
Published as a conference paper at ICLR 2026

A PRIMER ON SO(3) ACTION REPRESENTATIONS IN
DEEP REINFORCEMENT LEARNING

Martin Schuck
Technical University of Munich

Sherif Samy
University of Girona

Angela P. Schoellig
Technical University of Munich

ABSTRACT

Many robotic control tasks require policies to act on orientations, yet the geom-
etry of SO(3) makes this nontrivial. Because SO(3) admits no global, smooth,
minimal parameterization, common representations such as Euler angles, quater-
nions, rotation matrices, and Lie algebra coordinates introduce distinct constraints
and failure modes. While these trade-offs are well studied for supervised learn-
ing, their implications for actions in reinforcement learning remain unclear. We
systematically evaluate SO(3) action representations across three standard con-
tinuous control algorithms, PPO, SAC, and TD3, under dense and sparse rewards.
We compare how representations shape exploration, interact with entropy regu-
larization, and affect training stability through empirical studies and analyze the
implications of different projections for obtaining valid rotations from Euclidean
network outputs. Across a suite of robotics benchmarks, we quantify the prac-
tical impact of these choices and distill simple, implementation-ready guidelines
for selecting and using rotation actions. Our results highlight that representation-
induced geometry strongly influences exploration and optimization and show that
representing actions as tangent vectors in the local frame yields the most reli-
able results across algorithms. The project webpage and code are available at
amacati.github.io/so3 primer.

1 INTRODUCTION

Accurate reasoning over 3D rotations is a core requirement for machine learning algorithms ap-
plied in computer graphics, state estimation and control. In robotics and embodied intelligence, the
problem extends to controlling physical orientations through learned actions, e.g., in manipulation
policies that command full task-space poses or aerial vehicles that regulate attitude. These tasks rely
on trained policies with action spaces including rotations in SO(3).

Dealing with rotations is especially challenging because the underlying manifold is curved, and
there exists no minimal parameterization that maps R3 to SO(3) and is globally smooth, bijective
and non-singular. This restriction has led to multiple parameterizations, each with its own trade-
offs (Macdonald, 2011; Barfoot, 2017). Euler angles are minimal and intuitive but suffer from order
dependence, angle wrapping, and gimbal-lock singularities. Quaternions are smooth and numer-
ically robust with a simple unit-norm constraint, but double-cover SO(3). Rotation matrices are
a smooth and unique mapping, but are heavily over-parameterized and require orthonormalization.
Viewing SO(3) as a Lie group, one can use tangent spaces, i.e., the Lie algebra m of skew-symmetric
matrices, together with the exponential and logarithm maps to represent orientations. Tangent spaces
are locally smooth, but globally exhibit singularities at large angles (Solà et al., 2018). Irrespective
of the choice of parameterization, any minimal 3-parameter chart must incur singularities, and global
parameterizations that avoid singularities are necessarily redundant and constrained.

Applications in deep learning that require reasoning over rotations and orientations have renewed
interest in this topic by adding another perspective: irrespective of any mathematical properties,
what is the best representation to learn from data in SO(3)? Are low-dimensional representations
necessarily more efficient, and does the double-cover of some representations harm training perfor-
mance? Several works have explored these questions in the supervised setting (Zhou et al., 2019;
Peretroukhin et al., 2020; Brégier, 2021). Geist et al. (2024) offer an excellent overview that summa-
rizes the most common representations, links mathematical properties of representations to observed

1

https://amacati.github.io/so3_primer

Published as a conference paper at ICLR 2026

performance gains, and gives concrete recommendations on supervised tasks like rotation estimation
or feature prediction.

What is still missing is a general, systematic evaluation of SO(3) representations in deep
reinforcement learning (RL). While the intuitions and results from prior studies on input/obser-
vation representations for orientations also apply to the RL setting, the most suitable SO(3) action
representation remains unclear. Action representation requires special attention, as it shapes the
exploration dynamics induced by stochastic policies and exploration noise, and has implications for
action clipping to comply with actuation constraints. Prior works have proposed specific action rep-
resentations for a narrow set of problems and algorithms (Alhousani et al., 2023a;b). Schuck et al.
(2025a) recently attempted to tackle the general question of best action and observation representa-
tions for RL, but limited their investigation to Deep Deterministic Policy Gradients (DDPG) under
sparse rewards.

In this paper, we study three widely used continuous-control algorithms: Proximal Policy Opti-
mization (PPO) (Schulman et al., 2017), Soft Actor-Critic (SAC) (Haarnoja et al., 2018), and Twin
Delayed Deep Deterministic Policy Gradients (TD3) (Fujimoto et al., 2018). We evaluate action
representations under dense and sparse rewards and focus on phenomena specific to RL rather than
supervised learning. We show how representations shape exploration, interact with entropy regular-
ization, and affect convergence stability. Finally, we quantify their practical impact across standard
robotics benchmarks. In summary, our contributions are as follows:

1. We analyze the most popular RL algorithms for continuous control, PPO, SAC, and TD3,
under action spaces that include orientations. These algorithms are extensively used in
robotics research to train policies deployed on physical hardware in the real world, and
thus are particularly relevant.

2. We investigate why different action representations yield different training performance.
Beyond intuitions on properties such as smoothness or uniqueness, we show how observed
performance and sample-efficiency differences are attributed to the map between Euclidean
network outputs and SO(3). Our analysis highlights the implication of representation-
induced action projections on exploration, action scaling, and regularization techniques.

3. We offer concrete guidelines for choosing policy representations and handling
representation-induced effects. Building on insights gained in our empirical studies
and in three benchmarks on three different robot platforms, we cover algorithm- and
representation-dependent pitfalls and how to mitigate them.

This paper aims to make orientation control in RL easy to get right. Consequently, we prioritize
clarity, common pitfalls, and ease of implementation over an exhaustive mathematical treatment of
manifold optimization. We hope this will help practitioners make a conscious decision on action
representations and advance the training of policies with full pose control.

2 REPRESENTING SO(3) ACTIONS IN DEEP RL

The set of all 3D rotations forms the Lie group SO(3). It appears in control, graphics, state esti-
mation, and in RL tasks where policies must command orientations, such as manipulation with full
end effector pose control or drone control. Multiple representations exist to parameterize SO(3),
each with its own properties. In the following, we outline representations, geometric properties,
and learning phenomena that matter when projecting neural network outputs to valid rotations and
training policies that act on SO(3).

2.1 THE SO(3) MANIFOLD

Unlike translation in R3, which is flat, commutative, and globally parameterized, SO(3) is a com-
pact, curved, and non-commutative manifold M that admits no global, smooth, minimal chart. Its
anisotropic geometry implies bounded, periodic angles and topological constraints that make action
representation difficult: minimal coordinates introduce singularities, global coordinates are redun-
dant and constrained, and tangent-space coordinates are only locally valid.

2

Published as a conference paper at ICLR 2026

Table 1: Properties of common SO(3) representations used for actions.

Representation ∆ Action Dim. Cover Smooth Singularities Constraints

Matrix R ∆R 9 single + - RTR = I
detR = 1

Quaternion q ∆q 4 double + - ||q||2 = 1
Euler angles (ϕ, θ, ψ) ∆(ϕ, θ, ψ) 3 multi - + –
Lie algebra m (Eτ) sτ 3 multi - + –

Formally defined as

SO(3) =
{
R ∈ R3×3 | R⊤R = I, detR = 1

}
, (1)

3D rotations have multiple representations that all map to SO(3). Table 1 lists a selection of common
representations and their respective properties. The Lie algebra m denotes the tangent space TEM
of SO(3) at the origin. Conversions between tangent increment vectors Eτ ∈ R3 and SO(3) are
realized by the capitalized exponential and logarithmic maps Exp : R3 → M and its inverse
Log : M → R3. Section A.5 contains example code demonstrating how to realize both Exp and
Log maps. For an in-depth review on Lie theory and SO(3) representations, we refer to Solà et al.
(2018) and Geist et al. (2024), respectively.

2.2 GLOBAL VS DELTA ACTIONS

There are two ways to define orientation actions in deep RL. The most straightforward way of view-
ing SO(3) actions is to interpret them as desired orientation in the global frame E . The environment
dynamics steer us towards that orientation, e.g., through a low-level controller. In the following, we
will call these global actions.

However, the group structure of SO(3) also permits us to view the action as an intrinsic delta rotation
with respect to the current state s of the agent, e.g. for rotation matrices Rt+1 = Rt∆R∆a with
the delta action R∆a. Changing the viewpoint makes actions independent from the global frame
and thus potentially aids generalization. We will explore the benefits of changing the viewpoint in
sections 3 and 4.

2.3 MULTI-COVERS, SINGULARITIES, DISCONTINUITIES

Action representations should be unique to avoid multi-modal solutions in policy outputs and targets.
Non-injective parameterizations create equivalent actions for the same physical rotation, complicat-
ing exploration, entropy regularization, and representation with uni-modal policies. In addition to
uniqueness, representations should vary smoothly under small physical rotations. Intuitively, we
want representations of actions that lead to similar rotations to lie close in Euclidean space.

Quaternions realize a double-cover from the 3-sphere S(3) to SO(3), with q and −q representing
the same rotation. Enforcing a hemisphere convention (e.g., nonnegative scalar part) removes the
ambiguity but introduces a branch discontinuity on the equator where the scalar part is zero and can
cause abrupt sign flips along trajectories.

Lie algebra coordinates use the exponential map Exp : R3 → SO(3) which wraps around infinitely
often along each axis for τ + 2πk, k ∈ N. Restricting m to a principal branch with angle θ = |τ | ∈
[0, π) limits overlap but leaves a cut locus at θ = π where log is discontinuous and the axis is not
unique.

Euler angles are a many-to-one map that is not a fixed k-to-1 cover. Most rotations have a unique
triple after choosing standard ranges, whereas specific configurations admit infinitely many repre-
sentations. The classical singularity (“gimbal lock”) arises when the first and third rotation axes
align and collapse into a combined angle. Independent of this, angle wrapping at ±π introduces
discontinuities.

2.4 PROJECTIONS

Feedforward policies produce Euclidean outputs that do not satisfy manifold constraints by con-
struction. Rotation matrices must obey R⊤R = I and detR = 1, and quaternions must have

3

Published as a conference paper at ICLR 2026

unit norm. Therefore, actions must be projected from raw outputs to valid group elements. These
projections can be inserted as differentiable layers in the actor, enabling backpropagation almost
everywhere. For quaternions, given x ∈ R4, normalize q = x

∥x∥ , which is smooth except at x = 0.
For matrices, the singular value decomposition (SVD) projects M ∈ R3×3 = UΣV ⊤ to the closest
rotation via

R = Udiag
(
1, 1,det(UV ⊤)

)
V ⊤, (2)

which is differentiable except at degenerate SVDs (Schönemann, 1966). Tangent-space and Euler-
angle outputs need no feasibility projection, though magnitudes should be limited to permissible
ranges by squashing network outputs through, e.g., tanh activation functions, such that actions are
clamped to |τ | < π − ε and Euler angles to (−π, π] and (−π

2 ,
π
2] respectively.

For TD3’s deterministic policies, this suffices to guarantee actions lie in SO(3). Stochastic policies,
on the other hand, are often parameterized as multivariate Gaussians. Applying the projection to
each sampled action guarantees on-manifold actions, but it also warps the action distribution and
renders log probabilities intractable. PPO and SAC rely on accurate log probabilities, and closed-
form corrections for normalization on S(3) or SVD-based projections are not readily available.

In this paper, we adopt a practical compromise: we project the mean inside the network wherever
possible and sample in the ambient Euclidean space. The sampled, off-manifold actions are pro-
jected again within the environment to a valid rotation. This approach keeps training compatible
with standard log-probability computations while ensuring feasibility at execution time.

2.4.1 UNIT-ROTATION CENTERING

Policy neural networks for RL are designed to initially produce zero-centered output distributions or
actions. Counterintuitively, the projections for quaternion and matrix representations map outputs
around zero to a wide range of rotation actions (see section A.1.1). This is particularly relevant for
delta actions, as the agent must first learn the unit rotation that prevents it from rotating.

One possible remedy is a custom policy network that adds the unit rotation to the action mean. We
discuss the performance impact on delta matrix and quaternion representations in section 3.3, and
provide ablations on corrections as well as more advanced benchmarks in section A.3. Local tangent
vectors and delta Euler angles center around the unit operation and are thus unaffected.

2.5 ACTION SCALING

Orientation control is particularly interesting for physical systems such as robot arms or drones.
These systems have bounded angular rates, which motivates policies with limited rotation magni-
tudes. Rate limits for global orientation targets have to be enforced by an underlying controller or
the environment dynamics.

On the other hand, delta rotations in the local frame, as introduced in section 2.2, can scale the incre-
ment before mapping to SO(3). For a tangent vector sτ ∈ R3, this is trivially achievable by limiting
the output norm. Intuitively, we interpret tangent vectors as vectors attached to the local tangent
space of the current orientation. One consequence of viewing SO(3) actions as delta rotations is
that it mitigates discontinuities from wrapping or cut-locus singularities for sufficiently small delta
rotations. Delta Euler angles are less straightforward to scale, since the change in orientation magni-
tude depends on the current orientation. Scaling is either overly conservative or requires a complex
chart of orientation-dependent normalizations.

Quaternion and matrix representations can be scaled uniformly via geodesic operations. Using the
exponential map presented in section 2.1, R̃ = Exp(αLogR) scales rotations to a maximum angle
of α, but introduces branch choices and non-smooth points at θ = π. In practice, delta actions in the
tangent space with norm control provide a well-behaved and straightforward mechanism for action
scaling.

3 CONTROLLING PURE ORIENTATIONS

We first study policies that control pure rotations to isolate the effects of action representations.
We compare PPO, SAC, and TD3 in an idealized environment with only rotational dynamics and

4

Published as a conference paper at ICLR 2026

orientation as state. Our analysis tests hypotheses about how representations influence exploration,
entropy regularization, and stability, and clarifies what matters for learning SO(3) actions.

3.1 ENVIRONMENT SETUP

Formally, we model an episode as a goal-conditioned MDP M = (S,A, P, r, γ) with state space
S = SO(3) × SO(3) consisting of states st = (Rt,Rg) where Rt is the current orientation and
Rg is a goal orientation fixed per episode. Following Geist et al. (2024), we use flattened rotation
matrices as observation representations everywhere. Goal-conditioned environments allow us to
also analyze sparse reward learning with Hindsight Experience Replay (HER) (Andrychowicz et al.,
2017) for off-policy algorithms (SAC and TD3).

Rt

αmax

optimal

Rt+1

actual

Ra

Rg

M

Figure 1: The agent ro-
tates at max αmax ra-
dians from the current
state Rt to the next state
Rt+1 towards the de-
sired state Ra. The goal
is to rotate into Rg .

The action space, our object of interest, is configurable. Actions can
describe global desired orientations in any of the aforementioned repre-
sentations or delta rotations. For global actions Ra, the deterministic
environment transition dynamics are formulated as

Rt+1 =

{
Ra, if d(Rt,Ra) < αmax

Rt Exp
(

αmax

d(Rt,Ra)
Log

(
R−1
t Ra

))
, otherwise

(3)

with the geodesic distance d(R1,R2) = arccos
(

tr(R⊤
1 R2)−1
2

)
. Intu-

itively, equation 3 takes the shortest path towards the desired orientation
Ra with a maximum step length of αmax. Figure 1 visualizes the en-
vironment dynamics. Dense rewards rdenset = −d(Rt,Rg) are defined
as the negative angle to the goal. Sparse rewards are 0 when the angle
between state and goal d(Rt,Rg) ≤ 0.1 and -1 everywhere else. Termi-
nation occurs after a fixed step limit of 50.

3.2 PERFORMANCE COMPARISON

We benchmark PPO, SAC, and TD3 in the pure-rotation environment using four action parameteri-
zations: rotation matrices, unit quaternions, tangent-space (rotation vectors), and Euler angles, each
evaluated as global and delta actions. All other components remain fixed: network architectures,
training budgets, observation spaces, and reward definitions are identical across conditions. The
results are presented in table 2, with the best results highlighted in blue, and the second-best shown
in bold. Results are averaged over 50 runs each. See section A.2 for the training curves, section A.4
for a discussion on Zhou et al. (2019)’s representation, and section A.8 for hyperparameters.

Across algorithms and reward formulations, the delta tangent vector representation almost always
results in the best final policy with minor variances between runs. Global matrix representations
achieve the second-best performance, except for SAC with sparse rewards, where they exhibit poor
performance. Other representations often perform poorly, particularly in sparse reward environ-
ments, despite using HER.

3.3 EXPLAINING THE EFFECTS OF SO(3) ACTION REPRESENTATIONS

The choice of action representations significantly impacts policy performance and training stability.
We now dive into the reasons why this is the case, and draw conclusions for training policies on
SO(3) actions. This section is organized in hypotheses: we state conjectures based on the intuitions
from section 2, analyze if these intuitions match our empirical results, and conduct ablations that
explain any deviations.

Hypothesis 1 Smooth, unique representations converge faster and lead to superior policies.
Our first hypothesis is a common assumption based on the intuition that neural networks better fit
smooth functions (Barron, 1993). In addition, the predominant policy network architectures either
parametrize a uni-modal distribution (PPO, SAC) or a single, deterministic action (TD3). In this
setting, multi-modal action representations should produce conflicting gradients, which harm per-
formance. Consequently, rotation matrices should be the best action representation in SO(3) among
the selected ones as they are both unique and smooth.

5

Published as a conference paper at ICLR 2026

Table 2: Results for the idealized rotation environment.

PPO SAC TD3
dense dense sparse dense sparse

R -5.4 ± 0.2 -4.7 ± 0.3 -29.4 ± 0.7 -4.7 ± 0.2 -6.4 ± 0.5
∆R -12.3 ± 1.1 -5.1 ± 0.3 -31.0 ± 1.5 -4.9 ± 0.3 -20.7 ± 13.4
q -11.5 ± 1.8 -5.0 ± 0.5 -30.2 ± 1.1 -5.3 ± 0.6 -9.2 ± 1.5
∆q -22.1 ± 1.8 -5.0 ± 0.3 -29.3 ± 0.9 -5.2 ± 0.4 -21.6 ± 12.9
Eτ -8.4 ± 0.5 -7.1 ± 1.5 -33.5 ± 1.8 -6.4 ± 0.8 -30.3 ± 2.2
sτ -5.4 ± 0.2 -2.9 ± 0.3 -7.9 ± 0.8 -3.5 ± 0.3 -6.9 ± 0.5
(ϕ, θ, ψ) -10.8 ± 0.6 -5.5 ± 0.7 -35.2 ± 2.1 -7.3 ± 4.2 -16.2 ± 3.4
∆(ϕ, θ, ψ) -7.9 ± 0.5 -5.8 ± 0.5 -15.7 ± 8.4 -7.4 ± 0.9 -31.2 ± 13.1

In our experiments, we see that this is only partially true. The global matrix representation does
well in table 2, except for SAC and sparse rewards. Based on the smoothness argument, delta ma-
trices should be equally performant but consistently achieve lower performance. The performance
difference originates from the fact that delta representations must learn the connection between the
current orientation and the goal, instead of only relying on the goal.

While smooth, quaternions display weaker performance due to the double-cover. We can show that
for both dense and sparse rewards, the critic learns the multi-modal reward distribution and thus
produces conflicting policy gradients if actions are sampled from both hemispheres of S(3) (see
section A.1.6).

The exceptions to our intuition are policies formulated in the tangent space of the local frame. While
they are not free of singularities nor discontinuities, the maximum step angle αmax limits the policy
to a region where the tangent space is unique, has no discontinuities, and the Exp mapping is almost
linear. The singularities and discontinuities at the cut locust are always out of the policy’s reach
since the space is attached to the local frame. Combined with not requiring projections and a lower
dimensionality, local tangent increments outperform global matrix representations even though they
must learn the relation between the current frame and the goal.

Tangent vectors in the Lie algebra follow our intuition and produce mixed results, as do global and
delta Euler angles due to severe discontinuities and singularities.

Conclusion Uniqueness and smoothness benefit learning, but the properties do not have to
hold globally for agents with limited angular step sizes. What matters is that discontinuities
and singularities are out of reach for the action space, e.g., as in the local tangent space.

Hypothesis 2 Representations influence the exploration dynamics on the SO(3) manifold.

Figure 2: Distribution
of Euler angles sam-
pled from N (0, 2) and
squashed with tanh. The
resulting orientations are
visualized in the 3D Lie
algebra m. Note that
samples also lie within
the spherical space.

While the research community has proposed advanced exploration tech-
niques to improve speed of convergence (Houthooft et al., 2016; Plap-
pert et al., 2018), the most common mechanisms are Gaussian stochastic
actions (PPO and SAC) or Gaussian/uniform exploration noise (TD3).
Samples from these distributions are generally off-manifold. Projecting
the perturbed actions back onto their representation manifold (see sec-
tion 2.4) produces action distributions that can concentrate around small
regions of the action space and harm exploration.

Figure 2 shows this concentration for random Euler angle samples that
concentrate around the singularities of the representation. The conse-
quences are most noticeable in the sparse reward environments, where
sparse rewards prevent the policy from converging early and agents ex-
plore longer (see section A.2). All representations except local tangent
vectors and global matrices for TD3 perform poorly on these tasks.

Additional ablation studies analyzing the replay buffers during training
and the distribution of successful goals show that agents’ success closely
correlates with the exploration distribution. Representations with a more

6

Published as a conference paper at ICLR 2026

even spread, i.e., matrix and local tangents, are thus advantageous. See section A.1.1 for a compari-
son of all distributions, and section A.1.4 for more details on Euler angles.

Conclusion The projection onto SO(3) warps common exploration distributions, which sig-
nificantly impacts convergence. Euler angles and quaternions are most affected by this, ma-
trices to some degree, and local tangent spaces least.

Hypothesis 3 Standard entropy regularization leads to suboptimal policies on SO(3).
As seen above, action projections warp random distributions on the action vector. Apart from explo-
ration, this has consequences for entropy regularization. Maximizing entropy without accounting
for the representation manifold may incentivize actions with less randomness after projecting (see
e.g. section A.6). Figure 2, where a high-variance Gaussian distribution of angles is mapped to a
narrow distribution in SO(3), demonstrates this well. This hypothesis only applies to PPO and SAC,
since TD3 is missing an entropy term.

The effect is not strong enough for dense rewards to have a strong impact on the results in table 2.
However, in sparse rewards, performance for representations with projections on SAC is significantly
worse compared to TD3, whereas the dense variants produce near-identical results. We conclude that
the entropy maximization leads to significantly worse exploration behavior than the noise in TD3.

To confirm this, we test all action representations with increased entropy coefficients. The full set of
experiments for PPO and SAC can be found in section A.1.7. Our results show that entropy maxi-
mization drives actions towards larger norms in Euclidean space. These do not, however, correspond
to more random actions because of the maximum step angle αmax, and instead lead to more stable
rotation directions. Scaling delta tangent actions to the range of allowed values mitigates this ef-
fect and contributes to the improved performance of SAC in section A.1.5. Quaternion and matrix
representations do not have a similar mitigation and thus perform poorly.

For Euler angles, elevated entropy levels result in an attraction towards singularities, but entropy
coefficients have to be increased by two orders of magnitude to make the effect visible, and thus
should not be an issue in standard parameter regimes.

Conclusion Increased entropy regularization drives actions to larger magnitudes, but fails to
increase the diversity of matrix and quaternion actions. It influences exploration, particularly
in sparse reward environments, but does not change the final policy. Attractions to Euler
singularities only become relevant with extremely high entropy bonuses.

Hypothesis 4 Unit rotation-centered policies improve performance for delta actions.

Figure 3: PPO learning curves for unit rotation-
centered delta actions using delta quaternions.

Section 2.4.1 remarks that due to the projection
onto SO(3), small, zero-centered actions can re-
sult in a large spread of rotations for quaternion
and matrix representations. Centering the output
around the unit rotation should lead to less erratic
initial exploration. In addition, agents do not have
to learn the group-specific representation of the
unit operation, i.e., unit quaternions and rotation
matrices.

We test the hypothesis by adding the constant unit
rotation to the policy mean. While Figure 3 shows
a clear performance improvement over the non-
centered delta actions, we find that this mostly
holds for PPO, and the same modification produces mixed results for TD3 and SAC. For details
on the implementation and the complete set of results, including benchmarks from section 4, refer
to section A.3.

Conclusion Centering delta actions around the unit rotation improves the performance of
quaternion and matrix representations in PPO. For SAC and TD3, the results are not conclu-
sive. Delta tangent and Euler actions are unaffected as they are centered by construction.

7

Published as a conference paper at ICLR 2026

Hypothesis 5 Scaling actions to the range of permissible rotations boosts performance. As
outlined in section 2.5, tangent vector increments in the local frame can easily be scaled. Restricting
the network output to the range of possible rotations should be more efficient because the agent does
not need to learn that actions with the same direction and magnitudes larger than αmax lead to the
same outcome. Furthermore, it removes discontinuities at the cut locus from the action space and
allows more fine-grained control in the relevant action ranges.

We can see the effects in all three algorithms. Ablation studies with unscaled tangent increments
and dense rewards consistently exhibit a performance difference of around −1.5 compared to scaled
tangent vectors across PPO, SAC, and TD3. The effect is smallest for PPO, where the policy initial-
ization around zero prevents frequent sampling of unscaled actions that reach the cut locus. Agents
trained on sparse rewards exhibit a similar decrease in performance. More importantly, however,
sparse reward agents sometimes take longer to converge to a near-optimal policy in TD3, and in
rare cases show degraded performance in SAC (see section A.1.5). SAC’s failures are caused by the
entropy bonus driving actions to regions of the representation with discontinuities and singularities
as outlined above.

Conclusion Scaling tangent vectors to the range of permissible angles improves performance
and stability. For PPO, pay special attention to the log standard initializations.

3.4 PRACTICAL RECOMMENDATIONS

We summarize our recommendations for practitioners as follows:

• Prefer delta actions in the tangent space of SO(3). They avoid projection, and for per-step
rotations below π

2 radians, the cut locus and Exp/Log singularities do not affect training.

• Dense rewards can mitigate representation-specific failures while sparse rewards amplify
them. Pay special attention to representations in sparse rewards.

• Exploration in the local tangent space is relatively well-behaved. Common strategies like
starting with small, zero-centered actions have adverse effects for quaternion and matrix
representations.

• Global rotation matrix and quaternion representations can outperform deltas because they
need not learn the relation between agent pose and goal. This advantage may vanish when
relative object poses matter.

• Delta Euler angles are better than absolute Euler angles, but generally a poor choice.

For additional effects and their explanation, see section A.1.

4 ROBOTIC BENCHMARKS

In real-world problems, rotation actions in SO(3) rarely act on purely rotational dynamics as in
section 3. Instead, they appear in a larger context, such as controlling a robot arm’s pose and gripper
to grasp objects, or controlling a drone’s orientation and total thrust for trajectory tracking. In
this section, we validate the relevance and transferability of our findings by applying the different
action parameterizations on three robot benchmarks. Here, we focus on the most promising action
combinations, i.e., global matrix and quaternion representations, and delta tangent and Euler angles.

The first benchmark demonstrates the effect of action representations on PPO in drone control.
We evaluate performance on two tasks: trajectory tracking and drone racing. In the first task, the
agent must track a predefined figure-8 trajectory, a standard benchmark in drone control extensively
used to compare the performance of different algorithms. For GPU-accelerated training, we use
a vectorized version of the safe-control-gym benchmark (Yuan et al., 2022; Brunke et al., 2022).
In the second task, we use a similarly adapted version of the IROS 2022 Safe Robot Learning
Competition (Teetaert et al., 2025) to train an agent in autonomous drone racing. The aim is to cross
four gates as fast as possible in the correct order while avoiding obstacles. PPO is the current state-
of-the-art for drone control, particularly drone racing, using reinforcement learning (Song et al.,
2021; Kaufmann et al., 2023). Following Geist et al. (2024), we convert all SO(3) observations to

8

Published as a conference paper at ICLR 2026

Figure 4: Achieved reward for the trajectory tracking (left) and drone racing competition (right)
tasks across action parameterizations. Shaded areas indicate the standard deviation across 25 seeds.

rotation matrices. As in section 3, we only change the action representation used by the policy. For
details on the choice of hyperparameters, refer to section A.8.

In figure 4, action representations significantly impact convergence speed on both benchmarks. Ac-
tions in the local tangent space consistently outperform other representations by converging faster
and achieving higher rewards. Surprisingly, Euler angles are second before rotation matrices and
quaternions. The reason is the limited range of angles required in the tasks. The drone cannot devi-
ate too much from the upright orientation without crashing, and hence the policy remains in a region
of SO(3) where Euler angles are still well-behaved. In contrast, absolute quaternion and matrix
actions are highly random at initialization (see section A.1.1), which leads to fast crashes and limits
progress. Ablations in section A.3 show that for these unstable environments, unit-centering (see
section 2.4.1 and hypothesis 4 in section 3.3) is a key factor for performance. It is highly advisable
to use relative and unit-centered representations this class of systems.

Next, we benchmark action representations on RoboSuite (Zhu et al., 2020), a simulation framework
implementing a suite of manipulation environments leveraging MuJoCo (Todorov et al., 2012). The
reference baseline uses SAC with shaped rewards on nine tasks spanning from single-arm block
lifting to complex tasks such as peg-in-hole tasks with two arms. As in section 3, we only change
the action representation used by the policy. We follow the requirements outlined in the benchmark,
training for 5M steps across five random seeds each using operational space control (Khatib, 2003)
to convert from policy actions to joint torques. Figure 5 presents the results. We report the mean
performance and standard deviation as a fraction of the maximum achievable reward in percent.

Figure 5: Achieved reward across the RoboSuite benchmark as a fraction of the maximum possible
reward. Error bars denote the standard deviation across five seeds.

As expected, global actions do well on SAC with dense rewards. The dense reward compensates
for exploration issues. Notably, quaternions outperform the matrix representation on several tasks.
Contrary to section 3, local tangent actions, while competitive on most tasks, do not exceed the
performance of quaternions. Global actions may benefit tasks requiring the arm to move into a few
select poses. Overall, the narrow performance gaps between these representations within the same
task and larger performance gaps between tasks indicate that other factors, such as reward design
and overall task difficulty, dominate the benchmark.

In the last benchmark, we adapt the setup from Andrychowicz et al. (2017) for goal-conditioned
robot arm control to include pose goals. We extend the agent’s action space to include the gripper
orientation and employ HER with TD3, the successor of the previously used DDPG (Lillicrap et al.,

9

Published as a conference paper at ICLR 2026

Figure 6: Achieved reward on ReachOrient (left) and PickAndPlaceOrient (right). Both
tangent and matrix action representations converge fast for the reach task, with quaternions second
and Euler angles last. On the harder pick and place task, the local tangent space representation
significantly outperforms other representations both in performance and convergence speed.

2016). Analogous to the original reach and pick and place tasks, we define a reach task where the
agent must lift its end effector into a target position and orientation, and a pick and place task where
the goal is to place the cube into a randomly sampled target position and orientation. The remaining
fetch tasks, sliding and push, cannot easily be modified to include orientation goals and are thus
omitted. For more details on the environment design, refer to section A.7.

As in the previous benchmark, we analyze switching the SO(3) action parameterizations of the pol-
icy. The results, averaged over five runs, are shown in figure 6. Policies with matrix and tangent
representations quickly converge to a near-perfect policy, quaternions follow slightly delayed, while
Euler angles significantly lag. On the second task, the tangent representation again clearly outper-
forms other representations at 69.8% success rate, with matrix second at 54.1%, quaternions third
at 46.7%, and Euler angles last at 32.3%. Here, the combined randomness of the initial cube and
target orientations requires the policy to cover a significant part of SO(3). Consequently, the differ-
ences between representations become more pronounced, as seen by the 2x increase in success rates
between Euler and tangent representations.

5 CONCLUSION

Action representations on SO(3) shape exploration dynamics, entropy rewards, and smoothness of
policies in deep RL. In this paper, we established that the choice of representations alone impacts
performance and convergence speed. We analyzed the behavior of popular representations for PPO,
SAC, and TD3, showed how the choice of representation affects learning, and gave clear recommen-
dations for practitioners looking to train agents for orientation control. Delta actions in the tangent
space offer the best performance, especially for tasks that cover all or a large subset of SO(3). While
there are viable alternatives for specialized domains (e.g., where only a few fixed orientations are
required and global quaternion and matrix representations can be competitive, or with orientations
close to identity, where Euler angles are an alternative), the tangent space overall serves as an effi-
cient general representation across algorithms and tasks.

One limitation of this paper is its restriction to state-based observations and small networks. Ob-
servations do not affect the action space; thus, our results likely still apply. However, this requires
empirical evidence. In addition, we did not consider discrete action space algorithms, which open up
entirely new questions, e.g. on discretization schemes and the required density of the SO(3) cover.
We also noticed a lack of suitable benchmarks that require control over the full SO(3) manifold. Our
extension to the HER environments could act as a starting point to build up a standard set of tasks
focusing on this capability. Finally, diffusion policies have found widespread adoption for imita-
tion learning in robotics. A similar study on suitable representation choices for diffusion may reach
significantly different conclusions due to diffusion models’ multi-modality and noise processes.

5.1 REPRODUCIBILITY STATEMENT

The code to reproduce our experiments is publicly available at github.com/amacati/so3 primer. It
includes the training scripts and instructions for running the experiments we describe.

10

https://github.com/amacati/so3_primer

Published as a conference paper at ICLR 2026

5.1.1 ACKNOWLEDGMENTS

We thank SiQi Zhou and Marcel Rath for their helpful feedback on the manuscript, and Jan
Brüdigam for the discussions on SO(3) representations and their impact on RL training. This work
was supported by the Robotics Institute Germany under BMBF grant 16ME0997K, and by the Hum-
boldt Professorship for Robotics and Artificial Intelligence.

REFERENCES

Naseem Alhousani, Hatice Kose, and Fares J. Abu-Dakka. Reinforcement Learning for Orientation
on the Lie Algebra. In 2023 31st Signal Processing and Communications Applications Conference
(SIU), pp. 1–4, 2023a.

Naseem Alhousani, Matteo Saveriano, Ibrahim Sevinc, Talha Abdulkuddus, Hatice Kose, and
Fares J. Abu-Dakka. Geometric Reinforcement Learning for Robotic Manipulation. IEEE Access,
11:111492–111505, 2023b.

Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder, Bob
McGrew, Josh Tobin, Pieter Abbeel, OpenAI, and Wojciech Zaremba. Hindsight Experience
Replay. In Advances in Neural Information Processing Systems, volume 30, 2017.

Timothy D. Barfoot. State Estimation for Robotics. Cambridge University Press, 2017.

A.R. Barron. Universal Approximation Bounds for Superpositions of a Sigmoidal Function. IEEE
Transactions on Information Theory, 39(3):930–945, 1993.

James Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. Algorithms for Hyper-Parameter
Optimization. In Proceedings of the 25th International Conference on Neural Information Pro-
cessing Systems, pp. 2546–2554, 2011.

Lukas Brunke, Melissa Greeff, Adam W. Hall, Zhaocong Yuan, Siqi Zhou, Jacopo Panerati, and
Angela P. Schoellig. Safe Learning in Robotics: From Learning-Based Control to Safe Rein-
forcement Learning. Annual Review of Control, Robotics, and Autonomous Systems, pp. 411–444,
2022.

Romain Brégier. Deep Regression on Manifolds: A 3D Rotation Case Study. In 2021 International
Conference on 3D Vision (3DV), pp. 166–174, 2021.

Scott Fujimoto, Herke van Hoof, and David Meger. Addressing Function Approximation Error in
Actor-Critic Methods. In Proceedings of the 35th International Conference on Machine Learning,
pp. 1587–1596, 10–15 Jul 2018.

A. René Geist, Jonas Frey, Mikel Zhobro, Anna Levina, and Georg Martius. Learning with 3D
rotations: a Hitchhiker’s guide to SO(3). In Proceedings of the 41st International Conference on
Machine Learning, 2024.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft Actor-Critic: Off-Policy
Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor. In Proceedings of the
35th International Conference on Machine Learning, pp. 1861–1870, 10–15 Jul 2018.

Rein Houthooft, Xi Chen, Yan Duan, John Schulman, Filip De Turck, and Pieter Abbeel. VIME:
Variational Information Maximizing Exploration. In Proceedings of the 30th International Con-
ference on Neural Information Processing Systems, NIPS’16, pp. 1117–1125, 2016.

Elia Kaufmann, Leonard Bauersfeld, Antonio Loquercio, Matthias Mueller, Vladlen Koltun, and
Davide Scaramuzza. Champion-level drone racing using deep reinforcement learning. Nature,
620:982–987, 08 2023.

Oussama Khatib. A unified approach for motion and force control of robot manipulators: The
operational space formulation. IEEE Journal on Robotics and Automation, 3(1):43–53, 2003.

Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. In Inter-
national Conference on Learning Representations, 2016.

11

https://www.robotics-institute-germany.de/

Published as a conference paper at ICLR 2026

Alan Macdonald. Linear and Geometric Algebra. Alan Macdonald, 2011.

Valentin Peretroukhin, Matthew Giamou, David M. Rosen, W. Nicholas Greene, Nicholas Roy, and
Jonathan Kelly. A Smooth Representation of SO(3) for Deep Rotation Learning with Uncertainty.
In Proceedings of Robotics: Science and Systems (RSS’20), Jul. 12–16 2020.

Matthias Plappert, Rein Houthooft, Prafulla Dhariwal, Szymon Sidor, Richard Y. Chen, Xi Chen,
Tamim Asfour, Pieter Abbeel, and Marcin Andrychowicz. Parameter Space Noise for Explo-
ration. In International Conference on Learning Representations, 2018.

Peter H. Schönemann. A Generalized Solution of the Orthogonal Procrustes Problem. Psychome-
trika, 31:1–10, 1966.

Martin Schuck, Jan Brudigam, Sandra Hirche, and Angela Schoellig. Reinforcement Learning with
Lie Group Orientations for Robotics. In 2025 IEEE International Conference on Robotics and
Automation (ICRA), pp. 14369–14376, 2025a.

Martin Schuck, Alexander von Rohr, and Angela P. Schoellig. scipy.spatial.transform: Differen-
tiable Framework-Agnostic 3D Transformations in Python. In EurIPS, Workshop on Differen-
tiable Systems and Scientific Machine Learning, 2025b. URL https://arxiv.org/abs/
2511.18157.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal Policy
Optimization Algorithms. ArXiv, abs/1707.06347, 2017.

Joan Solà, Jérémie Deray, and Dinesh Atchuthan. A micro Lie theory for state estimation in robotics.
ArXiv, abs/1812.01537, 2018.

Yunlong Song, Mats Steinweg, Elia Kaufmann, and Davide Scaramuzza. Autonomous Drone Rac-
ing with Deep Reinforcement Learning. In 2021 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS), pp. 1205–1212, 2021.

Spencer Teetaert, Wenda Zhao, Antonio Loquercio, Siqi Zhou, Lukas Brunke, Martin Schuck, Wolf-
gang Hönig, Jacopo Panerati, and Angela P. Schoellig. Advancing Reproducibility, Benchmarks,
and Education With Remote Sim2real: Remote Simulation to Real Robot Hardware. IEEE
Robotics & Automation Magazine, 32(1):117–123, 2025.

Emanuel Todorov, Tom Erez, and Yuval Tassa. MuJoCo: A physics engine for model-based control.
In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5026–5033,
2012.

Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Courna-
peau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J. van der
Walt, Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nel-
son, Eric Jones, Robert Kern, Eric Larson, C J Carey, İlhan Polat, Yu Feng, Eric W. Moore,
Jake VanderPlas, Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero,
Charles R. Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul van Mul-
bregt, and SciPy 1.0 Contributors. SciPy 1.0: Fundamental Algorithms for Scientific Computing
in Python. Nature Methods, 17:261–272, 2020.

Zhaocong Yuan, Adam W. Hall, Siqi Zhou, Lukas Brunke, Melissa Greeff, Jacopo Panerati, and
Angela P. Schoellig. Safe-Control-Gym: A Unified Benchmark Suite for Safe Learning-Based
Control and Reinforcement Learning in Robotics. IEEE Robotics and Automation Letters, 7(4):
11142–11149, 2022.

Yi Zhou, Connelly Barnes, Lu Jingwan, Yang Jimei, and Li Hao. On the Continuity of Rotation
Representations in Neural Networks. In The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2019.

Yuke Zhu, Josiah Wong, Ajay Mandlekar, Roberto Martı́n-Martı́n, Abhishek Joshi, Kevin Lin,
Soroush Nasiriany, and Yifeng Zhu. robosuite: A Modular Simulation Framework and Bench-
mark for Robot Learning. ArXiv, abs/2009.12293, 2020.

12

https://arxiv.org/abs/2511.18157
https://arxiv.org/abs/2511.18157

Published as a conference paper at ICLR 2026

A APPENDIX

A.1 ADDITIONAL EFFECTS

This section discusses additional effects and presents extended ablation studies related to section 3.3.

A.1.1 PROJECTIONS OF NOISE SAMPLES

The properties of each representation affect the mapping of Euclidean noise samples when projected
onto SO(3). We showcase how noise samples from identical distributions result in entirely different
rotation distributions when projected. Then, we evaluate the effect of projecting action samples
on PPO and SAC, two algorithms that utilize probability densities computed based on a Gaussian
assumption.

(a) R ∼ Π(N (0, 0.3)) (b) R ∼ Π(N (0, 2)) (c) q ∼ Π(N (0, 0.3)) (d) q ∼ Π(N (0, 2))

(e) Eτ ∼ Π(N (0, 0.3)) (f) Eτ ∼ Π(N (0, 2)) (g) (ϕ, θ, ψ) ∼ Π(N (0, 0.3)) (h) (ϕ, θ, ψ) ∼ Π(N (0, 2))

Figure 7: Samples from a squashed Gaussian distribution projected onto the manifold using the projections
Π outlined in section 2.4. Each action representation has its own characteristic distribution after sampling.
Samples are visualized as 3D points in the sphere of the Lie algebra m.

Figure 7 depicts the projection of noise sampled from squashed Gaussian distributions onto SO(3),
visualized in 3D through the Lie algebra m. The rotation matrix projection yields a distribution
almost independent of the noise level, resembling a uniform distribution. Tangent vectors remain
normally distributed for small noise magnitudes, but concentrate at the boundaries of the 3D tangent
space because of saturation. Quaternions display a uniform distribution similar to rotation matrices
for small noise levels. Indeed, without clipping, projecting zero-centered Gaussian noise leads to a
uniform cover of SO(3). At larger noise levels, the distribution of rotations concentrates along a nar-
row sub-manifold. Finally, Euler angles act similarly to tangent vectors at smaller noise magnitudes,
but concentrate around the two curves corresponding to the singularities for larger magnitudes.

For stochastic policies used in PPO and SAC, a natural question is whether projecting sampled
actions to the valid representation manifold speeds up convergence, as the critic never sees off-
manifold actions. Ablation runs in figure 8 show this is false. Projections lead to a significant
performance loss in PPO, because the probability ratios πθ(a|s)

πθold
(a|s) used in its clipped surrogate ob-

jective no longer matches the ratio of the unprojected action. Newly computed probabilities use
projected actions, while the stored probabilities of the old policy are based on non-projected actions.
SAC remains unaffected as action probabilities are re-computed online during policy updates, with
projections applied afterwards. However, we do not observe any performance improvements.

13

Published as a conference paper at ICLR 2026

Figure 8: Learning curves for PPO (left) and SAC (right) evaluating the effect of projecting action
samples onto the manifold for the global quaternion and rotation matrix action representations using
dense rewards in the idealized environment.

Based on our ablations, we recommend not projecting the actions of PPO and SAC after sampling,
and instead relying on the environment for the action projection. Introducing projections offers no
performance gains in the best case, and has the potential to severely harm convergence.

A.1.2 EULER ANGLE NONLINEARITIES AND DISCONTINUITIES

Euler angles show very inconsistent performance across algorithms and benchmarks. This section
analyzes why this is the case and relates their performance to the nonlinearities and discontinuities
outlined in section 2.

In the idealized environments, Euler angles perform poorly almost everywhere. The only excep-
tion is PPO with dense rewards. The reason is that the relation between Euler angle rates, and by
extension delta Euler angles, of a fixed magnitude and the induced angular change in orientation be-
comes increasingly nonlinear, making it harder to learn orientation control at orientations far from
the identity.

In PPO with dense rewards, the network initialization has to be adjusted to produce incremental
actions narrowly focused around zero at the beginning of the training. Otherwise, agents do not
converge to a successful policy. Adapted initialization partially alleviates the issue and leads to a
suboptimal, but stable policy.

While the delta Euler angle chart is highly nonlinear at large angles, it is almost identical to the
incremental tangent representation at small changes around the identity. We can see this in the
drone control benchmarks in section 4, where ∆(ϕ, θ, ψ) performs nearly as well as sτ . Stable
drone flight only requires states in a small region of SO(3), and the angular changes in the trajectory
task are minimal. Hence, the performance of Euler angles is not surprising. In the drone racing task,
drones are flying more aggressively, and thus the performance gap to sτ increases.

In the RoboSuite benchmark, performance varies significantly, from being worse than other repre-
sentations to having minor differences. We attribute this to varying levels of pose control required
to solve the tasks. On ReachOrient and ReachPickAndPlace, which cover a large subset of
SO(3), ∆(ϕ, θ, ψ) is again the worst among all policies.

Practitioners should avoid Euler angles for SO(3) action representations. Delta Euler angles can
be successful on tasks that only require small angular changes, because this avoids the heavy non-
linearities and singularities at larger angles. Examples are drone control at moderate speed and
manipulation with minor orientation adjustments. However, they offer no advantages over local
tangent increments sτ , and yield worse performance as the required coverage of SO(3) increases.

A.1.3 PROJECTING SAC’S ACTOR OUTPUT

SAC uses a squashed Gaussian policy parameterization, which prevents the projection of the mean
onto the manifold of its representation. Samples are generated using

πθ (s) = tanh (u ∼ N (µθ (s) ,σθ (s))). (4)

14

Published as a conference paper at ICLR 2026

Importantly, the squashing is applied after sampling. Consequently, projecting the mean before
sampling will reduce the range of mean values the distribution can sample from. E.g., normalized
Euler angles of [0, 0, 1] as mean will become approximately [0, 0, 0.76], which makes reaching some
orientations in SO(3) infeasible. Projecting actions after sampling does not improve performance
as shown in appendix A.1.1. Therefore, we keep SAC’s actions completely off-manifold.

Combining off-manifold mean actions and SAC’s maximum entropy formulation results in several
entropy-related issues discussed in section A.1.7 with quaternions and rotation matrix represen-
tations. However, we adhere to the commonly used policy parameterization for SAC due to its
widespread use, squash actions once after sampling, and rely on the environment to correctly project
the policy’s actions.

The mean actions can be projected in PPO and TD3 as samples are left unbounded (PPO) or use
additive exploration noise with clipping (TD3).

A.1.4 EXPLORATION WITH EULER USING DELTA ACTIONS

Delta Euler angles outperform their global counterparts, but struggle in tasks that require full ori-
entation control. Here, we show how wrapping Euler angles around the singularities at θ = ±π/2
dominates exploration behavior during training and leads to a poor coverage of SO(3).

Starting from an orientation whose pitch angle θ0 ≈ 0 and sampling normally distributed actions
from N (0, σ), the distribution of the next pitch angle θ1 remains approximately normally distributed.
However, if θ0 is non-zero (e.g. θ0 = π

4), samples exceeding θ = π
2 will wrap around. Thus, the

density of θ1 in [π2 ,
3π
4] adds to that of [π4 ,

π
2]. Therefore, the probability density of [π4 ,

π
2] outweighs

that of [0, π4]. Hence, the agent is more likely to move closer to the singularity rather than away
from it. This effect continues until the singularities, where one half of the Gaussian distribution is
mirrored onto the other half as shown in figure 9.

Figure 9: Distribution of pitch angles sampled from Gaussian distributions with different means and
a standard deviation of 0.3 (left) and from the achieved goals stored in the HER replay buffer during
training using SAC with delta Euler angles and sparse rewards in the idealized environment (right).

In the absence of a dense reward that provides immediate feedback to policies about the quality of
their actions, this effect severely slows down convergence and results in the high variance displayed
by both SAC and TD3 for sparse rewards in section A.2. Since policies are initialized randomly
and rely on noise for exploration, a large percentage of their initial trajectories end up near the
singularities following this random walk. Accordingly, by re-labeling experiences through HER,
they learn to reach these singularities consistently.

However, due to the highly nonlinear and discontinuous behavior of Euler angles near these points,
policies fail to explore further regions of the goal space, resulting in the observed results for SAC
and TD3. By inspecting the distribution of pitch angles for achieved goals stored in the replay
buffer for SAC in figure 9, it is clear that points near the singularities dominate the first and second
quarters of the training process. Only later on, during the second half of the training process, does
the distribution of goals become more balanced.

15

Published as a conference paper at ICLR 2026

A.1.5 SCALING TANGENT VECTORS

Section 2.5 outlines how tangent vectors can be scaled to only encompass the range of possible
rotations with a limited angle αmax. In section 3.3, we explain how this helps avoid the cut locus
of the tangent space at large action norms. Here, we present the training curves of our ablations
in figures 10, 11 and 12. As previously stated, the final mean reward of scaled policies is slightly
increased by 1.5 to 2 due to more fine-grained control. Much of the unscaled policies’ action space
lies outside the αmax limit and thus maps to the same actions.

Figure 10: Learning curves of the scaled and unscaled incremental tangent vector representation
for SAC. We show the worst five among 50 unscaled runs to emphasize that the increased variance
stems from a small number of runs that fail to make significant progress.

Figure 11: Learning curves of the scaled and unscaled incremental tangent vector representation
for TD3. Again, we show the worst five among 50 unscaled runs to demonstrate that the increased
variance stems from a small number of runs with significantly slower convergence rates.

Figure 12: Learning curves of the scaled and unscaled incremental tangent vector representation for
PPO. As before, we show the worst five among 50 unscaled runs. Dense rewards prevent conver-
gence issues in PPO.

The effect is smallest for PPO, where the initialization of the policy leads to actions close to zero.
For SAC and TD3, the effect is slightly more visible in dense environments. Agents in sparse
environments infrequently converge with significant delay (TD3) or fail to converge (SAC), causing

16

Published as a conference paper at ICLR 2026

the increase in variance across runs. The entropy bonus drives actions towards larger magnitudes
around the cut locust before learning a reasonable policy, which causes the complete failures in
SAC. Dense rewards prevent this by balancing the entropy bonuses with a continuous signal towards
successful policies from the beginning.

A.1.6 CONFLICTING POLICY GRADIENTS

Given the uni-modal policy parameterization used by all three studied algorithms, the full double-
cover of quaternions and partial overlap of the Lie algebra m for ∥τ∥ > π, harm the learning process.
Multiple optimal actions produce conflicting gradients that pull the policy in different directions. In
the case of the quaternion double-cover, these actions point in opposite directions, yielding opposing
gradient signals during policy updates.

q

qExp(πτg)

−q
qExp(−πτg)

∇a

Rotation

Q-value

qExp(−πτg) q qExp(πτg) −q

-2.39

-1.2

(a) SAC Q-values along the double-cover of quaternions for sparse rewards.

q

qExp(πτg)

−q
qExp(−πτg)

∇a

Rotation

Q-value

qExp(−πτg) q qExp(πτg) −q

-4.237

-3.208

(b) TD3 Q-values along the double-cover of quaternions for sparse rewards.

Figure 13: Learned Q-values of SAC’s and TD3’s critics for sparse rewards using the global quater-
nion action representation in the idealized environment. We sample equally-spaced actions dis-
cretely along the geodesic connecting q = π (s) and −q that passes through the goal orientation on
the S(3) manifold by applying the Exp of the unit-norm rotation vector τg pointing in the direction
of the goal. The Q-function clearly shows that the critics learn the multi-modal distribution.

Actor-critic algorithms such as SAC and TD3 rely on the critic for computing the policy gradient.
Hence, conflicting gradients only appear if the critic does learn the bi-modal Q-function. To test if
this happens in practice, we analyze the learned Q-values between q = π (s) and −q as shown in
figure 13. We sample equally-spaced actions discretely along the geodesic connecting q = π (s)
and −q that passes through the goal orientation on the S(3) manifold by applying the Exp of the
unit-norm rotation vector τg pointing in the direction of the goal. Both critics have learned nearly
the same Q-values for −q and q, although the value for the actual action q is still slightly higher in
both cases. Since the double-cover points in the opposite direction in Euclidean space, the critics
will produce conflicting gradients for actions sampled on the hemisphere of −q.

Lastly, although not visualized here, the results directly apply to PPO’s advantage estimates if both
action representations are sampled during the same rollout.

A.1.7 EXTENDED RESULTS FOR ENTROPY REGULARIZATION IN PPO AND SAC

In this section, we study the effects of varying entropy levels on PPO and SAC in the idealized en-
vironment. For PPO, we scale entropy coefficients relative to the optimal value determined through
hyperparameter tuning. SAC’s target entropy is scaled relative to its default value of −dim (A).

Due to the non-Euclidean nature of rotation representations, increased entropy might not always
lead to better exploration. For instance, vectors of larger magnitude in the tangent space attain

17

Published as a conference paper at ICLR 2026

higher directional stability. Thus, from the perspective of entropy maximization, actions of large
magnitude are more attractive than their smaller counterparts. This correlation between entropy and
action magnitudes in the tangent space can be seen clearly in figure 14. Policies that fail to reach a
zero norm oscillate near the goal indefinitely due to a lack of sufficient exploration near the identity.
This effect can be mitigated by constraining the maximum rotation magnitude; hence, we always
recommend scaling local tangent increments. The effectiveness of this mitigation depends on the
magnitude of the maximum rotation angle αmax, with smaller values being more beneficial.

Figure 14: Action norms for different entropy levels for PPO (left) and SAC (right) using the un-
scaled delta tangent action representation in the idealized environment. Actions are evaluated across
3000 episodes with different goal orientations set at a magnitude of π. The agent’s initial orientation
is always initialized to the identity rotation.

A very similar effect manifests when using quaternions. Large imaginary components (x, y, z) make
the rotation direction more robust to noise perturbations. In addition, the norm of (x, y, z) constrains
the effect of perturbations to the real component w on the rotation’s magnitude. This follows from
the relation that the rotation’s magnitude θ = 2 tan−1(

√
x2 + y2 + z2/w). For SAC, this effect

is more prominent due to its mean actions remaining off-manifold, allowing them to exceed a unit
norm.

Euler angles do not suffer from the same issues. Increased entropy coefficients lead to a slight
increase in action magnitudes, but this increase plateaus quickly, unlike in tangent and quaternion
representations, which showcase an almost-monotonic effect. A likely explanation is that Euler
angles become more non-linear as Euler angles become larger, which makes learning harder (see
section A.1.2). At high entropy levels 100x above the baseline, singularities attract agents trained
with Euler angle action representations. However, their performance deteriorates considerably in
this parameter regime.

Figure 15: Action norms for different entropy levels for SAC across the dense (left) and sparse (right)
reward settings using the global rotation matrix action representation in the idealized environment.

Lastly, rotation matrices with PPO are not affected by any entropy-related issues since the Frobenius
norm of a 3D rotation matrix is constrained by the structure of the SO(3) manifold, such that ∥R∥ =√
3. However, due to SAC’s off-manifold actions, entropy maximization provides an undesired

incentive for policies towards increasing the Frobenius norm of their actions. This effect, which
contributes to the poor performance of matrix policies compared to TD3, can be seen clearly in
figure 15. To explain why SAC’s actions remain off-manifold, refer to section A.1.3.

18

Published as a conference paper at ICLR 2026

A.2 FULL EXPERIMENTAL RESULTS ON THE IDEALIZED ENVIRONMENT

This section completes the results presented in section 3.2. We test PPOwith global and delta actions
on dense rewards. Training goal-conditioned policies with sparse rewards makes little progress
without HER; our analysis omits it. Since SAC and TD3 are off-policy algorithms compatible with
HER, we train them with global and delta actions on sparse and dense rewards. All experiments
use 50 runs per representation to ensure the significance of the results. Hyperparameters are tuned
according to section A.8.

A.2.1 PPO RESULTS

Figure 16 shows the results. Rotation matrix representations yield the best performance for global
actions. Despite its lower dimensionality, the quaternion representation is less successful. We at-
tribute this to the double-cover as established in section A.1.6. Perhaps surprisingly, tangent incre-
ments in the Lie algebra perform better than quaternions. Euler angles reach approximately the same
performance as quaternions.

For delta actions, tangent vectors in the local frame display superior performance to other represen-
tations, with Euler angles as a close second. Matrix and quaternion representations struggle to learn
a good policy. Reducing the randomness at the start of the training does not help these represen-
tations, because vectors centered around 0 will still yield vastly different actions by projecting the
mean onto the manifold.

Figure 16: PPO learning curves for dense rewards using global (left) and delta (right) action repre-
sentations in the idealized environment.

We note that the performance of the Euler representation is highly dependent on initializing the
policy log-standards to a small value of −2. With a default value of 0 as used in many reference
implementations, agents cannot learn any reasonable policy. This trick is specific to the Euler angle
representation (see section A.1.2).

We recommend the use of the delta tangent representation for PPO. It displays a reduced variance
compared to global matrix actions, achieves a slightly better final performance, and avoids issues
with projections of small actions early on during training.

A.2.2 SAC RESULTS

For dense rewards and global actions, the rotation matrix representation converges fastest. We at-
tribute this to the uniqueness and smoothness of the representation. Quaternions are second with
decreased convergence stability because of the multi-modality introduced by the double-cover of
S(3) (see section A.1.6). For delta actions, the local tangent space representation significantly out-
performs others and performs better than global actions. Attaching the tangent space to the local
frame always puts the cut-locus on the farthest side from the current orientation and prevents it from
impacting uniqueness and continuity. All results are shown in figures 17 and 18.

The results for sparse rewards differ significantly from the dense case. While the matrix represen-
tation remains the best for global actions, its performance is well below the optimum. The other
representations improve more slowly and remain worse in performance. An analysis of the trained
policies reveals that the entropy maximization in combination with the inability to project actions

19

Published as a conference paper at ICLR 2026

(see section A.1.3) learns to maximize the entropy regularization before the critic can provide a
meaningful policy gradient. Since subsequent exploration is based on the behavior of the policy
and not random noise (e.g., in TD3), agents cannot recover from this collapse. Tangent and Euler
policies are unaffected but still suffer from discontinuities and singularities.

Delta actions show a similar severe degradation in performance for matrix and quaternion repre-
sentations for the same reason as in the global case. Tangent spaces are unaffected and achieve
near-optimal performance. Delta Euler angles outperform the matrix and quaternion representa-
tions, but remain significantly below the tangent representation and experience the largest variation
between training runs (see section A.1.4).

Figure 17: SAC learning curves for dense rewards using global (left) and delta (right) action repre-
sentations in the idealized environment.

Figure 18: SAC learning curves for sparse rewards using global (left) and delta (right) action repre-
sentations in the idealized environment.

As with PPO, we recommend using the delta tangent space representation with SAC. If global action
spaces are required, practitioners should opt for a matrix or quaternion representation, but have to
ensure that dense rewards are available to prevent agents from collapsing into degenerate action
outputs.

A.2.3 TD3 RESULTS

As in SAC, the rotation matrix representation in TD3 converges fastest and displays the highest
performance for dense rewards and global actions in figure 19. Quaternions are second again, for
the same reasons as for SAC. Again, the local tangent space representation significantly outperforms
all others for delta actions, and achieves superior performance compared to global actions.

The results in figure 20 for sparse rewards show the same results, but amplify the differences between
representations. The matrix representation has a more apparent advantage in the global frame, while
Euler and the Lie algebra representations struggle to learn a successful policy. In the local frame,
the tangent representation converges almost immediately to the optimal policy. On the other hand,
matrix, quaternion, and Euler angle representations display large variances between training runs
and are often unable to find a successful policy.

As in PPO and SAC, our recommendation for TD3 is to use the delta tangent space representation.
If global action spaces are required, practitioners should opt for a matrix or quaternion representa-

20

Published as a conference paper at ICLR 2026

tion. Contrary to SAC, exploration is less of an issue with these representations due to the policy-
independent random exploration noise. Hence, matrix and quaternion representations also work
with sparse rewards.

Figure 19: TD3 learning curves for dense rewards using global (left) and delta (right) action repre-
sentations in the idealized environment.

Figure 20: TD3 learning curves for sparse rewards using global (left) and delta (right) action repre-
sentations in the idealized environment.

A.3 EXTENDED DISCUSSION OF UNIT ROTATION-CENTERED DELTA ACTIONS

Section 2.4.1 discusses that policy networks using quaternion and matrix representations are not
centered around the unit rotation for delta actions, potentially leading to worse performance. To
address this, the network output can be modified such that a zero output corresponds to the identity
rotation I (or unit quaternion qI). We investigate two distinct implementations of this centering
strategy for quaternion and matrix representations and evaluate their impact on learning stability
and final performance.

A.3.1 COMPARISONS OF IMPLEMENTATIONS

We denote the raw output of the neural network as qnet and Rnet, respectively. We define two variants
for mapping this output to a pre-projection action qpre and Rpre, which are subsequently projected
to obtain the valid rotation.

Additive Bias. The simplest approach is to add the identity element to the network output.

qpre = qnet + qI

Rpre = Rnet + I

This variant ensures that if qnet or Rnet ≈ 0, the resulting action is close to the identity. However, this
method limits the set of reachable actions. Assuming tanh activations bound anet within [−1, 1], the
scalar component of qpre is restricted to the range [0, 2]. Consequently, the policy cannot represent
the conjugate unit quaternion q∗

I directly. A similar property holds for the matrix representation.

21

Published as a conference paper at ICLR 2026

Scaled Bias. To mitigate the range limitation of the additive variant, we can also implement the
mapping with a scaling factor dependent on the identity element.

qpre = qnet ⊙ (qI + 1) + qI

Rpre = Rnet ⊙ (RI + 1) + I

Here, ⊙ denotes element-wise multiplication and 1 is a tensor of ones with matching dimensions.
By scaling the network output, the policy can reach all possible quaternion configurations, including
the negative hemisphere. However, this introduces non-uniform sensitivities, since the scalar com-
ponent w and the diagonal elements of the rotation matrix, respectively, induce larger changes in the
resulting rotation magnitude compared to the additive variant.

A.3.2 RESULTS ON THE IDEALIZED ENVIRONMENT

We benchmark both implementations against the standard, uncentered parameterizations in our ide-
alized environment. Results are averaged over 50 runs as in the main text.

Figure 21: PPO learning curves for unit rotation-centered delta actions using delta quaternion (left)
and matrix (right) action representations in the idealized environment.

For PPO, the modified relative actions provide a clear benefit. Both converge slightly faster than
their absolute variants and significantly improve over the uncentered delta actions (see figure 21).
Comparing the two variants, the additive mapping achieves a slight performance advantage over the
scaled one. For quaternions, only the additive variant achieves similar performance to the absolute
representation. For the matrix representation, both variants converge to a lower performance than
the absolute representation.

Figure 22: SAC learning curves for unit rotation-centered delta actions and dense rewards using
delta quaternion (left) and matrix (right) action representations in the idealized environment.

The results for SAC present a contrast to PPO. As can be seen in figure 22, in dense rewards, the
scaled variant slightly improves over regular delta and absolute actions for quaternions, whereas
the additive one leads to significantly worse performance. The matrix representations are almost
unchanged compared to the default implementation. In sparse rewards (see figure 23), the additive
version performs slightly worse compared to the default delta orientation, whereas the scaled version
slightly outperforms it. None of the three, however, yields a successful policy. The same is true for
the rotation representation.

22

Published as a conference paper at ICLR 2026

Figure 23: SAC learning curves for unit rotation-centered delta actions and sparse rewards using
delta quaternion (left) and matrix (right) action representations in the idealized environment.

Figure 24: TD3 learning curves for unit rotation-centered delta actions and dense rewards using
delta quaternion (left) and matrix (right) action representations in the idealized environment.

TD3 shows a similarly mixed picture in figure 24, where both variants slightly underperform with
dense rewards compared to the default quaternion implementation, and have significantly increased
variances between runs. The matrix representation shows no real difference between the default
implementation and the improved versions. In sparse rewards, both modified quaternion representa-
tions outperform the baseline, but still exhibit significant variance and fall short of the consistency
and performance of the absolute representation. The modified matrix representations in figure 25
significantly outperform the baseline and approach the performance of the absolute representation,
but have a higher variance between runs.

Figure 25: TD3 learning curves for unit rotation-centered delta actions and sparse rewards using
delta quaternion (left) and matrix (right) action representations in the idealized environment.

Our experiments indicate that while unit-centering addresses some of the issues associated with
delta rotations, its practical impact varies by algorithm. The performance difference is negligible for
many configurations. The notable exceptions are PPO, where centering is crucial for competitive
performance of delta actions, and SAC, where the scaled variant is favorable for quaternions. In the
specific case of PPO, we observe a slight advantage of the additive variant over the scaled one.

23

Published as a conference paper at ICLR 2026

Figure 26: PPO learning curves for the drone trajectory tracking environment using delta quaternion
(left) and matrix (right) action representations with unit rotation bias.

Figure 27: PPO learning curves for the drone racing environment using delta quaternion (left) and
matrix (right) action representations with unit rotation bias.

Revisiting Unstable Systems with Unit-biased Relative Actions. In section 4, we hypothesized
that zero-centered actions are particularly beneficial for unstable robotic systems, such as drones,
where maintaining the initial attitude is safer than a random rotation. Centering actions around
the unit rotation should theoretically allow quaternion and matrix representations to stabilize and
converge faster on these tasks.

Since the additive variant performed best for PPO, we selected it to validate this hypothesis on the
trajectory tracking and drone racing benchmarks. We compare this centered variant against the
global action baseline for both quaternion and matrix actions. For a fair comparison, we retune the
hyperparameters using the same sweep settings as for the baseline.

Our results confirm the hypothesis. The modified relative quaternion actions in figure 26 demon-
strate dramatically improved convergence speed compared to uncentered variants. Similar holds true
for matrices, although neither manage to outperform the local tangent representation. By initializing
the policy output effectively at the identity rotation, the drone is less prone to erratic initial behavior
that leads to immediate crashes, thereby allowing the agent to gather meaningful experience earlier
in the training process.

While less dramatic, our results on the drone racing task in figure 27 clearly show the same trend.
We conclude that for unstable systems, the unit-centering of representations is a key influence on
performance.

A.4 COMPARISON OF ROTATION MATRIX AND 6D REPRESENTATIONS

Beyond the standard parameterizations discussed in the main text, several previous studies have
explored suitable rotation representations for learning. One influential representation, particularly
noted for its properties in optimization and supervised learning contexts, is the continuous 6D rep-
resentation proposed by Zhou et al. (2019).

The idea behind this representation is that a full 9-element rotation matrix is over-parameterized.
Defining two orthogonal column vectors is sufficient to reconstruct the complete orientation without

24

Published as a conference paper at ICLR 2026

losing the uniqueness and smoothness of the representation. Since a rotation matrix belonging to
SO(3) describes a right-handed coordinate system, the third axis is entirely defined by the cross
product of the first two. Implementation-wise, the policy outputs a 6D vector x ∈ R6 that is treated
as two raw 3D vectors. To ensure orthogonality and unit norm, we then apply the Gram-Schmidt
process to these vectors.

While this representation enjoys a lower dimensionality than the standard flattened rotation matrix,
Geist et al. (2024) point out that it empirically falls short of the standard SVD-projected matrix
representation on several tasks. Since the arguments regarding continuity and smoothness apply
similarly to both the 6D representation and standard matrices, and given that rotation matrices are
more prevalent in standard robotics pipelines, we selected matrices for our primary comparison. In
this section, we provide a direct comparison to demonstrate that the performance of the 6D repre-
sentation is indeed comparable to, but rarely strictly better than, the standard matrix representation
in reinforcement learning settings.

A.4.1 RESULTS ON THE IDEALIZED ENVIRONMENT

We benchmark the 6D representation against the standard matrix representation across all algorithms
with 50 runs per variant as in the main text.

Figure 28: PPO learning comparison between the 6D representation and rotation matrices in the
idealized environment for both absolute (straight lines) and delta (dotted lines) actions.

For PPO, the 6D representation slightly outperforms the standard matrix representation in terms of
both convergence speed and final performance when using absolute actions. Conversely, for delta
representations, the 6D parameterization falls short of the matrix baseline (see figure 28).

The results for SAC, visualized in figure 29, present a similar picture. In the dense reward setting,
the performance of relative and absolute representations is practically indistinguishable between the
two parameterizations. In the sparse reward setting, we observe a minor improvement for the 6D
representation across both absolute and relative modes. However, it is important to note that neither

Figure 29: SAC learning comparison between the 6D representation and rotation matrices in the
idealized environment for absolute (straight lines) and delta (dotted lines) actions on dense (left)
and sparse (right) rewards.

25

Published as a conference paper at ICLR 2026

Figure 30: TD3 learning comparison between the 6D representation and rotation matrices in the
idealized environment for absolute (straight lines) and delta (dotted lines) actions on dense (left)
and sparse (right) rewards.

the matrix nor the 6D representation successfully learns a high-quality policy under these sparse
reward conditions, sharing the same failure modes and training characteristics.

In TD3, the standard matrix variants slightly outperform their 6D counterparts generally. The only
meaningful difference exists between the delta matrix and the delta 6D actions under sparse rewards,
where the matrix representation converges to a better policy on average (see Figure 30). However,
consistent with our main results, both representations yield relatively poor policies in this setting.

Overall, the performance curves of matrix and 6D representations are very similar across runs. PPO
with absolute actions shows a slight preference for the 6D representation, whereas TD3 generally
favors the standard matrix representation. A possible explanation for this result is the increased ro-
bustness of the full matrix representation to large disturbances such as the uniform exploration noise
used in TD3, compared to the Gram-Schmidt reconstruction used in the 6D mapping. However, we
emphasize that these performance differences are relatively minor and should not be overinterpreted
as a definitive advantage for either representation.

Robot Benchmarks for PPO Since the 6D representation slightly outperformed its matrix coun-
terpart on PPO (see figure 28), we rerun the robot benchmarks that use PPO for trajectory following
and drone racing.

Figure 31: PPO learning comparison between the 6D representation and rotation matrices on the
trajectory following task (left) and on drone racing (right).

The results in figure 31 display an inconclusive picture. While the 6D representation improves
notably on the trajectory following task, the deviations between runs are large. Other effects such
as unit-centering of delta actions (see section A.3) are significantly more consistent in improving
convergence. The results on racing are again in line with our intuition that the two representations
perform very similar. Although matrix marginally outperforms the 6D representation, the difference
is not significant.

26

Published as a conference paper at ICLR 2026

A.5 IMPLEMENTATIONS

Even when the underlying concepts are clear, putting SO(3)-specific operations into code can be
difficult. We explicitly outline some of the important operations mentioned in the paper to help
practitioners transfer the results.

We detail how we rotate around tangent vectors sτ in the body frame, implement exponential and
logarithm maps for rotation scalings, and perform differentiable matrix orthonormalization inside
neural network layers. All components are implemented using standard scientific Python libraries
only. Note that there is ongoing work within SciPy (Virtanen et al., 2020) toward rotation routines
compatible with most deep learning frameworks, further simplifying implementations (Schuck et al.,
2025b).

Listing 1: Rotate an orientation by a local tangent vector
1 import numpy as np
2 from scipy.spatial.transform import Rotation as R
3

4 current_orientation = R.identity()
5 # Action in [-1, 1]ˆ3 from the policy network
6 action = np.random.default_rng().uniform(-1, 1, size=3)
7 # Apply the tangent vector to the current orientation as delta action
8 next_orientation = current_orientation * R.from_rotvec(action)

Listing 2: Limiting rotations to a maximum angular change
1 import numpy as np
2 from scipy.spatial.transform import Rotation as R
3

4 current_orientation = R.identity()
5 # Limit the rotation to a maximum of pi/10 radians
6 max_rotation = np.pi / 10
7 # Calculate the next orientation in the direction of the global reference
8 action = np.array([0, 1, 0, 0]) # Example quaternion action
9 # Compute the difference between current and target orientation

10 delta = current_orientation.inv() * R.from_quat(action)
11 # Check if the rotation angle exceeds the maximum allowed. If so, scale
12 # the magnitude to at most the maximum allowed rotation
13 scale = np.minimum(1, max_rotation / delta.magnitude())
14 # Apply the scaled delta to the current orientation. Power on rotation is
15 # equivalent to log -> scale -> exp
16 next_orientation = current_orientation * delta**scale

Listing 3: Differentiable matrix orthonormalization in PyTorch
1 import torch
2

3 def orthonormalization(x: torch.Tensor) -> torch.Tensor:
4 u, _, vh = torch.linalg.svd(x)
5 # Ensure det = 1 without in-place changes to u (breaks backprop)
6 unorm = torch.zeros_like(u)
7 unorm[..., :2] = u[..., :2]
8 unorm[..., 2] = u[..., 2] * torch.det(u @ vh)
9 return unorm @ vh

10

11 action = torch.randn(3, 3)
12 norm_action = orthonormalization(action) # Orthogonal, det 1

27

Published as a conference paper at ICLR 2026

A.6 ENTROPY ON THE MANIFOLD

The standard entropy bonus term employed in PPO and SAC is

H(πθ(·|s) =
1

2

4∑
i=1

log
(
2πeσ2

i (s)
)
. (5)

A policy that parametrizes rotation actions as quaternions with zero norm and unit variance on all
action dimensions will lead to a uniform distribution on the S(3) sphere after normalization and
thus a uniform distribution of rotations with maximum entropy. If we shift the mean of qw towards
1, the entropy in equation 5 remains constant, while the actual entropy of the rotation distribution
declines. The decline is evident because the entropy of the distribution on the sphere

H[X] = −
∫
S(3)

p(x) log p(x)dΩ(x) (6)

with dΩ as the surface area measure and a random variable X ∈ S(3) has its maximum at p(x) =
1

2π2 . One can show this is the global maximum with a variational argument where the entropy
functional is concave in p.

The implication for training RL agents is that agents can increase their mean to higher values to
concentrate the distribution of rotations in SO(3) while still receiving the same entropy bonus as
uniformly distributed rotations, thus effectively breaking entropy regularization.

A.7 FETCH ORIENTATION ENVIRONMENTS

The ReachOrient and PickAndPlaceOrient environments (see figure 32) used in section 4
to benchmark TD3 are directly inspired by the Fetch environments (Andrychowicz et al., 2017).
However, to make them compatible with the extended scope of our environments, we made some
modifications, which are listed below.

The most fundamental change is the extended action space. In addition to the arm’s position and
finger joints, agents also control the arm’s orientation. The maximum angular change of the arm
between two environment steps is π

10 radians, as in our idealized rotation control environments.

A goal orientation has extended the environment’s goal. In the case of ReachOrient, this target
orientation is sampled by randomly rotating the arm start orientation by at most π2 radians. We limit
the goal orientation to prevent infeasible configurations that are physically infeasible for the arm.
PickAndPlaceOrient samples its orientation goal similarly with respect to the cube orienta-
tion. As in the original environment, half of the goal positions are sampled uniformly above the
table, and half are sampled on the table itself. Goal orientations on the table are sampled to be phys-
ically feasible. The cube is randomly rotated at the start of each episode by sampling which side is
facing down and then rotating it uniformly around its z-axis.

Figure 32: Example rollout of the PickAndPlaceOrient environment. The agent has to pick
up the cube and place it into the same position and orientation as the goal frame. The frame located
to the right of the robot arm indicates the goal pose.

Changes in the goal formulation also require a change to the reward function. Agents re-
ceive a reward of 0 if the position and orientation of the arm (ReachOrient) or cube

28

Published as a conference paper at ICLR 2026

Table 3: Number of runs per environment for hyperparameter optimization

Environment Number of Runs
Idealized Rotation Environments 100
Drone Trajectory Tracking 100
Drone Racing 50

(PickAndPlaceOrient) are both within their respective tolerances of 5cm and π
10 radians, and

−1 everywhere else.

Andrychowicz et al. (2017) do not consider orientation control, and thus it has no influence on the
choice of robot. However, the Fetch robot shows a limited range of reachable position and orienta-
tion targets. We thus exchange the robot with the Franka FR3, one of the most common robot arms
in robotics research. The gripper remains from the original environments to limit implementation
variations.

A.8 HYPERPARAMETER CHOICES

The hyperparameters used for each algorithm and action representation are optimized per environ-
ment using Bayesian optimization (Bergstra et al., 2011). Table 3 lists the number of runs used for
hyperparameter tuning across each environment.

We determine separate sets of hyperparameters for the idealized rotation environment on the sparse
and dense reward settings. However, delta and global actions of the same representation share
their hyperparameters. The action viewpoint does not significantly change the choice of hyperpa-
rameters in trial runs. Across the Fetch environments, we reuse the same hyperparameters used
by Andrychowicz et al. (2017) to maintain consistency with prior results. Similarly, for the Robo-
Suite (Zhu et al., 2020) benchmark, we adopt the same original hyperparameters used for SAC.

All our experiments use identical MLPs for both policy and value networks. For PPO, we use 2-
layer networks with 64 units per layer and tanh activations. The only exception is drone racing,
where we find that using 128 units per layer, as per (Kaufmann et al., 2023), is beneficial. Note
that similar increases in the number of units per layer across other tasks with PPO negatively affect
performance. Both SAC and TD3 use 3-layer networks with 256 units per layer and ReLU activa-
tions. However, for SAC’s RoboSuite benchmark, we use 2-layer networks instead, following the
architecture originally used in the benchmark for full pose control.

A.9 USAGE OF LARGE LANGUAGE MODELS

We used large language models (LLMs) for wording and proofreading individual sections. In addi-
tion, they were used as a programming aid to create the TikZ figures. The ideation phase made no
use of LLMs.

29

	Introduction
	Representing SO(3) Actions in Deep RL
	The SO(3) Manifold
	Global vs Delta Actions
	Multi-Covers, Singularities, Discontinuities
	Projections
	Unit-rotation Centering

	Action Scaling

	Controlling Pure Orientations
	Environment Setup
	Performance Comparison
	Explaining the Effects of SO(3) Action Representations
	Practical Recommendations

	Robotic Benchmarks
	Conclusion
	Reproducibility Statement
	Acknowledgments

	Appendix
	Additional Effects
	Projections of Noise Samples
	Euler Angle Nonlinearities and Discontinuities
	Projecting SAC's Actor Output
	Exploration with Euler using Delta Actions
	Scaling Tangent Vectors
	Conflicting Policy Gradients
	Extended Results for Entropy Regularization in PPO and SAC

	Full Experimental Results on the Idealized Environment
	PPO Results
	SAC Results
	TD3 Results

	Extended Discussion of Unit Rotation-Centered Delta Actions
	Comparisons of Implementations
	Results on the Idealized Environment

	Comparison of Rotation Matrix and 6D Representations
	Results on the Idealized Environment

	Implementations
	Entropy on the Manifold
	Fetch Orientation Environments
	Hyperparameter Choices
	Usage of Large Language Models

