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ABSTRACT

We consider learning Nash equilibrium in two-player zero-sum Markov games with
nonlinear function approximation, where the action-value function is approximated
by a function in the Reproducing Kernel Hilbert Space (RKHS). The key challenge
is how to do exploration in the high-dimensional function space. We propose novel
online learning algorithms to find an approximate Nash equilibrium by minimizing
the duality gap. At the core of our algorithms are upper and lower confidence
bounds that are derived based on the principle of optimism in the face of uncertainty.
We prove that our algorithm is able to attain an O(

√
T ) regret with polynomial

computational complexity, under very mild assumptions on the reward function
and the underlying dynamic of the Markov Games. This work provides the first
complexity results for learning two-player zero-sum Markov games with nonlinear
function approximation in the mixture model settings, and its implications for
function approximation via deep neural networks.

1 INTRODUCTION

Multi-agent reinforcement learning (MARL) has been the focus of research across a range of research
communities (Shapley, 1953; Littman, 1994). The case of two-player Markov Games (MG) has
been of particular interest. In this case, two players select their actions based on the current state
simultaneously and independently. One player (the max-player) aims to maximize the return based
on the reward provided by the environment, while the other (the min-player) aims to minimize it. A
series of recent results have established polynomial sample complexity/regret guarantees that depend
on the cardinality of state/action spaces for two-player MG (Wei et al., 2017; Bai & Jin, 2020; Bai
et al., 2020; Liu et al., 2020; Jia et al., 2019; Sidford et al., 2020; Cui & Yang, 2020; Lagoudakis &
Parr, 2002; Perolat et al., 2015; Pérolat et al., 2016a;b; 2017).

Meanwhile, most of the recent successful applications of MARL deal with large state/action spaces
that may be continuous or a fine-grained discretization of a continous space. Examples include
GO (Silver et al., 2016), autonomous driving (Shalev-Shwartz et al., 2016), TexasHold’em poker
(Brown & Sandholm, 2019), and AlphaStar for the game Starcraft (Vinyals et al., 2019). In order to
tackle problems with large state/action spaces, researchers have designed MARL algorithms based
on function approximation which approximate the original high-dimensional value function/policy
by a function approximator. For instance, Xie et al. (2020) and Chen et al. (2021) studied RL for
two-player zero-sum MGs with linear function approximation, where it is assumed that there are
a set of linear features that span the transition kernel and reward function spaces. In contrast to
RL with linear function approximation, RL with nonlinear function approximation (e.g., kernel
and neural network approximation) aims to take advantage of the superior representational power
of nonlinear function compared to linear parameterizations. For example, Jin et al. (2021) studied
neural-network-based RL in the setting of MGs with low multi-agent Bellman eluder dimension,
∗ Equal contribution.
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obtaining algorithms that have polynomial dependence on the complexity of the underlying function
class. Although this yields a strong theoretical guarantee, the specific algorithm that they propose is
not computationally efficient due to the constructed highly nonconvex confidence sets. The following
question is still open: Can we design a computationally and statistically efficient RL algorithm for
learning two-player zero-sum Markov Games with nonlinear function approximation?

In this paper, we give an affirmative answer to this question for a class of episodic Markov Games,
dubbed mixture Markov Games, when using nonlinear approximation function in the Reproducing
Kernel Hilbert Space (RKHS). We propose a novel kernel-based MARL algorithmic framework for
general episodic two-player MGs, which provides provable regret guarantees. We summarize the
contributions of our work as follows:

• We propose a specific KernelCCE-VTR algorithm for two-player zero-sum MGs. In particular, at
each episode, KernelCCE-VTR uses kernel function approximation to approximate the optimal
value function and constructs corresponding confidence sets, following the “Optimism-in-Face-of-
Uncertainty” principle (Abbasi-Yadkori et al., 2011) to select an action based on the current state.
In contrast to algorithms in Jin et al. (2021), which construct implicit confidence sets that are in
general computationally intractable, our algorithm KernelCCE-VTR crafts a computationally
efficient exploration bonus based on the gram matrix of the kernel function.

• Under the assumption that the transition dynamics belongs to some RKHS, we show that our
algorithm KernelCCE-VTR is able to find an approximate Nash equilibrium of the game with
a Õ(dFH

2
√
T ) upper bound on the regret of the duality gap, where H is the horizon, T is the

number of the episodes, and dF represents the complexity of the function class F . When F reduces
to the d-dimensional linear function class, our result reduces to Õ(dH2

√
T ) and nearly matches

the complexity result in Chen et al. (2021) up to a
√
H factor. To the best of our knowledge,

this is the first algorithm for learning two-player Markov Games with nonlinear function function
approximation that is efficient in terms of both computational and sample complexities.

• We also study the general case where the transition dynamic belongs to some RKHS up to a
misspecification error. We show that our KernelCCE-VTR can achieve a similar regret as in the
well-specified case. In particular, we study the neural network function approximation case which
can be regarded as a special instance of the misspecified RKHS case and derive the corresponding
regret bound.

Notation We use lower case letters to denote scalars, lower and upper case bold letters to denote
vectors and matrices. We use ‖ · ‖ to indicate Euclidean norm, and for a semi-positive definite matrix
Σ and any vector x, ‖x‖Σ := ‖Σ1/2x‖ =

√
x>Σx. For real t and interval [a, b], we use Π[a,b][t]

to indicate the projection of t onto [a, b], i.e. Π[a,b][t] = max (a,min(b, t)). For positive integer
N we sometimes define [N ] = {1, . . . , N} for compactness. We also adopt the standard big-O
and big-Ω notations: say an = O(bn) if and only if there exists C > 0, N > 0, for any n > N ,
an ≤ Cbn; an = Ω(bn) if an ≥ Cbn. The notations Õ and Ω̃ are adopted when the C above hides a
polylogarithmic factor.

2 RELATED WORK

Online RL with function approximation MARL with function approximation can be seen as an
extension of RL with function approximation on MDPs. There are several lines of work studying RL
with function approximation. The first line of work studies the so-called linear MDP which assumes
the reward function and transition dynamics are linear functions of a feature mapping defined on the
state and action spaces (Yang & Wang, 2020; Jin et al., 2020; Zanette et al., 2020). These works
proposed model-free algorithms with sublinear regret on the number of episodes T . The second line
of work studies the linear mixture MDP which assumes the transition kernel is a linear combination
of several base models (Modi et al., 2020; Jia et al., 2020; Zhou et al., 2020a; 2021). These studies
proposed model-based RL algorithms that estimate the transition kernel with finite sample complexity
or sublinear regret guarantees. The third line of work studies general function approximation which
assumes that either the value function or the transition kernel can be approximated by a general class
of functions (Osband & Van Roy, 2014; Jiang et al., 2017; Sun et al., 2019; Wang et al., 2020; Yang
et al., 2020). Algorithms proposed in this line enjoy finite regret or sample complexity bounds that
depend on some general complexity measures such as Eluder dimension (Russo & Van Roy, 2013;
Osband & Van Roy, 2014), Bellman rank (Jiang et al., 2017), witness rank (Sun et al., 2019), and
information gain (Yang et al., 2020).
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Learning two-player MGs with function approximation There is a large body of literature on
MARL for two-player MGs with function approximation. These works can be generally categorized
into MARL with linear function approximation and MARL with general function approximation. For
example, for linear function approximation, Xie et al. (2020) studied zero-sum simultaneous-move
MGs where both the reward and transition kernel can be parameterized as linear functions of some
feature mappings. They proposed an OMVI-NI algorithm with an Õ(

√
d3H4T ) regret, where d is the

number of the feature dimension, H is the episode length and T is the number of episodes. Chen et al.
(2021) studied the linear mixture MGs and proposed a nearly minimax optimal Nash-UCRL-VTR
algorithm with an Õ(d

√
H3T ) regret and an Ω(d

√
H3T ) matching lower bound. In contrast to

this work, our KernelCCE-VTR does not assume the underlying transition dynamic or reward
function have a linear structure. For MARL with general function approximation, Jin et al. (2021)
studied the two-player zero-sum MGs with low multi-agent Bellman Eluder dimension and proposed
a “Golf with Exploiter” algorithm using a general function class. They showed their algorithm enjoys
an Õ(H

√
dT logN) regret, where d is the multi-agent Bellman eluder dimension. Huang et al.

(2021) studied two-player MGs with a finite minimax Eluder dimension and proposed an ONEMG
method with an Õ(H

√
dT logN) regret, where d is the minimax Eluder dimension. To obtain the

desired function approximator, both Golf with Exploiter and ONEMG need to solve a constrained
optimization problem, which is computationally intractable even in the linear function approximation
setting. In contrast to Jin et al. (2021); Huang et al. (2021), our proposed KernelCCE-VTR is
computationally efficient.

After the initial submission of this paper, we become aware of a recent independent work (Qiu
et al., 2021) which also studied the kernel function approximation for two-player MGs. Here we
highlight the differences between these two works. First, Qiu et al. (2021) studied the MGs where
the expectation of the value function can be parameterized by a function in some RKHS, while we
assume the transition dynamic of the MGs lies in an RKHS. Second, while the regret result in Qiu
et al. (2021) depends on the covering number of the function space, our regret is independent of the
covering number.

3 PRELIMINARIES

In this section, we present the definition of a two-player Markov Game. We define the action value
function corresponding to two players’ policies and introduce the Nash equilibrium solution where
both players’ policy act as each other’s best response policy. As a slightly relaxed version of the
Nash equilibrium (NE), we also introduce Coarse Correlated Equilibrium (CCE), which serves as a
computational efficient approximation of the NE. Lastly, we define a mixture Markov Game setting in
which the transition probability lies in an RKHS. In our context, as a generalization of a fixed kernel
function, we define a weighted kernel function that depends on a pair of bounded value functions and
serves as the basis of the algorithm in Section 4.

3.1 TWO-PLAYER ZERO-SUM MARKOV GAMES

In this subsection, we describe simultaneous-move games in the setting of two-player Markov Games
(MG). In the rest of this paper by “game” we mean “zero-sum game” unless otherwise specified. A
simpler instance of Markov Games, referred to as turn-based games, can be seen as a special case of
simultaneous-move games.

In a two-player simultaneous-move Markov Game, the dynamical structure can be captured by
an MG formulated as (S,A1,A2, r,P, H). S is the space of available states of the environment.
A1 is the action space of the first player and A2 is the action space of the second player. H
is the time horizon representing the maximum step of each round of play. The reward function
r : {rh(x, a, b) : h ∈ [H]} is a sequence of mappings from S ×A1 ×A2 to [−1, 1]. In the zero-sum
setting, the positive reward for the max-player is the negative reward for the min-player. And the
transition matrix P : {Ph(· | x, a, b) : h ∈ [H]} gives for each state actions triplet (x, a, b) and at
each time h the stochastic response of the environment to the next x′ ∈ S. Here by “simultaneous
move” we refer to the setting where at each round of game the two players P1 and P2 take actions
a ∈ A1, b ∈ A2 simultaneously at a given state x ∈ S, in contrast with the turn-based game where
rh and Ph are defined for a state-action pair (x, a) where the action can be taken by either players. In
the context of this paper, for simplicity of notation we let A1 = A2 = A, while the results can be
easily generalized to the case when A1 6= A2. Similar definitions of a two-player simultaneous-move
episodic Markov Games can be found in Wei et al. (2017); Perolat et al. (2018); Xie et al. (2020).
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In the above setting, two players P1 and P2 take actions according to their own strategies. We
use π := {πh}h∈[H] to denote the stochastic policy of P1 and use ν := {νh}h∈[H] to denote the
stochastic policy of P2. We note that at time h, πh : S 7→ ∆A maps the current state xh to a
probability distribution of the actions. As is the same with νh. Given two agents policies π, ν across
h steps, the state value function is defined as the expected total reward through H steps when at step
h ∈ [H] player P1 follows policy πh(· | xh) and player P2 follows policy νh(· | xh):

V π,νh (x) := Eπ,ν

[
H∑
t=h

rt(st, at, bt) | xh = x

]
,

and V π,ν(x) := V π,ν1 (x). Note that the expectation is taken over all stochasticity in πh, νh and Ph.
The action value function is defined as

Qπ,νh (x, a, b) := Eπ,ν

[
H∑
t=h

rt(xt, at, bt)

∣∣∣∣xh = x, ah = a, bh = b

]
,

and Qπ,ν(x, a, b) := Qπ,ν1 . From the definition, we observe that for ∀x ∈ S , the state value function
given policy pair (π, ν) is the expectation of the corresponding action value function

V π,νh (x) := E(a,b)∼(π,ν)Q
π,ν
h (x, a, b),

where the expectation is taken over the action distribution induced by the policy pair.

3.2 EQUILIBRIUM AND DUALITY GAP

In this subsection, we recap the concepts of equilibrium and duality gap that have been widely used
in the game theory literature.

Nash Equilibrium and Duality Gap In a two-player Markov Game, P1 wants to maximize the
expected reward V π,ν(x) by properly choosing its policy π. On the contrary, P2 wants to minimize
V π,ν(x) by properly choosing ν. For fixed ν, we define the best response policy with respect to V and
ν as br(ν) and define V ∗,νh = V

br(ν),ν
h := maxπ V

π,ν
h and Q∗,νh = Q

br(ν),ν
h = maxπ Q

π,ν
h . Similarly

we define V π,∗h := minν V
π,ν
h and Qπ,∗h := minν Q

π,ν
h . The Nash Equilibrium (NE) is a pair of

policies (π∗, ν∗) that are the best response policy of each other, meaning V π
∗,∗(x) = V π

∗,ν∗(x) =
V ∗,ν

∗
(x). For notational simplicity we write V ∗ := V π

∗,ν∗ , Q∗ := Qπ
∗,ν∗ . By definition of the best

response policy, we have the following weak duality

V π,∗h (x) ≤ V ∗h (x) ≤ V ∗,νh (x).

We define the duality gap as
∑T
t=1 V

∗,νt
1 (xt1)− V π

t,∗
1 (xt1), and call it the Regret in the MG setting.

Coarse Correlated Equilibrium We introduce the Coarse Correlated Equilibrium (CCE) (Au-
mann, 1987; Moulin & Vial, 1978) first. Given payoff matrices Q1, Q2 : S ×A×A 7→ R, we define
the CCE of the game as a joint distribution σ on A×A satisfying for ∀a′ ∈ A, b′ ∈ B:

E(a,b)∼σ [Q1(x, a, b)] ≥ Eb∼P2σ [Q1(x, a′, b)] , E(a,b)∼σ [Q2(x, a, b)] ≤ Ea∼P1σ [Q2(x, a, b′)] ,

where P1σ denotes the marginal of σ on the first coordinate (min-player) and P2σ denotes the
marginal of σ on the second coordinate (max-player). As suggested by Xie et al. (2020), the set of
CCE includes the set of Correlated Equilibrium (CE) (Aumann, 1987; Moulin & Vial, 1978; Blum &
Monsour, 2007), which further includes the set of NE. Even though the set of CCE is known as a
convex set (Osborne & Rubinstein, 1994), later we will show that a good approximation of the NE
can be derived from the approximate CCE for the estimates of the value function corresponding to P1

and P2, respectively.

3.3 NONLINEAR FUNCTION APPROXIMATION BY REPRODUCING KERNEL HILBERT SPACES

In this subsection, we provide necessary definitions and notations in approximating action value
function with functions belonging to an reproducing kernel Hilbert space (RKHS) via modeling the
transition probability. For the simplicity of notation, we use z = (x, a, b) to denote the state action
triplet in Z := S ×A×A.

An RKHSH with kernel k(·, ·) : Z × Z 7→ R is a generalization of the linear function class. Every
RKHS H consists of functions on Z , where there exists a feature mapping φ : Z 7→ H, such that
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∀f ∈ H and ∀z ∈ Z , f(z) = 〈f, φ(z)〉H. The kernel k is thus defined for every x, y ∈ Z × Z
as k(x, y) = 〈φ(x), φ(y)〉H. We call φ the feature mapping induced by the RKHS H with kernel
k. In the following sections, we use f>g as a simplification of 〈f, g〉H when f, g ∈ H. We make
no distinction in notations between the vector product and the product 〈·, ·〉H. However, one can
tell the difference from the two objects of the product. For every RKHS H, there exists a natural
eigenvalue decomposition in L2(Z). RKHS approximation is a generalization of the linear function
approximation of finite dimension d, which can be infinite dimensional. In the following, we define
the so-called kernel mixture MG, which can be regarded as an extension from the linear mixture MDP
(Jia et al., 2020; Ayoub et al., 2020; Zhou et al., 2021) and linear mixture MG (Chen et al., 2021) to
their kernel counterpart.

Kernel Mixture MG In a kernel mixture MG model, we model the transition probability Ph(s′ |
z) : Z 7→ ∆(S) as an element in an RKHS H with feature mapping φ(s′ | z) : Z → S ×H, such
that the following equality holds for an unknown parameter θ∗h ∈ H:

Ph(s′ | z) = 〈φ(s′ | z),θ∗h〉H , ∀s′ ∈ S.

At time h, for any estimate of the value function Vh(·) : S 7→ R, we note that the expected value
function at time h+ 1, PhVh+1 is an element in the RKHS

PhVh+1(z) =
〈
φVh+1

(z),θ∗h
〉
H ,

where φVh+1
(z) :=

∑
s′∈S φ(s′ | z)Vh+1(s′) integrates the product of the feature mapping with the

estimated value of s′ over S. It is worth noting that the quantity φV (·) plays an important role in
previous linear mixture model-based algorithms (Jia et al., 2020; Ayoub et al., 2020; Zhou et al.,
2021; Chen et al., 2021).

In this work, we face a general RKHSH and we cannot access the feature mapping φ directly. Instead,
we assume that we can access the weighted kernel function kV1,V2

(·, ·), which is defined as follows:

Definition 1. For any function pairs V1, V2 : S → [0, 1] which map states to real numbers, the
weighted kernel function kV1,V2(·, ·) is defined as follows for all z1, z2 ∈ Z .

kV1,V2(z1, z2) :=
∑

s1,s2∈S

V1(s1)V2(s2) 〈φ(s1|z1), φ(s2|z2)〉H ,

It is easy to see that

kV1,V2(z1, z2) =

〈 ∑
s1∈S

V1(s1)φ(s1|z1),
∑
s2∈S

V2(s2)φ(s2|z2)

〉
H

= 〈φV1(z1), φV2(z2)〉H,

which suggests that the weighted kernel function kV1,V2
(·, ·) indeed captures the inner product relation

between φV1
(z1) and φV2

(z2). In this work, we assume that we can access an integration oracle that
can calculate kV1,V2

(z1, z2) for any function V1, V2 and state-action tuples z1, z2 efficiently. We also
assume that for any bounded value function V (·) : S 7→ [−1, 1] and any z ∈ Z , ‖φV (z)‖H ≤ 1.
Given that the reward function rh(z) is known, we obtain through the Bellman equation that

Q∗,νh (·) = rh(·) + (PhV ∗,νh+1)(·) = rh(·) +
〈
φV ∗,νh+1

(·),θ∗h
〉
H
,

and similar equation holds for Qπ,∗h . With these preliminaries prepared, we now move to our main
algorithm and its analysis.

4 ALGORITHM

In this section, we introduce our value targeted iteration algorithm for the two-player zero-sum
Markov Game setting with RKHS function approximation. We follow the “value-targeted regression”
framework and the confidence set design as in UCRL (Jia et al., 2020; Ayoub et al., 2020), and
combine the CCE technique (Xie et al., 2020) to deal with the general sum sub-game brought by
upper confidence bound (UCB) and lower confidence bound (LCB) value functions. These techniques
enable us to adapt the results in the linear setting to the nonlinear RKHS regime (Chowdhury &
Gopalan, 2017; Yang et al., 2020; Zhou et al., 2020b) to get a structure-dependent regret bound that
is both computationally simple and statistically efficient.
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Aiming at finding an equilibrium (π∗, ν∗) of the value function V π,ν1 (x1), we design an algorithm
based on value targeted regression (VTR) and upper/lower confidence bound estimations. As the min-
player targets the minimization of the value function while the max-player targets the maximization
of the value function, we use upper confidence bound estimation to encourage exploration of the
max-player and use a lower confidence bound to encourage exploration of the min-player. Thus we
need to define two value functions for the min/max-players respectively, i.e., Q

t

h, Q
t

h
, V

t

h, V
t
h, where

we adopt the overline notation for the over-estimation of the max-player and the underline notation
for the under-estimation of the min-player. At each round of the game, we solve the following ridge
regression problem for minimizing the Bellman error:

θ
t
h = min

θ∈H

t−1∑
τ=1

[
V
τ
h+1(xτh+1)−

〈
φV τh+1

(zτh),θ
〉
H

]2
+ λ||θ||2H,

θth = min
θ∈H

t−1∑
τ=1

[
V τh+1(xτh+1)−

〈
φV τ

h+1
(zτh),θ

〉
H

]2
+ λ||θ||2H.

(4.1)

Note that in Eq. (4.1), V
τ

h+1, V
τ
h+1 only depend on the previous trajectories{

xji , a
j
i , b

j
i : j ∈ [τ − 1], i ∈ [H]

}
. We denote the corresponding σ-algebra as Fτ−1. Thus

we have V
τ

h+1, V
τ
h+1 ∈ Fτ−1. As each V

τ

h+1(xτh+1) can be seen as a stochastic sample of
(PhV

τ

h+1)(zτh), the regularized regression problem of the max-player in (4.1) can be seen as solving
a linear bandit problem with context φV τh+1

(zτh), reward function (PhV
τ

h+1)(zτh) and noise term

V
τ

h+1(xτh+1)− (PhV
τ

h+1)(zτh). A similar statement holds for the min-player as well.

From the solution to the ridge regression problem (4.1), we need to define the upper/lower confidence
bound of the value functions Q∗,νh , Qπ,∗h respectively. For simplicity of notations, we define

Ψ
t
h :=

(
φ
V

1
h+1

(z1h), . . . φ
V
t−1
h+1

(zt−1
h )

)>
, and Ψt

h :=
(
φV 1

h+1
(z1h), . . . φ

V t−1
h+1

(zt−1
h )

)>
.

Also, we define the gram matrix K
t

h and vector-valued function k
t

h as

K
t
h =

(
Ψ
t
h

)(
Ψ
t
h

)>
∈ R(t−1)×(t−1), and k

t
h =

(
k
V
i
h+1,V

t
h+1

(zih, z)
)
i
∈ Rt−1,

separately. We define Kt
h and kth in a similar way. For a positive parameter βt > 0 that will be

chosen in later analysis, the confidence region centered at θ
t

h in the RKHSH is defined as

Cth =

{
θ :

√
λ||θ − θth||2H +

∥∥∥〈Ψt
h,θ − θ

t
h

〉
H

∥∥∥2 ≤ βt},
where we use

〈
Ψ
t

h,θ − θ
t

h

〉
H

to denote the following t − 1 dimensional vector(〈
φV τh+1

(zτh),θ − θth
〉
H

: τ ∈ [t− 1]
)
. We omit the definition of Cth which is an analogue of

Eq. (4.2) by changing all overline symbols to underline ones. Based on the confidence regions, we
construct an optimistic/pessimistic estimate of Q∗,νh as

Q
t

h := Π[−H,H]

[
rh + max

θ∈Cth

〈
φ
V
t
h+1

,θ
〉
H

]
, and Qt

h
:= Π[−H,H]

[
rh + min

θ∈Ct
h

〈
φV t

h+1
,θ
〉
H

]
,

where Π[−H,H] is the projection operator onto [−H,H], which is by definition the range of value

functions. In fact, Q
t

h has a closed-form solution as follows:

Q
t

h(z) = Π[−H,H]

[
rh(z) + k

t
h(z)>(K

t
h + λI)−1yth +βt · b

t
h(z)

]
, (4.2)

where yth :=
[
V

1

h+1(x1
h), . . . V

t−1

h+1(xt−1
h )

]>
and b

t

h(z) = λ−1/2 ·
[
k
V
t
h+1,V

t
h+1

(z, z) −

k
t

h(z)>
(
K
t

h + λ · I
)−1

k
t

h(z)

]1/2

. An analogous claim holds for Qt
h

. Given the estimation of

Q
t

h, Q
t

h
, the next step is to estimate the corresponding state value functions V

t

h, V
t
h. Due to the

computational difficulty of calculating the NE of a general sum game (Daskalakis et al., 2009), we
instead find a CCE of the payoff pair (Q

t

h(z), Qt
h
(z)). More specifically, we utilize the FIND CCE

algorithm in Xie et al. (2020). The full version of the algorithm is presented formally in Algorithm 1.
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Algorithm 1 KernelCCE-VTR
1: Input: bonus parameter β > 0.
2: for episode t = 1, 2, . . . , T do
3: Receive initial state xt1
4: for step h = H,H − 1, . . . , 1 do
5: Calculate Q

t

h(·), Qt
h
(·) as in Eq. (4.2)

6: For each x, let σth(x) = FIND CCE(Q
t

h, Q
t

h
, x)

7: Let V
t

h(x) = E(a,b)∼σth(x)Q
t

h(x, a, b) and V th(x) = E(a,b)∼σth(x)Q
t

h
(x, a, b)

8: end for
9: for step h = 1, 2, . . . ,H do

10: Sample ath ∼ πth(xth) := P1σ
t
h(xth), bth ∼ νth(xth) := P2σ

t
h(xth).

11: P1 takes action ath, P2 takes action bth
12: Observe next state xth+1.
13: end for
14: end for

5 THEORETICAL ANALYSIS

In this section, we present the regret bound of our algorithm for the kernel mixture Markov Game.
Recall that for the linear function class, the regret upper bound is characterized by the dimension of
the linear function, the horizon of the game, and the number of episodes (Chen et al., 2021). Our
analysis in the RKHS function approximation setting aligns with the linear function approximation
setting when kV,V ′(z, z′) = φV (z)>φV ′(z

′) and yields a regret bound of Õ(dH2
√
T ).

When considering the nonlinear function class as an approximator of the value function, we need to
develop a new concept analogous to the dimension d that characterizes the intrinsic complexity of the
function class F . Under the framework of our theoretical analysis, we present our regret bound in
terms of the maximal information gain ΓK(T, λ) (Srinivas et al., 2009), the episode number T , and
the time horizon H . We lay out precise definitions of these notions immediately afterwards.

We first define the effective dimension of the RKHSH with respect to the mixture MG as follows:
Definition 2 (Srinivas et al. 2009). We define the effective dimension ΓK(T, λ) as follows:

ΓK(T, λ) := sup
(Vi)i,(zi)i

1

2
log det(I +K({Vi}i, {zi}i)/λ),

for any 1 ≤ i ≤ T, Vi : S → [−H,H], zi ∈ Z , where Vi’s are functions mapping from S to
[−H,H] and zi’s are state-action tuples. Here, K({Vi}i, {zi}i) ∈ RT×T and its (p, q)-th entry for
any 1 ≤ p, q ≤ T is [K({Vi}i, {zi}i)]p,q = kVp,Vq (zp, zq).

By the boundedness of φV as in Section 3.3, it is easy to verify that both the tabular MG and the
linear mixture MG enjoy a finite effective dimension. Specifically, for finite RKHSH with rank d,
ΓK(T, λ) = O(d · log T ) approximately depicts the rank of H. Via a concentration argument, we
first present our main lemma for bounding the estimation error when choosing βt = β for all t ≥ 1:
Lemma 3. Assuming that for any h ∈ [H], ||θ∗h||H ≤ B. Let λ = 1 + 1

T and β satisfies(
β

H

)2

≥ 2ΓK(T, λ) + 2 + 4 · log

(
1

δ

)
+ 2λ

(
B

H

)2

.

Then for any δ > 0, with probability at least 1− δ the following holds for any (t, h) ∈ [T ]× [H] and
any (x, a, b) ∈ S ×A×A:∣∣∣〈φV th+1

(x, a, b),θ
t

h − θ∗h
〉
H

∣∣∣ ≤ β · bth(x, a, b),
∣∣∣〈φV th+1

(x, a, b),θ
t

h − θ∗h
〉
H

∣∣∣ ≤ β · bth(x, a, b).

We are now ready to present the main theorem as follows:
Theorem 4 (RKHS function approximation). Assuming that for any h ∈ [H], ||θ∗h||H ≤ B. Set
λ = 1 + 1

T in the KernelCCE-VTR Algorithm. For any δ > 0 and any β satisfying(
β

H

)2

≥ 2ΓK(T, λ) + 2 + 4 · log

(
1

δ

)
+ 2λ

(
B

H

)2

,

7
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there exists a universal constant c > 0 such that with probability at least 1− δ, we have

Regret(T ) ≤ c
(
βH
√
T · ΓK(T, λ)

)
.

Remark 5. Theorem 4 suggests that by treating the norm B as a constant, KernelCCE-VTR
achieves an Õ(ΓK(T, λ)H2

√
T ) regret bound. When the RKHS degenerates to the Euclidean case,

the regret bound corresponding to the standard linear mixture MG case reduces to Õ(dH2
√
T ) which

matches the Õ(dH3/2
√
T ) regret yielded by Chen et al. (2021) up to a

√
H factor. The Õ(dH2

√
T )

regret is also known to be nearly minimax optimal up to a
√
H factor (Chen et al., 2021).

Remark 6. Theorem 4 suggests that the average of the duality gaps 1/T ·
∑T
t=1(V ∗,ν

t

1 − V π
t,∗

1 ) =
1/T · Regret(T )→ 0, which further indicates that our KernelCCE-VTR algorithm can indeed find
a good approximation of the Nash Equilibrium (πth, ν

t
h), as the marginalization of the CCE σth.

6 NONLINEAR FUNCTION APPROXIMATION WITH MISSPECIFICATION

In Section 5, we focus on the case where the transition probability Ph(s′ | z) can be modeled by
functions belonging to an RKHS. In practice, however, the function class may not be confined to an
RKHS, but the distance to it can be bounded. For example, when considering the more general Neural
Network (NN) function classes, it is well-known that we can approximate it by the RKHS with the
corresponding neural tangent kernel (Jacot et al., 2018; Allen-Zhu et al., 2019). In this section, we
attempt to resolve this in two parts, the RKHS approximation with misspecification (Section 6.1),
and the NN approximation (Section 6.2) as an application of the misspecification results.

6.1 KERNEL FUNCTION APPROXIMATION WITH MISSPECIFICATION

In this subsection, we discuss the case where there exists a misspecification error between the RKHS
H and the true transition probability Ph(s′|z). Formally, we make the following assumptions:
Assumption 7. We assume that there exists an ιmis > 0, an RKHS H with feature mapping
φ : Z 7→ S × H, and an unknown parameter θ∗h ∈ H satisfying ‖θ∗h‖H ≤ B such that for
any h ∈ [H], the distance of the transition probability Ph toH can be bounded by ιmis:

‖Ph(· | z)− 〈φ(· | z),θ∗h〉H‖TV ≤ ιmis.

Similar to Lemma 3 in Section 5, by choosing a proper size βt of the confidence region, we are able
to bound the estimation error:
Lemma 8. Assuming that for any h ∈ [H], ||θ∗h||H ≤ B. Let λ = 1 + 1

T and βt satisfies(
βt
H

)2

≥ 3ΓK(T, λ) + 3 + 6 · log

(
1

δ

)
+ 3λ

(
B

H

)2

+ 3ι2mist. (6.1)

Then for any δ > 0, with probability at least 1− δ the following holds for any (t, h) ∈ [T ]× [H] and
any z ∈ Z: ∣∣∣〈φV th+1

(z),θ
t

h

〉
H
− PhV

t

h+1(z)
∣∣∣ ≤ βt · bth(z) +H · ιmis,∣∣∣〈φV th+1

(z),θth

〉
H
− PhV th+1(z)

∣∣∣ ≤ βt · bth(z) +H · ιmis.

Compared with the choice of β in Lemma 3, Eq. (6.1) yields an extra O(Hιmis

√
t) term brought

by misspecification error. Now we are ready to present the regret bound when the misspecification
occurs.
Theorem 9 (RKHS function approximation with misspecification). Assuming that for any h ∈ [H],
||θ∗h||H ≤ B. Set λ = 1 + 1

T in the KernelCCE-VTR Algorithm. For any δ > 0 and any βt
satisfying (

βt
H

)2

≥ 2ΓK(T, λ) + 3 + 6 · log

(
1

δ

)
+ 3λ

(
B

H

)2

+ 3ι2mist,

there exists a global constant c > 0 such that with probability at least 1− δ, we have

Regret(T ) ≤ c
(
βTH

√
T · ΓK(T, λ) +H2Tιmis

)
.

8
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In words, Theorem 9 suggests that in the misspeficified case, KernelCCE-VTR can achieve the
same regret as that in the well-specified case up to an O(H2Tιmis) error. Such a linear dependence
on ιmis matches the result of single agent RL for the finite dimensional case (Jin et al., 2020; Zanette
et al., 2020).

6.2 NEURAL NETWORK (NN) FUNCTION APPROXIMATION

The previous subsection focuses on estimating the transition probability using an RKHS when
misspecification is present. In this subsection, we utilize Theorem 9 in deriving a regret bound for
neural network function approximations. We see w := (x′, x, a, b)> = (x′, z) as a vector in Rd that
satisfies ||w|| = 1 and represent the parameters of a L-Layer fully connected neural network f by
θ :=

[
vec(W1)>, vec(W2)>, . . . , vec(WL)>

]>
, where Wi ∈ Rm×m for all i ∈ [L]. The neural

network f(w;θ) with parameter set θ can be defined as:

f(w;θ) =
√
mWLG (· · ·G (W2G (W1w))) ,

where G(·) : R 7→ R is an activation function, WL ∈ Rm×1, Wl ∈ Rm×m, 2 ≤ l < L, W1 ∈
Rm×d. For 1 ≤ l ≤ L− 1,Wl = (W ,0; 0,W ), where each entry ofW is generated independently
from N(0, 4/m); WL = (w>,−w>) where each entry of w is generated independently from
N(0, 2/m). Given the initialized parameter θ0, we take the feature map φ(w) = ∇θf(w;θ0)/

√
m

as the gradient of f at θ0. We define the weighted kernel function kV1,V2
(·, ·) in Definition 1 with

φ(w). Similarily, we define the effective dimension ΓK(T, λ) with respect to the kernel function
kV1,V2

(·, ·), in the same fashion of Definition 2.

We assume that for ∀h ∈ [H] our transition probability Ph can be modeled by the neural network
with parameter θ∗h satisfying

∥∥θ∗h − θ(0)
∥∥

2
≤ B/

√
m:

Ph(x′ | z) = f(x′, z;θ∗h).

With these at hand we are ready to present our main theorem for NN approximation:

Theorem 10 (NN approximation). Assuming that for any h ∈ [H], ||θ∗h − θ(0)||2 ≤ B/
√
m. There

exists a C > 0 independent of m such that if we λ = C2
(
1 + 1

T

)
in the KernelCCE-VTR

Algorithm. For any δ > 0 and any βt satisfying(
βt
H

)2

≥ 2ΓK(T, λ) + 3 + 6 · log

(
1

δ

)
+ 3λ

(
B

H

)2

+ 3 · C2 ·B8/3 ·m−1/12 · t · logm,

there exists a global constant c > 0 such that with probability at least 1− δ −m−2, we have

Regret(T ) ≤ c
(
βTH

√
T · ΓK(T, λ) +B4/3H2Tm−1/6

√
logm

)
.

Theorem 10 suggests that when we use an overparameterized deep neural network (m � 1) to
approximate the transition dynamic, KernelCCE-VTR achieves an Õ(ΓK(T, λ)H2

√
T ) regret,

which is of the same order as its counterparts in the general misspecification case.

Remark 11. To match the setting of the misspecification case, we consider solving the NN approxi-
mation case by a simplified version of Algorithm 1 that uses only the first-order Taylor expansion
compared with the full NN solution in Zhou et al. (2020b); Yang et al. (2020).

7 CONCLUSIONS

In this work, we studied learning two-player mixture MGs using the kernel function approximation.
We introduced a new kernel mixture MG setting and proposed a new algorithm KernelCCE-VTR
that utilizes the kernel function of the MG. We show that our KernelCCE-VTR is able to achieve a
sublinear Õ(dFH

2
√
T ) regret, which nearly matches the regret lower bound in Zhou et al. (2021)

for learning linear mixture MGs. We further extend the analysis of the basic RKHS setting to a more
general nonlinear function approximation with misspecification errors at present and demonstrate
that neural networks can be seen as a special application of misspecification.

9
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