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ABSTRACT

We introduce a novel framework for analyzing neural networks based on the con-
cepts of dynamic and static neurons, which describe the stability of neuron acti-
vation under specific inputs. From these concepts, we propose neuron entropy as
a metric to quantify network expressiveness. Our analysis reveals that better gen-
eralization correlates with diverse activation patterns and higher neuron entropy.
Building on this, we propose our HENP method, a dynamic pruning technique
that regulates dying neurons and sparsifies the network during training. Exper-
imental results demonstrate that our HENP improves both network sparsity and
performance, offering a new approach to efficient neural network optimization.

1 INTRODUCTION

Deep neural networks equipped with piecewise linear activation functions, such as the Rectified
Linear Unit (ReLU), have gained widespread popularity due to their remarkable performance across
various domains and computational efficiency Zhou| (2021); Jiang| (2018)). However, understanding
the underlying mechanics of these networks remains a significant challenge. In this paper, we pro-
pose a comprehensive framework for analyzing the structure and behavior of deep neural networks,
specifically focusing on the partitioning of the input space of a network A/, defined on R™ with a
piecewise linear activation function 7. This partitioning results in multiple linear zones, where the
mapping within each zone is linear, collectively enabling the approximation of complex, non-linear
functions.

Recent studies have established that the number of linear zones serves as a quantitative measure of
a model’s complexity |(Cohan| (2022)). However, as the depth and width of a network increase, the
significance of analyzing a single linear zone diminishes. To provide a more nuanced evaluation
of large-scale models, our framework investigates neuron activation across multiple linear zones,
capturing not only the linear transformations within individual zones but also the intricate transitions
between them, which are crucial for enhancing the performance of deep neural networks.

By analyzing neuron behavior across different activation zones, we gain insights into the represen-
tational capacity and stability of these models, addressing the challenges posed by the increasing
complexity of modern architectures. Our contributions include a detailed examination of the fun-
damental structures and formalisms of feedforward neural networks, as outlined in Section (3| In
Section [ we explore the global stability of neuron activation zones, revealing that dynamic neu-
rons significantly enhance the model’s ability to capture complex functions. Conversely, a high
proportion of static neurons can lead to linear approximations, undermining representational capa-
bilities. To quantify neuron uncertainty, we introduce a novel neuron entropy metric, demonstrating
its correlation with representation capacity in deeper layers.

Furthermore, we address the issue of dying neurons Ziping| (2023)); |[Lu! (2020), where activations
remain unchanged regardless of input. To mitigate this, we propose a Hybrid Entropy-Norm Pruning
(HENP) technique, enabling effective network pruning without additional training or accuracy loss
by eliminating these dying neurons. In Section[5} we detail the integration of norms and entropy in
HENP and present experimental results illustrating its effectiveness, including the computation of
neuron entropy on the test set and the application of a masking strategy on neurons with the lowest
entropy.
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2 RELATED WORKS

2.1 ON NEURAL NETWORKS ANALYSIS

To understand the remarkable performance of neural networks, early research addressed fundamen-
tal challenges like vanishing and exploding gradients Bengio| (1994); [Hochreiter & Schmidhuber
(1997), prediction instability [Szegedy| (2013), and constraints on model capacity [Montufar| (2014).
These challenges spurred extensive efforts to analyze the internal workings of neural networks
Goodfellow| (2017); [Xavier & Bengio| (2010), utilizing methods such as feature attribution Samek
(2017); Montavon| (2018)); |Ancona (2018)) and complexity analysis Raghu| (2017). Feature attribu-
tion techniques, such as Integrated Gradients |Sundararajan| (2017)), enhance interpretability, which
is crucial for transparency and trust in neural networks |Doshi-Velez & Kim|(2017). In parallel, the-
oretical research has advanced, particularly regarding over-parameterization and model complexity
trade-offs|Bubeck|(2020)), as well as the linear zones of ReLU networks, which relate to expressivity
and approximation capacity |[Zhang| (2021); [Pascanu| (2013)). There is also a growing emphasis on
interpretable models, with methods integrating decision trees Murdoch| (2019)); |[Letham| (2015)) or
prototype-based classifiers like ProtoPNet|Chen| (2019), offering human-like recognition and trans-
parency Caruana|(2015). Further studies have examined the piecewise linear properties of networks
Aroral (2018)), quantifying their complexity Hanin & David| (2019)), which informs generalization
capabilities |Goodfellow| (2015)).

2.2 TowWARDS NETWORK COMPRESSION

Model compression is a crucial research area in deep learning, particularly for deploying large mod-
els on resource-constrained devices. The goal is to reduce computational and memory costs while
maintaining predictive accuracy. Techniques include pruning, which removes redundant weights
or neurons, with structured pruning targeting filters or channels to enhance hardware compatibil-
ity Blalockl (2020); Lemaire| (2019). Quantization lowers the precision of weights and activations,
typically from 32-bit to 8-bit, using post-training or quantization-aware methods to preserve accu-
racy [Krishnamoorthi| (2018)); Jacob| (2018); (Gholami| (2021). Knowledge distillation trains smaller
models to replicate the output of larger ones, efficiently transferring knowledge without significant
performance loss [Hinton| (2015)); [Tian| (2022); |Gou| (2021). Neural Architecture Search (NAS) au-
tomates the design of efficient models, employing multi-objective optimization for accuracy and
speed, while recent advancements like differentiable NAS reduce search costs, making it more fea-
sible for hardware-constrained deployment [Elsken! (2019); |Cai| (2020); [Radosavovic| (2020); [Xu
(2020); Zelal (2020). Together, these techniques drive significant improvements in compression,
enabling more practical applications of deep learning |Liu| (2019)); [Han| (2016)); Cheng| (2018)).

2.3 UNDERSTANDING DYING NEURONS

The ReLU activation function can lead to neuronal death, where neurons stop contributing to the
network due to weight updates. While ReL.U avoids gradient vanishing issues common in sigmoid
functions and helps prevent gradient saturation, its drawbacks include neuron inactivation when the
learning rate is too high. Specifically, the update rule w’ = w — nAw, where 7 is the learning
rate and Aw is the gradient, can result in w’ becoming negative if nAw exceeds w. This negativity
causes inputs to be zeroed after passing through ReL U, and once ReLU outputs 0, its derivative is
also 0, leading to permanent inactivation of the neuron as the gradient no longer updates the weights.
Solutions such as resetting dead neurons or concatenating ReLU activations can mitigate this issue
Whitaker & Whitley| (2023)); [Utku| (2020); Mike| (2023)); Joo Hyung| (2023)); |Sokar] (2023); |Abbas
(2023)). Neurons that consistently receive negative inputs face a similar problem, as their weights and
biases cannot be updated due to zero gradients. This results in neuron ’death,” where certain neurons
remain inactive throughout training, never contributing to the learning process Ziping| (2023)); Lu
(2020).

3 MATH FUNDAMENTALS OF NEURONS

In this section, we introduce the formalisms and describe the fundamental structure of a feedforward
neural network for a classification task, which will serve as the basis for our analysis of activation
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zones, zones, and flows in subsequent sections. (see Appendix[A. T} [A.2][A.3]and[A.4). Due to space
constraints, the detailed discussion of these concepts is provided in subsequent sections.

3.1 CONSISTENCY OF NEURON STATES AND TRAJECTORIES

The behavior of trajectories can be categorized based on the consistency of the neurons along them.
We define dynamic and static neurons and trajectories as follows:

Definition 1 (Dynamic and Static Neuron States). A neuron n; is called a dynamic neuron if its
activation state varies within a subspace S C R"; otherwise, it is a static neuron.

Definition 2 (Dynamic and Static Activation Flows). A flow 7(x) is static if all neurons along it are
consistent within a zone S C R"; otherwise, it is a dynamic flow.

Static trajectories contribute consistent outputs within a zone, while dynamic trajectories introduce
more nonlinearity and variability.

3.2 DYNAMIC NEURON COVERAGE

We explore the concept of dynamic neurons within a convex activation zone. The following lemma
describes how the activation status of dynamic neurons can define a cover for the zone.

Lemma 1 (Dynamic Neuron Coverage Lemma). For any convex activation zone C, let the set of
dynamic neurons be denoted as F. Then the convex activation zone C can be covered by a union of
smaller zones defined by the activation status of the dynamic neurons. Specifically, the activation
status of all static neurons remains the same throughout this zone, while the status of the dynamic
neurons may vary across the different sub-zones.

This lemma provides a method to approximate the coverage of a convex activation zone by focusing
on the dynamic neurons, which introduces flexibility in the activation zones within the zone.

4 DYING NEURONS AND MODEL EXPRESSIVITY

This section explores the expressive capacity of feedforward neural networks by analyzing the di-
versity of neuron activation zones. To evaluate the network’s expressiveness, we introduce a metric
called neuron entropy, which captures the uncertainty in neuron activation zones. Subsequently, we
examine the relationship between this metric and both model performance and metrics proposed in
previous research. Our findings indicate that in the deeper intermediate layers, a considerable num-
ber of neurons maintain identical activation regardless of the input, resulting in a reduced expressive
capacity. (see Appendix and [A.7). Due to space constraints, the detailed discussion of
these concepts is provided in subsequent sections.

4.1 NEURON ENTROPY: A KEY TO EXPRESSIVITY

Definition 3 (Neuron Entropy). Let N be a network defined by Definition [A.1} The entropy of
a neuron (i, j) in N for a data distribution D is defined as the entropy of the distribution of the
activation status for (i, j) given input (x,y) € D:

q
£ (N, D) = =y p(a)” (x) = k) log(p(a; (x))). M

k=0
The neuron entropy describes the uncertainty of the neuron activation zone. For instance, let N be a
neural network with a ReLU activation function. If £ ](l) (N, D) = 0, this suggests that the activation
zone of neuron (i, j) is identical for any data (x,y) ~ D. This implies that neuron (3, j) fails to
provide non-linearity, behaving as a static neuron. On the other hand, £ ]@ (N, D) close to 0.89

(the entropy of a Bernoulli distribution with p = 0.5) indicates that the probability of neuron (i, j)
being activated or deactivated is around 50% for the data distribution D, suggesting a high degree of
uncertainty and strong non-linear representation capacity.
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By introducing neuron entropy as a measure, we gain a better understanding of each neuron’s contri-
bution to the network’s expressive power and their role in enhancing the network’s overall non-linear
capabilities. As neuron entropy increases, the neural network becomes more capable of capturing
complex zones in the data, thereby improving its overall performance.

(i)
J

Figure |1{ shows the neuron entropy of the neuron G;’ where the x-axis is the probability of the

zone of dgi) is O: P(dgi) = 0). For activation with two zones (such as ReLU, PReLU), neuron

entropy arrives its maximum around 0.89 when P(d;i)(x) = 0) = 1/2. For activation with 3

zones (such as Sigmoid, ReLU-6), the maximum entropy is 1.59 when P(dy) (x) =0) =1/3.

For activation with 4 zones (such as Swish, Piecewise Linear), the maximum entropy is 1.89 when
P(dy) (x) = 0) = 1/4. For activation with 5 zones (such as Extended ReLU, Custom Piecewise

Function), the maximum entropy is 2.39 when P(dgi)(x) = 0) = 1/5. And for activation with

6 zones (such as Multi-Slope ReLU, Complex Sigmoid-based Function), the maximum entropy is
2.59 when P(a\"” (x) = 0) = 1/6.
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Figure 1: The dynamic entropy of activation functions with k different patterns given the probability
of pattern is 0 (x-axis). Each line shows the maximum value of entropy, while the shadowed zone is
the range of entropy from k =ntok =n — 1.

4.2 UNDERSTANDING NEURAL NETWORKS THROUGH NEURON INSIGHTS

4.2.1 MODEL REPRESENTATIONAL CAPACITY

Figure [2| illustrates the neuron entropy in VGG16 networks trained on the CIFAR10 dataset using
different batch sizes. Each model underwent 1800 training steps, with neuron entropy evaluated
every 30 steps. The ReLU activation function, with a separation of 0, is applied to all networks,
resulting in neurons being either activated or not.

Figures[2g and [2h]display the training and test accuracy across different models, demonstrating that
smaller batch sizes typically yield higher accuracy and more stable performance on both training and
testing datasets. To understand the disparity in performance from the perspective of neuron stability,
Figures [2a through [2c| present the average neuron entropy across different layers, while Figures [2d]
to[2f] show the variance in neuron entropy at each layer.

In the initial layer (layer 1, Figure[2a), neuron entropy is approximately 4.36 across all models, sug-
gesting that most neurons have about a 50% chance of activation for a given dataset. In intermediate
layers (layer 6, Figure 2b), neuron entropy initially rises to around 10.76 before gradually declining.
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Figure 2: The mean and variance neuron entropy at different layers for a VGG16 network trained
on CIFARI10 dataset.

Notably, neurons in the model with the best performance (batch size 64, red line) exhibit greater
stability in these shallow layers.

The most pronounced differences between models are observed in the deeper layers (layer 11, Fig-
ure[2c), where higher neuron entropy correlates with improved accuracy on both training and testing
datasets. Specifically, in the models with poorer performance, neuron entropy is around 11.761, in-
dicating that most neurons in deep layers remain consistently in the same activation state, regardless
of the input. This phenomenon, known as the dying neuron issue, leads to a loss of representational
capacity Ziping| (2023)); [Lu| (2020).

Moreover, when examining the variance of neuron entropy, we observe that the model with the best
performance consistently exhibits the lowest variance across different layers. This suggests that
neurons in these layers have similar levels of uncertainty.

Analyzing neuron entropy across layers provides valuable insights into neural network performance
from multiple perspectives. First, it suggests that a well-performing model tends to have higher
neuron entropy in deeper layers and lower entropy in shallower layers. Second, this comparison
underscores the distinct roles of each layer. Neurons at the input layer often exhibit instability
due to the variability in input images. Previous research indicates that shallow layers are mainly
responsible for extracting features from the input, leading to more stable neurons. In contrast, deep
layers extract critical information necessary for classification. The increased neuron entropy in
deeper layers reflects a more robust capacity to encode features for classification.

4.2.2 DYNAMIC NEURON ENTROPY

Figure [3|depicts the evolution of neuron entropy across various layers during training. We track the
entropy of neurons throughout the training process at each layer. In the initial layers (e.g., layer
2), most neurons exhibit entropy close to 8.76, indicating high responsiveness to the dataset and
capability to distinguish different data instances. During the early stages of training, particularly up
to layer 5, neuron entropy increases rapidly and stabilizes at approximately 10.76.
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Figure 3: Dynamic of neuron entropy at different layers during training. Each of the lines records
the entropy of a neuron during training every 100 steps.

As the model progresses into deeper layers, however, more neurons begin to lose their responsive-
ness, as observed in layers 8 and 11. For instance, by the end of training, the increment in entropy
from layer 5 to layer 8 is roughly 1, which is lower compared to the 2 unit increase observed between
layer 1 and layer 5. Additionally, neurons in layer 8 achieve stability in entropy earlier than those in
layer 5. At layer 11, the majority of neurons eventually reach a plateau in entropy, indicating a ces-
sation of volatility. This analysis of dynamic neuron entropy provides insight into neuron-specific
behavior across the dataset, helping to identify dying neurons at various layers—neurons that do not
significantly contribute to model performance.

4.3 HYBRID ENTROPY-NORM PRUNING (HENP)

4.3.1 WEIGHTED ENTROPY AND HYBRID NORM

In this section, we introduce a novel approach that combines weighted entropy with a hybrid norm
for pruning, specifically tailored for convolutional layers and linear layers. This method employs
metrics to assess the importance of parameters, making it more suitable for in-depth academic re-
search and theoretical analysis.

Firstly, in the convolutional layer, we propose to calculate the weighted entropy for each filter. Un-
like traditional entropy calculations, the entropy for a specific filter F; is determined by a weighted
sum of the entropies of its channels, where the weights are derived from the contribution of each
channel to the filter’s output:

C
Weighted Entropy(F;) = Z we X Entropy (FY)

c=1

where C' represents the number of channels, F is the c-th channel of filter F}, and w, is the weight
assigned to the c-th channel based on its significance in the filter’s output. This weighted entropy is
then combined with a hybrid norm of the filter, which is computed as L2 norm:

Pruning Score(F;) = f(Weighted Entropy(F;), | ;|| hybrid)

where || F;|| hybria represents the hybrid norm, and f(-) is a non-linear function, such as a product or
an exponential function, to combine the weighted entropy and hybrid norm. This approach enables a
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more refined assessment of each filter’s importance by incorporating both local and nuanced channel
information.

Secondly, for the linear layer, the method focuses on combining both local and global entropy mea-
sures. The local entropy for each output unit is computed first, followed by an aggregation to form
a global entropy measure for the entire output layer:

M
Global Entropy(O) = g Z h(p;) x Local Entropy(O;)

j=1

where M is the number of output units, p; is the probability distribution over the outputs, O; is the
j-th output unit, and h(-) is a weighting function that adjusts the contribution of each unit’s local
entropy. The global entropy is then combined with a dynamic hybrid norm of the weight matrix W:

Pruning Score(W) = f(Global Entropy(O), ||W || hybrid)

where the function f(-) is similar to that used in the convolutional layer, and the hybrid norm
[lW{|hybria dynamically changes as training progresses. This method allows for a more sophisti-
cated pruning strategy by considering both the local variations and global trends in entropy during
the pruning process.

Overall, these methods provide a deeper exploration into the entropy-based pruning strategies by
incorporating weighted metrics, hybrid norms, and dynamic adjustments, making them highly ap-
plicable for rigorous academic investigations.

4.4 HENP ALGORITHM

As discussed above, we propose the neuron entropy metric to evaluate the representational capacity
of neural networks and show that a certain amount of dying neurons fails to contribute to network
predictions. Based on this observation, we introduce our Hybrid Entropy-Norm Pruning method,
which eliminates unnecessary parameters from the network by combining norms and neuron en-
tropy. Algorithm T]in Appendix[A.9|outlines the detailed HENP procedure for training and pruning.

At the beginning of training, a binary mask M is initialized, matching the shape of the network
parameters. This mask M denotes the neurons that remain active during training. During the forward
pass, as shown in step 5 of Algorithm|l] the model computes predictions ¢ by applying the masked
parameters § ® M. Subsequently, step 6 updates the parameters 6 by minimizing the loss function
L(y, ) using backpropagation. The pruning operation is triggered if the current epoch ¢ matches one
of the pruning milestones P, as indicated in step 10. In this case, the Pruning function is invoked,
relying on entropy to select neurons for pruning. An activation zone counter pc is initialized, where
pc® j[k] represents the occurrence count of zone k for neuron (i, j). For each block h;, the pre-
activation z; is computed at step 17, followed by the activation zone a(*)j for each neuron at step
18. The current zone’s counter @) j for neuron (4, j) is incremented. After iterating over the entire
dataset, the frequency distribution of each zone estimates the zone distribution for neuron (i, j). The
entropy £ j for neuron (i,7) is calculated based on the zone distribution pc(? 4. Finally, neurons
meeting the pruning criteria are removed by setting the corresponding entries in the mask M () j to
ZEero.

For clarity, we separate the training and pruning phases in Algorithm|l| In practice, however, the
computation of neuron entropy can be incorporated into the training phase, with the zone counter
updates being performed on a batch-wise basis. In Section [5} we explore the impact of different
pruning criteria on the performance of pruning methods, taking ResNet18 as a case study.
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5 EXPERIMENTS

5.1 BLEND ENTROPY WITH NORM

As discussed in Section [#.3] for convolutional layers, the neuron entropy and norm are in different
shapes. Therefore, an averaged entropy is computed for each filter and fused with the norm. In the
following experiments, we consider:

e Norm x Averaged Layer Entropy (HENP-1),
* Harmonic Mean of Norm and Layer Entropy (HENP-2).

We start by investigating the performance of networks pruned with different methods. Each of the
network is initialized with He Normal Distribution |[He et al.| (2015), and trained by SGD optimizer
on CIFAR10 dataset with batch size of 128 for 300 epochs with initial learning rate of 0.01. To
ensure the stability of pruned parameters and enhance the performance of the remaining weights,
the optimizer was configured with a weight decay of 5 x 10~% and a momentum of 0.9. These
settings aim to prevent the update of pruned parameters while maintaining the regularization and
convergence properties of the optimization process.

Pruning Details. In these experiments, the network is pruned at the end of each epoch to allow
recovery and optimization of the remaining parameters. The justification for this training procedure
can be found in Section [5.3] During each pruning epoch, the entropy of each neuron is recorded,
and an importance score is computed by integrating the layer entropy with the model norms at the
end of training. Parameters across different layers are then pruned proportionally based on their
importance scores.
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Figure 4: For ResNet-18 networks on CIFAR-10 trained with ADAM, HENP can find sparser so-
lutions maintaining better performance than other structured approaches. Left: Neural sparsity,
structured methods. Right: Weight sparsity, structured methods.

Our approach is a structured one. Pruning occurs during training, transitioning from dense networks
to sparse networks. The methods we compare against also fall within this paradigm, excluding
methods such as Lasby et al. [Mikel| (2023)), despite their impressive performance, as they are fun-
damentally non-structured pruning followed by structured recombination. We adopt the following
structured pruning baselines: Crop-it/EarlyCrop John| (2022), SNAP |Stijn| (2020), and a modified
version of early pruning strategy from Rachwan et al. John| (2022) identified as EarlySNAP. These
baselines are trained using the recommended configurations from the original authors and are not
influenced by the regularization regime employed by our method. In all cases, our approach matches
or outperforms other structured pruning methods (Figure ). And this indicates that incorporating
neuron entropy during pruning helps preserve more useful parameters. In essence, neuron entropy
serves as a metric for evaluating the network’s expressive power.

Comparison of Pruning Methods. Figure[d]compares the accuracy of different hybrid pruning net-
works. Compared to other models, our method, which combines norm and entropy for importance
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score pruning, achieves higher accuracy after pruning. Specifically, norm pruning with entropy-
normed parameters performs the best, improving the accuracy of the baseline model by 2% to 5% in
the sparsity range of 0.75 to 0.98. This suggests that considering neuron entropy during the pruning
process helps retain more useful parameters. In other words, neuron entropy can be viewed as an
indicator of the network’s representation capacity.

5.2 LEAKY RELU

Our method is designed around ReLU activation functions, where neurons can deactivate com-
pletely, leading to dying neurons that can be pruned. However, other activation functions like Leaky
ReLU Maas| (2013) also have a soft saturated zone. We hypothesize that neurons firing solely from
this saturated zone contribute minimally to predictions and can be considered nearly dying. To test
this, we apply our pruning method to a network with Leaky ReL.U activations, removing neurons
with only negative activation across a significant minibatch. Once more, our approach surpasses
other structured pruning methods, as depicted in Figure 5]

5.3 PRUNING FREQUENCY

To understand the effect of pruning towards the models during training, Figure [6] and [7] reports
the test accuracy of the pruning method with HENP-1 and HENP-2. The model accuracy drops
after each time parameter trim and gradually recovers to during the non-pruning epochs. As model
sparsity increases, the model has a higher impairment on performance and finds it harder to recover.
This suggests that the pruning frequency can affect the final performance of the network.

Figure [6] and [7] compares the model accuracy given different pruning frequencies under different
target sparsity. Given sparsity .S, models are pruned every 1 2, 5, 10, 15 epochs, where each time the
same proportion of parameters is removed from the model. Low pruning frequency implies larger
amount each time.

For the models pruned by neurons, increasing the pruning frequency will result in a slightly higher
test accuracy. The model with a pruning frequency of 15 demonstrated a higher test accuracy com-
pared to models with other pruning frequencies. But for the models pruned by norms, increasing the
pruning frequency results in a slight improvement in test accuracy. Specifically, the model with a
pruning frequency of 15 exhibited higher test accuracy compared to models with other pruning fre-
quencies. On the other hand, when introducing the neuron entropy to the importance score, HENP
(entropy-norm) models with higher pruning frequency achieves better result. Increasing the pruning
frequency from 1 to 15 boosts the model performance by around 2%.

6 CONCLUSION

In this study, we introduce a novel analytical framework aimed at elucidating the representation
capabilities of neural networks. Building on prior research into the activation zones of neural net-
works, we present the concepts of dynamic and static neurons to characterize neuron stability. Our
approach extends previous analyses from a focus on single activation zones to broader contexts. We
specifically employ a neuron entropy metric to track neuron volatility across various scenarios, fa-
cilitating a comprehensive examination of neural network expressivity. Finally, we demonstrate the
applicability of our findings to downstream tasks.

Moreover, our experiments with Leaky ReLU demonstrate the method’s compatibility with acti-
vation functions featuring softer saturation zones compared to ReL.U. This compatibility suggests
potential for sparsifying neural network architectures during training, given their reliance on activa-
tion functions such as GELU and Swish. Considering the typical scale of training for these models,
our method could yield significant computational and environmental advantages.
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A APPENDIX

A.1 SYMBOLIC REPRESENTATION

Consider a classification task with ¢ different classes. Let X C R¢ represent the input space and
Y ={1,2,...,c} represent the set of class labels. The data distribution is denoted as D = Dy X
D, over the input-label pairs (x,y) € X x ). Let N be a feedforward neural network with d
blocks, parameterized by 6 (which includes weight matrices and bias vectors). The network defines
a mapping f : R? — R¢, which outputs a score vector over the ¢ classes.

Assume that the network is composed of d blocks, such that f = hgo hg_10---0hy. Fori €
{1,2,...,d — 1}, each block is defined as h; = m; o ¢;, where ¢;(x) = [|[W®||x + ||b(?)||. Here,
[W®| € Rm*"i-1 denotes the norm of the weight matrix, and ||b(?)|| € R™ denotes the norm of
the bias vector. The function 7; is the activation function applied element-wise. The final block is
defined as hq = ¢4, where ¢g(x) = |[W@||x + ||b@ || and [W(D| € Re*"a-1, |b@| € Re.
Note that the last block omits the activation function.

To further clarify, the norm |[W (|| corresponds to a specific norm (e.g., Frobenius norm) of the
weight matrix W (), and similarly, ||b(|| corresponds to the norm of the bias vector b(*). The role
of these norms is crucial in understanding the scaling behavior of each block, particularly in the
context of regularization and generalization in neural networks.

Given an input x € X, the network produces a prediction § = arg max;cy f;(x), where f;(x)
denotes the score corresponding to class <. The overall input-output relationship of the network can
be expressed as:

Flx) = WDr, (W(d—n - (Wu)x i b(1>) . b(d—l)) +b@, )

For training, the network parameters @ are optimized to minimize a loss function, typically the
cross-entropy loss for classification:

i) Y )

L(0;x,y) = —log <Z§_1 exp(fi(x))

To facilitate the analysis of the network, particularly in terms of activation zones, zones, and flows,
we introduce the following formalisms:

« R(: The set of all possible activation zones at block i. Each zone is defined by a unique
zone of neuron activations at this block.

« P(): The set of all possible activation flows up to block 7. A flow is defined by the sequence
of activation zones from the input block to block .

+ A (x): The activation zone of an input x at block i, represented as a binary vector indi-
cating the neurons that are activated.

« 7()(x): The activation flow for an input x up to block i, which is the sequence of activation
zones from block 1 to block :.

These formalisms provide a formal framework to describe how different inputs are processed by the
network and how the network’s internal structure gives rise to distinct activation zones and flows.
This foundation is critical for the subsequent analysis of how neural networks partition the input
space and how these partitions relate to the network’s decision-making process.

A.2 ZONAL ACTIVATION ZONES AND LOCAL BEHAVIOR ANALYSIS OF NEURAL
NETWORKS

Neural networks establish intricate mappings by leveraging layered architectures and nonlinear ac-
tivation functions. To gain deeper insight into the local dynamics and expressive power of these
networks, we present a set of concepts and definitions. Our analysis is systematically organized
through precise formalizations and relevant references.
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A.2.1 NEURAL ACTIVATION SIGNATURE AND SUBSPACE

Given a neural network A with piecewise linear activation functions, the input domain R™ is par-
titioned into multiple zones, within each of which the network’s mapping is linear. We define this
partitioning formally with the concept of a neural activation signature.

Definition 4 (Extended Neural Signature and Corresponding Subspace). Consider an activation
function o(-) with breakpoints T' = {~v1,72,...,74} that partition its domain into q + 1 intervals
U = {Uo,Us,...,U;}. For a neural network N and an input x € R™, the neural activation
signature A(X) is an indexed set:

A) = {af? (0 | 0 (x) € {0,1,... a}, (i, 5) € T},
where ay)(x) indicates the interval Uy, that the pre-activation value zj(i)(x) falls into. The corre-
sponding subspace is defined as:

R(A) = {x € R" | A(x) = A}.

For instance, the ReLU activation function o (z) = max(0, ) divides the input space into an active
zone R and an inactive zone R_. The tanh function can be similarly partitioned using breakpoints

{-1,1}.
A.2.2 TRANSITION ACROSS ADJACENT SUBSPACES

As the network complexity increases, the zones defined by a complete neural activation signature
become smaller. To study behavior over larger input spaces, we introduce the concept of partial
neural signatures.

Definition 5 (Partial Neural Signature and Aggregated Subspace). A partial neural signature
Aparial(x) is defined by leaving some neurons’ activation states unspecified. The corresponding
subspace is then a union of multiple complete activation zones:

R(Apartial) = U R(A])7
J

where each Aj; is a complete neural activation signature consistent with Apayial.

This concept allows us to extend our analysis to broader input zones, capturing the network’s ex-
pressive power over these larger spaces.

A.2.3 NEURAL ACTIVATION FLOW

To further analyze the local behavior of neural networks, we introduce the notion of a neural activa-
tion flow, which tracks the sequence of activated neurons from input to output.
Definition 6 (Neural Activation flow). A neural activation flow T(x) is a sequence of neurons that
defines a flow through the network from the input to the output. Formally, it is represented as:

T(X) = {(ilajl)v (i27j2)5 cey (vajm)}v
where (i1, ji.) denotes the activated neuron in layer k along this flow.
This subsection formalizes the concepts of neural activation signatures, neural trajectories, and the
consistency of neuron states and trajectories. These tools provide a structured framework for an-

alyzing the local behavior of neural networks and lay the groundwork for deeper exploration in
subsequent sections on geometric analysis and flow decomposition.

A.3 SPATIAL UNDERSTANDING
In this section, we explore the connection between activation zones and zones in a neural network

from a spatial perspective. We present new lemmas that illustrate how the input domain is partitioned
into activation zones and discuss the formal properties of these zones.
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A.3.1 CONVEX ACTIVATION ZONE

To understand the concept of activation zones, consider a neural network A~ with a monotonic acti-
vation function 7. Given an input space R", the generalized activation zone describes the activation
status of each neuron at the intermediate layers. The following lemma formalizes the convexity of
activation zones corresponding to each activation zone.

Lemma 2 (Convex Activation Zone Lemma). Let N be a neural network with a monotonic acti-
vation function 7. Then, for any activation zone A, the corresponding activation zone C(A) is a
convex set. In other words, each activation zone A uniquely determines a convex activation zone

C(A).

This lemma implies that the mapping from activation zones {C} to activation zones {.A} is injective.
The convexity of these zones provides insights into how the network’s neurons react to inputs within
different zones of the input space.

A.3.2 INPUT SPACE COVERAGE

Next, we consider the coverage of the input space by these convex activation zones. The following
lemma describes how the input space can be fully partitioned by these zones and certain curved
separating surfaces.

Lemma 3 (Input Space Coverage Lemma). Let N be a neural network. The input space R™ can
be represented as the union of all convex activation zones C(A), or as the union of certain curved
separating surfaces H. Specifically, the input space R™ is fully covered by these activation zones
and separating surfaces:

R" = [ Jc || U Hin 4)
A

Vi g,k

This lemma shows that every point in the input space either lies within a convex activation zone or
on a separating surface, indicating the comprehensive coverage provided by these zones.

A.3.3 ALMOST SURE INPUT DISTRIBUTION

To further analyze the distribution of inputs within these activation zones, we consider the proba-
bility of an input point lying on a separating surface. The following lemma addresses this situation
under the assumption that the input distribution has no atoms.

Lemma 4 (Almost Sure Input Distribution Lemma). Assume the input distribution D has no atoms
(i.e., it assigns zero probability to single points). Then the probability that an input point x lies
exactly on any curved separating surface H is zero. Thus, almost every input x lies within some
convex activation zone C(A).

This result implies that, under typical conditions, the input space is almost surely covered by the
convex activation zones, and the contribution of points lying on separating surfaces is negligible.

A.3.4 ADIJACENT ZONES AND CRITICAL NEURONS

We now consider the relationship between adjacent convex activation zones. The following lemma
identifies the neurons responsible for the difference in activation zones between two adjacent zones.

Lemma 5 (Adjacent Zones Difference Lemma). For any two input points X and x' that are located
in adjacent convex activation zones C and C’, there exists a unique critical neuron (i, j) such that
the activation zone of this neuron differs between x and x':

3(i, 5), a8 (x) # " (x') ©)

This lemma reveals that the difference in activation zones between adjacent zones is caused by a
unique critical neuron, while all other neurons maintain the same activation status.
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A.4 FLOW-BASED ANALYSIS OF NEURAL NETWORK COMPUTATIONAL STRUCTURE

Rationale. The exploration of neural network computational structures can be enhanced by ana-
lyzing the flow-dependent decomposition of its piecewise linear mappings. Given a neural network
N with a piecewise linear activation function, the output mapping function f : R™ — R can
be decomposed into a combination of flows, each representing an independent computational route
from input to output. This section details the formal derivation of such a decomposition and its
implications.

Flow Analysis of Piecewise Linear Mappings Let f(x) denote the output function of the neural
network A/, which is assumed to be piecewise linear. The network’s output can be represented as a
sum of functions corresponding to distinct flows P:

Fx) =" fr(x), 6)

pEP

where P is the set of all possible flows through the network, and each function f,(x) corresponds
to the contribution of flow p. The decomposition is determined by the activation zone o(x) and the
norm ||w,|| associated with the flow, where || w, || represents the norm of the weights along the flow
p. Together, these components define the contribution of each flow p to the network’s output.

Lemma 6 (Flow-Dependent Output Decomposition). Given a neural network N and an input x,
the output can be expressed as:

F) =" Iwpll - op(x) - x, (7)

peEP

where o,(x) denotes the activation status of flow p under input X, and |w || represents the norm of
the weight vector along flow p. The flow contribution depends on both the input x and the specific
activation zone o(x) triggered within the network.

Difference Analysis of Local Computational Zones The output variation between neighboring
input zones can be analyzed through the differences in their corresponding flows. Let x and x’ be
two neighboring inputs, and let the output difference A f be defined as:

Af =f) = fx). ®)

Theorem 1 (Local Zone Output Difference). Given the network N, the output difference Af be-
tween two neighboring inputs x and x' can be expressed as:

Af=35(x) - (' =)+ D Allvyll - 0 (), ©)

pEP

where J ;(x) is the Jacobian matrix of the network at input x, and A||vy || represents the change in
the norm of flow vectors between the two inputs. The term J ;(x)-(x' —x) captures the linear approx-
imation of output difference, while the summation term accounts for the nonlinear flow-dependent
differences.

The analysis shows that for two close input points x and x’, the difference in their outputs can be
largely attributed to the flows that change their activation status between these points. This provides
a norm-based way of understanding the network’s computational behavior in a localized input zone
by examining the stability and variability of specific flows.

A.5 EXPRESSIVE POWER OF NEURAL NETWORKS AND NEURON ENTROPY RATIONALE

The expressive power of neural networks largely depends on the activation behavior of the neurons.
Theorem [T] suggests that the difference between the outputs of a neural network for different inputs
can be decomposed into a static part, which is a (semi-)linear transformation, and a dynamic part,
which introduces non-linearity. If the neurons in a neural network remain static in their activation
over the support set of the input data distribution D, meaning their output does not change with
varying inputs, the network’s function would degrade to a linear transformation, significantly reduc-
ing its capacity to handle complex tasks. This indicates that a network with an insufficient number
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of dynamic neurons has a limited ability to approximate functions with high complexity. As the
number of dynamic neurons increases, the representational capacity of the network also increases.

Motivated by the above intuition, we introduce the concept of neuron entropy to better capture the
diversity of neuron activation. Neuron entropy quantifies the uncertainty in a neuron’s activation
zones. Specifically, higher entropy indicates greater uncertainty in the neuron’s activations, leading
to stronger non-linear representation capacity, and thus enhancing the overall expressive power of
the network.

A.6 NEURON ENTROPY

We establish a rigorous connection between connection diversity and model representational capac-
ity. Let (¢,¢) and (¢/, ") be two samples drawn from a dataset .S, where ¢ # ¢/. For the model
P to correctly classify these samples, it must distinguish between the inputs g and ¢’ with high ac-
curacy. We introduce connection diversity as a crucial factor that impacts the model’s capability in
differentiating these inputs.

The difference in model outputs for the two samples, h(q) — h(q’), can be dissected into linear
and nonlinear components. The linear component is dictated by the local connection structure at
q, which can be analyzed through a connection matrix that captures the model’s orientation. The
nonlinear component, on the other hand, is influenced by the number of activated connection flows
(ACFs) between the sample pairs {q, ¢’ }. As the number of ACFs increases, so does the complexity
of the function difference, h(q) — h(q’), implying enhanced model representation capacity.

As the number of activated connection flows (ACFs) increases, the complexity of the function differ-
ence h(q) —h(q’) also increases. This enhancement in complexity suggests that the model is capable
of capturing more intricate nonlinear relationships between inputs, which is critical for improving
classification accuracy.

We extend the analysis from individual sample pairs to the entire dataset S. Connection diversity
is formalized as a metric that assesses the expected nonlinearity introduced by the model across the
dataset. It reflects the model’s capacity to navigate complex decision boundaries by evaluating the
overall distribution of activated connection flows. The higher the connection diversity, the greater
the model’s ability to differentiate between diverse sample pairs.

To establish a formal connection between model representational capacity and connection diversity,
we introduce the following theorem:

Theorem 2. Consider two models, P and P’, which share the same architecture but have different
parameter sets. The following assumptions hold:

1. The dataset S is continuous, implying that the probability of any specific input vector oc-
curring is zero.

2. The parameter sets of both models are sampled from the same distribution.
3. Model P has lower connection diversity than model P’.

Then, the expected difference in representational capacity between the models can be formalized as:
E(h(g;0) — h(q':0)) < E(h(q;60") — h(¢;0"))
where 0 and 0’ are the respective parameter sets for models P and P’.

This theorem suggests that, under the given assumptions, model P, which exhibits lower connection
diversity, is less effective at distinguishing between two sample points than model P’. Thus, a higher
connection diversity implies a greater representational capacity.

We extend our discussion to multiclass classification tasks. In scenarios involving multiple classes,
models that can better differentiate between various classes generally exhibit higher complexity.
This observation aligns with the importance of connection diversity, as models with greater connec-
tion diversity are better equipped to handle the increased complexity inherent in multiclass problems.

Subsequent sections will present empirical results to validate the proposed metric of connection
diversity. These experiments will demonstrate its effectiveness in predicting and analyzing model
performance across various tasks, underscoring its relevance in practical applications.
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A.7 RELATIONSHIP BETWEEN MODEL EXPRESSIVENESS AND NEURON ACTIVATION

This section rigorously examines the relationship between the expressiveness of a model and the
activation of neurons. We formalize this relationship through several theorems that connect neuron
activation with key metrics of model expressiveness, such as the number of linear zones, model
stability, and zone similarity.

First, let A be a neural network with piecewise linear characteristics. The input space X is par-
titioned into multiple linear zones, where the network’s mapping remains linear within each zone.
Let #Linear Zones(N) denote the number of these zones. The complexity of the model can thus be
quantified by the number of linear zones. We propose the following theorem:

Theorem 3. Let N', N be neural networks with identical architecture;, and let 0,6’ represent their
respective parameter sets. If the average neuron activation Zl j A;Z)(Q, D) > Zl j Ag-l)(e’ ,D),
then #Linear Zones(N') > #Linear Zones(N").

The proof of Theorem [3|builds upon the intuition that higher average neuron activation implies more
variability in activation zones across different inputs, which in turn leads to a finer partitioning of
the input space into linear zones.

Next, we consider model stability along a flow v(t) in the input space, where ¢ € [0, 1]. The stability
can be evaluated by the number of linear zones crossed by ~(t). We define the transition density
7(N, ) as the number of such zones. The following theorem formalizes the relationship between
neuron activation and model stability:

Theorem 4. Let N, N' be neural networks as defined above. If >, A;”(@,D) >
Do .A;”(G’,D), then (N, ) > 7(N”, ) for a given flow ¥(t).

Theorem [] suggests that networks with higher neuron activation exhibit less stability along certain
flows, as they cross more linear zones.

Lastly, we discuss zone similarity, denoted as P.S(D; 6), which measures the ratio of neurons that
exhibit similar activation zones for different inputs from the distribution D. Higher zone similarity
generally indicates a reduction in model expressiveness, often leading to phenomena such as dying
neurons, where units respond uniformly regardless of input. We state the following theorem:

Theorem 5. Let N, N be neura] networks with the same architecture. Given the data distribution
D,if Y, AV 0.D) > X, AV, D), then PS(D;0) > PS(D;¢').

Theorem 5| demonstrates that increased neuron activation is associated with greater zone similarity.
This heightened similarity could suggest a reduction in expressiveness.

These theorems establish a rigorous basis for examining how neuron activation is connected to es-
sential metrics of model expressiveness. The influence of neuron activation extends beyond merely
affecting the number of linear regions and transition density; it also plays a crucial role in determin-
ing zone similarity. This provides a detailed framework for evaluating model performance at the
level of individual units.

A.8 PRUNING METHOD RATIONALE

The experiments presented in Section [4.2.1]examine the representational capabilities of neural net-
works from multiple perspectives. The findings indicate that, particularly in deeper layers of a
well-trained model, a significant number of neurons exhibit minimal entropy. This suggests that
these neurons consistently transmit the same signals, regardless of the input, thereby contributing
little to the classification task.

This observation aligns with earlier discussions on the representational limitations of neural net-
works |Hanin & David| (2019)); [Ziping| (2023)), highlighting that although neural networks have the
potential to model highly complex functions, their actual representational capacity is constrained by
inactive neurons, often referred to as dying neurons.
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Table 1: For ResNet-18 networks on CIFAR-10 trained with ADAM, HENP can find sparser solu-
tions maintaining better performance than other structured approaches. Neural sparsity, structured
methods.

50 60 70 (0] 80 85 90

CroPit-S 0.9215 091175 0.90975 0.9 0.889 0.881 0.851
EarlyCroP-S  0.92325 0.92225 0.9175 09135 0.90775 0.8785 0.84175
EarlySNAP  0.92075 0.92325 0.92 0.9125 0.90425 0.886 0.835

SNAP 0.91925 0.91475 0.91225 0.90475  0.894  0.8755 0.8545
HENP-1 09433 09393 09319 0.9287 09184 0.9068 0.8761
HENP-2 09394 09366 0.9334 09276 09183 09113 0.8775

To address this issue, we propose HENP (Hybrid Entropy-Norm Pruning) as a method to reduce
network size while preserving performance. HENP aims to prune the dying neurons, which have
minimal impact on the network’s overall representational capacity.

A.9 HENP TRAINING ALGORITHM

Algorithm 1 HENP training algorithm

Input: Training data Dy.,;,, Validation data D,,, Learning rate 7, Sparsity .S, Number of epochs £
1: Function TRAIN(f, 0)

Initialize mask M < 1

3 for epoch = 1to E do

4 for (z,y) € Diin do

5: g« flx; M - 0) > Forward pass

6.

7

8

Compute loss: L = L(§,y)
Backpropagate: 0 «— 0 — ng—s

: end for

9: Compute training accuracy Agpin
10: if pruning condition is met then
11: M < PRUNING(6, L) > Pruning step
12: end if
13: end for
14: return 6
15: end
16: Function PRUNING(6, L)
17: Initialize importance scores I(6) < 0
18: for layer [ in model do
19: for channel c in layer [ do
20: Compute entropy H(0.) = — > p(6.) log p(6.)
21: Compute norm [|6[| = />, 62,
22: 1(0.) < n-H(6.) - ||0.] > Importance score
23: end for
24: Calculate threshold 7 for sparsity S
25: Pruning weights: 6; < 0; - 1(1(6;) > )
26: end for
27: return )M/
28: end

29: Output: Pruned model parameters 6
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Table 2: For ResNet-18 networks on CIFAR-10 trained with ADAM, HENP can find sparser solu-
tions maintaining better performance than other structured approaches. Weight sparsity, structured
methods.

75 80 85 90 95 97 98

CroPit-S 0.927 09226 0.9166 0.9106 0.9041 0.8922 0.8858
EarlyCroP-S  0.9255 0.924 0.9231 0.9219 0.9131 0.9052 0.8857
EarlySNAP 0.924 0.922 09213 0.9218 0.9124 0.9036 0.8901
SNAP 0.9219 0.9196 09174 09138 0.908 0.8989 0.8883
HENP-1 0.9483 0.9451 0.9447 0.9413 0.9388 0.9323 0.9302
HENP-2 0.9473 0.9457 0.9434 0.9413 0.9361 0.9328 0.9274

Table 3: ResNet-18 networks with Leaky ReLU trained on CIFAR-10. HENP again outperforms the
baseline structured pruning methods. Neural sparsity, structured methods.

50 60 70 75 80 85 90

EarlyCroP-S  0.8889 0.8897 0.8817 0.871 0.8599 0.8472 0.8071
EarlySNAP 0.894 0.878 0.8702 0.8599  0.85  0.8433 0.8

SNAP 0.8821 0.8762 0.8667 0.8607 0.8548 0.8175 0.7833
HENP-1 0.937 09311 09167 09113 0.9038 0.8928 0.8133
HENP-2 0.9315 0.9303 0.9211 0.9126 0.9038 0.8826 0.8179

Table 4: ResNet-18 networks with Leaky ReLU trained on CIFAR-10. HENP again outperforms the
baseline structured pruning methods. Weight sparsity, structured methods.

() 80 85 90 95 97 98

EarlyCroP-S 0.8895 0.889 0.8894 0.8878 0.8756 0.8634 0.8548
EarlySNAP  0.8933 0.8939 0.8878 0.8772 0.8666 0.8559 0.8478

SNAP 0.8834 0.8822 0.8785 0.8729 0.8627 0.8539 0.8332
HENP-1 0.9421 0.9396 0.9336 0.927 0.9265 0.9155 0.8724
HENP-2 0943 09398 0.9377 0.9349 0.9259 09118 0.9005

Table 5: Comparison of Pruning Frequency (PF) with Neuron Sparsity of HENP-1. The bold values
represent the best performance, and the underlined values represent the second-best performance.

PF 50 60 70 75 80 85 90

1 0.9268 0.9253 0.9248 0.915 0.9085 0.8865 0.8428
2 0.9293 0.9281 0.9269 0.9209 0.9107 0.8894 0.8435
5 0.9365 0.9348 0.9288 0.9217 0.9148 0.8907 0.8477
10 09411 09392 0.9295 0.9284 0.9155 0.8966 0.8652
15 09433 09393 0.9319 0.9287 0.9184 0.9068 0.8761

Table 6: Comparison of Pruning Frequency (PF) with Weight Sparsity of HENP-1.

PF 75 80 85 90 95 97 98

1 0.9418 0.9357 0.935 0.9263 0.9245 0.9154 0.8943
2 0.9502 0.9463 0.9449 0.9386 0.9278 0.9172 0.8954
5 09509 0948 0.9459 09414 0.9292 0.922 0.9079
10 0.9485 0.9469 0.9426 0.938 0.9346 0.9264 0.918
15 09483 0.9451 0.9447 0.9413 0.9388 0.9323 0.9302
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Table 7: Comparison of Pruning Frequency (PF) with Neuron Sparsity of HENP-2.

PF 50 60 70 75 80 85 90

1 0.9332 0.9289 0.9238 0.9167 0.9112 0.8864 0.8451
2 0.9335 0.9311 0.9267 0.9184 0.9122 0.8879 0.8458
5 0.9367 0.9331 0.9284 0.9224 0.9138 0.8905 0.8488
10 09382 0.9347 0.9305 0.9246 0.9143 0.8962 0.8722
15 09394 0.9366 09334 0.9276 0.9183 0.9113 0.8775

Table 8: Comparison of Pruning Frequency (PF) with Weight Sparsity of HENP-2.

PF 75 80 85 90 95 97 98

1 0.9422 0.9392 0.9347 0.9297 0.9242 0.9129 0.9005
2 0.9493 09471 0.9439 0.9402 0.9263 0.9173 0.9019
5 0.9501 0.9482 0.9471 0942 0.9285 0.9183 0.9111
10 0.9484 0.9449 0.9421 0.9379 0.9329 0.9287 0.9215
15 0.9473 0.9457 0.9434 09413 0.9361 0.9328 0.9274
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