
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

A PRIMER ON SO(3) ACTION REPRESENTATIONS IN
DEEP REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Many robotic control tasks require policies to act on orientations, yet the geom-
etry of SO(3) makes this nontrivial. Because SO(3) admits no global, smooth,
minimal parameterization, common representations such as Euler angles, quater-
nions, rotation matrices, and Lie algebra coordinates introduce distinct constraints
and failure modes. While these trade-offs are well studied for supervised learn-
ing, their implications for actions in reinforcement learning remain unclear. We
systematically evaluate SO(3) action representations across three standard con-
tinuous control algorithms, PPO, SAC, and TD3, under dense and sparse rewards.
We compare how representations shape exploration, interact with entropy regu-
larization, and affect training stability through empirical studies and analyze the
implications of different projections for obtaining valid rotations from Euclidean
network outputs. Across a suite of robotics benchmarks, we quantify the prac-
tical impact of these choices and distill simple, implementation-ready guidelines
for selecting and using rotation actions. Our results highlight that representation-
induced geometry strongly influences exploration and optimization and show that
representing actions as tangent vectors in the local frame yields the most reliable
results across algorithms.

1 INTRODUCTION

Accurate reasoning over 3D rotations is a core requirement for machine learning algorithms ap-
plied in computer graphics, state estimation and control. In robotics and embodied intelligence, the
problem extends to controlling physical orientations through learned actions, e.g., in manipulation
policies that command full task-space poses or aerial vehicles that regulate attitude. These tasks rely
on trained policies with action spaces including rotations in SO(3).

Dealing with rotations is especially challenging because the underlying manifold is curved, and
there exists no minimal parameterization that maps R3 to SO(3) and is globally smooth, bijective
and non-singular. This restriction has led to multiple parameterizations, each with its own trade-
offs (Macdonald, 2011; Barfoot, 2017). Euler angles are minimal and intuitive but suffer from order
dependence, angle wrapping, and gimbal-lock singularities. Quaternions are smooth and numer-
ically robust with a simple unit-norm constraint, but double-cover SO(3). Rotation matrices are
a smooth and unique mapping, but are heavily over-parameterized and require orthonormalization.
Viewing SO(3) as a Lie group, one can use tangent spaces, i.e., the Lie algebra m of skew-symmetric
matrices, together with the exponential and logarithm maps to represent orientations. Tangent spaces
are locally smooth, but globally exhibit singularities at large angles (Solà et al., 2018). Irrespective
of the choice of parameterization, any minimal 3-parameter chart must incur singularities, and global
parameterizations that avoid singularities are necessarily redundant and constrained.

Applications in deep learning that require reasoning over rotations and orientations have renewed
interest in this topic by adding another perspective: irrespective of any mathematical properties,
what is the best representation to learn from data in SO(3)? Are low-dimensional representations
necessarily more efficient, and does the double-cover of some representations harm training perfor-
mance? Several works have explored these questions in the supervised setting (Zhou et al., 2019;
Peretroukhin et al., 2020; Brégier, 2021). Geist et al. (2024) offer an excellent overview that summa-
rizes the most common representations, links mathematical properties of representations to observed

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

performance gains, and gives concrete recommendations on supervised tasks like rotation estimation
or feature prediction.

What is still missing is a general, systematic evaluation of SO(3) representations in deep
reinforcement learning (RL). While the intuitions and results from prior studies on input/obser-
vation representations for orientations also apply to the RL setting, the most suitable SO(3) action
representation remains unclear. Action representation requires special attention, as it shapes the
exploration dynamics induced by stochastic policies and exploration noise, and has implications for
action clipping to comply with actuation constraints. Prior works have proposed specific action rep-
resentations for a narrow set of problems and algorithms (Alhousani et al., 2023a;b). Schuck et al.
(2025) recently attempted to tackle the general question of best action and observation representa-
tions for RL, but limited their investigation to Deep Deterministic Policy Gradients (DDPG) under
sparse rewards.

In this paper, we study three widely used continuous-control algorithms: Proximal Policy Opti-
mization (PPO) (Schulman et al., 2017), Soft Actor-Critic (SAC) (Haarnoja et al., 2018), and Twin
Delayed Deep Deterministic Policy Gradients (TD3) (Fujimoto et al., 2018). We evaluate action
representations under dense and sparse rewards and focus on phenomena specific to RL rather than
supervised learning. We show how representations shape exploration, interact with entropy regular-
ization, and affect convergence stability. Finally, we quantify their practical impact across standard
robotics benchmarks. In summary, our contributions are as follows:

1. We analyze the most popular RL algorithms for continuous control, PPO, SAC, and TD3,
under action spaces that include orientations. These algorithms are extensively used in
robotics research to train policies deployed on physical hardware in the real world, and
thus are particularly relevant.

2. We investigate why different action representations yield different training performance.
Beyond intuitions on properties such as smoothness or uniqueness, we show how observed
performance and sample-efficiency differences are attributed to the map between Euclidean
network outputs and SO(3). Our analysis highlights the implication of representation-
induced action projections on exploration, action scaling, and regularization techniques.

3. We offer concrete guidelines for choosing policy representations and handling
representation-induced effects. Building on insights gained in our empirical studies
and in three benchmarks on three different robot platforms, we cover algorithm- and
representation-dependent pitfalls and how to mitigate them.

This paper aims to make orientation control in RL easy to get right. Consequently, we prioritize
clarity, common pitfalls, and ease of implementation over an exhaustive mathematical treatment of
manifold optimization. We hope this will help practitioners make a conscious decision on action
representations and advance the training of policies with full pose control.

2 REPRESENTING SO(3) ACTIONS IN DEEP RL

The set of all 3D rotations forms the Lie group SO(3). It appears in control, graphics, state esti-
mation, and in RL tasks where policies must command orientations, such as manipulation with full
end effector pose control or drone control. Multiple representations exist to parameterize SO(3),
each with its own properties. In the following, we outline representations, geometric properties,
and learning phenomena that matter when projecting neural network outputs to valid rotations and
training policies that act on SO(3).

2.1 THE SO(3) MANIFOLD

Unlike translation in R3, which is flat, commutative, and globally parameterized, SO(3) is a com-
pact, curved, and non-commutative manifold M that admits no global, smooth, minimal chart. Its
anisotropic geometry implies bounded, periodic angles and topological constraints that make action
representation difficult: minimal coordinates introduce singularities, global coordinates are redun-
dant and constrained, and tangent-space coordinates are only locally valid.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Table 1: Properties of common SO(3) representations used for actions.

Representation Dim. Cover Smooth Singularities Constraints
Matrix R 9 single + - RTR = I , detR = 1
Quaternion q 4 double + - ||q||2 = 1
Euler angles (ϕ, θ, ψ) 3 multi - + –
Lie algebra m 3 multi - + –

Formally defined as

SO(3) =
{
R ∈ R3×3 | R⊤R = I, detR = 1

}
, (1)

3D rotations have multiple representations that all map to SO(3). Table 1 lists a selection of common
representations and their respective properties. The Lie algebra m denotes the tangent space TEM
of SO(3) at the origin. Conversions between tangent increment vectors Eτ ∈ R3 and SO(3) are
realized by the capitalized exponential and logarithmic maps Exp : R3 → M and its inverse
Log : M → R3. Section A.3 contains example code demonstrating how to realize both Exp and
Log maps. For an in-depth review on Lie theory and SO(3) representations, we refer to Solà et al.
(2018) and Geist et al. (2024), respectively.

2.2 GLOBAL VS DELTA ACTIONS

There are two ways to define orientation actions in deep RL. The most straightforward way of view-
ing SO(3) actions is to interpret them as desired orientation in the global frame E . The environment
dynamics steer us towards that orientation, e.g., through a low-level controller. In the following, we
will call these global actions.

However, the group structure of SO(3) also permits us to view the action as an intrinsic delta rotation
with respect to the current state s of the agent, e.g. for rotation matrices Rt+1 = Rt∆R∆a with
the delta action R∆a. Changing the viewpoint makes actions independent from the global frame
and thus potentially aids generalization. We will explore the benefits of changing the viewpoint in
sections 3 and 4.

2.3 MULTI-COVERS, SINGULARITIES, DISCONTINUITIES

Action representations should be unique to avoid multi-modal solutions in policy outputs and targets.
Non-injective parameterizations create equivalent actions for the same physical rotation, complicat-
ing exploration, entropy regularization, and representation with uni-modal policies. In addition to
uniqueness, representations should vary smoothly under small physical rotations. Intuitively, we
want representations of actions that lead to similar rotations to lie close in Euclidean space.

Quaternions realize a double-cover from the 3-sphere S(3) to SO(3), with q and −q representing
the same rotation. Enforcing a hemisphere convention (e.g., nonnegative scalar part) removes the
ambiguity but introduces a branch discontinuity on the equator where the scalar part is zero and can
cause abrupt sign flips along trajectories.

Lie algebra coordinates use the exponential map Exp : R3 → SO(3) which wraps around infinitely
often along each axis for τ + 2πk, k ∈ N. Restricting m to a principal branch with angle θ = |τ | ∈
[0, π) limits overlap but leaves a cut locus at θ = π where log is discontinuous and the axis is not
unique.

Euler angles are a many-to-one map that is not a fixed k-to-1 cover. Most rotations have a unique
triple after choosing standard ranges, whereas specific configurations admit infinitely many repre-
sentations. The classical singularity (“gimbal lock”) arises when the first and third rotation axes
align and collapse into a combined angle. Independent of this, angle wrapping at ±π introduces
discontinuities.

2.4 PROJECTIONS

Feedforward policies produce Euclidean outputs that do not satisfy manifold constraints by con-
struction. Rotation matrices must obey R⊤R = I and detR = 1, and quaternions must have

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

unit norm. Therefore, actions must be projected from raw outputs to valid group elements. These
projections can be inserted as differentiable layers in the actor, enabling backpropagation almost
everywhere. For quaternions, given x ∈ R4, normalize q = x

∥x∥ , which is smooth except at x = 0.
For matrices, the singular value decomposition (SVD) projects M ∈ R3×3 = UΣV ⊤ to the closest
rotation via

R = Udiag
(
1, 1,det(UV ⊤)

)
V ⊤, (2)

which is differentiable except at degenerate SVDs (Schönemann, 1966). Tangent-space and Euler-
angle outputs need no feasibility projection, though magnitudes should be limited to permissible
ranges by squashing network outputs through, e.g., tanh activation functions, such that actions are
clamped to |τ | < π − ε and Euler angles to (−π, π] and (−π

2 ,
π
2] respectively.

For deterministic policies, this suffices to guarantee actions lie in SO(3). Stochastic policies, on
the other hand, are often parameterized as multivariate Gaussians. Applying the projection to each
sampled action guarantees on-manifold actions, but it also warps the action distribution and renders
log probabilities intractable. Algorithms such as PPO and SAC rely on accurate log probabilities,
and closed-form corrections for normalization on S(3) or SVD-based projections are not readily
available.

In this paper, we adopt a practical compromise: we project the mean inside the network wherever
possible, then sample in the ambient Euclidean space and let the environment project the sampled,
off-manifold action to a valid rotation. This approach keeps training compatible with standard log-
probability computations while ensuring feasibility at execution time.

2.5 ACTION SCALING

Orientation control is particularly interesting for physical systems such as robot arms or drones.
These systems have bounded angular rates, which motivates policies with limited rotation magni-
tudes. Rate limits for global orientation targets have to be enforced by an underlying controller or
the environment dynamics.

On the other hand, delta rotations in the local frame, as introduced in section 2.2, can scale the incre-
ment before mapping to SO(3). For a tangent vector sτ ∈ R3, this is trivially achievable by limiting
the output norm. Intuitively, we interpret tangent vectors as vectors attached to the local tangent
space of the current orientation. One consequence of viewing SO(3) actions as delta rotations is
that it mitigates discontinuities from wrapping or cut-locus singularities for sufficiently small delta
rotations. Delta Euler angles are less straightforward to scale, since the change in orientation magni-
tude depends on the current orientation. Scaling is either overly conservative or requires a complex
chart of orientation-dependent normalizations.

Quaternion and matrix representations can be scaled uniformly via geodesic operations. Using the
exponential map presented in section 2.1, R̃ = Exp(αLogR) scales rotations to a maximum angle
of α, but introduces branch choices and non-smooth points at θ = π. In practice, delta actions in the
tangent space with norm control provide a well-behaved and straightforward mechanism for action
scaling.

3 CONTROLLING PURE ORIENTATIONS

We first study policies that control pure rotations to isolate the effects of action representations.
We compare PPO, SAC, and TD3 in an idealized environment with only rotational dynamics and
orientation as state. Our analysis tests hypotheses about how representations influence exploration,
entropy regularization, and stability, and clarifies what matters for learning SO(3) actions.

3.1 ENVIRONMENT SETUP

Formally, we model an episode as a goal-conditioned MDP M = (S,A, P, r, γ) with state space
S = SO(3) × SO(3) consisting of states st = (Rt,Rg) where Rt is the current orientation and
Rg is a goal orientation fixed per episode. Following Geist et al. (2024), we use flattened rotation
matrices as observation representations everywhere. Goal-conditioned environments allow us to

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

also analyze sparse reward learning with Hindsight Experience Replay (HER) (Andrychowicz et al.,
2017) for off-policy algorithms (SAC and TD3).

Rt

αmax

optimal

Rt+1

actual

Ra

Rg

M

Figure 1: The agent ro-
tates at max αmax ra-
dians from the current
state Rt to the next state
Rt+1 towards the de-
sired state Ra. The goal
is to rotate into Rg .

The action space, our object of interest, is configurable. Actions can
describe global desired orientations in any of the aforementioned repre-
sentations or delta rotations. For global actions Ra, the deterministic
environment transition dynamics are formulated as

Rt+1 =

{
Ra, if d(Rt,Ra) < αmax

Rt Exp
(

αmax

d(Rt,Ra)
Log

(
R−1
t Ra

))
, otherwise

(3)

with the geodesic distance d(R1,R2) = arccos
(

tr(R⊤
1 R2)−1
2

)
. Intu-

itively, equation 3 takes the shortest path towards the desired orientation
Ra with a maximum step length of αmax. Figure 1 visualizes the en-
vironment dynamics. Dense rewards rdenset = −d(Rt,Rg) are defined
as the negative angle to the goal. Sparse rewards are 0 when the angle
between state and goal d(Rt,Rg) ≤ π

10 and -1 everywhere else. Termi-
nation occurs after a fixed step limit of 50.

3.2 PERFORMANCE COMPARISON

We benchmark PPO, SAC, and TD3 in the pure-rotation environment using four action parameteri-
zations: rotation matrices, unit quaternions, tangent-space (rotation vectors), and Euler angles, each
evaluated as global and delta actions. All other components remain fixed: network architectures,
training budgets, observation spaces, and reward definitions are identical across conditions. The
results are presented in table 2, with the best results highlighted in blue, and the second-best shown
in bold. Results are averaged over 50 runs each. See section A.2 for the complete training curves,
and section A.6 for further information on hyperparameters.

Across algorithms and reward formulations, the delta tangent vector representation almost always
results in the best final policy with minor variances between runs. Global matrix representations
achieve the second-best performance, except for SAC with sparse rewards, where they exhibit poor
performance. Other representations often perform poorly, particularly in sparse reward environ-
ments, despite using HER.

Table 2: Results for the idealized rotation environment.

PPO SAC TD3
dense dense sparse dense sparse

R -5.4 ± 0.2 -4.7 ± 0.3 -29.4 ± 0.7 -4.7 ± 0.2 -6.4 ± 0.5
∆R -12.3 ± 1.1 -5.1 ± 0.3 -31.0 ± 1.5 -4.9 ± 0.3 -20.7 ± 13.4
q -11.5 ± 1.8 -5.0 ± 0.5 -30.2 ± 1.1 -5.3 ± 0.6 -9.2 ± 1.5
∆q -22.1 ± 1.8 -5.0 ± 0.3 -29.3 ± 0.9 -5.2 ± 0.4 -21.6 ± 12.9
Eτ -8.4 ± 0.5 -7.1 ± 1.5 -33.5 ± 1.8 -6.4 ± 0.8 -30.3 ± 2.2
sτ -5.4 ± 0.2 -2.9 ± 0.3 -7.9 ± 0.8 -3.5 ± 0.3 -6.9 ± 0.5
(ϕ, θ, ψ) -10.8 ± 0.6 -5.5 ± 0.7 -35.2 ± 2.1 -7.3 ± 4.2 -16.2 ± 3.4
∆(ϕ, θ, ψ) -7.9 ± 0.5 -5.8 ± 0.5 -15.7 ± 8.4 -7.4 ± 0.9 -31.2 ± 13.1

3.3 EXPLAINING THE EFFECTS OF SO(3) ACTION REPRESENTATIONS

The choice of action representations significantly impacts policy performance and training stability.
We now dive into the reasons why this is the case, and draw conclusions for training policies on
SO(3) actions. This section is organized in hypotheses: we state conjectures based on the intuitions
from section 2, analyze if these intuitions match our empirical results, and conduct ablations that
explain any deviations.

Hypothesis 1 Smooth, unique representations converge faster and lead to superior policies.
Our first hypothesis is a common assumption based on the intuition that neural networks better fit

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

smooth functions (Barron, 1993). In addition, the predominant policy network architectures either
parametrize a uni-modal distribution (PPO, SAC) or a single, deterministic action (TD3). In this
setting, multi-modal action representations should produce conflicting gradients, which harm per-
formance. Consequently, rotation matrices should be the best action representation in SO(3) among
the selected ones as they are both unique and smooth.

In our experiments, we see that this is only partially true. The global matrix representation does
well in table 2, except for SAC and sparse rewards. Based on the smoothness argument, delta ma-
trices should be equally performant but consistently achieve lower performance. The performance
difference originates from the fact that delta representations must learn the connection between the
current orientation and the goal, instead of only relying on the goal.

While smooth, quaternions display weaker performance due to the double-cover. We can show that
for both dense and sparse rewards, the critic learns the multi-modal reward distribution and thus
produces conflicting policy gradients if actions are sampled from both hemispheres of S(3) (see
section A.1.6).

The exceptions to our intuition are policies formulated in the tangent space of the local frame. While
they are not free of singularities nor discontinuities, the maximum step angle αmax limits the policy
to a region where the tangent space is unique, has no discontinuities, and the Exp mapping is almost
linear. The singularities and discontinuities at the cut locust are always out of the policy’s reach
since the space is attached to the local frame. Combined with not requiring projections and a lower
dimensionality, local tangent increments outperform global matrix representations even though they
must learn the relation between the current frame and the goal.

Tangent vectors in the Lie algebra follow our intuition and produce mixed results, as do global and
delta Euler angles due to severe discontinuities and singularities.

Hypothesis 2 Representations influence the exploration dynamics on the SO(3) manifold.

Figure 2: 3D distribu-
tion of Euler angles sam-
pled from N (0, 2) and
squashed with tanh in
the Lie algebra m.

While the research community has proposed advanced exploration tech-
niques to improve speed of convergence (Houthooft et al., 2016; Plap-
pert et al., 2018), the most common mechanisms are Gaussian stochastic
actions (PPO and SAC) or Gaussian/uniform exploration noise (TD3).
Samples from these distributions are generally off-manifold. Projecting
the perturbed actions back onto their representation manifold (see sec-
tion 2.4) produces action distributions that can concentrate around small
regions of the action space and harm exploration.

Figure 2 shows this concentration for random Euler angle samples that
concentrate around the singularities of the representation. The conse-
quences are most noticeable in the sparse reward environments, where
sparse rewards prevent the policy from converging early and agents ex-
plore longer (see section A.2). All representations except local tangent
vectors and global matrices for TD3 perform poorly on these tasks.

Additional ablation studies analyzing the replay buffers during training and the distribution of suc-
cessful goals show that agents’ success closely correlates with the exploration distribution. Rep-
resentations with a more even spread, i.e., matrix and local tangents, are thus advantageous. See
section A.1.1 for a comparison of all distributions, and section A.1.4 for more details on Euler an-
gles.

Hypothesis 3 Standard entropy regularization leads to suboptimal policies on SO(3).
As seen above, action projections warp random distributions on the action vector. Apart from explo-
ration, this has consequences for entropy regularization. Maximizing entropy without accounting
for the representation manifold may incentivize actions with less randomness after projecting (see
e.g. section A.4). Figure 2, where a high-variance Gaussian distribution of angles is mapped to a
narrow distribution in SO(3), demonstrates this well. This hypothesis only applies to PPO and SAC,
since TD3 is missing an entropy term.

The effect is not strong enough for dense rewards to have a strong impact on the results in table 2.
However, in sparse rewards, performance for representations with projections on SAC is significantly
worse compared to TD3, whereas the dense variants produce near-identical results. We conclude that
the entropy maximization leads to significantly worse exploration behavior than the noise in TD3.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

To confirm this, we test all action representations with increased entropy coefficients. The full set of
experiments for PPO and SAC can be found in section A.1.7. Our results show that entropy maxi-
mization drives actions towards larger norms in Euclidean space. These do not, however, correspond
to more random actions because of the maximum step angle αmax, and instead lead to more stable
rotation directions. Scaling delta tangent actions to the range of allowed values mitigates this ef-
fect and contributes to the improved performance of SAC in section A.1.5. Quaternion and matrix
representations do not have a similar mitigation and thus perform poorly.

For Euler angles, elevated entropy levels result in an attraction towards singularities, but entropy
coefficients have to be increased by two orders of magnitude to make the effect visible, and thus
should not be an issue in standard parameter regimes.

Hypothesis 4 Scaling actions to the range of permissible rotations boosts performance. As
outlined in section 2.5, tangent vector increments in the local frame can easily be scaled. Restricting
the network output to the range of possible rotations should be more efficient because the agent does
not need to learn that actions with the same direction and magnitudes larger than αmax lead to the
same outcome. Furthermore, it removes discontinuities at the cut locus from the action space and
allows more fine-grained control in the relevant action ranges.

We can see the effects in all three algorithms. Ablation studies with unscaled tangent increments
and dense rewards consistently exhibit a performance difference of around −1.5 compared to scaled
tangent vectors across PPO, SAC, and TD3. The effect is smallest for PPO, where the policy initial-
ization around zero prevents frequent sampling of unscaled actions that reach the cut locus. Agents
trained on sparse rewards exhibit a similar decrease in performance. More importantly, however,
sparse reward agents sometimes take longer in TD3 to converge to a near-optimal policy, and may
diverge completely in SAC (see section A.1.5). SAC’s failures are caused by the entropy bonus driv-
ing actions to regions of the representation with discontinuities and singularities as outlined above.

3.4 PRACTICAL RECOMMENDATIONS

We summarize our recommendations for practitioners as follows:

• Prefer delta actions in the tangent space of SO(3). They avoid projection, and for per-step
rotations below π

2 radians, the cut locus and Exp/Log singularities do not affect training.
• Dense rewards can mitigate representation-specific failures while sparse rewards amplify

them. Pay special attention to representations in sparse rewards.
• Exploration in the local tangent space is relatively well-behaved. Common strategies like

starting with small, zero-centered actions have adverse effects for quaternion and matrix
representations.

• Global rotation matrix and quaternion representations can outperform deltas because they
need not learn the relation between agent pose and goal. This advantage may vanish when
relative object poses matter.

• Delta Euler angles are better than absolute Euler angles, but generally a poor choice.

For additional effects and their explanation, see section A.1.

4 ROBOTIC BENCHMARKS

In real-world problems, rotation actions in SO(3) rarely act on purely rotational dynamics as in
section 3. More often, they appear in a larger context, such as controlling a robot arm’s position,
orientation, and gripper to grasp objects, or controlling a drone’s orientation and total thrust for tra-
jectory tracking. In this section, we thus validate the relevance and transferability of our findings by
applying the different action parameterizations on three robot benchmarks. In this set of studies, we
focus on the most promising action combinations, i.e., global matrix and quaternion representations,
and delta tangent and Euler angles.

The first benchmark demonstrates the effect of action representations on PPO in drone control.
We evaluate performance on two tasks: trajectory tracking and drone racing. In the first task, the
agent must track a predefined figure-8 trajectory, a standard benchmark in drone control extensively

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Figure 3: Achieved reward for the trajectory tracking (left) and drone racing competition (right)
tasks across action parameterizations. Shaded areas indicate the standard deviation across 25 seeds.

used to compare the performance of different algorithms. For GPU-accelerated training, we use
a vectorized version of the safe-control-gym benchmark (Yuan et al., 2022; Brunke et al., 2022).
In the second task, we use a similarly adapted version of the IROS 2022 Safe Robot Learning
Competition (Teetaert et al., 2025) to train an agent in autonomous drone racing. The aim is to cross
four gates as fast as possible in the correct order while avoiding obstacles. PPO is the current state-
of-the-art for drone control, particularly drone racing, using reinforcement learning (Song et al.,
2021; Kaufmann et al., 2023). Following Geist et al. (2024), we convert all SO(3) observations to
rotation matrices. As in section 3, we only change the action representation used by the policy. For
details on the choice of hyperparameters, refer to section A.6.

In figure 3, action representations significantly impact convergence speed on both benchmarks. Ac-
tions in the local tangent space consistently outperform other representations by converging faster
and achieving higher rewards. Surprisingly, Euler angles are second before rotation matrices and
quaternions. The reason is the limited range of angles required in the tasks. The drone cannot
deviate too much from the upright orientation without crashing, and hence the policy remains in
a region of SO(3) where Euler angles are still well-behaved. In contrast, absolute quaternion and
matrix actions are highly random at initialization, which leads to fast crashes and limits progress
(see section A.1.1).

Figure 4: Achieved reward across the RoboSuite benchmark as a fraction of the maximum possible
reward. Error bars denote the standard deviation across five seeds.

Next, we benchmark action representations on RoboSuite (Zhu et al., 2020), a simulation framework
implementing a suite of manipulation environments leveraging MuJoCo (Todorov et al., 2012). The
reference baseline uses SAC with shaped rewards on nine tasks spanning from single-arm block
lifting to complex tasks such as peg-in-hole tasks with two arms. As in section 3, we only change
the action representation used by the policy. We follow the requirements outlined in the benchmark,
training for 5M steps across five random seeds each using operational space control (Khatib, 2003)
to convert from policy actions to joint torques. Figure 4 presents the results. We report the mean
performance and standard deviation as a fraction of the maximum achievable reward in percent.

As expected, global actions do well on SAC with dense rewards. The dense reward compensates
for exploration issues. Notably, quaternions outperform the matrix representation on several tasks.
Contrary to section 3, local tangent actions, while competitive on most tasks, do not exceed the
performance of quaternions. Global actions may benefit tasks requiring the arm to move into a few
select poses. Overall, the narrow performance gaps between these representations within the same

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Figure 5: Achieved reward on ReachOrient (left) and PickAndPlaceOrient (right). Both
tangent and matrix action representations converge fast for the reach task, with quaternions second
and Euler angles last. On the harder pick and place task, the local tangent space representation
significantly outperforms other representations both in performance and convergence speed.

task and larger performance gaps between tasks indicate that other factors, such as reward design
and overall task difficulty, dominate the benchmark.

In the last benchmark, we adapt the setup from Andrychowicz et al. (2017) for goal-conditioned
robot arm control to include pose goals. We extend the agent’s action space to include the gripper
orientation and employ HER with TD3, the successor of the previously used DDPG (Lillicrap et al.,
2016). Analogous to the original reach and pick and place tasks, we define a reach task where the
agent must lift its end effector into a target position and orientation, and a pick and place task where
the goal is to place the cube into a randomly sampled target position and orientation. The remaining
fetch tasks, sliding and push, cannot easily be modified to include orientation goals and are thus
omitted. For more details on the environment design, refer to section A.5.

As in the previous benchmark, we analyze switching the SO(3) action parameterizations of the pol-
icy. The results, averaged over five runs, are shown in figure 5. Policies with matrix and tangent
representations quickly converge to a near-perfect policy, quaternions follow slightly delayed, while
Euler angles significantly lag. On the second task, the tangent representation again clearly outper-
forms other representations at 69.8% success rate, with matrix second at 54.1%, quaternions third
at 46.7%, and Euler angles last at 32.3%. Here, the combined randomness of the initial cube and
target orientations requires the policy to cover a significant part of SO(3). Consequently, the differ-
ences between representations become more pronounced, as seen by the 2x increase in success rates
between Euler and tangent representations.

5 CONCLUSION

Action representations on SO(3) shape exploration dynamics, entropy rewards, and smoothness of
policies in deep RL. In this paper, we established that the choice of representations alone impacts
performance and convergence speed. We analyzed the behavior of popular representations for PPO,
SAC, and TD3, showed how the choice of representation affects learning, and gave clear recommen-
dations for practitioners looking to train agents for orientation control. Delta actions in the tangent
space offer the best performance, especially for tasks that cover all or a large subset of SO(3). While
there are viable alternatives for specialized domains (e.g., where only a few fixed orientations are
required and global quaternion and matrix representations can be competitive, or with orientations
close to identity, where Euler angles are an alternative), the tangent space overall serves as an effi-
cient general representation across algorithms and tasks.

One limitation of this paper is its restriction to state-based observations and small networks. Ob-
servations do not affect the action space; thus, our results likely still apply. However, this requires
empirical evidence. We also noticed a lack of suitable benchmarks that require control over the full
SO(3) manifold. Our extension to the HER environments could act as a starting point to build up a
standard set of tasks focusing on this capability. Finally, diffusion policies have found widespread
adoption for imitation learning in robotics. A similar study on suitable representation choices for
diffusion may reach significantly different conclusions due to diffusion models’ multi-modality and
noise processes.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

5.1 REPRODUCIBILITY STATEMENT

In case of acceptance, we will provide links to the code for all environments, benchmarks, and
training scripts required for reproducing our results in this section. This is not possible during the
review due to anonymization concerns.

REFERENCES

Naseem Alhousani, Hatice Kose, and Fares J. Abu-Dakka. Reinforcement Learning for Orientation
on the Lie Algebra. In 2023 31st Signal Processing and Communications Applications Conference
(SIU), pp. 1–4, 2023a.

Naseem Alhousani, Matteo Saveriano, Ibrahim Sevinc, Talha Abdulkuddus, Hatice Kose, and
Fares J. Abu-Dakka. Geometric Reinforcement Learning for Robotic Manipulation. IEEE Access,
11:111492–111505, 2023b.

Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder, Bob
McGrew, Josh Tobin, Pieter Abbeel, OpenAI, and Wojciech Zaremba. Hindsight Experience
Replay. In Advances in Neural Information Processing Systems, volume 30, 2017.

Timothy D. Barfoot. State Estimation for Robotics. Cambridge University Press, 2017.

A.R. Barron. Universal Approximation Bounds for Superpositions of a Sigmoidal Function. IEEE
Transactions on Information Theory, 39(3):930–945, 1993.

James Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. Algorithms for Hyper-Parameter
Optimization. In Proceedings of the 25th International Conference on Neural Information Pro-
cessing Systems, pp. 2546–2554, 2011.

Lukas Brunke, Melissa Greeff, Adam W. Hall, Zhaocong Yuan, Siqi Zhou, Jacopo Panerati, and
Angela P. Schoellig. Safe Learning in Robotics: From Learning-Based Control to Safe Rein-
forcement Learning. Annual Review of Control, Robotics, and Autonomous Systems, pp. 411–444,
2022.

Romain Brégier. Deep Regression on Manifolds: A 3D Rotation Case Study. In 2021 International
Conference on 3D Vision (3DV), pp. 166–174, 2021.

Scott Fujimoto, Herke van Hoof, and David Meger. Addressing Function Approximation Error in
Actor-Critic Methods. In Proceedings of the 35th International Conference on Machine Learning,
pp. 1587–1596, 10–15 Jul 2018.

A. René Geist, Jonas Frey, Mikel Zhobro, Anna Levina, and Georg Martius. Learning with 3D
rotations: a Hitchhiker’s guide to SO(3). In Proceedings of the 41st International Conference on
Machine Learning, 2024.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft Actor-Critic: Off-Policy
Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor. In Proceedings of the
35th International Conference on Machine Learning, pp. 1861–1870, 10–15 Jul 2018.

Rein Houthooft, Xi Chen, Yan Duan, John Schulman, Filip De Turck, and Pieter Abbeel. VIME:
Variational Information Maximizing Exploration. In Proceedings of the 30th International Con-
ference on Neural Information Processing Systems, NIPS’16, pp. 1117–1125, 2016.

Elia Kaufmann, Leonard Bauersfeld, Antonio Loquercio, Matthias Mueller, Vladlen Koltun, and
Davide Scaramuzza. Champion-level drone racing using deep reinforcement learning. Nature,
620:982–987, 08 2023.

Oussama Khatib. A unified approach for motion and force control of robot manipulators: The
operational space formulation. IEEE Journal on Robotics and Automation, 3(1):43–53, 2003.

Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. In Inter-
national Conference on Learning Representations, 2016.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Alan Macdonald. Linear and Geometric Algebra. Alan Macdonald, 2011.

Valentin Peretroukhin, Matthew Giamou, David M. Rosen, W. Nicholas Greene, Nicholas Roy, and
Jonathan Kelly. A Smooth Representation of SO(3) for Deep Rotation Learning with Uncertainty.
In Proceedings of Robotics: Science and Systems (RSS’20), Jul. 12–16 2020.

Matthias Plappert, Rein Houthooft, Prafulla Dhariwal, Szymon Sidor, Richard Y. Chen, Xi Chen,
Tamim Asfour, Pieter Abbeel, and Marcin Andrychowicz. Parameter Space Noise for Explo-
ration. In International Conference on Learning Representations, 2018.

Peter H. Schönemann. A Generalized Solution of the Orthogonal Procrustes Problem. Psychome-
trika, 31:1–10, 1966.

Martin Schuck, Jan Brudigam, Sandra Hirche, and Angela Schoellig. Reinforcement Learning with
Lie Group Orientations for Robotics. In 2025 IEEE International Conference on Robotics and
Automation (ICRA), pp. 14369–14376, 2025.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal Policy
Optimization Algorithms. ArXiv, abs/1707.06347, 2017.

Joan Solà, Jérémie Deray, and Dinesh Atchuthan. A micro Lie theory for state estimation in robotics.
ArXiv, abs/1812.01537, 2018.

Yunlong Song, Mats Steinweg, Elia Kaufmann, and Davide Scaramuzza. Autonomous Drone Rac-
ing with Deep Reinforcement Learning. In 2021 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS), pp. 1205–1212, 2021.

Spencer Teetaert, Wenda Zhao, Antonio Loquercio, Siqi Zhou, Lukas Brunke, Martin Schuck, Wolf-
gang Hönig, Jacopo Panerati, and Angela P. Schoellig. Advancing Reproducibility, Benchmarks,
and Education With Remote Sim2real: Remote Simulation to Real Robot Hardware. IEEE
Robotics & Automation Magazine, 32(1):117–123, 2025.

Emanuel Todorov, Tom Erez, and Yuval Tassa. MuJoCo: A physics engine for model-based control.
In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5026–5033,
2012.

Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Courna-
peau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J. van der
Walt, Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nel-
son, Eric Jones, Robert Kern, Eric Larson, C J Carey, İlhan Polat, Yu Feng, Eric W. Moore,
Jake VanderPlas, Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero,
Charles R. Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul van Mul-
bregt, and SciPy 1.0 Contributors. SciPy 1.0: Fundamental Algorithms for Scientific Computing
in Python. Nature Methods, 17:261–272, 2020.

Zhaocong Yuan, Adam W. Hall, Siqi Zhou, Lukas Brunke, Melissa Greeff, Jacopo Panerati, and
Angela P. Schoellig. Safe-Control-Gym: A Unified Benchmark Suite for Safe Learning-Based
Control and Reinforcement Learning in Robotics. IEEE Robotics and Automation Letters, 7(4):
11142–11149, 2022.

Yi Zhou, Connelly Barnes, Lu Jingwan, Yang Jimei, and Li Hao. On the Continuity of Rotation
Representations in Neural Networks. In The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2019.

Yuke Zhu, Josiah Wong, Ajay Mandlekar, Roberto Martı́n-Martı́n, Abhishek Joshi, Kevin Lin,
Soroush Nasiriany, and Yifeng Zhu. robosuite: A Modular Simulation Framework and Bench-
mark for Robot Learning. ArXiv, abs/2009.12293, 2020.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 ADDITIONAL EFFECTS

This section discusses additional effects and presents extended ablation studies related to section 3.3.

A.1.1 PROJECTIONS OF NOISE SAMPLES

The properties of each representation affect the mapping of Euclidean noise samples when projected
onto SO(3). We showcase how noise samples from identical distributions result in entirely different
rotation distributions when projected. Then, we evaluate the effect of projecting action samples
on PPO and SAC, two algorithms that utilize probability densities computed based on a Gaussian
assumption.

(a) R ∼ Π(N (0, 0.3)) (b) R ∼ Π(N (0, 2)) (c) q ∼ Π(N (0, 0.3)) (d) q ∼ Π(N (0, 2))

(e) Eτ ∼ Π(N (0, 0.3)) (f) Eτ ∼ Π(N (0, 2)) (g) (ϕ, θ, ψ) ∼ Π(N (0, 0.3)) (h) (ϕ, θ, ψ) ∼ Π(N (0, 2))

Figure 6: Samples from a squashed Gaussian distribution projected onto the manifold using the projections
Π outlined in section 2.4. Each action representation has its own characteristic distribution after sampling.
Samples are visualized as 3D points in the sphere of the Lie algebra m.

Figure 6 depicts the projection of noise sampled from squashed Gaussian distributions onto SO(3),
visualized in 3D through the Lie algebra m. The rotation matrix projection yields a distribution
almost independent of the noise level, resembling a uniform distribution. Tangent vectors remain
normally distributed for small noise magnitudes, but concentrate at the boundaries of the 3D tangent
space because of saturation. Quaternions display a uniform distribution similar to rotation matrices
for small noise levels. Indeed, without clipping, projecting zero-centered Gaussian noise leads to a
uniform cover of SO(3). At larger noise levels, the distribution of rotations concentrates along a nar-
row sub-manifold. Finally, Euler angles act similarly to tangent vectors at smaller noise magnitudes,
but concentrate around the two curves corresponding to the singularities for larger magnitudes.

For stochastic policies used in PPO and SAC, a natural question is whether projecting sampled
actions to the valid representation manifold speeds up convergence, as the critic never sees off-
manifold actions. Ablation runs in figure 7 show this is untrue. Projections lead to a significant
performance loss in PPO, because the probability ratios πθ(a|s)

πθold
(a|s) used in its clipped surrogate ob-

jective no longer matches the ratio of the unprojected action. Newly computed probabilities use
projected actions, while the stored probabilities of the old policy are based on non-projected actions.
SAC remains unaffected as action probabilities are re-computed online during policy updates, with
projections applied afterwards. However, we do not observe any performance improvements.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Figure 7: Learning curves for PPO (left) and SAC (right) evaluating the effect of projecting action
samples onto the manifold for the global quaternion and rotation matrix action representations using
dense rewards in the idealized environment.

Based on our ablations, we recommend not projecting the action samples of PPO and SAC, and
instead relying on the environment for the action projection. Introducing projections offers no per-
formance gains in the best case, and has the potential to severely harm convergence.

A.1.2 EULER ANGLE NONLINEARITIES AND DISCONTINUITIES

Euler angles show very inconsistent performance across algorithms and benchmarks. This section
analyzes why this is the case and relates their performance to the nonlinearities and discontinuities
outlined in section 2.

In the idealized environments, Euler angles perform poorly almost everywhere. The only excep-
tion is PPO with dense rewards. The reason is that the relation between Euler angle rates, and by
extension delta Euler angles, of a fixed magnitude and the induced angular change in orientation be-
comes increasingly nonlinear, making it harder to learn orientation control at orientations far from
the identity.

In PPO with dense rewards, the network initialization has to be adjusted to produce incremental
actions narrowly focused around zero at the beginning of the training. Otherwise, agents do not
converge to a successful policy. Adapted initialization partially alleviates the issue and leads to a
suboptimal, but stable policy.

While the delta Euler angle chart is highly nonlinear at large angles, it is almost identical to the
incremental tangent representation at small changes around the identity. We can see this in the
drone control benchmarks in section 4, where ∆(ϕ, θ, ψ) performs nearly as well as sτ . Stable
drone flight only requires states in a small region of SO(3), and the angular changes in the trajectory
task are minimal. Hence, the performance of Euler angles is not surprising. In the drone racing task,
drones are flying more aggressively, and thus the performance gap to sτ increases.

In the RoboSuite benchmark, performance varies significantly, from being worse than other repre-
sentations to having minor differences. We attribute this to varying levels of pose control required
to solve the tasks. On ReachOrient and ReachPickAndPlace, which cover a large subset of
SO(3), ∆(ϕ, θ, ψ) is again the worst among all policies.

Practitioners should avoid Euler angles for SO(3) action representations. Delta Euler angles can
be successful on tasks that only require small angular changes, because this avoids the heavy non-
linearities and singularities at larger angles. Examples are drone control at moderate speed and
manipulation with minor orientation adjustments. However, they offer no advantages over local
tangent increments sτ , and yield worse performance as the required coverage of SO(3) increases.

A.1.3 PROJECTING SAC’S ACTOR OUTPUT

SAC uses a squashed Gaussian policy parameterization, which prevents the projection of the mean
onto the manifold of its representation. Samples are generated using

πθ (s) = tanh (u ∼ N (µθ (s) ,σθ (s))). (4)

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Importantly, the squashing is applied after sampling. Consequently, projecting the mean before
sampling will reduce the range of mean values the distribution can sample from. E.g., normalized
Euler angles of [0, 0, 1] as mean will become approximately [0, 0, 0.76], which makes reaching some
orientations in SO(3) infeasible. Projecting actions after sampling does not improve performance
as shown in appendix A.1.1. Therefore, we keep SAC’s actions completely off-manifold.

Combining off-manifold mean actions and SAC’s maximum entropy formulation results in several
entropy-related issues discussed in section A.1.7 with quaternions and rotation matrix represen-
tations. However, we adhere to the commonly used policy parameterization for SAC due to its
widespread use, squash actions once after sampling, and rely on the environment to correctly project
the policy’s actions.

The mean actions can be projected in PPO and TD3 as samples are left unbounded (PPO) or use
additive exploration noise with clipping (TD3).

A.1.4 EXPLORATION WITH EULER USING DELTA ACTIONS

Delta Euler angles outperform their global counterparts, but struggle in tasks that require full ori-
entation control. Here, we show how wrapping Euler angles around the singularities at θ = ±π/2
dominates exploration behavior during training and leads to a poor coverage of SO(3).

Starting from an orientation whose pitch angle θ0 ≈ 0 and sampling normally distributed actions
from N (0, σ), the distribution of the next pitch angle θ1 remains approximately normally distributed.
However, if θ0 is non-zero (e.g. θ0 = π

4), samples exceeding θ = π
2 will wrap around. Thus, the

density of θ1 in [π2 ,
3π
4] adds to that of [π4 ,

π
2]. Therefore, the probability density of [π4 ,

π
2] outweighs

that of [0, π4]. Hence, the agent is more likely to move closer to the singularity rather than away
from it. This effect continues until the singularities, where one half of the Gaussian distribution is
mirrored onto the other half as shown in figure 8.

Figure 8: Distribution of pitch angles sampled from Gaussian distributions with different means and
a standard deviation of 0.3 (left) and from the achieved goals stored in the HER replay buffer during
training using SAC with delta Euler angles and sparse rewards in the idealized environment (right).

In the absence of a dense reward that provides immediate feedback to policies about the quality of
their actions, this effect severely slows down convergence and results in the high variance displayed
by both SAC and TD3 for sparse rewards in section A.2. Since policies are initialized randomly
and rely on noise for exploration, a large percentage of their initial trajectories end up near the
singularities following this random walk. Accordingly, by re-labeling experiences through HER,
they learn to reach these singularities consistently.

However, due to the highly nonlinear and discontinuous behavior of Euler angles near these points,
policies fail to explore further regions of the goal space, resulting in the observed results for SAC
and TD3. By inspecting the distribution of pitch angles for achieved goals stored in the replay
buffer for SAC in figure 8, it is clear that points near the singularities dominate the first and second
quarters of the training process. Only later on, during the second half of the training process, does
the distribution of goals become more balanced.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A.1.5 SCALING TANGENT VECTORS

Section 2.5 outlines how tangent vectors can be scaled to only encompass the range of possible
rotations with a limited angle αmax. In section 3.3, we explain how this helps avoid the cut locus
of the tangent space at large action norms. Here, we present the training curves of our ablations
in figures 9, 10 and 11. As previously stated, the final mean reward of scaled policies is slightly
increased by 1.5 to 2 due to more fine-grained control. Much of the unscaled policies’ action space
lies outside the αmax limit and thus maps to the same actions.

Figure 9: Learning curves of the scaled and unscaled incremental tangent vector representation for
SAC. We show the worst five among 50 unscaled runs to emphasize that the increased variance stems
from a small number of runs that fail to make significant progress.

Figure 10: Learning curves of the scaled and unscaled incremental tangent vector representation
for TD3. Again, we show the worst five among 50 unscaled runs to demonstrate that the increased
variance stems from a small number of runs with significantly slower convergence rates.

Figure 11: Learning curves of the scaled and unscaled incremental tangent vector representation for
PPO. As before, we show the worst five among 50 unscaled runs. Dense rewards prevent conver-
gence issues in PPO.

The effect is smallest for PPO, where the initialization of the policy leads to actions close to zero.
For SAC and TD3, the effect is slightly more visible in dense environments. Agents in sparse envi-
ronments infrequently converge with significant delay (TD3) or fail to converge at all (SAC), causing

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

the increase in variance across runs. The entropy bonus causes the complete failures in SAC, which
drives actions towards larger magnitudes around the cut locust before learning a reasonable pol-
icy. Dense rewards prevent this by balancing the entropy bonuses with a continuous signal towards
successful policies from the beginning.

A.1.6 CONFLICTING POLICY GRADIENTS

Given the uni-modal policy parameterization used by all three studied algorithms, the full double-
cover of quaternions and partial overlap of the Lie algebra m for ∥τ∥ > π, harm the learning process.
Multiple optimal actions produce conflicting gradients that pull the policy in different directions. In
the case of the quaternion double-cover, these actions point in opposite directions, yielding opposing
gradient signals during policy updates.

q

qExp(πτg)

−q
qExp(−πτg)

∇a

Rotation

Q-value

qExp(−πτg) q qExp(πτg) −q

-2.39

-1.2

(a) SAC Q-values along the double-cover of quaternions for sparse rewards.

q

qExp(πτg)

−q
qExp(−πτg)

∇a

Rotation

Q-value

qExp(−πτg) q qExp(πτg) −q

-4.237

-3.208

(b) TD3 Q-values along the double-cover of quaternions for sparse rewards.

Figure 12: Learned Q-values of SAC’s and TD3’s critics for sparse rewards using the global quater-
nion action representation in the idealized environment. We sample equally-spaced actions dis-
cretely along the geodesic connecting q = π (s) and −q that passes through the goal orientation on
the S(3) manifold by applying the Exp of the unit-norm rotation vector τg pointing in the direction
of the goal. The Q-function clearly shows that the critics learn the multi-modal distribution.

Actor-critic algorithms such as SAC and TD3 rely on the critic for computing the policy gradient.
Hence, conflicting gradients only appear if the critic does learn the bi-modal Q-function. To test if
this happens in practice, we analyze the learned Q-values between q = π (s) and −q as shown in
figure 12. We sample equally-spaced actions discretely along the geodesic connecting q = π (s)
and −q that passes through the goal orientation on the S(3) manifold by applying the Exp of the
unit-norm rotation vector τg pointing in the direction of the goal. Both critics have learned nearly
the same Q-values for −q and q, although the value for the actual action q is still slightly higher in
both cases. Since the double-cover points in the opposite direction in Euclidean space, the critics
will produce conflicting gradients for actions sampled on the hemisphere of −q.

Lastly, although not visualized here, the results directly apply to PPO’s advantage estimates if both
action representations are sampled during the same rollout.

A.1.7 EXTENDED RESULTS FOR ENTROPY REGULARIZATION IN PPO AND SAC

In this section, we study the effects of varying entropy levels on PPO and SAC in the idealized en-
vironment. For PPO, we scale entropy coefficients relative to the optimal value determined through
hyperparameter tuning. SAC’s target entropy is scaled relative to its default value of −dim (A).

Due to the non-Euclidean nature of rotation representations, increased entropy might not always
lead to better exploration. For instance, vectors of larger magnitude in the tangent space attain

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

higher directional stability. Thus, from the perspective of entropy maximization, actions of large
magnitude are more attractive than their smaller counterparts. This correlation between entropy and
action magnitudes in the tangent space can be seen clearly in figure 13. Policies that fail to reach a
zero norm oscillate near the goal indefinitely due to a lack of sufficient exploration near the identity.
This effect can be mitigated by constraining the maximum rotation magnitude; hence, we always
recommend scaling local tangent increments. The effectiveness of this mitigation depends on the
magnitude of the maximum rotation angle αmax, with smaller values being more beneficial.

Figure 13: Action norms for different entropy levels for PPO (left) and SAC (right) using the un-
scaled delta tangent action representation in the idealized environment. Actions are evaluated across
3000 episodes with different goal orientations set at a magnitude of π. The agent’s initial orientation
is always initialized to the identity rotation.

A very similar effect manifests when using quaternions. Large imaginary components (x, y, z) make
the rotation direction more robust to noise perturbations. In addition, the norm of (x, y, z) constrains
the effect of perturbations to the real component w on the rotation’s magnitude. This follows from
the relation that the rotation’s magnitude θ = 2 tan−1(

√
x2 + y2 + z2/w). For SAC, this effect

is more prominent due to its mean actions remaining off-manifold, allowing them to exceed a unit
norm.

Euler angles do not suffer from the same issues. Increased entropy coefficients lead to a slight
increase in action magnitudes, but this increase plateaus quickly, unlike in tangent and quaternion
representations, which showcase an almost-monotonic effect. A likely explanation is that Euler
angles become more non-linear as Euler angles become larger, which makes learning harder (see
section A.1.2). At high entropy levels 100x above the baseline, singularities attract agents trained
with Euler angle action representations. However, their performance deteriorates considerably in
this parameter regime.

Figure 14: Action norms for different entropy levels for SAC across the dense (left) and sparse (right)
reward settings using the global rotation matrix action representation in the idealized environment.

Lastly, rotation matrices with PPO are not affected by any entropy-related issues since the Frobenius
norm of a 3D rotation matrix is constrained by the structure of the SO(3) manifold, such that ∥R∥ =√
3. However, due to SAC’s off-manifold actions, entropy maximization provides an undesired

incentive for policies towards increasing the Frobenius norm of their actions. This effect, which
contributes to the poor performance of matrix policies compared to TD3, can be seen clearly in
figure 14. To explain why SAC’s actions remain off-manifold, refer to section A.1.3.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

A.2 COMPLETE EXPERIMENTAL RESULTS

This section completes the results presented in section 3.2. We test PPOwith global and delta actions
on dense rewards. Training goal-conditioned policies with sparse rewards makes little progress
without HER; our analysis omits it. Since SAC and TD3 are off-policy algorithms compatible with
HER, we train them with global and delta actions on sparse and dense rewards. All experiments
use 50 runs per representation to ensure the significance of the results. Hyperparameters are tuned
according to section A.6.

A.2.1 PPO RESULTS

Figure 15 shows the results. Rotation matrix representations yield the best performance for global
actions. Despite its lower dimensionality, the quaternion representation is less successful. We at-
tribute this to the double-cover as established in section A.1.6. Perhaps surprisingly, tangent incre-
ments in the Lie algebra perform better than quaternions. Euler angles reach approximately the same
performance as quaternions.

For delta actions, tangent vectors in the local frame display superior performance to other represen-
tations, with Euler angles as a close second. Matrix and quaternion representations struggle to learn
a good policy. Reducing the randomness at the start of the training does not help these represen-
tations, because vectors centered around 0 will still yield vastly different actions by projecting the
mean onto the manifold.

Figure 15: PPO learning curves for dense rewards using global (left) and delta (right) action repre-
sentations in the idealized environment.

We note that the performance of the Euler representation is highly dependent on initializing the
policy log-standards to a small value of −2. With a default value of 0 as used in many reference
implementations, agents cannot learn any reasonable policy. This trick is specific to the Euler angle
representation (see section A.1.2).

We recommend the use of the delta tangent representation for PPO. It displays a reduced variance
compared to global matrix actions, achieves a slightly better final performance, and avoids issues
with projections of small actions early on during training.

A.2.2 SAC RESULTS

For dense rewards and global actions, the rotation matrix representation converges fastest. We at-
tribute this to the uniqueness and smoothness of the representation. Quaternions are second with
decreased convergence stability because of the multi-modality introduced by the double-cover of
S(3) (see section A.1.6). For delta actions, the local tangent space representation significantly out-
performs others and performs better than global actions. Attaching the tangent space to the local
frame always puts the cut-locus on the farthest side from the current orientation and prevents it from
impacting uniqueness and continuity. All results are shown in figures 16 and 17.

The results for sparse rewards differ significantly from the dense case. While the matrix represen-
tation remains the best for global actions, its performance is well below the optimum. The other
representations improve more slowly and remain worse in performance. An analysis of the trained
policies reveals that the entropy maximization in combination with the inability to project actions

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

(see section A.1.3) learns to maximize the entropy regularization before the critic can provide a
meaningful policy gradient. Since subsequent exploration is based on the behavior of the policy
and not random noise (e.g., in TD3), agents cannot recover from this collapse. Tangent and Euler
policies are unaffected but still suffer from discontinuities and singularities.

Delta actions show a similar severe degradation in performance for matrix and quaternion repre-
sentations for the same reason as in the global case. Tangent spaces are unaffected and achieve
near-optimal performance. Delta Euler angles outperform the matrix and quaternion representa-
tions, but remain significantly below the tangent representation and experience the largest variation
between training runs (see section A.1.4).

Figure 16: SAC learning curves for dense rewards using global (left) and delta (right) action repre-
sentations in the idealized environment.

Figure 17: SAC learning curves for sparse rewards using global (left) and delta (right) action repre-
sentations in the idealized environment.

As with PPO, we recommend using the delta tangent space representation with SAC. If global action
spaces are required, practitioners should opt for a matrix or quaternion representation, but have to
ensure that dense rewards are available to prevent agents from collapsing into degenerate action
outputs.

A.2.3 TD3 RESULTS

As in SAC, the rotation matrix representation in TD3 converges fastest and displays the highest
performance for dense rewards and global actions in figure 18. Quaternions are second again, for
the same reasons as for SAC. Again, the local tangent space representation significantly outperforms
all others for delta actions, and achieves superior performance compared to global actions.

The results in figure 19 for sparse rewards show the same results, but amplify the differences between
representations. The matrix representation has a more apparent advantage in the global frame, while
Euler and the Lie algebra representations struggle to learn a successful policy. In the local frame,
the tangent representation converges almost immediately to the optimal policy. On the other hand,
matrix, quaternion, and Euler angle representations display large variances between training runs
and are often unable to find a successful policy.

As in PPO and SAC, our recommendation for TD3 is to use the delta tangent space representation.
If global action spaces are required, practitioners should opt for a matrix or quaternion representa-

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

tion. Contrary to SAC, exploration is less of an issue with these representations due to the policy-
independent random exploration noise. Hence, matrix and quaternion representations also work
with sparse rewards.

Figure 18: TD3 learning curves for dense rewards using global (left) and delta (right) action repre-
sentations in the idealized environment.

Figure 19: TD3 learning curves for sparse rewards using global (left) and delta (right) action repre-
sentations in the idealized environment.

A.3 IMPLEMENTATIONS

Even when the underlying concepts are clear, putting SO(3)-specific operations into code can be
difficult. We explicitly outline some of the important operations mentioned in the paper to help
practitioners transfer the results.

We detail how we rotate around tangent vectors sτ in the body frame, implement exponential and
logarithm maps for rotation scalings, and perform differentiable matrix orthonormalization inside
neural network layers. All components are implemented using standard scientific Python libraries
only. Note that there is ongoing work within SciPy (Virtanen et al., 2020) toward rotation routines
compatible with most deep learning frameworks, further simplifying implementations.

Listing 1: Rotate an orientation by a local tangent vector
1 import numpy as np
2 from scipy.spatial.transform import Rotation as R
3

4 current_orientation = R.identity()
5 # Action in [-1, 1]ˆ3 from the policy network
6 action = np.random.default_rng().uniform(-1, 1, size=3)
7 # Apply the tangent vector to the current orientation as delta action
8 next_orientation = current_orientation * R.from_rotvec(action)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Listing 2: Limiting rotations to a maximum angular change
1 import numpy as np
2 from scipy.spatial.transform import Rotation as R
3

4 current_orientation = R.identity()
5 # Limit the rotation to a maximum of pi/10 radians
6 max_rotation = np.pi / 10
7 # Calculate the next orientation in the direction of the global reference
8 action = np.array([0, 1, 0, 0]) # Example quaternion action
9 # Compute the difference between current and target orientation

10 delta = current_orientation.inv() * R.from_quat(action)
11 # Check if the rotation angle exceeds the maximum allowed. If so, scale
12 # the magnitude to at most the maximum allowed rotation
13 scale = np.minimum(1, max_rotation / delta.magnitude())
14 # Apply the scaled delta to the current orientation. Power on rotation is
15 # equivalent to log -> scale -> exp
16 next_orientation = current_orientation * delta**scale

Listing 3: Differentiable matrix orthonormalization in PyTorch
1 import torch
2

3 def orthonormalization(x: torch.Tensor) -> torch.Tensor:
4 u, _, vh = torch.linalg.svd(x)
5 # Ensure det = 1 without in-place changes to u (breaks backprop)
6 unorm = torch.zeros_like(u)
7 unorm[..., :2] = u[..., :2]
8 unorm[..., 2] = u[..., 2] * torch.det(u @ vh)
9 return unorm @ vh

10

11 action = torch.randn(3, 3)
12 norm_action = orthonormalization(action) # Orthogonal, det 1

A.4 ENTROPY ON THE MANIFOLD

The standard entropy bonus term employed in PPO and SAC is

H(πθ(·|s) =
1

2

4∑
i=1

log
(
2πeσ2

i (s)
)
. (5)

A policy that parametrizes rotation actions as quaternions with zero norm and unit variance on all
action dimensions will lead to a uniform distribution on the S(3) sphere after normalization and
thus a uniform distribution of rotations with maximum entropy. If we shift the mean of qw towards
1, the entropy in equation 5 remains constant, while the actual entropy of the rotation distribution
declines. The decline is evident because the entropy of the distribution on the sphere

H[X] = −
∫
S(3)

p(x) log p(x)dΩ(x) (6)

with dΩ as the surface area measure and a random variable X ∈ S(3) has its maximum at p(x) =
1

2π2 . One can show this is the global maximum with a variational argument where the entropy
functional is concave in p.

The implication for training RL agents is that agents can increase their mean to higher values to
concentrate the distribution of rotations in SO(3) while still receiving the same entropy bonus as
uniformly distributed rotations, thus effectively breaking entropy regularization.

A.5 FETCH ORIENTATION ENVIRONMENTS

The ReachOrient and PickAndPlaceOrient environments (see figure 20) used in section 4
to benchmark TD3 are directly inspired by the Fetch environments (Andrychowicz et al., 2017).

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Figure 20: Example rollout of the PickAndPlaceOrient environment. The agent has to pick
up the cube and place it into the same position and orientation as the goal frame. The frame located
to the right of the robot arm indicates the goal pose.

However, to make them compatible with the extended scope of our environments, we made some
modifications, which are listed below.

The most fundamental change is the extended action space. In addition to the arm’s position and
finger joints, agents also control the arm’s orientation. The maximum angular change of the arm
between two environment steps is π

10 radians, as in our idealized rotation control environments.

A goal orientation has extended the environment’s goal. In the case of ReachOrient, this target
orientation is sampled by randomly rotating the arm start orientation by at most π2 radians. We limit
the goal orientation to prevent infeasible configurations that are physically infeasible for the arm.
PickAndPlaceOrient samples its orientation goal similarly with respect to the cube orienta-
tion. As in the original environment, half of the goal positions are sampled uniformly above the
table, and half are sampled on the table itself. Goal orientations on the table are sampled to be phys-
ically feasible. The cube is randomly rotated at the start of each episode by sampling which side is
facing down and then rotating it uniformly around its z-axis.

Changes in the goal formulation also require a change to the reward function. Agents re-
ceive a reward of 0 if the position and orientation of the arm (ReachOrient) or cube
(PickAndPlaceOrient) are both within their respective tolerances of 5cm and π

10 radians, and
−1 everywhere else.

Andrychowicz et al. (2017) do not consider orientation control, and thus it has no influence on the
choice of robot. However, the Fetch robot shows a limited range of reachable position and orienta-
tion targets. We thus exchange the robot with the Franka FR3, one of the most common robot arms
in robotics research. The gripper remains from the original environments to limit implementation
variations.

A.6 HYPERPARAMETER CHOICES

The hyperparameters used for each algorithm and action representation are optimized per environ-
ment using Bayesian optimization (Bergstra et al., 2011). Table 3 lists the number of runs used for
hyperparameter tuning across each environment.

We determine separate sets of hyperparameters for the idealized rotation environment on the sparse
and dense reward settings. However, delta and global actions of the same representation share
their hyperparameters. The action viewpoint does not significantly change the choice of hyperpa-
rameters in trial runs. Across the Fetch environments, we reuse the same hyperparameters used
by Andrychowicz et al. (2017) to maintain consistency with prior results. Similarly, for the Robo-
Suite (Zhu et al., 2020) benchmark, we adopt the same original hyperparameters used for SAC.

All our experiments use identical MLPs for both policy and value networks. For PPO, we use 2-
layer networks with 64 units per layer and tanh activations. The only exception is drone racing,
where we find that using 128 units per layer, as per (Kaufmann et al., 2023), is beneficial. Note
that similar increases in the number of units per layer across other tasks with PPO negatively affect
performance. Both SAC and TD3 use 3-layer networks with 256 units per layer and ReLU activa-

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Table 3: Number of runs per environment for hyperparameter optimization

Environment Number of Runs
Idealized Rotation Environments 100
Drone Trajectory Tracking 100
Drone Racing 50

tions. However, for SAC’s RoboSuite benchmark, we use 2-layer networks instead, following the
architecture originally used in the benchmark for full pose control.

A.7 USAGE OF LARGE LANGUAGE MODELS

We used large language models (LLMs) for wording and proofreading individual sections. In addi-
tion, they were used as a programming aid to create the TikZ figures. The ideation phase made no
use of LLMs.

23

	Introduction
	Representing SO(3) Actions in Deep RL
	The SO(3) Manifold
	Global vs Delta Actions
	Multi-Covers, Singularities, Discontinuities
	Projections
	Action Scaling

	Controlling Pure Orientations
	Environment Setup
	Performance Comparison
	Explaining the Effects of SO(3) Action Representations
	Practical Recommendations

	Robotic Benchmarks
	Conclusion
	Reproducibility Statement

	Appendix
	Additional Effects
	Projections of Noise Samples
	Euler Angle Nonlinearities and Discontinuities
	Projecting SAC's Actor Output
	Exploration with Euler using Delta Actions
	Scaling Tangent Vectors
	Conflicting Policy Gradients
	Extended Results for Entropy Regularization in PPO and SAC

	Complete Experimental Results
	PPO Results
	SAC Results
	TD3 Results

	Implementations
	Entropy on the Manifold
	Fetch Orientation Environments
	Hyperparameter Choices
	Usage of Large Language Models

