
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

HENP: DYNAMIC PRUNING VIA NEURON ENTROPY

Anonymous authors
Paper under double-blind review

ABSTRACT

We introduce a novel framework for analyzing neural networks based on the con-
cepts of dynamic and static neurons, which describe the stability of neuron acti-
vation under specific inputs. From these concepts, we propose neuron entropy as
a metric to quantify network expressiveness. Our analysis reveals that better gen-
eralization correlates with diverse activation patterns and higher neuron entropy.
Building on this, we propose our HENP method, a dynamic pruning technique
that regulates dying neurons and sparsifies the network during training. Exper-
imental results demonstrate that our HENP improves both network sparsity and
performance, offering a new approach to efficient neural network optimization.

1 INTRODUCTION

Deep neural networks equipped with piecewise linear activation functions, such as the Rectified
Linear Unit (ReLU), have gained widespread popularity due to their remarkable performance across
various domains and computational efficiency Zhou (2021); Jiang (2018). However, understanding
the underlying mechanics of these networks remains a significant challenge. In this paper, we pro-
pose a comprehensive framework for analyzing the structure and behavior of deep neural networks,
specifically focusing on the partitioning of the input space of a network N , defined on Rn with a
piecewise linear activation function π. This partitioning results in multiple linear zones, where the
mapping within each zone is linear, collectively enabling the approximation of complex, non-linear
functions.

Recent studies have established that the number of linear zones serves as a quantitative measure of
a model’s complexity Cohan (2022). However, as the depth and width of a network increase, the
significance of analyzing a single linear zone diminishes. To provide a more nuanced evaluation
of large-scale models, our framework investigates neuron activation across multiple linear zones,
capturing not only the linear transformations within individual zones but also the intricate transitions
between them, which are crucial for enhancing the performance of deep neural networks.

By analyzing neuron behavior across different activation zones, we gain insights into the represen-
tational capacity and stability of these models, addressing the challenges posed by the increasing
complexity of modern architectures. Our contributions include a detailed examination of the fun-
damental structures and formalisms of feedforward neural networks, as outlined in Section 3. In
Section 4, we explore the global stability of neuron activation zones, revealing that dynamic neu-
rons significantly enhance the model’s ability to capture complex functions. Conversely, a high
proportion of static neurons can lead to linear approximations, undermining representational capa-
bilities. To quantify neuron uncertainty, we introduce a novel neuron entropy metric, demonstrating
its correlation with representation capacity in deeper layers.

Furthermore, we address the issue of dying neurons Ziping (2023); Lu (2020), where activations
remain unchanged regardless of input. To mitigate this, we propose a Hybrid Entropy-Norm Pruning
(HENP) technique, enabling effective network pruning without additional training or accuracy loss
by eliminating these dying neurons. In Section 5, we detail the integration of norms and entropy in
HENP and present experimental results illustrating its effectiveness, including the computation of
neuron entropy on the test set and the application of a masking strategy on neurons with the lowest
entropy.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

2 RELATED WORKS

2.1 ON NEURAL NETWORKS ANALYSIS

To understand the remarkable performance of neural networks, early research addressed fundamen-
tal challenges like vanishing and exploding gradients Bengio (1994); Hochreiter & Schmidhuber
(1997), prediction instability Szegedy (2013), and constraints on model capacity Montúfar (2014).
These challenges spurred extensive efforts to analyze the internal workings of neural networks
Goodfellow (2017); Xavier & Bengio (2010), utilizing methods such as feature attribution Samek
(2017); Montavon (2018); Ancona (2018) and complexity analysis Raghu (2017). Feature attribu-
tion techniques, such as Integrated Gradients Sundararajan (2017), enhance interpretability, which
is crucial for transparency and trust in neural networks Doshi-Velez & Kim (2017). In parallel, the-
oretical research has advanced, particularly regarding over-parameterization and model complexity
trade-offs Bubeck (2020), as well as the linear zones of ReLU networks, which relate to expressivity
and approximation capacity Zhang (2021); Pascanu (2013). There is also a growing emphasis on
interpretable models, with methods integrating decision trees Murdoch (2019); Letham (2015) or
prototype-based classifiers like ProtoPNet Chen (2019), offering human-like recognition and trans-
parency Caruana (2015). Further studies have examined the piecewise linear properties of networks
Arora (2018), quantifying their complexity Hanin & David (2019), which informs generalization
capabilities Goodfellow (2015).

2.2 TOWARDS NETWORK COMPRESSION

Model compression is a crucial research area in deep learning, particularly for deploying large mod-
els on resource-constrained devices. The goal is to reduce computational and memory costs while
maintaining predictive accuracy. Techniques include pruning, which removes redundant weights
or neurons, with structured pruning targeting filters or channels to enhance hardware compatibil-
ity Blalock (2020); Lemaire (2019). Quantization lowers the precision of weights and activations,
typically from 32-bit to 8-bit, using post-training or quantization-aware methods to preserve accu-
racy Krishnamoorthi (2018); Jacob (2018); Gholami (2021). Knowledge distillation trains smaller
models to replicate the output of larger ones, efficiently transferring knowledge without significant
performance loss Hinton (2015); Tian (2022); Gou (2021). Neural Architecture Search (NAS) au-
tomates the design of efficient models, employing multi-objective optimization for accuracy and
speed, while recent advancements like differentiable NAS reduce search costs, making it more fea-
sible for hardware-constrained deployment Elsken (2019); Cai (2020); Radosavovic (2020); Xu
(2020); Zela (2020). Together, these techniques drive significant improvements in compression,
enabling more practical applications of deep learning Liu (2019); Han (2016); Cheng (2018).

2.3 UNDERSTANDING DYING NEURONS

The ReLU activation function can lead to neuronal death, where neurons stop contributing to the
network due to weight updates. While ReLU avoids gradient vanishing issues common in sigmoid
functions and helps prevent gradient saturation, its drawbacks include neuron inactivation when the
learning rate is too high. Specifically, the update rule w′ = w − η∆w, where η is the learning
rate and ∆w is the gradient, can result in w′ becoming negative if η∆w exceeds w. This negativity
causes inputs to be zeroed after passing through ReLU, and once ReLU outputs 0, its derivative is
also 0, leading to permanent inactivation of the neuron as the gradient no longer updates the weights.
Solutions such as resetting dead neurons or concatenating ReLU activations can mitigate this issue
Whitaker & Whitley (2023); Utku (2020); Mike (2023); Joo Hyung (2023); Sokar (2023); Abbas
(2023). Neurons that consistently receive negative inputs face a similar problem, as their weights and
biases cannot be updated due to zero gradients. This results in neuron ”death,” where certain neurons
remain inactive throughout training, never contributing to the learning process Ziping (2023); Lu
(2020).

3 MATH FUNDAMENTALS OF NEURONS

In this section, we introduce the formalisms and describe the fundamental structure of a feedforward
neural network for a classification task, which will serve as the basis for our analysis of activation

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

zones, zones, and flows in subsequent sections. (see Appendix A.1, A.2, A.3 and A.4). Due to space
constraints, the detailed discussion of these concepts is provided in subsequent sections.

3.1 CONSISTENCY OF NEURON STATES AND TRAJECTORIES

The behavior of trajectories can be categorized based on the consistency of the neurons along them.
We define dynamic and static neurons and trajectories as follows:

Definition 1 (Dynamic and Static Neuron States). A neuron ni is called a dynamic neuron if its
activation state varies within a subspace S ⊆ Rn; otherwise, it is a static neuron.

Definition 2 (Dynamic and Static Activation Flows). A flow τ(x) is static if all neurons along it are
consistent within a zone S ⊆ Rn; otherwise, it is a dynamic flow.

Static trajectories contribute consistent outputs within a zone, while dynamic trajectories introduce
more nonlinearity and variability.

3.2 DYNAMIC NEURON COVERAGE

We explore the concept of dynamic neurons within a convex activation zone. The following lemma
describes how the activation status of dynamic neurons can define a cover for the zone.

Lemma 1 (Dynamic Neuron Coverage Lemma). For any convex activation zone C, let the set of
dynamic neurons be denoted as F . Then the convex activation zone C can be covered by a union of
smaller zones defined by the activation status of the dynamic neurons. Specifically, the activation
status of all static neurons remains the same throughout this zone, while the status of the dynamic
neurons may vary across the different sub-zones.

This lemma provides a method to approximate the coverage of a convex activation zone by focusing
on the dynamic neurons, which introduces flexibility in the activation zones within the zone.

4 DYING NEURONS AND MODEL EXPRESSIVITY

This section explores the expressive capacity of feedforward neural networks by analyzing the di-
versity of neuron activation zones. To evaluate the network’s expressiveness, we introduce a metric
called neuron entropy, which captures the uncertainty in neuron activation zones. Subsequently, we
examine the relationship between this metric and both model performance and metrics proposed in
previous research. Our findings indicate that in the deeper intermediate layers, a considerable num-
ber of neurons maintain identical activation regardless of the input, resulting in a reduced expressive
capacity. (see Appendix A.5, A.6 and A.7). Due to space constraints, the detailed discussion of
these concepts is provided in subsequent sections.

4.1 NEURON ENTROPY: A KEY TO EXPRESSIVITY

Definition 3 (Neuron Entropy). Let N be a network defined by Definition A.1. The entropy of
a neuron (i, j) in N for a data distribution D is defined as the entropy of the distribution of the
activation status for (i, j) given input (x, y) ∈ D:

E(i)j (N ,D) = −
q∑

k=0

p(â
(i)
j (x) = k) log(p(â

(i)
j (x))). (1)

The neuron entropy describes the uncertainty of the neuron activation zone. For instance, letN be a
neural network with a ReLU activation function. If E(i)j (N ,D) = 0, this suggests that the activation
zone of neuron (i, j) is identical for any data (x, y) ∼ D. This implies that neuron (i, j) fails to
provide non-linearity, behaving as a static neuron. On the other hand, E(i)j (N ,D) close to 0.89

(the entropy of a Bernoulli distribution with p = 0.5) indicates that the probability of neuron (i, j)
being activated or deactivated is around 50% for the data distributionD, suggesting a high degree of
uncertainty and strong non-linear representation capacity.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

By introducing neuron entropy as a measure, we gain a better understanding of each neuron’s contri-
bution to the network’s expressive power and their role in enhancing the network’s overall non-linear
capabilities. As neuron entropy increases, the neural network becomes more capable of capturing
complex zones in the data, thereby improving its overall performance.

Figure 1 shows the neuron entropy of the neuron â
(i)
j where the x-axis is the probability of the

zone of â(i)j is 0: P (â
(i)
j = 0). For activation with two zones (such as ReLU, PReLU), neuron

entropy arrives its maximum around 0.89 when P (â
(i)
j (x) = 0) = 1/2. For activation with 3

zones (such as Sigmoid, ReLU-6), the maximum entropy is 1.59 when P (â
(i)
j (x) = 0) = 1/3.

For activation with 4 zones (such as Swish, Piecewise Linear), the maximum entropy is 1.89 when
P (â

(i)
j (x) = 0) = 1/4. For activation with 5 zones (such as Extended ReLU, Custom Piecewise

Function), the maximum entropy is 2.39 when P (â
(i)
j (x) = 0) = 1/5. And for activation with

6 zones (such as Multi-Slope ReLU, Complex Sigmoid-based Function), the maximum entropy is
2.59 when P (â

(i)
j (x) = 0) = 1/6.

(a)

Figure 1: The dynamic entropy of activation functions with k different patterns given the probability
of pattern is 0 (x-axis). Each line shows the maximum value of entropy, while the shadowed zone is
the range of entropy from k = n to k = n− 1.

4.2 UNDERSTANDING NEURAL NETWORKS THROUGH NEURON INSIGHTS

4.2.1 MODEL REPRESENTATIONAL CAPACITY

Figure 2 illustrates the neuron entropy in VGG16 networks trained on the CIFAR10 dataset using
different batch sizes. Each model underwent 1800 training steps, with neuron entropy evaluated
every 30 steps. The ReLU activation function, with a separation of 0, is applied to all networks,
resulting in neurons being either activated or not.

Figures 2g and 2h display the training and test accuracy across different models, demonstrating that
smaller batch sizes typically yield higher accuracy and more stable performance on both training and
testing datasets. To understand the disparity in performance from the perspective of neuron stability,
Figures 2a through 2c present the average neuron entropy across different layers, while Figures 2d
to 2f show the variance in neuron entropy at each layer.

In the initial layer (layer 1, Figure 2a), neuron entropy is approximately 4.36 across all models, sug-
gesting that most neurons have about a 50% chance of activation for a given dataset. In intermediate
layers (layer 6, Figure 2b), neuron entropy initially rises to around 10.76 before gradually declining.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

(a) Mean of Layer 1 (b) Mean of Layer 6 (c) Mean of Layer 11

(d) Variance of Layer 1 (e) Variance of Layer 6 (f) Variance of Layer 11

(g) Training Accuracy (h) Test Accuracy

Figure 2: The mean and variance neuron entropy at different layers for a VGG16 network trained
on CIFAR10 dataset.

Notably, neurons in the model with the best performance (batch size 64, red line) exhibit greater
stability in these shallow layers.

The most pronounced differences between models are observed in the deeper layers (layer 11, Fig-
ure 2c), where higher neuron entropy correlates with improved accuracy on both training and testing
datasets. Specifically, in the models with poorer performance, neuron entropy is around 11.761, in-
dicating that most neurons in deep layers remain consistently in the same activation state, regardless
of the input. This phenomenon, known as the dying neuron issue, leads to a loss of representational
capacity Ziping (2023); Lu (2020).

Moreover, when examining the variance of neuron entropy, we observe that the model with the best
performance consistently exhibits the lowest variance across different layers. This suggests that
neurons in these layers have similar levels of uncertainty.

Analyzing neuron entropy across layers provides valuable insights into neural network performance
from multiple perspectives. First, it suggests that a well-performing model tends to have higher
neuron entropy in deeper layers and lower entropy in shallower layers. Second, this comparison
underscores the distinct roles of each layer. Neurons at the input layer often exhibit instability
due to the variability in input images. Previous research indicates that shallow layers are mainly
responsible for extracting features from the input, leading to more stable neurons. In contrast, deep
layers extract critical information necessary for classification. The increased neuron entropy in
deeper layers reflects a more robust capacity to encode features for classification.

4.2.2 DYNAMIC NEURON ENTROPY

Figure 3 depicts the evolution of neuron entropy across various layers during training. We track the
entropy of neurons throughout the training process at each layer. In the initial layers (e.g., layer
2), most neurons exhibit entropy close to 8.76, indicating high responsiveness to the dataset and
capability to distinguish different data instances. During the early stages of training, particularly up
to layer 5, neuron entropy increases rapidly and stabilizes at approximately 10.76.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Figure 3: Dynamic of neuron entropy at different layers during training. Each of the lines records
the entropy of a neuron during training every 100 steps.

As the model progresses into deeper layers, however, more neurons begin to lose their responsive-
ness, as observed in layers 8 and 11. For instance, by the end of training, the increment in entropy
from layer 5 to layer 8 is roughly 1, which is lower compared to the 2 unit increase observed between
layer 1 and layer 5. Additionally, neurons in layer 8 achieve stability in entropy earlier than those in
layer 5. At layer 11, the majority of neurons eventually reach a plateau in entropy, indicating a ces-
sation of volatility. This analysis of dynamic neuron entropy provides insight into neuron-specific
behavior across the dataset, helping to identify dying neurons at various layers—neurons that do not
significantly contribute to model performance.

4.3 HYBRID ENTROPY-NORM PRUNING (HENP)

4.3.1 WEIGHTED ENTROPY AND HYBRID NORM

In this section, we introduce a novel approach that combines weighted entropy with a hybrid norm
for pruning, specifically tailored for convolutional layers and linear layers. This method employs
metrics to assess the importance of parameters, making it more suitable for in-depth academic re-
search and theoretical analysis.

Firstly, in the convolutional layer, we propose to calculate the weighted entropy for each filter. Un-
like traditional entropy calculations, the entropy for a specific filter Fi is determined by a weighted
sum of the entropies of its channels, where the weights are derived from the contribution of each
channel to the filter’s output:

Weighted Entropy(Fi) =

C∑
c=1

wc × Entropy(F c
i )

where C represents the number of channels, F c
i is the c-th channel of filter Fi, and wc is the weight

assigned to the c-th channel based on its significance in the filter’s output. This weighted entropy is
then combined with a hybrid norm of the filter, which is computed as L2 norm:

Pruning Score(Fi) = f(Weighted Entropy(Fi), ∥Fi∥hybrid)

where ∥Fi∥hybrid represents the hybrid norm, and f(·) is a non-linear function, such as a product or
an exponential function, to combine the weighted entropy and hybrid norm. This approach enables a

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

more refined assessment of each filter’s importance by incorporating both local and nuanced channel
information.

Secondly, for the linear layer, the method focuses on combining both local and global entropy mea-
sures. The local entropy for each output unit is computed first, followed by an aggregation to form
a global entropy measure for the entire output layer:

Global Entropy(O) = g

 M∑
j=1

h(pj)× Local Entropy(Oj)



where M is the number of output units, pj is the probability distribution over the outputs, Oj is the
j-th output unit, and h(·) is a weighting function that adjusts the contribution of each unit’s local
entropy. The global entropy is then combined with a dynamic hybrid norm of the weight matrix W :

Pruning Score(W ) = f(Global Entropy(O), ∥W∥hybrid)

where the function f(·) is similar to that used in the convolutional layer, and the hybrid norm
∥W∥hybrid dynamically changes as training progresses. This method allows for a more sophisti-
cated pruning strategy by considering both the local variations and global trends in entropy during
the pruning process.

Overall, these methods provide a deeper exploration into the entropy-based pruning strategies by
incorporating weighted metrics, hybrid norms, and dynamic adjustments, making them highly ap-
plicable for rigorous academic investigations.

4.4 HENP ALGORITHM

As discussed above, we propose the neuron entropy metric to evaluate the representational capacity
of neural networks and show that a certain amount of dying neurons fails to contribute to network
predictions. Based on this observation, we introduce our Hybrid Entropy-Norm Pruning method,
which eliminates unnecessary parameters from the network by combining norms and neuron en-
tropy. Algorithm 1 in Appendix A.9 outlines the detailed HENP procedure for training and pruning.

At the beginning of training, a binary mask M is initialized, matching the shape of the network
parameters. This mask M denotes the neurons that remain active during training. During the forward
pass, as shown in step 5 of Algorithm 1, the model computes predictions ŷ by applying the masked
parameters θ ⊙M . Subsequently, step 6 updates the parameters θ by minimizing the loss function
L(y, ŷ) using backpropagation. The pruning operation is triggered if the current epoch t matches one
of the pruning milestones P , as indicated in step 10. In this case, the Pruning function is invoked,
relying on entropy to select neurons for pruning. An activation zone counter pc is initialized, where
pc(i)j[k] represents the occurrence count of zone k for neuron (i, j). For each block hi, the pre-
activation zi is computed at step 17, followed by the activation zone â(i)j for each neuron at step
18. The current zone’s counter â(i)j for neuron (i, j) is incremented. After iterating over the entire
dataset, the frequency distribution of each zone estimates the zone distribution for neuron (i, j). The
entropy E(i)j for neuron (i, j) is calculated based on the zone distribution pc(i)j. Finally, neurons
meeting the pruning criteria are removed by setting the corresponding entries in the mask M (i)j to
zero.

For clarity, we separate the training and pruning phases in Algorithm 1. In practice, however, the
computation of neuron entropy can be incorporated into the training phase, with the zone counter
updates being performed on a batch-wise basis. In Section 5, we explore the impact of different
pruning criteria on the performance of pruning methods, taking ResNet18 as a case study.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

5 EXPERIMENTS

5.1 BLEND ENTROPY WITH NORM

As discussed in Section 4.3, for convolutional layers, the neuron entropy and norm are in different
shapes. Therefore, an averaged entropy is computed for each filter and fused with the norm. In the
following experiments, we consider:

• Norm × Averaged Layer Entropy (HENP-1),
• Harmonic Mean of Norm and Layer Entropy (HENP-2).

We start by investigating the performance of networks pruned with different methods. Each of the
network is initialized with He Normal Distribution He et al. (2015), and trained by SGD optimizer
on CIFAR10 dataset with batch size of 128 for 300 epochs with initial learning rate of 0.01. To
ensure the stability of pruned parameters and enhance the performance of the remaining weights,
the optimizer was configured with a weight decay of 5 × 10−4 and a momentum of 0.9. These
settings aim to prevent the update of pruned parameters while maintaining the regularization and
convergence properties of the optimization process.

Pruning Details. In these experiments, the network is pruned at the end of each epoch to allow
recovery and optimization of the remaining parameters. The justification for this training procedure
can be found in Section 5.3. During each pruning epoch, the entropy of each neuron is recorded,
and an importance score is computed by integrating the layer entropy with the model norms at the
end of training. Parameters across different layers are then pruned proportionally based on their
importance scores.

(a) Neuron Sparsity (b) Weight Sparsity

Figure 4: For ResNet-18 networks on CIFAR-10 trained with ADAM, HENP can find sparser so-
lutions maintaining better performance than other structured approaches. Left: Neural sparsity,
structured methods. Right: Weight sparsity, structured methods.

Our approach is a structured one. Pruning occurs during training, transitioning from dense networks
to sparse networks. The methods we compare against also fall within this paradigm, excluding
methods such as Lasby et al. Mike (2023), despite their impressive performance, as they are fun-
damentally non-structured pruning followed by structured recombination. We adopt the following
structured pruning baselines: Crop-it/EarlyCrop John (2022), SNAP Stijn (2020), and a modified
version of early pruning strategy from Rachwan et al. John (2022) identified as EarlySNAP. These
baselines are trained using the recommended configurations from the original authors and are not
influenced by the regularization regime employed by our method. In all cases, our approach matches
or outperforms other structured pruning methods (Figure 4). And this indicates that incorporating
neuron entropy during pruning helps preserve more useful parameters. In essence, neuron entropy
serves as a metric for evaluating the network’s expressive power.

Comparison of Pruning Methods. Figure 4 compares the accuracy of different hybrid pruning net-
works. Compared to other models, our method, which combines norm and entropy for importance

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

score pruning, achieves higher accuracy after pruning. Specifically, norm pruning with entropy-
normed parameters performs the best, improving the accuracy of the baseline model by 2% to 5% in
the sparsity range of 0.75 to 0.98. This suggests that considering neuron entropy during the pruning
process helps retain more useful parameters. In other words, neuron entropy can be viewed as an
indicator of the network’s representation capacity.

5.2 LEAKY RELU

Our method is designed around ReLU activation functions, where neurons can deactivate com-
pletely, leading to dying neurons that can be pruned. However, other activation functions like Leaky
ReLU Maas (2013) also have a soft saturated zone. We hypothesize that neurons firing solely from
this saturated zone contribute minimally to predictions and can be considered nearly dying. To test
this, we apply our pruning method to a network with Leaky ReLU activations, removing neurons
with only negative activation across a significant minibatch. Once more, our approach surpasses
other structured pruning methods, as depicted in Figure 5.

5.3 PRUNING FREQUENCY

To understand the effect of pruning towards the models during training, Figure 6 and 7 reports
the test accuracy of the pruning method with HENP-1 and HENP-2. The model accuracy drops
after each time parameter trim and gradually recovers to during the non-pruning epochs. As model
sparsity increases, the model has a higher impairment on performance and finds it harder to recover.
This suggests that the pruning frequency can affect the final performance of the network.

Figure 6 and 7 compares the model accuracy given different pruning frequencies under different
target sparsity. Given sparsity S, models are pruned every 1 2, 5, 10, 15 epochs, where each time the
same proportion of parameters is removed from the model. Low pruning frequency implies larger
amount each time.

For the models pruned by neurons, increasing the pruning frequency will result in a slightly higher
test accuracy. The model with a pruning frequency of 15 demonstrated a higher test accuracy com-
pared to models with other pruning frequencies. But for the models pruned by norms, increasing the
pruning frequency results in a slight improvement in test accuracy. Specifically, the model with a
pruning frequency of 15 exhibited higher test accuracy compared to models with other pruning fre-
quencies. On the other hand, when introducing the neuron entropy to the importance score, HENP
(entropy-norm) models with higher pruning frequency achieves better result. Increasing the pruning
frequency from 1 to 15 boosts the model performance by around 2%.

6 CONCLUSION

In this study, we introduce a novel analytical framework aimed at elucidating the representation
capabilities of neural networks. Building on prior research into the activation zones of neural net-
works, we present the concepts of dynamic and static neurons to characterize neuron stability. Our
approach extends previous analyses from a focus on single activation zones to broader contexts. We
specifically employ a neuron entropy metric to track neuron volatility across various scenarios, fa-
cilitating a comprehensive examination of neural network expressivity. Finally, we demonstrate the
applicability of our findings to downstream tasks.

Moreover, our experiments with Leaky ReLU demonstrate the method’s compatibility with acti-
vation functions featuring softer saturation zones compared to ReLU. This compatibility suggests
potential for sparsifying neural network architectures during training, given their reliance on activa-
tion functions such as GELU and Swish. Considering the typical scale of training for these models,
our method could yield significant computational and environmental advantages.

REFERENCES

Zaheer Abbas, et al. Loss of plasticity in continual deep reinforcement learning. CoRR, 2023.

Marco Ancona, et al. Towards better understanding of gradient-based attribution methods for deep
neural networks. arXiv preprint arXiv:1711.06104, 2018.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

(a) Neuron Sparsity (b) Weight Sparsity

Figure 5: ResNet-18 networks with Leaky ReLU trained on CIFAR-10. HENP again outperforms
the baseline structured pruning methods. Left: Neural sparsity, structured methods. Right: Weight
sparsity, structured methods.

(a) Neuron Sparsity (b) Weight Sparsity

Figure 6: Comparison of Pruning Frequency with different sparsity of HENP-1.

(a) Neuron Sparsity (b) Weight Sparsity

Figure 7: Comparison of Pruning Frequency with different sparsity of HENP-2.

Sanjeev Arora, et al. Stronger generalization bounds for deep nets via a compression approach.
arXiv preprint arXiv:1802.05296, 2018.

Y. Bengio, et al. Learning long-term dependencies with gradient descent is difficult. IEEE Transac-
tions on Neural Networks, 5(2):157–66, 1994.

Davis Blalock, et al. What is the state of neural network pruning? arXiv preprint arXiv:2003.03033,
2020.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Sébastien Bubeck, et al. A law of robustness for two-layers neural networks. arXiv preprint
arXiv:2009.14444, 2020.

Han Cai, et al. Once-for-all: Train one network and specialize it for efficient deployment. arXiv
preprint arXiv:1908.09791, 2020.

Rich Caruana, et al. Intelligible models for healthcare: Predicting pneumonia risk and hospital 30-
day readmission. Proceedings of the 21th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 1721–30, 2015.

Chaofan Chen, et al. This looks like that: Deep learning for interpretable image recognition. arXiv
preprint arXiv:1806.10574, 2019.

Yu Cheng, et al. Model compression and acceleration for deep neural networks: The principles,
progress, and challenges. IEEE Signal Processing Magazine, 35(1):126–36, 2018.

Setareh Cohan, et al. Understanding the evolution of linear regions in deep reinforcement learning.
NIPS, 2022.

Finale Doshi-Velez and Been Kim. Towards a rigorous science of interpretable machine learning.
arXiv preprint arXiv:1702.08608, 2017.

Thomas Elsken, et al. Neural architecture search: A survey. arXiv preprint arXiv:1808.05377, 2019.

Amir Gholami, et al. A survey of quantization methods for efficient neural network inference. arXiv
preprint arXiv:2103.13630, 2021.

Ian Goodfellow, et al. Deep learning. In MIT Press, 2017.

Ian J. Goodfellow, et al. Explaining and harnessing adversarial examples. arXiv preprint
arXiv:1412.6572, 2015.

Jianping Gou, et al. Knowledge distillation: A survey. International Journal of Computer Vision,
129(6):1789–819, 2021.

Song Han, et al. Deep compression: Compressing deep neural networks with pruning, trained
quantization and huffman coding. arXiv preprint arXiv:1510.00149, 2016.

Boris Hanin and Rolnick David. Complexity of linear regions in deep networks. arXiv preprint
arXiv:1901.09021, 2019.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In Proceedings of the IEEE international
conference on computer vision, pp. 1026–1034, 2015.

Geoffrey Hinton, et al. Distilling the knowledge in a neural network. arXiv preprint
arXiv:1503.02531, 2015.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Computation, 9(8):
1735–80, 1997.

Benoit Jacob, et al. Quantization and training of neural networks for efficient integer-arithmetic-
only inference. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
2704–13, 2018.

Xiaoheng Jiang, et al. Deep neural networks with elastic rectified linear units for object recognition.
Neurocomputing, 275:1132–1139, 2018.

Rachwan John, et al. Winning the lottery ahead of time: Efficient early network pruning. Interna-
tional Conference on Machine Learning, ICML 2022, pp. 18293–18309, 2022.

Lee Joo Hyung, et al. Jaxpruner: A concise library for sparsity research. arXiv preprint
arXiv:2304.14082, 2023.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Raghuraman Krishnamoorthi. Quantizing deep convolutional networks for efficient inference: A
whitepaper. arXiv preprint arXiv:1806.08342, 2018.

Carl Lemaire, et al. Structured pruning of neural networks with budget-aware regularization. arXiv
preprint arXiv:1811.09332, 2019.

Benjamin Letham, et al. Interpretable classifiers using rules and bayesian analysis: Building a better
stroke prediction model. The Annals of Applied Statistics, 9(3), 2015.

Zechun Liu, et al. Metapruning: Meta learning for automatic neural network channel pruning. 2019
IEEE/CVF International Conference on Computer Vision (ICCV), pp. 3295–304, 2019.

Lu Lu, et al. Dying relu and initialization: Theory and numerical examples. arXiv preprint
arXiv:1903.06733, 2020.

Andrew L Maas, et al. Rectifier nonlinearities improve neural network acoustic models. in ICML
Workshop on Deep Learning for Audio, Speech and Language Processing, 2013.

Lasby Mike, et al. Dynamic sparse training with structured sparsity. CoRR, 2023.

Grégoire Montavon, et al. Methods for interpreting and understanding deep neural networks. Digital
Signal Processing, 73:1–15, 2018.

Guido Montúfar, et al. On the number of linear regions of deep neural networks. arXiv preprint
arXiv:1402.1869, 2014.

W. James Murdoch, et al. Interpretable machine learning: Definitions, methods, and applications.
arXiv preprint arXiv:1901.04592, 2019.

Razvan Pascanu, et al. On the difficulty of training recurrent neural networks. arXiv preprint
arXiv:1211.5063, 2013.

Ilija Radosavovic, et al. Designing network design spaces. 2020 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), pp. 10425–33, 2020.

Maithra Raghu, et al. Svcca: Singular vector canonical correlation analysis for deep learning dy-
namics and interpretability. arXiv preprint arXiv:1706.05806, 2017.

Wojciech Samek, et al. Explainable artificial intelligence: Understanding, visualizing and interpret-
ing deep learning models. arXiv preprint arXiv:1708.08296, 2017.

Ghada Sokar, et al. The dormant neuron phenomenon in deep reinforcement learning. International
Conference on Machine Learning, ICML 2023, 23-29 July 2023, Honolulu, Hawaii, USA, 202:
32145–32168, 2023.

Verdenius Stijn, et al. Pruning via iterative ranking of sensitivity statistics. CoRR, 2020.

Mukund Sundararajan, et al. Axiomatic attribution for deep networks. arXiv preprint
arXiv:1703.01365, 2017.

Christian Szegedy, et al. Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199,
2013.

Yonglong Tian, et al. Contrastive representation distillation. arXiv preprint arXiv:1910.10699, 2022.

Evci Utku, et al. Rigging the lottery: Making all tickets winners. Proceedings of the 37th Interna-
tional Conference on Machine Learning, ICML 2020, pp. 2943–2952, 2020.

Tim Whitaker and Darrell Whitley. Synaptic stripping: How pruning can bring dead neurons back
to life. 2023 International Joint Conference on Neural Networks (IJCNN), 2023.

Glorot Xavier and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
networks. Proceedings of the Thirteenth International Conference on Artificial Intelligence and
Statistics, 9:249–256, 2010.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Yuhui Xu, et al. Pc-darts: Partial channel connections for memory-efficient architecture search.
arXiv preprint arXiv:1907.05737, 2020.

Arber Zela, et al. Understanding and robustifying differentiable architecture search. arXiv preprint
arXiv:1909.09656, 2020.

Chiyuan Zhang, et al. Understanding deep learning (still) requires rethinking generalization. Com-
munications of the ACM, 64(3):107–15, 2021.

Yucong Zhou, et al. Learning specialized activation functions with the piecewise linear unit. In 2021
IEEE/CVF International Conference on Computer Vision (ICCV), pp. 12075–84, 2021.

Jiang Ziping, et al. Delve into neural activations: Toward understanding dying neurons. IEEE
Transactions on Artificial Intelligence, 4(4):959–971, 2023.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 SYMBOLIC REPRESENTATION

Consider a classification task with c different classes. Let X ⊂ Rd represent the input space and
Y = {1, 2, . . . , c} represent the set of class labels. The data distribution is denoted as D = Dx ×
Dy over the input-label pairs (x, y) ∈ X × Y . Let N be a feedforward neural network with d
blocks, parameterized by θ (which includes weight matrices and bias vectors). The network defines
a mapping f : Rd → Rc, which outputs a score vector over the c classes.

Assume that the network is composed of d blocks, such that f = hd ◦ hd−1 ◦ · · · ◦ h1. For i ∈
{1, 2, . . . , d − 1}, each block is defined as hi = πi ◦ ϕi, where ϕi(x) = ∥W(i)∥x + ∥b(i)∥. Here,
∥W(i)∥ ∈ Rni×ni−1 denotes the norm of the weight matrix, and ∥b(i)∥ ∈ Rni denotes the norm of
the bias vector. The function πi is the activation function applied element-wise. The final block is
defined as hd = ϕd, where ϕd(x) = ∥W(d)∥x + ∥b(d)∥ and ∥W(d)∥ ∈ Rc×nd−1 , ∥b(d)∥ ∈ Rc.
Note that the last block omits the activation function.

To further clarify, the norm ∥W(i)∥ corresponds to a specific norm (e.g., Frobenius norm) of the
weight matrix W(i), and similarly, ∥b(i)∥ corresponds to the norm of the bias vector b(i). The role
of these norms is crucial in understanding the scaling behavior of each block, particularly in the
context of regularization and generalization in neural networks.

Given an input x ∈ X , the network produces a prediction ŷ = argmaxi∈Y fi(x), where fi(x)
denotes the score corresponding to class i. The overall input-output relationship of the network can
be expressed as:

f(x) = W(d)πd−1

(
W(d−1) · · ·π1

(
W(1)x+ b(1)

)
· · ·+ b(d−1)

)
+ b(d). (2)

For training, the network parameters θ are optimized to minimize a loss function, typically the
cross-entropy loss for classification:

L(θ;x, y) = − log

(
exp(fy(x))∑c
i=1 exp(fi(x))

)
. (3)

To facilitate the analysis of the network, particularly in terms of activation zones, zones, and flows,
we introduce the following formalisms:

• R(i): The set of all possible activation zones at block i. Each zone is defined by a unique
zone of neuron activations at this block.

• P(i): The set of all possible activation flows up to block i. A flow is defined by the sequence
of activation zones from the input block to block i.

• A(i)(x): The activation zone of an input x at block i, represented as a binary vector indi-
cating the neurons that are activated.

• π(i)(x): The activation flow for an input x up to block i, which is the sequence of activation
zones from block 1 to block i.

These formalisms provide a formal framework to describe how different inputs are processed by the
network and how the network’s internal structure gives rise to distinct activation zones and flows.
This foundation is critical for the subsequent analysis of how neural networks partition the input
space and how these partitions relate to the network’s decision-making process.

A.2 ZONAL ACTIVATION ZONES AND LOCAL BEHAVIOR ANALYSIS OF NEURAL
NETWORKS

Neural networks establish intricate mappings by leveraging layered architectures and nonlinear ac-
tivation functions. To gain deeper insight into the local dynamics and expressive power of these
networks, we present a set of concepts and definitions. Our analysis is systematically organized
through precise formalizations and relevant references.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A.2.1 NEURAL ACTIVATION SIGNATURE AND SUBSPACE

Given a neural network N with piecewise linear activation functions, the input domain Rn is par-
titioned into multiple zones, within each of which the network’s mapping is linear. We define this
partitioning formally with the concept of a neural activation signature.

Definition 4 (Extended Neural Signature and Corresponding Subspace). Consider an activation
function σ(·) with breakpoints Γ = {γ1, γ2, . . . , γq} that partition its domain into q + 1 intervals
U = {U0, U1, . . . , Uq}. For a neural network N and an input x ∈ Rn, the neural activation
signature A(x) is an indexed set:

A(x) = {a(i)j (x) | a(i)j (x) ∈ {0, 1, . . . , q}, (i, j) ∈ I},

where a
(i)
j (x) indicates the interval Uk that the pre-activation value z

(i)
j (x) falls into. The corre-

sponding subspace is defined as:

R(A) = {x ∈ Rn | A(x) = A} .

For instance, the ReLU activation function σ(x) = max(0, x) divides the input space into an active
zone R+ and an inactive zone R−. The tanh function can be similarly partitioned using breakpoints
{−1, 1}.

A.2.2 TRANSITION ACROSS ADJACENT SUBSPACES

As the network complexity increases, the zones defined by a complete neural activation signature
become smaller. To study behavior over larger input spaces, we introduce the concept of partial
neural signatures.

Definition 5 (Partial Neural Signature and Aggregated Subspace). A partial neural signature
Apartial(x) is defined by leaving some neurons’ activation states unspecified. The corresponding
subspace is then a union of multiple complete activation zones:

R(Apartial) =
⋃
j

R(Aj),

where each Aj is a complete neural activation signature consistent with Apartial.

This concept allows us to extend our analysis to broader input zones, capturing the network’s ex-
pressive power over these larger spaces.

A.2.3 NEURAL ACTIVATION FLOW

To further analyze the local behavior of neural networks, we introduce the notion of a neural activa-
tion flow, which tracks the sequence of activated neurons from input to output.

Definition 6 (Neural Activation flow). A neural activation flow τ(x) is a sequence of neurons that
defines a flow through the network from the input to the output. Formally, it is represented as:

τ(x) = {(i1, j1), (i2, j2), . . . , (im, jm)},

where (ik, jk) denotes the activated neuron in layer k along this flow.

This subsection formalizes the concepts of neural activation signatures, neural trajectories, and the
consistency of neuron states and trajectories. These tools provide a structured framework for an-
alyzing the local behavior of neural networks and lay the groundwork for deeper exploration in
subsequent sections on geometric analysis and flow decomposition.

A.3 SPATIAL UNDERSTANDING

In this section, we explore the connection between activation zones and zones in a neural network
from a spatial perspective. We present new lemmas that illustrate how the input domain is partitioned
into activation zones and discuss the formal properties of these zones.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A.3.1 CONVEX ACTIVATION ZONE

To understand the concept of activation zones, consider a neural network N with a monotonic acti-
vation function π. Given an input space Rn, the generalized activation zone describes the activation
status of each neuron at the intermediate layers. The following lemma formalizes the convexity of
activation zones corresponding to each activation zone.

Lemma 2 (Convex Activation Zone Lemma). Let N be a neural network with a monotonic acti-
vation function π. Then, for any activation zone A, the corresponding activation zone C(A) is a
convex set. In other words, each activation zone A uniquely determines a convex activation zone
C(A).

This lemma implies that the mapping from activation zones {C} to activation zones {A} is injective.
The convexity of these zones provides insights into how the network’s neurons react to inputs within
different zones of the input space.

A.3.2 INPUT SPACE COVERAGE

Next, we consider the coverage of the input space by these convex activation zones. The following
lemma describes how the input space can be fully partitioned by these zones and certain curved
separating surfaces.

Lemma 3 (Input Space Coverage Lemma). Let N be a neural network. The input space Rn can
be represented as the union of all convex activation zones C(A), or as the union of certain curved
separating surfaces H. Specifically, the input space Rn is fully covered by these activation zones
and separating surfaces:

Rn =

[⋃
A
C(A)

]⋃ ⋃
∀i,j,k

Hijk

 (4)

This lemma shows that every point in the input space either lies within a convex activation zone or
on a separating surface, indicating the comprehensive coverage provided by these zones.

A.3.3 ALMOST SURE INPUT DISTRIBUTION

To further analyze the distribution of inputs within these activation zones, we consider the proba-
bility of an input point lying on a separating surface. The following lemma addresses this situation
under the assumption that the input distribution has no atoms.

Lemma 4 (Almost Sure Input Distribution Lemma). Assume the input distribution D has no atoms
(i.e., it assigns zero probability to single points). Then the probability that an input point x lies
exactly on any curved separating surface H is zero. Thus, almost every input x lies within some
convex activation zone C(A).

This result implies that, under typical conditions, the input space is almost surely covered by the
convex activation zones, and the contribution of points lying on separating surfaces is negligible.

A.3.4 ADJACENT ZONES AND CRITICAL NEURONS

We now consider the relationship between adjacent convex activation zones. The following lemma
identifies the neurons responsible for the difference in activation zones between two adjacent zones.

Lemma 5 (Adjacent Zones Difference Lemma). For any two input points x and x′ that are located
in adjacent convex activation zones C and C′, there exists a unique critical neuron (i, j) such that
the activation zone of this neuron differs between x and x′:

∃!(i, j), â(i)j (x) ̸= â
(i)
j (x′) (5)

This lemma reveals that the difference in activation zones between adjacent zones is caused by a
unique critical neuron, while all other neurons maintain the same activation status.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

A.4 FLOW-BASED ANALYSIS OF NEURAL NETWORK COMPUTATIONAL STRUCTURE

Rationale. The exploration of neural network computational structures can be enhanced by ana-
lyzing the flow-dependent decomposition of its piecewise linear mappings. Given a neural network
N with a piecewise linear activation function, the output mapping function f : Rn0 → Rc can
be decomposed into a combination of flows, each representing an independent computational route
from input to output. This section details the formal derivation of such a decomposition and its
implications.

Flow Analysis of Piecewise Linear Mappings Let f(x) denote the output function of the neural
network N , which is assumed to be piecewise linear. The network’s output can be represented as a
sum of functions corresponding to distinct flows P:

f(x) =
∑
p∈P

fp(x), (6)

where P is the set of all possible flows through the network, and each function fp(x) corresponds
to the contribution of flow p. The decomposition is determined by the activation zone σ(x) and the
norm ∥wp∥ associated with the flow, where ∥wp∥ represents the norm of the weights along the flow
p. Together, these components define the contribution of each flow p to the network’s output.
Lemma 6 (Flow-Dependent Output Decomposition). Given a neural network N and an input x,
the output can be expressed as:

f(x) =
∑
p∈P
∥wp∥ · σp(x) · x, (7)

where σp(x) denotes the activation status of flow p under input x, and ∥wp∥ represents the norm of
the weight vector along flow p. The flow contribution depends on both the input x and the specific
activation zone σ(x) triggered within the network.

Difference Analysis of Local Computational Zones The output variation between neighboring
input zones can be analyzed through the differences in their corresponding flows. Let x and x′ be
two neighboring inputs, and let the output difference ∆f be defined as:

∆f = f(x′)− f(x). (8)

Theorem 1 (Local Zone Output Difference). Given the network N , the output difference ∆f be-
tween two neighboring inputs x and x′ can be expressed as:

∆f = Jf (x) · (x′ − x) +
∑
p∈P

∆∥vp∥ · σp(x), (9)

where Jf (x) is the Jacobian matrix of the network at input x, and ∆∥vp∥ represents the change in
the norm of flow vectors between the two inputs. The term Jf (x)·(x′−x) captures the linear approx-
imation of output difference, while the summation term accounts for the nonlinear flow-dependent
differences.

The analysis shows that for two close input points x and x′, the difference in their outputs can be
largely attributed to the flows that change their activation status between these points. This provides
a norm-based way of understanding the network’s computational behavior in a localized input zone
by examining the stability and variability of specific flows.

A.5 EXPRESSIVE POWER OF NEURAL NETWORKS AND NEURON ENTROPY RATIONALE

The expressive power of neural networks largely depends on the activation behavior of the neurons.
Theorem 1 suggests that the difference between the outputs of a neural network for different inputs
can be decomposed into a static part, which is a (semi-)linear transformation, and a dynamic part,
which introduces non-linearity. If the neurons in a neural network remain static in their activation
over the support set of the input data distribution D, meaning their output does not change with
varying inputs, the network’s function would degrade to a linear transformation, significantly reduc-
ing its capacity to handle complex tasks. This indicates that a network with an insufficient number

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

of dynamic neurons has a limited ability to approximate functions with high complexity. As the
number of dynamic neurons increases, the representational capacity of the network also increases.

Motivated by the above intuition, we introduce the concept of neuron entropy to better capture the
diversity of neuron activation. Neuron entropy quantifies the uncertainty in a neuron’s activation
zones. Specifically, higher entropy indicates greater uncertainty in the neuron’s activations, leading
to stronger non-linear representation capacity, and thus enhancing the overall expressive power of
the network.

A.6 NEURON ENTROPY

We establish a rigorous connection between connection diversity and model representational capac-
ity. Let (q, c) and (q′, c′) be two samples drawn from a dataset S, where c ̸= c′. For the model
P to correctly classify these samples, it must distinguish between the inputs q and q′ with high ac-
curacy. We introduce connection diversity as a crucial factor that impacts the model’s capability in
differentiating these inputs.

The difference in model outputs for the two samples, h(q) − h(q′), can be dissected into linear
and nonlinear components. The linear component is dictated by the local connection structure at
q, which can be analyzed through a connection matrix that captures the model’s orientation. The
nonlinear component, on the other hand, is influenced by the number of activated connection flows
(ACFs) between the sample pairs {q, q′}. As the number of ACFs increases, so does the complexity
of the function difference, h(q)− h(q′), implying enhanced model representation capacity.

As the number of activated connection flows (ACFs) increases, the complexity of the function differ-
ence h(q)−h(q′) also increases. This enhancement in complexity suggests that the model is capable
of capturing more intricate nonlinear relationships between inputs, which is critical for improving
classification accuracy.

We extend the analysis from individual sample pairs to the entire dataset S. Connection diversity
is formalized as a metric that assesses the expected nonlinearity introduced by the model across the
dataset. It reflects the model’s capacity to navigate complex decision boundaries by evaluating the
overall distribution of activated connection flows. The higher the connection diversity, the greater
the model’s ability to differentiate between diverse sample pairs.

To establish a formal connection between model representational capacity and connection diversity,
we introduce the following theorem:
Theorem 2. Consider two models, P and P ′, which share the same architecture but have different
parameter sets. The following assumptions hold:

1. The dataset S is continuous, implying that the probability of any specific input vector oc-
curring is zero.

2. The parameter sets of both models are sampled from the same distribution.

3. Model P has lower connection diversity than model P ′.

Then, the expected difference in representational capacity between the models can be formalized as:
E(h(q; θ)− h(q′; θ)) ≤ E(h(q; θ′)− h(q′; θ′))

where θ and θ′ are the respective parameter sets for models P and P ′.

This theorem suggests that, under the given assumptions, model P , which exhibits lower connection
diversity, is less effective at distinguishing between two sample points than model P ′. Thus, a higher
connection diversity implies a greater representational capacity.

We extend our discussion to multiclass classification tasks. In scenarios involving multiple classes,
models that can better differentiate between various classes generally exhibit higher complexity.
This observation aligns with the importance of connection diversity, as models with greater connec-
tion diversity are better equipped to handle the increased complexity inherent in multiclass problems.

Subsequent sections will present empirical results to validate the proposed metric of connection
diversity. These experiments will demonstrate its effectiveness in predicting and analyzing model
performance across various tasks, underscoring its relevance in practical applications.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

A.7 RELATIONSHIP BETWEEN MODEL EXPRESSIVENESS AND NEURON ACTIVATION

This section rigorously examines the relationship between the expressiveness of a model and the
activation of neurons. We formalize this relationship through several theorems that connect neuron
activation with key metrics of model expressiveness, such as the number of linear zones, model
stability, and zone similarity.

First, let N be a neural network with piecewise linear characteristics. The input space X is par-
titioned into multiple linear zones, where the network’s mapping remains linear within each zone.
Let #Linear Zones(N ) denote the number of these zones. The complexity of the model can thus be
quantified by the number of linear zones. We propose the following theorem:

Theorem 3. LetN ,N ′ be neural networks with identical architectures, and let θ, θ′ represent their
respective parameter sets. If the average neuron activation

∑
i,j A

(i)
j (θ,D) >

∑
i,j A

(i)
j (θ′,D),

then #Linear Zones(N ) > #Linear Zones(N ′).

The proof of Theorem 3 builds upon the intuition that higher average neuron activation implies more
variability in activation zones across different inputs, which in turn leads to a finer partitioning of
the input space into linear zones.

Next, we consider model stability along a flow γ(t) in the input space, where t ∈ [0, 1]. The stability
can be evaluated by the number of linear zones crossed by γ(t). We define the transition density
τ(N , γ) as the number of such zones. The following theorem formalizes the relationship between
neuron activation and model stability:

Theorem 4. Let N ,N ′ be neural networks as defined above. If
∑

i,j A
(i)
j (θ,D) >∑

i,j A
(i)
j (θ′,D), then τ(N , γ) > τ(N ′, γ) for a given flow γ(t).

Theorem 4 suggests that networks with higher neuron activation exhibit less stability along certain
flows, as they cross more linear zones.

Lastly, we discuss zone similarity, denoted as PS(D; θ), which measures the ratio of neurons that
exhibit similar activation zones for different inputs from the distribution D. Higher zone similarity
generally indicates a reduction in model expressiveness, often leading to phenomena such as dying
neurons, where units respond uniformly regardless of input. We state the following theorem:

Theorem 5. Let N ,N ′ be neural networks with the same architecture. Given the data distribution
D, if

∑
i,j A

(i)
j (θ,D) >

∑
i,j A

(i)
j (θ′,D), then PS(D; θ) > PS(D; θ′).

Theorem 5 demonstrates that increased neuron activation is associated with greater zone similarity.
This heightened similarity could suggest a reduction in expressiveness.

These theorems establish a rigorous basis for examining how neuron activation is connected to es-
sential metrics of model expressiveness. The influence of neuron activation extends beyond merely
affecting the number of linear regions and transition density; it also plays a crucial role in determin-
ing zone similarity. This provides a detailed framework for evaluating model performance at the
level of individual units.

A.8 PRUNING METHOD RATIONALE

The experiments presented in Section 4.2.1 examine the representational capabilities of neural net-
works from multiple perspectives. The findings indicate that, particularly in deeper layers of a
well-trained model, a significant number of neurons exhibit minimal entropy. This suggests that
these neurons consistently transmit the same signals, regardless of the input, thereby contributing
little to the classification task.

This observation aligns with earlier discussions on the representational limitations of neural net-
works Hanin & David (2019); Ziping (2023), highlighting that although neural networks have the
potential to model highly complex functions, their actual representational capacity is constrained by
inactive neurons, often referred to as dying neurons.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Table 1: For ResNet-18 networks on CIFAR-10 trained with ADAM, HENP can find sparser solu-
tions maintaining better performance than other structured approaches. Neural sparsity, structured
methods.

50 60 70 75 80 85 90

CroPit-S 0.9215 0.91175 0.90975 0.9 0.889 0.881 0.851
EarlyCroP-S 0.92325 0.92225 0.9175 0.9135 0.90775 0.8785 0.84175
EarlySNAP 0.92075 0.92325 0.92 0.9125 0.90425 0.886 0.835
SNAP 0.91925 0.91475 0.91225 0.90475 0.894 0.8755 0.8545
HENP-1 0.9433 0.9393 0.9319 0.9287 0.9184 0.9068 0.8761
HENP-2 0.9394 0.9366 0.9334 0.9276 0.9183 0.9113 0.8775

To address this issue, we propose HENP (Hybrid Entropy-Norm Pruning) as a method to reduce
network size while preserving performance. HENP aims to prune the dying neurons, which have
minimal impact on the network’s overall representational capacity.

A.9 HENP TRAINING ALGORITHM

Algorithm 1 HENP training algorithm
Input: Training data Dtrain, Validation data Dval, Learning rate η, Sparsity S, Number of epochs E

1: Function TRAIN(f, θ)
2: Initialize mask M ← 1
3: for epoch = 1 to E do
4: for (x, y) ∈ Dtrain do
5: ŷ ← f(x;M · θ) ▷ Forward pass
6: Compute loss: L = L(ŷ, y)
7: Backpropagate: θ ← θ − η ∂L

∂θ
8: end for
9: Compute training accuracy Atrain

10: if pruning condition is met then
11: M ← PRUNING(θ, L) ▷ Pruning step
12: end if
13: end for
14: return θ
15: end
16: Function PRUNING(θ, L)
17: Initialize importance scores I(θ)← 0
18: for layer l in model do
19: for channel c in layer l do
20: Compute entropyH(θc) = −

∑
p(θc) log p(θc)

21: Compute norm ∥θc∥ =
√∑

i θ
2
c,i

22: I(θc)← η · H(θc) · ∥θc∥ ▷ Importance score
23: end for
24: Calculate threshold τ for sparsity S
25: Pruning weights: θl ← θl · I(I(θl) > τ)
26: end for
27: return M
28: end
29: Output: Pruned model parameters θ

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Table 2: For ResNet-18 networks on CIFAR-10 trained with ADAM, HENP can find sparser solu-
tions maintaining better performance than other structured approaches. Weight sparsity, structured
methods.

75 80 85 90 95 97 98

CroPit-S 0.927 0.9226 0.9166 0.9106 0.9041 0.8922 0.8858
EarlyCroP-S 0.9255 0.924 0.9231 0.9219 0.9131 0.9052 0.8857
EarlySNAP 0.924 0.922 0.9213 0.9218 0.9124 0.9036 0.8901
SNAP 0.9219 0.9196 0.9174 0.9138 0.908 0.8989 0.8883
HENP-1 0.9483 0.9451 0.9447 0.9413 0.9388 0.9323 0.9302
HENP-2 0.9473 0.9457 0.9434 0.9413 0.9361 0.9328 0.9274

Table 3: ResNet-18 networks with Leaky ReLU trained on CIFAR-10. HENP again outperforms the
baseline structured pruning methods. Neural sparsity, structured methods.

50 60 70 75 80 85 90

EarlyCroP-S 0.8889 0.8897 0.8817 0.871 0.8599 0.8472 0.8071
EarlySNAP 0.894 0.8786 0.8702 0.8599 0.85 0.8433 0.8
SNAP 0.8821 0.8762 0.8667 0.8607 0.8548 0.8175 0.7833
HENP-1 0.937 0.9311 0.9167 0.9113 0.9038 0.8928 0.8133
HENP-2 0.9315 0.9303 0.9211 0.9126 0.9038 0.8826 0.8179

Table 4: ResNet-18 networks with Leaky ReLU trained on CIFAR-10. HENP again outperforms the
baseline structured pruning methods. Weight sparsity, structured methods.

75 80 85 90 95 97 98

EarlyCroP-S 0.8895 0.889 0.8894 0.8878 0.8756 0.8634 0.8548
EarlySNAP 0.8933 0.8939 0.8878 0.8772 0.8666 0.8559 0.8478
SNAP 0.8834 0.8822 0.8785 0.8729 0.8627 0.8539 0.8332
HENP-1 0.9421 0.9396 0.9336 0.927 0.9265 0.9155 0.8724
HENP-2 0.943 0.9398 0.9377 0.9349 0.9259 0.9118 0.9005

Table 5: Comparison of Pruning Frequency (PF) with Neuron Sparsity of HENP-1. The bold values
represent the best performance, and the underlined values represent the second-best performance.

PF 50 60 70 75 80 85 90

1 0.9268 0.9253 0.9248 0.915 0.9085 0.8865 0.8428
2 0.9293 0.9281 0.9269 0.9209 0.9107 0.8894 0.8435
5 0.9365 0.9348 0.9288 0.9217 0.9148 0.8907 0.8477
10 0.9411 0.9392 0.9295 0.9284 0.9155 0.8966 0.8652
15 0.9433 0.9393 0.9319 0.9287 0.9184 0.9068 0.8761

Table 6: Comparison of Pruning Frequency (PF) with Weight Sparsity of HENP-1.

PF 75 80 85 90 95 97 98

1 0.9418 0.9357 0.935 0.9263 0.9245 0.9154 0.8943
2 0.9502 0.9463 0.9449 0.9386 0.9278 0.9172 0.8954
5 0.9509 0.948 0.9459 0.9414 0.9292 0.922 0.9079
10 0.9485 0.9469 0.9426 0.938 0.9346 0.9264 0.918
15 0.9483 0.9451 0.9447 0.9413 0.9388 0.9323 0.9302

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Table 7: Comparison of Pruning Frequency (PF) with Neuron Sparsity of HENP-2.

PF 50 60 70 75 80 85 90

1 0.9332 0.9289 0.9238 0.9167 0.9112 0.8864 0.8451
2 0.9335 0.9311 0.9267 0.9184 0.9122 0.8879 0.8458
5 0.9367 0.9331 0.9284 0.9224 0.9138 0.8905 0.8488
10 0.9382 0.9347 0.9305 0.9246 0.9143 0.8962 0.8722
15 0.9394 0.9366 0.9334 0.9276 0.9183 0.9113 0.8775

Table 8: Comparison of Pruning Frequency (PF) with Weight Sparsity of HENP-2.

PF 75 80 85 90 95 97 98

1 0.9422 0.9392 0.9347 0.9297 0.9242 0.9129 0.9005
2 0.9493 0.9471 0.9439 0.9402 0.9263 0.9173 0.9019
5 0.9501 0.9482 0.9471 0.942 0.9285 0.9183 0.9111
10 0.9484 0.9449 0.9421 0.9379 0.9329 0.9287 0.9215
15 0.9473 0.9457 0.9434 0.9413 0.9361 0.9328 0.9274

22


	Introduction
	Related Works
	On Neural Networks Analysis
	Towards Network Compression
	Understanding Dying Neurons

	Math Fundamentals of Neurons
	Consistency of Neuron States and Trajectories
	Dynamic Neuron Coverage

	Dying Neurons and Model Expressivity
	Neuron Entropy: A Key to Expressivity
	Understanding Neural Networks through Neuron Insights 
	Model Representational Capacity
	Dynamic Neuron Entropy

	Hybrid Entropy-Norm Pruning (HENP) 
	Weighted Entropy and Hybrid Norm

	HENP Algorithm

	Experiments
	Blend Entropy with Norm
	Leaky ReLU
	Pruning Frequency

	Conclusion
	Appendix
	Symbolic Representation 
	Zonal Activation Zones and Local Behavior Analysis of Neural Networks 
	Neural Activation Signature and Subspace
	Transition Across Adjacent Subspaces
	Neural Activation Flow

	Spatial Understanding 
	Convex Activation Zone
	Input Space Coverage
	Almost Sure Input Distribution
	Adjacent Zones and Critical Neurons

	Flow-Based Analysis of Neural Network Computational Structure
	Expressive Power of Neural Networks and Neuron Entropy Rationale 
	Neuron Entropy 
	Relationship Between Model Expressiveness and Neuron Activation 
	Pruning Method Rationale 
	HENP training algorithm 


