life pictures.

4.2. With patch transformation at test time

As described in Section 3, one cannot assume such area
would always align with coordinate axes of the image —
even if the physical patch itself is square, when the scene
is captured with different camera angles, the patch on the
image will be rotated (rotation in x-y plane) or stretched
(rotation in depth). Therefore it is important that the patch
defense can also provide guarantees when the patch is ro-
tated or if the aspect ratio is varied.

In Table 3 we compare our method with DRS and PG-
DRS/PG-Bagnets when a square patch is rotated 45 de-
grees and with aspect ratio (AR) 1:1, 6:1, 2.7:1, 1:2.7, 1:6,
respectively. We highlight the highest certified accuracy
under worst transformation in the last row. Aspect ratio
1:1 without rotation is the same as Table 2 but listed here
as reference. We can clearly see that in Table 3, with the
same patch size, transformation brings down the certified
accuracy of all three competing methods, however, the pro-
posed randomized cropping defense has the highest certified
accuracy under worst-case patch transformation. This is be-
cause of our random sampling strategy that we have neither
fixed the locations of sub-regions as in Bagnets, nor fixed
smoothing strategy as in De-randomized smoothing.

5. Conclusion

This paper proposes a new defense against adversarial patch
attacks. The proposed approach decomposes an image into
arandom assortment of crops, each of which is processed by
a classifier, and the majority across the crops is used as the
classification outcome for the input image. This approach
provides a significant advance in improving certified accu-
racy when patches could be transformed at test time, while
maintaining a high clean accuracy compared to prior art.
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A. Training randomized cropping classifier

The robust classifier fy has three components: (1) sampling
n crops with uniform distribution, (2) classifying crops with
9o, and (3) majority voting. Since both random sampling of
the crops via a uniform distribution and majority voting have
no trainable parameters, the set of trainable parameters of
fo is the same as gy. Therefore training the robust classifier
fo only involves training the crop classifier gy, which can
be trained in standard ways with only data augmentation of
randomly cropping the input x. Other variables are either
pre-determined hyperparameters (crop size k;, k;), or can
be adjusted at test time (number of crops n).

B. Experiment setup

For CIFAR10, we use ResNet9 without the final pooling
layer as the crop model, and for ImageNet we use ResNet34
as the crop model and resize and pad the image to 224x224.
Experiments and timing are done on single Nvidia 2080 Ti
GPU, and 16-core Intel i7-5960X CPU. For both models
we use cyclic learning rate with 10~ initial learning rate.
The models are trained 30 epochs and training time is 14
GPU-hours and 328 GPU-hours for CIFAR10 and ImageNet,
respectively.

we chose crop size of 10x10 (10% total area) for CIFAR and
80x80 (13% total area) for ImageNet; for these experiments
we assume patch shape is square with no rotation. For each
input image in CIFAR10, we randomly sample 128 crops
and for each image in ImageNet we sample 256 crops.

Positional encoding. Because both CIFAR10 and Ima-
geNet images have a certain region of interest which is
usually at the center of the image, some parts of the im-
ages contain more information than others. Therefore, crops
sampled at different position of the image contain different
information. To represent such information, we add learn-
able positional encoding (Vaswani et al., 2017) to the first
layer of our classifier.

C. Discussions on different parameter setting

We also show the certification accuracy with different thresh-
olds for p. Table 4 in Appendix.

How to choose crop size? Assuming that the number of
crops n is fixed, then in general larger crops leads to a better
clean performance, as each crop contains more information
when it covers more pixel area. Also with larger crops, the
crop classification accuracy of gy would be better, indicating
that ns4,1 could be larger and increases the probability of
certification p.. However, larger crops also means that the
probability of overlapping the adversarial patch is higher
(Eq. 2) which will decrease p.. Therefore, for a given size

of adversarial patch, there exists an optimal crop size which
maximizes the certification probability.

To demonstrate the influence of crop size on certification
accuracy and clean accuracy, clean and certified accuracy
with or without positional encoding, with regards to dif-
ferent crop sizes are shown in Figure 2 for 2.4% patch on
CIFAR10 and 2.0% patch on ImageNet — we use square
crops and square patches aligning with coordinate axes of
the image, i.e., no patch transformation. Comparing clean
accuracy with and without positional encoding, we can see
that although clean accuracy still increases as crop size in-
creases when crop classifier includes positional encoding,
but not as much as without positional encoding. Such results
show positional encoding does provide extra information
for crops sampled from different locations. On the other
hand, comparing clean accuracy with certified accuracy, it
is clear that the certified accuracy actually gets lower when
crop size crosses some threshold as discussed above.

Note that similar experiments as in Figure 2 can be con-
ducted for different sizes of adversarial patches to find opti-
mal crop size. However we used fixed crop size in Table 1, 2,
3 to compare with DRS and PG to have a fair comparison, as
these two approaches do not have tune-able ablation/kernel
size.

How to choose number of crops? We show certified ac-
curacy and inference time with different number of sampled
crops for 2.4% patch on CIFAR10 and 2.0% patch on Ima-
geNet. Certified accuracy of using all crops, i.e., selecting
crops at all locations once without sampling, is plotted with
the black dotted line as reference. This line can be viewed
as the upper bound of the proposed method. With more
crops sampled, the certified accuracy increases but however
inference time also increases close to linearly. Therefore we
chose relatively small number of crop samples to balance
between inference time and certification accuracy.

D. Overview of De-randomized smoothing
(DRS) and PatchGuard (PG)

De-randomized smoothing (Levine & Feizi, 2020) ablates
all possible parts of the image and aggregates logits of the
ablated images for certification. The method compares num-
ber of ablated images with high logit value of the majority
predicted class with the number of ablated images with high
logit value of the second majority predicted class. If the
difference between the two is larger than two times possible
number of “ablation blocks” affected by adversarial patch,
then this image is certified robust against patch attack. The
paper proposes two modes of ablation: block smoothing and
band smoothing. Block smoothing ablates square blocks
while band smoothing ablates one column of the image.
To represent ablated regions, the image classifier accept
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CIFAR10 2.4% 52.8 523 52.0 49.6
ImageNet 2.0% 17.2 16.4 15.3 14.1

Table 4. Certified accuracy (%) with different thresholds for p. without patch transformation
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Algorithm 1 Certify if patch attack can change the predicted
class of an image x

Input: Full size image x, label y, crop classifier gg
i=1tonset; asak; x k; crop of x at random location
Ui = go(Z;) //Predicted class of crop T;

v, y" = majority and second majority of {7},

n1, ng = number of crops classified as 37 , ;ﬁ respectively
Ity #y

return not certified

Else

compute p. using Eq. 3,

if p. is close to 1.0 then return certified,

else return not certified

three additional channels representing ablated pixels of the
original RGB channels.

The main idea of PatchGuard (Xiang et al., 2020) is to detect
possible patch location and mask these locations for down-
stream robust classification. To detect patch location, the
method identify if there are any local regions that contribute
abnormally strongly to a class. If there does exist such a re-
gion, it is considered as the potential location of a patch and
the features extracted from the region is masked/discarded.
Because such robust masking procedure can be combined
with other robust classification approaches, the paper eval-
uates its robust masking with two classification models:
De-randomized smoothing (PG-DRS) and BagsNet (PG-
BN).

E. Detailed certification procedure

We summarize the certification procedure for a single image
in Algorithm 1. A more robust classifier should be able to
certify and correctly classify a higher percentage of clean
images in the test set.

F. Uniform sampling without replacement

In this section we derive certification probability and experi-
mental results with uniform sampling without replacement.
Let n’;, be the number of all possible location for the ith
sampled crop, nyq, be the number of crop locations that
overlaps with the adversarial patch, and p’, is the probability
that the i crop overlaps with the adversarial patch, then

Nadv = mln(pz + kz - 1, m; — ki + 1)><
min(p; + kj — 1,m; — kj + 1),
”iﬂz = (m; —k; +1) x (mj —k; + 1) — 4, and “)

i . Nadv

pr, = min(l, ——).

Mol

The probability of the image being certified p,. is then the

probability of less than nst,1 crops overlaps with the patch.

The closed-form expression of p. is complicated yet not
informative and hence omitted here. Comparing p’, with
the p, in Section 3, we can see that when sampling without
replacement, the probability of sampling a crop that over-
laps with the adversarial patch increases with the number
of crops sampled, and hence decreases the probability of
certification p.. On the other hand, sampling without re-
placement enlarges the expected area that crops would cover,
so the clean performance will be better than sampling with
replacement.

We compare the certified and clean accuracy with and with-
out replacement in Table 5. As number of crops increases,
we can see that the gain of clean accuracy for sampling
without replacement decreases because when number of
crops increases, even sampling with replacement is likely
to cover most of the pixels, and the gain is slightly more
significant in ImageNet than CIFAR10. This may be be-
cause ImageNet images are in general more complex than
CIFARI10 and having the crops covering more pixels over
the image could help the overall classification. The certi-
fied accuracy for sampling without replacement gets worse
than with replacement since the probability of sampling a
crop increases more significantly as the number of crops
sampled increases. This is particularly true for CIFAR10
— with image size 32x32 and patch size 10x10, the number
of non-overlapping crops that does not overlap with the
patch is only 484, out of 1024 all possible locations. This
means when sampling 512 crops, there are at least 28 crops
overlapping with the adversarial patch, which significantly
decrease p..

G. Experiments on p,. interval

In this section we show the interval of ngy.,; and p. with
different number of crops sampled. We run the certification
process over test set 200 times to obtain the interval and
variance of ng,1 and p,. for each test image. Interval is
defined as difference between the highest value and the
lowest value. We ran this experiment over patch size 2.4%
for CIFAR10 and 2.0% for ImageNet.

As shown in Table 6, with increasing number of crops, both
interval and variance of noy,1 and p. decrease, to negligible
values.
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ImageNet 2.0%

CIFAR10 2.4%

num. of crops  clean (R/NR) certified (R/NR) ‘ clean (R/NR) certified (R/NR)

64 88.3/88.6 51.0/51.1 50.1/50.4 13.7/13.9
128 89.6/89.7 52.3/45.3 54.7/54.9 15.4/15.5
256 89.8/89.8 54.2/24.7 54.8/54.8 16.4/16.2
512 89.8/89.8 55.0/0.8 55.0/55.0 16.5/16.2

Table 5. Certified and clean accuracy (%) with (R) / without replacement (NR) over CIFAR10 and ImageNet vs number of crops without
patch transformation. Patch size is 2.4% for CIFAR10 and 2.0% for ImageNet and crop size is 10x10 for CIFAR10 and 80x80 for

ImageNet. We consider images with p. > 0.95 to be certified.

CIFAR10 2.4% ImageNet 2.0%
num. of crops  nato1 interval/variance  p. interval/variance ‘ Nato1 Interval/variance  p. interval/variance
64 1.3/0.6 1.9/0.9 2.1/0.8 3.0/1.0
128 0.8/0.4 0.8/0.5 1.4/0.5 1.5/0.7
256 0.5/0.2 0.5/0.3 0.9/0.3 0.8/0.4
512 0.2/0.1 0.2/0.1 0.6/0.1 0.5/0.1

Table 6. Averaged interval and variance of na¢01 and p. (in 10~2) vs number of crops without patch transformation. Patch size is 2.4%
for CIFAR10 and 2.0% for ImageNet and crop size is 10x10 for CIFAR10 and 80x80 for ImageNet.



