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Abstract

Recent research has explored the constrained generation capabilities of Large Language
Models (LLMs) when explicitly prompted by few task-specific requirements. In contrast, we
introduce Large-Scale Constraint Generation (LSCG), a new problem that evaluates whether
LLMs can parse a large, fine-grained, generic list of constraints. To examine the LLMs’
ability to handle an increasing number constraints, we create a practical instance of LSCG,
called Words Checker. In Words Checker, we evaluate the impact of model characteristics
(e.g., size, family) and steering techniques (e.g., Simple Prompt, Chain of Thought, Best of
N ) on performance. We also propose FoCusNet, a small and dedicated model that parses
the original list of constraints into a smaller subset, helping the LLM focus on relevant
constraints. Experiments reveal that existing solutions suffer a significant performance drop
as the number of constraints increases, with FoCusNet showing an 8-13% accuracy boost.

1 Introduction

Instructions are prompts or directives, written in natural language, that guide the model to perform a specific
task Ouyang et al. (2022). The recent literature has extensively studied the ability of Large Language
Models (LLMs) to follow instructions requiring complex reasoning Wang et al. (2023), focusing on multiple
requirements and for multiple rounds He et al. (2024c;b), and even dealing with long texts Bai et al. (2024);
Li et al. (2024). To address the real-world urgency for controllable outputs Liu et al. (2024a); Hassan et al.
(2024), researchers have also investigated whether LLMs, provided with clear indications of the expected
answer, could support constrained generation (e.g., “the answer must contain exactly N words”) Sun et al.
(2023); Yao et al. (2024); Xia et al. (2024).

In this paper, we take a step further in defining instruction-following tasks. Instead of the few task-specific
indications the literature has used so far, we focus on scenarios with a high number of fine-grained but general
constraints that the model must respect to generate a valid answer. Consider the example in Fig. 1. The
model faces a social task (e.g., “be a good visitor in an Islamic country”), and can access a comprehensive
travel guide with generic information on how to achieve the goal (i.e., long list of constraints). Could the
LLM, with the sole aid of the generic travel guide and no other explicit instruction, realise that “inviting a
Muslim for a beer after prayer” Naous et al. (2024) is not a good way to solve the task?

We call this new framework Large-Scale Constraint Generation (LSCG). LSCG examines whether LLMs
can replicate humans’ practical intelligence Sternberg (1986), i.e., the ability to interpret and adapt to the
context. In particular, facing LSCG the model is not tasked to solve complex reasoning problems, but
rather i) to consult broad and generic guidelines (e.g., travel guide, but also updated documentation while
coding Wang et al. (2024); Deng et al. (2024)), ii) to identify the requirements relevant for the specific
problem, and iii) to apply them to derive a valid solution.

As it is currently unclear whether and how LLMs’ capabilities could scale with the hundreds (if not thousands)
of constraints that a travel guide or some code documentation could provide, we implement a concrete
instance of LSCG, Words Checker. We design Words Checker as a simple problem, not requiring particular
reasoning skills, to explicitly study how the performance of LLMs while solving the task is affected by the
number of constraints. In Words Checker, the model is given as input a list of forbidden words and a sample
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“Task: 
How to be a good visitor in an Islamic country?
Constraints:
History and cultural background, How to get there, Landmarks, 
Cultural sites, …, Local customs and etiquette”

a)

b) “Task: 
How to be a good visitor in an Islamic country?
Relevant Constraints:
“Local customs and etiquette”

Figure 1: In LSCG, the model must generate a valid answer while adhering to an input task and a long
list of constraints. In the example, this can be done either by (a) directly interpreting the concatenated
task and constraints or (b) using a FoCusNet to extract relevant constraints. The first approach may
lead to inappropriate responses (e.g., offering beer to a Muslim Naous et al. (2024)), while the second
ensures valid answers.

sentence. The task is to classify the sentence as valid (i.e., does not contain forbidden words) or invalid (i.e.,
contains at least one forbidden word).

We create different instances of Words Checker with increasingly larger lists of forbidden words (e.g., 100, 500
and 100). Then, we systematically evaluate how features such as model family – Meta’s LLama Grattafiori
et al. (2024) vs. Deepseek’s R1 DeepSeek-AI et al. (2025)), size – 8B vs. 70B, and Test Steering Strategies
(TSS)– Simple Prompt, Chain of Thought Wei et al. (2022b); Lightman et al. (2024) and Best of N Chen
et al. (2024b); Madaan et al. (2023) affect the results.

Furthermore, inspired by Retrieval Augmented Generation (RAG) Lewis et al. (2020) and the recent litera-
ture Cobbe et al. (2021); Shi et al. (2024), we propose FoCusNet (Focused Constraints Net), a lightweight and
customizable model to parse the originally large list of constraints into a smaller set of constraints relevant
to the task, helping the LLM to better focus. In Words Checker, FoCusNet is a ∼ 300k parameters model
that we train to determine whether a set of words is present in a sentence. During inference, it preprocesses
the long list of forbidden words and parses it into a smaller set of potential suspects, allowing the LLM to
focus more effectively on meaningful instances.

The results of a distilled 8B LLM in Words Checker, shown in Fig. 2, are striking: traditional Test Steering
Strategies, including simple prompting, suffer a drastic performance drop – down to ∼ 27.8% accuracy.
Manual analysis reveals that the model often processes words individually, losing focus, and sometimes
conflating its reasoning process with the actual task. For example, it may incorrectly assert that a word is
present simply because it appears in a self-generated list.

Our approach proves the most robust, leveraging the synergy between two models. FoCusNet, trained
to detect the presence of words with accuracy 90%, effectively narrows the search space (i.e., average of
30 suspicious words out of 1000). The LLM, in turn, benefits from this reduced scope, filtering out false
positives from FoCusNet and improving overall accuracy. In sum, our contributions are:

– Large-Scale Constraint Generation: A novel problem to evaluate the ability of current LLMs to
automatically parse a large number of constraints and identify the relevant ones.

– Words Checker: A practical example of LSCG where the model identifies invalid sentences as the number
of forbidden words increases. We systematically experiment 2 models (LLama and R1 ), 2 model sizes (8B
and 70B), and 3 TSS (prompt-based, CoT, Best of N).

– FoCusNet: A small dedicated model that works in conjunction with the LLM, helping it to better focus
on relevant constraints.

– Code and Datasets: To reproduce Words Checker and FoCusNet and help the community benchmarking
LSCG1.

1Code and data will be released upon paper acceptance to preserve anonymity during the review process.
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Figure 2: FoCusNet significantly outperforms typical LLM inference methods on the proposed Words Checker
task (DeepSeek-R1-Distill-Llama-8B). Red numbers indicate differences compared to 100-word scenario.

2 Related Work

Instruction-Following abilities of LLMs. The challenge of constraining textual generation has been
studied since the early days of NLP Hu et al. (2017), but the rise of LLMs has dramatically increased
expectations beyond merely “producing plausible text” Brown et al. (2020); Wei et al. (2022a). Modern
LLMs are expected to follow complex instructions, handle multiple constraints across interactions He et al.
(2024c;b), and process long texts Bai et al. (2024); Li et al. (2024). Yet, this problem remains unsolved.
Studies show that LLMs struggle with adherence to rules Mu et al. (2024), format following varies widely
across domains Xia et al. (2024), open-source models are still behind closed source solutions Wang et al.
(2023) and smaller models still perform poorly in structured tasks Wang et al. (2025). Most of the previous
evaluations assume interactive chat-like settings, with few clear user instructions specific to the required
task. In contrast, we contribute to this line of research by examining how LLMs perform when given an
extensive list of fine-grained yet generic requirements to satisfy.

Instruction Tuning. Given these challenges, instruction tuning might seem like a natural candidate for
improving adherence to complex and fine-grained constraints. Prior work has highlighted its role in enhancing
generalization capabilities Chung et al. (2022); Mishra et al. (2022); Thoppilan et al. (2022), and even a
small set of high-quality instructions can lead to performance gains Zhou et al. (2023); Chen et al. (2024a).
However, despite well-established guidelines for crafting such instructions Zhao et al. (2024); He et al. (2024a);
Zhang et al. (2024), instruction tuning remains costly and resource-intensive. This makes it unsuitable for
large-scale applications that require customization Chang et al. (2016); Zhang & Chen (2020), continuous
knowledge updates Lewis et al. (2020), or, like our example in Fig. 2, cultural adaptation Adilazuarda et al.
(2024); Kotek et al. (2023). Instead, we argue that LLMs should, like humans, handle unfamiliar constraints
by leveraging external knowledge sources while relying on their reasoning abilities to interpret and respond
accordingly. Consequently, we do not employ instruction tuning to further specialize our models.

Test Steering Strategies. Rather than modifying a model through instruction tuning, an alternative
approach is to guide LLM outputs at inference using test-time steering strategies. These methods enhance
rule adherence without the cost and inflexibility of fine-tuning. Prior research has explored various controlled
generation techniques to enforce constraints Hu et al. (2018). LLMs have shown strong performance with
simple interventions like Chain-of-Thought (CoT) prompting Wei et al. (2023). However, studies suggest
that such methods alone may be insufficient for handling fine-grained, hard constraints Sun et al. (2023).
To address this, researchers have investigated best-of-K selection Nakano et al. (2022); Stiennon et al.
(2020), where multiple independent samples are generated, scored, and ranked to select the most suitable
output. Other approaches include rejection-sampling-based methods Liu et al. (2024b), reward-model-guided
decoding Yang & Klein (2021); Deng & Raffel (2023), and constraint-aware streaming algorithms Krause
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Table 1: Summary of how different steering solutions produces the final query q = e(t) ∥ p(c).

Test steering Enhance - e(t) Parse - p(c)
Simple Prompt t c1 ∥ c2 ∥ · · · ∥ cC

Chain of Though t ∥ g c1 ∥ c2 ∥ · · · ∥ cC

Best of N t ∥ g y1 ∥ y2 ∥ · · · ∥ yN

FoCusNet t ∥ g fϕ(c)

et al. (2021); Liu et al. (2021). Building on this body of work, we assess the rule-following capabilities of
LLMs using various test-time steering strategies.

Auxiliary Modules for LLMs. In this paper, we present FoCusNet, a modular support model that
enhances LLMs’ ability to follow constraints. Unlike base model modifications, FoCusNet acts as an auxiliary
module that identifies and prioritizes relevant constraints, guiding the LLM’s generation process. It provides
an intermediate solution between resource-heavy instruction tuning and simpler test-time steering methods,
which, while more efficient, may struggle with complex tasks.

Similar approaches using specialized support models for LLMs have been explored in various text generation
tasks. For example, retrieval-augmented generation (RAG) Lewis et al. (2020); Shi et al. (2024) improves
LLM responses by incorporating external knowledge, while classifier-based safeguards promote responsible
generation Sharma et al. (2025). Furthermore, researchers have also developed classifier-based content
moderation systems Chi et al. (2024); Inan et al. (2023); Rebedea et al. (2023) and output filtering techniques
to address jailbreak vulnerabilities Kim et al. (2024),

3 Large-Scale Constraint Generation

In this Section, we formally define LSCG, relate Test Steering Strategies techniques with LSCG and finally
introduce FoCusNet.

3.1 Formal Definition

In constrained generation, LLMs autoregressively generate an output sequence y according to an input task t
and a set of constraints c = {c1, c2, . . . , cC}. LSCG is a specific case of constrained generation characterized
by a large number of constraints (i.e., C ≥ 100). We suppose both t, and the constraints ci with i ∈ C to be
string-based. Although this assumption does not cover the most general case (see Sect. 6), it is sufficient to
model real-world scenarios such as the travel guide and documentation examples of Sect. 1.

We define the LLM input query: q = e(t) ∥ p(c), where ∥ is the concatenation. Specifically, here e and p are
Test Steering Strategies that can be applied to improve model performance: e is a function that enhance the
definition of the task, while p helps parsing the constraints. We provide more details in the next section.

We represent the LLM as a function fθ : q → y. This means that the LLM generates an answer y as y = fθ(q)
according to its pre-trained weights θ. A model-generated answer y is valid for a given query q if it correctly
solves the task t while adhering to the constraints c.

3.2 Existing Test Steering Strategies

Here, we list the most prominent TSS previously identified in the literature and examine how they apply in
our formulation. We provide a summary in Tab 1.

Simple Prompt. As both t and c are text-based, a natural approach is to simply concatenate them:
q = t ∥ c1 ∥ c2 ∥ · · · ∥ cC .

Chain of Thought (CoT). To enhance the reasoning capabilities of the LLM, we modify t by appending
a guide phrase g, such as “Think step by step”: q = t ∥ g ∥ c1 ∥ c2 ∥ · · · ∥ cC .
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Figure 3: Training pipeline of FoCusNet for Words Checker. The model receives as input a batch of sentences
and words. In Phase 1, FoCusNet uses a frozen pre-trained model to map the input into sentences (circles)
and words (squares) embeddings. Then, in Phase 2, FoCusNet learns to refine the sentence embeddings
(fχ) and to aggregate the words embeddings (fγ , fλ) with a InfoNCE contrastive loss. Eventually, in
Phase 3 FoCusNet train a Random Forest to discriminate positive and negative examples.

Best of N. Finally, to improve the interpretation of the C constraints, we can involve a panel of N judges
(e.g., independent runs of the model), each performing CoT reasoning independently, followed by a recap step
to produce the final answer. Formally, let yn = fn,θ(t ∥ g ∥ c1 ∥ c2 ∥ · · · ∥ cC) denote the answer of the nth
judge, where n ∈ N . Then, we can aggregate all the responses into a refined query: q = t ∥ y1 ∥ y2 ∥ · · · ∥ yN .

3.3 FoCusNet

Definition. Here, the goal is to learn an approximation of p(c) : c → k to reduce the large set of C
constraints c to a more compact subset k ∈ K of relevant constraints. To do that, we introduce a dedicated
model, FoCusNet. Specifically, we define FoCusNet as a function fϕ with learnable parameters ϕ, trained on
task-specific data to filter relevant constraints. Once trained, FoCusNet applies this filtering as k = fϕ(c),
which yields the final query formulation: q = t ∥ g ∥ k ∥.

Training FoCusNet. We train FoCusNet to perform a binary classification task over individual constraints.
Specifically, FoCusNet operates on triplets (ĉ, s, l). Here, ĉ = {c1, c2, . . . , cM } is a subset of M constraints
from c; s is a text-based instance where the constraint is satisfied or violated, and l ∈ {0, 1} is a label
indicating whether the constraint is violated (1) or not (0). For example, consider Fig. 1. The set of
constraints is {c1 =“Respect local customs and etiquette when visiting an Islamic country”}; the instance is
s = “Invite a Muslim for a beer”; the corresponding label l is violated (l = 1).

Inference with FoCusNet. During inference, FoCusNet receives as input the tuple of constraints and
task (c, t) and generates a relevance mask, m = {m1, m2, . . . , mC} with mi ∈ {0, 1} and i ∈ C. The
mask determines which constraints are relevant for the task. Applying the mask yields the reduced set:
k = {ci | mi = 1, ∀i ∈ C}.

As in any alerting system, FoCusNet aims at compromising recall and precision. Ideally, we would like
FoCusNet to reduce the number of false positives, i.e., irrelevant constraints mistakenly included. In fact, a
large number of false positives leads to a larger and noisy set k. At the same time, it is essential to minimize
false negatives, as excluding relevant constraints could hinder the LLM’s ability to generate valid outputs.

4 Methodology

In this section, we discuss the engineering of Words Checker and, consequently, FoCusNet’s training.

4.1 Words Checker

Problem Definition. Words Checker is an instance of LSCG, where an LLM must classify a sentence
as valid or invalid based on a dynamically provided list of forbidden words. Formally, given a sentence
S = (w1, w2, . . . , wn) and a set of forbidden words F = {wf1, wf2, . . . , wfm}, the model must determine
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whether S contains any word morphologically related to an element of F . A sentence is classified as invalid
if ∃wfi ∈ F such that wfi is a root or morphological variant of any wj ∈ S, and valid otherwise. For example,
given the sentence “The athlete skied a snowy mountain” and F = {ski}, the output should be invalid, since
“skied” is a morphological variant of “ski”. In contrast, for “The bathroom has recently been cleaned” and
F = {restroom}, the output should be valid, as no word in S morphologically relates to “restroom”.

Ratio behind Words Checker. We explicitly design Words Checker to study the impact of an increasing
number of forbidden words on LLM performance. Therefore, unlike other constrained generation problems,
this task does not require complex reasoning. Instead, we engineer Words Checker as a simple problem
that an advanced, morphologically aware string-matching algorithm – without concern for synonyms – could
potentially solve. In summary, Words Checker serves as an in vitro study on LSCG. At the same time,
Words Checker has practical applications. Consider a scenario where S is an LLM-generated response y in
a conversation, and F consists of words the user explicitly wants to avoid (e.g., when paraphrasing text, for
secret keeping, etc.,).

Testing Dataset. To construct a dataset for Words Checker, we use the CommonGen Lin et al. (2020)
benchmark, originally designed for traditional constrained text generation. Each entry in CommonGen
consists of a sentence and a variable-sized list of W words that are morphologically present in it. For
example, an entry may contain “The athlete skied a snowy mountain” with the corresponding words [“ski”,
“snow”].

We derive our dataset from two partitions of CommonGen, namely the challenge train sample and challenge
validation sample2. For these partitions, W ranges from 1 to 4. Given a pool size of candidate forbidden
words |F |, we: i) construct a vocabulary from all CommonGen partitions, and ii) iterate over the selected
partitions to generate valid and invalid samples. To create an invalid example, we retain W CommonGen
words and randomly sample |F |−W additional vocabulary words. For a valid example, we select |F | random
words ensuring that none is morphologically present in the sentence.

We generate four versions of Words Checker, each containing 1000 sentences, with increasing constraint
complexity: F = {10, 100, 500, 1000}. We generate balanced datasets, with approximately equal support for
both classes. Notice that the 1000 sentences are the same across all scenarios.

4.2 FoCusNet for Words Checker

Model Description. In the practical scenario of Words Checker, we train FoCusNet to recognize whether
a sentence S contains a set of words W = {w1, w2, . . . , wn}. The training pipeline, summarised in Fig. 3, is
divided into three phases:

Phase 1 : We use a frozen pre-trained sentence encoder to obtain the initial embeddings for the sentence
(eS) and the words ({ew1 , ew2 , . . . , ewn}).

Phase 2 Next, we refine these embeddings through two learnable projection layers. The sentence embeddings
are refined with a linear layer fχ : eS → êS , where êS is the refined sentence embedding. We aggregate
the word embeddings into a single refined embedding eŵ using an attention mechanism Bahdanau (2014).
Specifically, given the embeddings ew1 , ew2 , . . . , ewN

, we compute eŵ as:

eŵ =
N∑

i=1
fγ(ewi

) · fλ(ewi
)

Intuitively, we use this aggregation layer and focus on more words simultaneously to give the model a broader
understanding of the context in which the words are used. For example, with {W1 = “mount”, “ski”} and
W2 ={“mount”, “lake”}, the model understands that “mount” belongs to both winter- and spring-like
scenarios.

We train the layers χ, γ, and λ using the InfoNCE loss Oord et al. (2018), which encourages higher cosine
similarities for sentences and words that appear in the same set W . Specifically, two sentences S1 and S2

2The test partitions of CommonGen do not contain reference sentences.
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Table 2: Results of DeepSeek-R1-Distill-Llama-8B using different Test Steering Strategies as the number of
forbidden words |F | increases. The proposed FoCusNet significantly outperforms other TSS methods.

Test Steering Strategies |F |: 100 |F |: 500 |F |: 1000
Acc. Rec. Prec. Acc. Rec. Prec. Acc. Rec. Prec.

Simple Prompt 86.99 97.25 81.01 70.51 87.62 66.33 62.14 82.98 57.52
Chain of Thought 87.70 94.16 83.88 68.20 87.12 63.03 59.90 78.34 56.83

Best of 3 85.60 94.16 80.94 62.70 83.30 58.81 58.40 80.16 55.46
FoCusNet 87.50 79.18 95.76 79.30 81.69 77.78 72.80 84.01 68.26

from the same batch are considered positive examples if they share the same set of words, and negative
otherwise.

Phase 3 : After training the encoder and projection layers, we concatenate the refined sentence embedding êS

and the word embedding eŵ into a final embedding ef = êS ∥ eŵ. This concatenated embedding is then fed
into a Random Forest classifier, which determines whether the words encoded in eŵ appear in the sentence
S or not.

The last two phases of the training pipeline draw inspiration from the Supervised Contrastive Loss pa-
per Khosla et al. (2020), and are designed to learn high-quality embeddings.

Training Dataset. To train FoCusNet, we use the remaining train and validation partitions from Com-
monGen. Since more than 80% of the sentences contain a list of three specific words, we apply synthetic
augmentation to the dataset. Given a sentence (e.g., "The athlete skied a snowy mountain") with three
contained words (e.g.,“athlete”, “ski”, “mountain”), we randomly select subsets of one (e.g.,“mountain”) or
two words (e.g.,“athlete”, “ski”). The original sentence remains a valid positive sample for each subset. This
enhancement allows the model to learn from training examples with varying numbers of words contained,
enhancing its generalizability. As we further discuss in Sect.6, note that such augmentations, which exploit
logical dependencies, are not specific to this task but generalise across various fields. For example, returning
to the example in Fig.1, adopting the appropriate behaviour (e.g., “inviting a Muslim for tea rather than
beer”) not only aligns with the task “How to be a good visitor” but is also consistent with “How to effectively
socialize” and “How to spend quality time with locals while travelling”.

Eventually, the final dataset contains ∼ 220k labelled examples of sentences and contained words.

5 Experiments

In this section, we present the results of traditional Test Steering Strategies and FoCusNet in Words Checker.
While we provide some qualitative insights, our primary focus is on reporting quantitative metrics (e.g.,
accuracy, precision, and recall). A more detailed qualitative analysis, including an examination of specific
model responses, can be found in Appendix A.

5.1 Experiments Settings

LLMs Inference. To deploy the LLMs in our Words Checker experiments, we use SGLang3, an open-source
framework that facilitates efficient model downloading and deployment. Specifically, we select four models
from SGLang’s library: Meta-Llama-3.3-8B-Instruct and Meta-Llama-3.3-70B-Instruct from the LLaMA
family Grattafiori et al. (2024), as well as the more recent DeepSeek-R1-Distill-Llama-8B and DeepSeek-R1-
Distill-Llama-70B from DeepSeek DeepSeek-AI et al. (2025). The deployment of the 70B models required
four NVIDIA RTX A6000 GPUs, whereas the 8B models ran efficiently on a single A6000 GPU. When
prompting the models, we set the temperature t to 0.2 for the Simple Prompt strategy and increase it to 0.4
for more sophisticated TSS. The exact prompts used are provided in Appendix A.

When using the Best of N strategy, we set N=3.
3https://docs.sglang.ai/index.html
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Figure 4: Accuracies with a “Simple Prompt” strategy as the number of forbidden words increases.

Training FoCusNet. For the contrastive loss training of FoCusNet, we perform a hyperparameter search
using 4-fold cross-validation (K = 4), ensuring that all examples sharing the same word list are assigned
to the same fold to prevent data leakage. We explore embedding sizes {64, 128, 256, 512}, learning rates
{1e−4, 2.5e−4, 5e−4}, and InfoNCE loss temperatures {0.05, 0.1, 0.2}, training for 30 epochs. The best con-
figuration, determined by averaging validation results, consists of an embedding size of 128, a learning rate of
2.5e−4, a temperature of 0.05, and 24 training epochs, using all-mpnet-base-v2 4 as the pre-trained encoder.
After selecting the best encoder, we train a random forest where each sentence is paired with a positive
(words contained in the sentence) and a negative example (words not contained). A hyperparameter search
yields an optimal configuration of 200 trees, a maximum depth of 10, and a minimum of 3 samples per leaf.

Metrics. Since Words Checker is a standard binary classification problem, we evaluate performance using
accuracy (overall correctness), precision (the proportion of predicted positive sentences that actually contain
at least one forbidden word), and recall (the proportion of actual positive sentences correctly identified).
Additionally, for invalid sentences, we assess the model’s parsing ability. To do so, we introduce parsing
precision and parsing recall. For example, given the sentence “The athlete skied the snowy mountain,” the
set of forbidden words {snow, mountain, ski}, and the model’s prediction {snow, ski, sun, fun}, the parsing
recall is 0.66 (2 out of 3 correct words retrieved), while the parsing precision is 0.5 (2 out of 4 predicted
words are correct).

5.2 Results

Is Words Checker challenging?. We assess the effectiveness of a simple prompting strategy and find that
all models, regardless of family or size, experience a roughly 30% accuracy drop as the number of forbidden
words increases from 10 to 1000 (see Fig. 4). In addition (full table on Appendix), more forbidden words lead
to an increase in false alarms. For example, with 100 forbidden words, LLama 70B has a recall of 97% and
precision of 99%, but with 1000 forbidden words, the recall only decreases to 92%, while the precision drops
to 65%. These results show that, despite simplicity, Words Checker remains challenging for basic prompting
strategies, suggesting that more advanced Test Steering Strategies are needed.

FoCusNet vs. Traditional TSS Limitations. We assess the impact of advanced Test Steering Strategies,
like Chain of Thought and Best of 3, on Words Checker using Deepseek’s R1-8B model and compare the
results with FoCusNet.

Observe the results of Tab. 2. With 100 forbidden words, all methods show similar accuracy. Traditional
TSS has better recall, while FoCusNet is more precise. Chain of Thought provides minimal improvement
over Simple Prompt, suggesting that the LLM is already following a "Think Step by Step" strategy. The

4https://huggingface.co/sentence-transformers/all-mpnet-base-v2
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Figure 5: Analysis of recalls and precisions of FoCusNet per invalid sentences

Best of 3 strategy does not help, as, for this simple task, too many opinions lead the final LLM to overthink
– even more accentuated in the following scenario. Despite this, the LLM performs adequately in this case,
which serves as our reference as we further increase the number of forbidden words.

With 500 forbidden words, the recall is similar for both traditional Test Steering Strategies and FoCusNet,
but FoCusNet achieves +9% higher accuracy due to its better precision. Both Chain of Thought and Best
of 3 degrade the performance of Simple Prompt. We find that forcing the model to reason more in simple
tasks hinders its performance, as the LLM enters repetitive loops, leading to issues such as: i) confusion
between its thought process and the original task, ii) overthinking (e.g.,, “Should I accept synonyms?” or
“Do plurals count?”), and iii) hallucination of non-existent words. Contrarily, by focusing on smaller subsets
of relevant words (3 for 100 forbidden words, 14 for 500, 30 for 1000), FoCusNet helps the LLM stay on task
and reduce false alarms while maintaining a good recall.

Eventually, with 1000 forbidden words the issues observed in the 500-word case are amplified, and traditional
Test Steering Strategies only performs 10% better than random guessing – remember that the problem is
balanced. Although FoCusNet performance also declines, it still performs similarly to the 70B-Llama model
( 68% precision for FoCusNet vs 66% for Llama), which is promising given the ∼ 10 times smaller LLM we
used here.

Parsing skills of LLM + FoCusNet. Lastly, we conduct a deeper evaluation of our solution, utilizing
FoCusNet to enhance the LLM’s performance. While the original task was a binary classification – deter-
mining whether a sentence was valid or invalid – we now refine our analysis with a more granular approach.
Specifically, for invalid sentences, we assess parsing precision by measuring the proportion of predicted words
that are actually present in the sentence. Additionally, we evaluate parsing recall by examining how many
of the true forbidden words (W ) the LLM correctly identifies.

Our analysis focuses on approximately 500 invalid sentences, meaning sentences that contain at least one
forbidden word (|W | ≥ 1). This selection allows us to evaluate the detector’s ability to identify relevant
anomalies.

The results are shown in Fig. 5, with subfigures B and C providing key insights. These subfigures plot the
percentage of invalid sentences (y-axis) against parsing precision and recall (x-axis). For example, they show
that when using the list of relevant words identified by FoCusNet, the LLM achieves a parsing precision of
100% for 68% of invalid sentences. Both distributions exhibit a trimodal pattern, with peaks at 0%, 50%,
and 100%. This pattern arises because most invalid sentences in the test dataset contain either one or two
forbidden words (as seen in subfigure A).

Although the number of “perfect predictions” (both precise and accurate) consistently exceeds the number
of “bogus predictions” (0% precision and recall), increasing the number of candidate words (|F |) negatively
impacts performance. Notably, the scenarios with |F | = 100 and |F | = 500 contain the same set of invalid
sentences. This means that the true forbidden words (W ) in these sentences remain unchanged. For them,
FoCusNet always makes the same predictions, irrespective of F . However, as the pool of forbidden candidate
words (F ) grows, FoCusNet may introduce false positives into the list of relevant words returned to the LLM.
These false alarms mislead the LLM, causing it to make more mistakes, thereby reducing overall performance.
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6 Conclusions

This paper introduces Large-Scale Constraint Generation (LSCG), a new constrained generation problem
where Large Language Models (LLMs) must adhere to a large number of constraints. We designed Words
Checker as a controlled testbed of LSCG in which the model classifies sentences as valid or invalid based on
an increasingly large list of forbidden words.

Our experiments evaluated models from various families and sizes, testing traditional Test Steering Strategies
and introducing FoCusNet, a customizable support module for LLMs. The results highlight a significant
performance drop across all models as the number of constraints increases. Standard TSS approaches not
only fail to mitigate this decline but often lead models to overthink and hallucinate constraints. In contrast,
FoCusNet proves to be the most resilient, consistently improving constraint adherence by narrowing the
model’s focus.

Despite FoCusNet ’s own limitations, its effectiveness in reducing failure rates suggests a promising direction
for addressing LSCG. With its simplicity and strong initial results, this study lays the groundwork for future
research in constraint-aware LLM reasoning. By defining LSCG and offering open-source implementations
of Words Checker and FoCusNet, we aim to inspire the community to explore and benchmark solutions to
this critical challenge.

Limitations

Here we outline the limitations of the present work.

First, while we provide examples of alternative use cases, we focus solely on a specific instance of Large-Scale
Constraint Generation, namely Words Checker. To better isolate the impact of an increasing number of
constraints, we deliberately designed Words Checker to minimize the role of the LLM reasoning. Although
we believe that this problem has been largely overlooked in prior research, our analysis remains partial,
addressing only the complexity of scenarios involving: i) multiple constraints and ii) constraints that require
interpretation.

Second, our proposed model, FoCusNet, relies on sufficient task-specific data to perform well. This de-
pendency may limit the applicability of FoCusNet in scenarios where task data are scarce. In the paper,
we suggested that augmenting existing datasets through contrastive loss and logical dependencies between
constraints and input could mitigate this issue. Additionally, as a task-specific model, FoCusNet does not
require extensive generalization, and minor "benign overfitting" is acceptable. Future work should further
explore the trade-off between data availability and performance, possibly extending the analysis to contexts
beyond Words Checker.

Moreover, while we present FoCusNet as a generic add-on module for LLMs, its architecture has only been
evaluated within the Words Checker context. More research is needed to assess its generalizability and
explore how different weight architectures might affect its performance.

Finally, our work has concentrated solely on textual constraints. However, in many real-world tasks, con-
straints may span multiple modalities Chi et al. (2024); Inan et al. (2023). Future research could address
the challenges posed by the large number of constraints in different modalities. In this regard, FoCusNet
could offer valuable flexibility, as it could be adapted with modality-specific architectures to better address
these challenges.
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A Appendix

A.1 LLM prompts

We here provide the prompts we used for the LLM inference:

Simple Prompt.� �
Check if the following sentence contains one of the following set of words.
Only answer True or False. Enclose your final answer into ‘<answer></answer>’.

For instance, if the sentence contains one of the words, answer:
- <answer>True</answer>;
- <answer>False</answer> otherwise.� �

Chain of Thought.� �
Check if the sentence contains one of the following set of words.
Only answer True or False. Please, make sure to think step by step.
Enclose your final answer into <answer></answer>.

For instance, if the sentence contains one of the words, answer:
- <answer>True</answer>;
- <answer>False</answer> otherwise.� �

Best of 3.� �
For the judges: Check if the following sentence contains one of the following set
of words. Do not include your reasoning process in the answer; Provide a short
explanation (at most 100 words) to justify your answer. Conclude your sentence
with <answer>your answer</answer>, where your answer is either True or False.� �

14

https://openreview.net/forum?id=KBMOKmX2he
https://openreview.net/forum?id=KBMOKmX2he


Under review as submission to TMLR

� �
For the final verdict: Give me your final opinion over the verdicts of a jury of
args.n_rounds LLMs. When prompted the following message: <message>, a jury of LLMs
answered: <answer>. What is your final verdict? Enclose your final answer into
<answer></answer>.

For instance, if the sentence contains one of the words, answer:
- <answer>True</answer>;
- <answer>False</answer> otherwise.� �

A.2 Examples of LLMs answers

Here we report some of the erroneous answers the LLM might return.

Hallucinations. Here, the model thinks that the word “dog” is present in the list of forbidden words when
processing the sentence “dressed my dog up as a pirate”. However, the word is not present – even if the
conviction of the model would suggest so.� �

Hallucination: Okay, so I need to figure out which words from the given list are in
the sentence: "dressed my dog up as a pirate." The task is to report all the words
that are contained in the sentence. If none are found, I should just list an empty
list.

First, I’ll read the sentence carefully: "dressed my dog up as a pirate." I need to
identify all the individual words in this sentence and see which ones match any from
the provided list.

Let me break down the sentence word by word. The first word is "dressed." I should
check if "dressed" is in the list of words. Looking through the list, I don’t see
"dressed" there. So that’s one word not present.
Next is "my." Checking the list, "my" isn’t there either. Moving on.
The third word is "dog." I’ll look for "dog" in the list. Hmm, I don’t see it either.
So "dog" isn’t present.
Then we have "up." Scanning the list, "up" isn’t listed. So that’s another word not
found.
The next word is "as." Checking the list, "as" isn’t there. So that’s not present.

# HERE THE MODEL HALLUCINATE THE EXISTANCE OF THE WORD "PIRATE"
Finally, "a pirate." So "a" and "pirate." Checking the list, "a" isn’t there, but
"pirate" is in the list. Wait, let me double-check. The list includes "pirate" as one
of the words. So "pirate" is present.
Wait, but the sentence says "as a pirate," so "a" is part of that phrase, but "a"
isn’t in the list. So only "pirate" is in the list.

Let me go through the list again to make sure I didn’t miss any. The words provided
are quite extensive, but I only found "pirate" in the sentence.

So, the only word from the list that’s in the sentence is "pirate."
</think>

<answer> True </answer>� �
Ovethinking #1. Here, the LLM, prompted to “Think Step by Step”, initially gets the correct answer –
i.e., none of the words is present in the sentence. However, it is unsure about the answer, and in a second
pass it eventually self-convince that all words are present.
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� �
Overthinking: Okay, so I’ve got this task where I need to check which words from a
given list are present in a specific sentence. The sentence is: "winners podium with
numerals on the sky". The words provided are quite a long list, so I need to make sure
I go through each one carefully.

First, I’ll read the sentence again to understand the context. It mentions "winners",
"podium", "numerals", and "sky". I need to see which of the given words match any of
these terms or are related in meaning.

Looking at the list of words, I’ll go through them one by one. Starting with
"headlamp" - doesn’t seem relevant. "Success" - maybe, but the sentence doesn’t
explicitly mention success. "Wrestle" - no, that’s unrelated. "Crease" - not here.
"Poultry" - definitely not. "Softball" - nope. "Rodeo" - no. "Bait" - not present.
"Therapy" - doesn’t fit. "Whistle" - no. "Navigate" - not in the sentence.
"Aim" - maybe, but not directly. "Attach" - no. "Melody" - no. "Mock" - no. "Pasture"
- no. "Pass" - possibly, but not directly. "College" - no. "Header" - no. "Walker"
- no. "Resident" - no. "Calm" - maybe, but not in context. "Tiger" - no. "Hunter"
- no. "Ambush" - no. "Motorboat" - no. "Position" - maybe, but not clearly.
"Squeeze" - no. "Lease" - no. "Bubble" - no. "Wrap" - no. "Bounce" - no. "Teller"
- no. "Pattern" - no. "Headquarters" - no. "Brightness" - no. "Ballroom" - no.
"Birth" - no. "Statue" - no. "Submarine" - no. "Kiss" - no. "Indoor" - no. "Entry"-no.
"Exhibition" - no. "Proceed" - maybe, but not directly. "Prey" - no. "Puffin" - no.
"Friend" - no. "Swoop" - no. "Asteroid" - no. "Flag" - no.
"Hamburger" - no. "Stool" - no. "Beg" - no. "Resource" - no. "Electricity" - no.
"Backseat" - no. "Anxiety" - no. "Shadow" - no. "Lego" - no.
"Uniform" - no. "Earn" - no. "Shepherd" - no. "Marathon" - no. "Liquid" - no.
"Theme" - no. "Bomber" - no. "Thanksgive" - no. "Request" - no. "Resistance" - no.
"Climb" - no. "Cantilever" - no. "Bag" - no. "Push" - no. "Projector" - no.
"Undergo" - no. "Accompany" - no. "Characteristic" - no. "Nursery" - no. "Salt" - no.
"Mull" - no. "Workman" - no. "Sunset" - no. "Engrave" - no. "Slice" - no. "Crop" - no.
"Clarinet" - no. "Kill" - no. "Blouse" - no. "Purple" - no. "Disappoint" - no.
"Segment" - no. "Shoal" - no. "Memo" - no. "Cite" - no. "Hope" - no. "Deforestation"
- no. "Dial" - no. "Tree" - no. "Militant" - no.

# BEGINNING OF SECOND PASS - WHERE OVERTHINKING HAPPENS
Wait, I think I might have missed "podium". Let me check again. Yes, "podium" is in
the sentence. So that’s one word. Also, "winners" is another. "Numerals" is there too.
"Sky" is mentioned as well. Let me make sure none of the other words are in the
sentence. "With" is a preposition, but it’s not listed as a word to check. So the
words in the sentence that match the list are winners, podium, numerals, and sky.

Wait, but the original list includes "sky" as one of the words. So I should include
that. So the words are winners, podium, numerals, and sky.
</think>
<answer> True </answer>� �

Overthinking #2. This is an example from the Best of 3 strategy. Two support models agree that the
sentence does not contain any words. However, the third model ‘advocates for the devil’, saying that “adorn”
is actually a synonym for “dress”, and therefore the sentence shall be labelled invalid. The final judge model
trust this third model – as it can provide a convincing explanation – and (erroneously) triggers the alert.� �

Overthinking #2: Give me your final opinion over the verdicts of a jury of 3 LLMs.
When prompted the following message: Task: Check if the following sentence contains
one of the following set of words. Do not include your reasoning process in the anser;
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Provide a short explanation (at most 100 words) to justify your answer.
Conclude your sentence with <answer>your answer</answer>, where your answer is either
True or False.
Sentence: dressed my dog up as a pirate .
Words: <LIST_OF_WORDS>

# REPORTING ANSWERS FROM JUDGES
A jury of LLMs answered:

Judge 0: <think> Okay, so I need to check if the sentence "dressed my dog up as
a pirate" contains any of the given words. Let me go through each word one by one to
make sure I don’t miss any.
First, the sentence is about dressing a dog as a pirate. So, the main elements are
dressing, dog, pirate. Now, looking at the list of words, I see words like "adorn,"
which means to decorate or dress up. That’s a possibility because the sentence is
about dressing the dog.

Next, I’ll check the other words to be thorough. "Container" doesn’t fit here.
"Length" and "hairstyle" are unrelated. "Mountain," "lesson," "shop," "boutique,"
"glider," "iron," "steal," "orangutan," "overall," "blur," "lava," "equestrian,"
"exert," "hear," "scuba," "slice," "manufacturing," "personality," "decor,"
"cemetery," "plantation," "ear," "excite," "argue," "inscription," "cook," "deity,"
"pallet," "skyline," "hose," "chromosome," "awning," "contrail," "brand," "right,"
"medina," "catwalk," "sheer," "berth," "lamb," "complain," "impress," "ignore,"
"onion," "thrive," "smell," "guitarist," "effect," "header," "aim," "ask," "dome,"
"panini," "headdress," "table," "adorn," "evacuate," "sparkle," "girlfriend,"
"synchrony," "export," "tag," "puff," "school," "fiddle," "queue," "beam," "medal,"
"intensify," "distance," "alm," "bullfight," "midair," "mangrove," "bless," "wall,"
"mow," "universe," "candle," "galaxy," "reel," "soar," "worship," "sneeze," "gallop,"
"clank," "chimney," "helmet," "allow," "leather," "embrace," "iceberg," "lantern,"
"stride," "vacation," "wallow."

Wait, I already found "adorn" as a possible match. Let me make sure there’s no other
word that might fit. "Adorn" is the only one that relates to dressing or decorating
something. The sentence is about dressing the dog, so "adorn" fits perfectly. The
other words don’t seem to connect at all. So, the sentence does contain one of the
specified words.
</think>
The sentence contains the word "adorn," which means to decorate or dress something.
Since the sentence is about dressing a dog as a pirate, "adorn" fits the context.
<answer>True</answer>

Judge 1: <think> Alright, so I need to check if the sentence "dressed my dog up as a
pirate" contains any of the given words. Let me go through each word one by one. First,
I’ll read the sentence carefully. It says the user dressed their dog up like a pirate.
So, the main actions here are dressing and being a pirate.

Looking at the list of words, I see words like ’dress’ or ’clothing’ aren’t present.
The sentence mentions ’dog’ and ’pirate’, but those aren’t in the list either. I’ll
go through each word from the list to make sure I don’t miss anything. Words like
’massage’, ’container’, ’length’, ’hairstyle’ - none of these are in the sentence.
’Mountain’, ’lesson’, ’shop’, ’boutique’ - nope. ’Glider’, ’iron’, ’steal’,
’orangutan’ - still nothing. ’Overall’, ’blur’, ’lava’, ’equestrian’, ’exert’,
’hear’, ’scuba’, ’slice’, ’manufacturing’, ’personality’, ’decor’, ’cemetery’,
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’plantation’, ’ear’, ’excite’, ’argue’, ’inscription’, ’cook’, ’deity’, ’pallet’,
’skyline’, ’hose’, ’chromosome’, ’awning’, ’contrail’, ’brand’, ’right’, ’medina’,
’catwalk’, ’sheer’, ’berth’, ’lamb’, ’complain’, ’impress’, ’ignore’, ’onion’,
’thrive’, ’smell’, ’guitarist’, ’effect’, ’header’, ’aim’, ’ask’, ’dome’, ’panini’,
’headdress’, ’table’, ’adorn’, ’evacuate’, ’sparkle’, ’girlfriend’, ’synchrony’,
’export’, ’tag’, ’puff’, ’school’, ’fiddle’, ’queue’, ’beam’, ’medal’, ’intensify’,
’distance’, ’alm’, ’bullfight’, ’midair’, ’mangrove’, ’bless’, ’wall’, ’mow’,
’universe’, ’candle’, ’galaxy’, ’reel’, ’soar’, ’worship’, ’sneeze’, ’gallop’,
’clank’, ’chimney’, ’helmet’, ’allow’, ’leather’, ’embrace’, ’iceberg’, ’lantern’,
’stride’, ’vacation’, ’wallow’.

After going through each word, I don’t see any that match the sentence.
The sentence uses ’dressed’ and ’dog’, but those aren’t in the list. The closest might
be ’adorn’, but that’s not present either. So, the sentence doesn’t contain any of
the specified words.
</think>
<answer>False</answer>

Judge 2: <think>
Okay, so I need to check if the sentence "dressed my dog up as a pirate" contains any
of the given words. Let me list out the words first to make sure I don’t miss any.
The words are: massage, container, length, hairstyle, mountain, lesson, shop, boutique,
glider, iron, steal, orangutan, overall, blur, lava, equestrian, exert, hear, scuba,
slice, manufacturing, personality, decor, cemetery, plantation, ear, excite, argue,
inscription, cook, deity, pallet, skyline, hose, chromosome, awning, contrail, brand,
right, medina, catwalk, sheer, berth, lamb, complain, impress, ignore, onion, thrive,
smell, guitarist, effect, header, aim, ask, dome, panini, headdress, table, adorn,
evacuate, sparkle, girlfriend, synchrony, export, tag, puff, school, fiddle, queue,
beam, medal, intensify, distance, alm, bullfight, midair, mangrove, bless, wall,
mow, universe, candle, galaxy, reel, soar, worship, sneeze, gallop, clank, chimney,
helmet, allow, leather, embrace, iceberg, lantern, stride, vacation, wallow.

Hmm, the sentence is about dressing a dog as a pirate. So, the main elements are
"dog," "dress," "pirate." Now, looking through the list, I don’t see "dog" listed,
so that’s a point against it. But wait, the words are about checking if any of them
are present in the sentence, not necessarily the other way around.

Wait, the sentence is "dressed my dog up as a pirate." So the words used are
"dressed," "my," "dog," "up," "as," "a," "pirate." None of those words are in the
provided list. Let me double-check the list again. The words are all nouns,
I think. So "dressed" is a verb, "dog" is a noun, but "dog" isn’t in the list. So
the sentence doesn’t contain any of the specified words. Therefore, the answer
should be False.
</think>
<answer>False</answer>

# BACK TO THE FINAL VERDICT

What is your final verdict? Just answer True or False: Ensure to enclude your final
answer into <answer></answer>. For instance, if the sentence contains one of the
words, answer <answer>True</answer>; <answer>False</answer> otherwise.

<think>\nAlright, so I need to determine if the sentence "dressed my dog up as a
pirate" contains any of the specified words. Let me go through each word in the
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list to see if any match.\n\nFirst, the sentence is about dressing a dog as a pirate.
The key elements are "dress," "dog," and "pirate." Now, looking at the list of words
provided: massage, container, length, hairstyle, mountain, lesson, shop, boutique,
glider, iron, steal, orangutan, overall, blur, lava, equestrian, exert, hear, scuba,
slice, manufacturing, personality, decor, cemetery, plantation, ear, excite, argue,
inscription, cook, deity, pallet, skyline, hose, chromosome, awning, contrail,

brand, right, medina, catwalk, sheer, berth, lamb, complain, impress, ignore,
onion, thrive, smell, guitarist, effect, header, aim, ask, dome, panini, headdress,
table, adorn, evacuate, sparkle, girlfriend, synchrony, export, tag, puff, school,
fiddle, queue, beam, medal, intensify, distance, alm, bullfight, midair, mangrove,
bless, wall, mow, universe, candle, galaxy, reel, soar, worship, sneeze, gallop,
clank, chimney, helmet, allow, leather, embrace, iceberg, lantern, stride,
vacation, wallow.\n\nAfter reviewing each word, I notice that "adorn" is present
in the list. The word "adorn" means to decorate or dress something. Since the sentence
is about dressing a dog, "adorn" fits the context. Therefore, the sentence does
contain one of the specified words.\n<answer>True</answer>’� �
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