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Abstract

Decentralized SGD (D-SGD) is a popular op-
timization method to train large-scale machine
learning models. In this paper, we study the gen-
eralization behavior of D-SGD for both smooth
and nonsmooth problems by leveraging the algo-
rithm stability. For convex and smooth problems,
we develop stability bounds involving the training
errors to show the benefit of optimization in gen-
eralization. This improves the existing results by
removing the Lipschitzness assumption and im-
plying fast rates in a low-noise condition. We also
develop the first optimal stability-based general-
ization bounds for D-SGD applied to nonsmooth
problems. We further develop optimization error
bounds which imply minimax optimal excess risk
rates. Our novelty in the analysis consists of an
error decomposition to use the co-coercivity of
functions as well as the control of a neighboring-
consensus error.

1. Introduction

Modern machine learning often involves large-scale datasets
which contain private information of users. This asks for
the development of scalable optimization methods that can
preserve the private information (Lian et al., 2017; 2018).
An efficient methodology to meet these requirements is to
distribute the datasets over several agents, each of which
only processes its own local datasets. In this way, the pri-
vate information of a local dataset is not revealed to other
agents. Decentralized stochastic gradient descent (D-SGD)
is a representative distributed optimization method where
each agent updates its own local model by building stochas-
tic gradient using its own local dataset. These agents are
connected via a communication graph which shows the de-
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gree of the connection. Then, each local model iteratively
conducts a weighted average and a gradient descent.

The impressive success of D-SGD in practice motivates a
lot of theoretical studies to understand their behaviour, for
which a challenge lies in the control of a consensus error.
Most of these studies focus on the convergence analysis
to show the behavior on the training datasets (Lian et al.,
2017; 2018; Koloskova et al., 2020; Xin et al., 2020). As
a comparison, there is far less work on the generalization
analysis to understand the performance on testing datasets,
which is a central topic in learning theory. Indeed, gener-
alization analysis sheds insights on how different factors
contribute to the prediction, which helps the construction of
early-stopping rule to avoid overfitting (Hardt et al., 2016).

Richards and Rebeschini (2020) initialized the generaliza-
tion analysis of D-SGD by leveraging the concept of uni-
form stability. Several works improve the generalization
analysis by considering another stability concept called on-
average model stability (Zhu et al., 2022; Le Bars et al.,
2024; Taheri and Thrampoulidis, 2023). While these results
are interesting to understand the generalization behavior
of D-SGD, there is still room for further improvements.
For example, these stability analyses often impose restric-
tive assumptions such as bounded gradient assumption and
bounded variance assumption. Furthermore, they fail to
imply optimal generalization bounds that can fully capture
low-noises conditions for fast rates. In this paper, we aim to
improve these discussions by removing restrictive assump-
tions and getting optimistic risk bounds. Our contributions
are summarized as follows.

e We present the generalization and convergence analysis for
D-SGD on smooth and convex problems, for both of which
we remove the existing Lipschitzness assumptions and get
fast rates under a low noise condition. We build on-average
model stability bounds, which involve the training errors
to show the benefit of optimization in generalization. We
present a clear comparison (Table 1) to show the advantage
of our stability analysis as compared to existing results.

e We also consider nonsmooth problems with Holder con-
tinuous gradients, for which we present a comprehensive
analysis to show the effect of a smoothness parameter and
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the spectral gap on stability and generalization. For the
specific Lipschitz problems, we present the first optimal
generalization bounds for D-SGD.

e A challenge in the stability analysis of D-SGD is the
control of a neighboring consensus error. Our key obser-
vation is that this error can be offset by the co-coercivity
of a gradient map, towards which we introduce a new error
decomposition.

The paper is organized as follows. Section 2 gives the related
work. Section 3 formulates the problem. We present our
result for smooth and nonsmooth problems in Section 4 and
Section 5, respectively. Conclusions are given in Section 6.

2. Related Work
2.1. Algorithmic Stability

Algorithmic stability is a fundamental concept in learning
theory to measure the sensitivity of an algorithm with re-
spect to a perturbation on the training dataset. Various
stability concepts have been introduced in the literature,
including the uniform stability (Bousquet and Elisseeff,
2002), on-average stability (Shalev-Shwartz et al., 2010),
argument stability (Liu et al., 2017) and on-average model
stability (Lei and Ying, 2020). The uniform stability is
arguably the strongest stability measure, which can imply
high-probability generalization bounds (Bousquet and Elis-
seeff, 2002; Bousquet et al., 2020; Klochkov and Zhivo-
tovskiy, 2021; Feldman and Vondrak, 2019; Fan and Lei,
2024; Li et al., 2024). The on-average stability has a close
connection to the learnability (Shalev-Shwartz et al., 2010).
The influential work (Hardt et al., 2016) pioneered the sta-
bility analysis of SGD for Lipschitz and smooth problems,
which motivates a lot of interesting studies on the stability
of stochastic optimization algorithms (Kuzborskij and Lam-
pert, 2018; Neu et al., 2021; Lei and Ying, 2020; Charles
and Papailiopoulos, 2018; Bassily et al., 2020; Nikolakakis
et al., 2022; Schliserman et al., 2025). For example, the
Lipschitzness and smoothness assumption in Hardt et al.
(2016) were weaken based on the on-average model stabil-
ity. While a convexity assumption is often imposed in the
stability analysis, recent progress leverages the stability con-
cept to study the generalization behavior of gradient descent
methods to train neural networks (Richards and Kuzborskij,
2021; Wang et al., 2025; Taheri et al., 2025; Deora et al.,
2024; Zhang et al., 2024a). Algorithmic stability was widely
used to study the generalization behavior for various learn-
ing tasks such as adversarial training (Xiao et al., 2022;
Zhang et al., 2024a), federated learning (Sun et al., 2024,
Chen et al., 2024), differential privacy (Bassily et al., 2020;
Wang et al., 2024) and meta-learning (Maurer, 2005).

2.2. Decentralized SGD

The exploration of decentralized optimization algorithms
dates back to the work of Tsitsiklis (1984). Decentralized
gradient descent (DGD) was studied by Nedic et al. (2009),
where the consensus error was introduced as an important
ingredient in the analysis of decentralized algorithms. The
stochastic variants were also extensively studied due to their
simplicity and effectiveness in addressing large-scale ma-
chine learning challenges, mostly focusing on the optimiza-
tion properties (Sundhar Ram et al., 2010; Xu et al., 2015;
Duchi et al., 2011; Lian et al., 2017; Vlaski and Sayed, 2021;
Pu and Nedi¢, 2021; Koloskova et al., 2020; Le Bars et al.,
2023; Zhang et al., 2024b). Generalization issues of D-SGD
are also drawing increasing attention recently. Richards and
Rebeschini (2020) considered a different variant of D-SGD
and derived generalization bounds by using uniform stabil-
ity and Rademacher complexity (Bartlett and Mendelson,
2002). Sun et al. (2021) considered the same D-SGD as ours,
and developed uniform stability bounds. On-average model
stability of D-SGD was recently studied, where topology-
aware (Zhu et al., 2022) and topology-independent (Le Bars
et al., 2024) generalization bounds were developed. These
stability analyses were extended to other decentralized algo-
rithms such as DGD (Taheri and Thrampoulidis, 2023) and
decentralized stochastic gradient descent ascent (Zhu et al.,
2024).

3. Problem Setup

Let IP be a probability measure defined on a sample space
Z := X x ), where X is an input space and J C R is
an output space. We consider a decentralized learning set-
ting where the training examples are distributed over m
agents. Specifically, for the k-th agent, we assume that a
training dataset Sy = {z1k,...,%nk} of size n is inde-
pendently drawn from P. We collect all these m datasets
into S := U", Sk, based on which we want to build a
prediction function h : X — R. We consider parametric
learning where the prediction function h is parameterized
by # € W C R%. The performance of § on an example z
is measured by £(6; z), where £ : W x Z — R, is aloss
function. Our objective is to find a global model § € W
minimizing the population risk defined by

1 m
R(0) = —
(0) m ZEZNZ[K(QVZ)]?
k=1
which quantifies the behavior of the model on a testing

dataset. Here E . [-] denotes the expectation w.r.t. z. We also
define the empirical risk as

1 & IRS
Rs(6) = — ZRSk (0), where Rgs, (0) = - Zf(e,zi,k)a
k=1 i=1

which quantifies the behavior of the model on training.
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Given S, we apply a randomized learning algorithm
A to build a model as an approximation of * =
arg mingeyy R(6). We denote A(.S) as the model produced
by running A to .S. We are interested in studying the excess
risk E[R(A(S)) — R(0*)], which can be decomposed as

E[R(A(S))] — R(67) = E[R(A(S)) — Rs(A(S))]

+E[Rs(A(S)) — Rs(67)], (3.1)
where we use E[Rg(6%)] = R(0*). We refer to
E[R(A(S)) — Rs(A(S))] as the generalization gap, which
measures the difference between training and testing for the
output model. Moreover, we call E[Rg(A(S)) — Rs(6%)]
the optimization error which measures the difference be-
tween the training error of the output model versus the best
model.

3.1. Decentralized SGD

In this paper, we apply D-SGD (Lian et al., 2017) to mini-
mize Rg (). We assume there are m agents communicated
via a communication graph represented by a weight matrix
W e [0, 1)™*™, where W}, reflects the weight of informa-
tion sent from agent [ to agent k. D-SGD initializes all the
local models with the same point #(?). At the ¢-th round,
each agent k independently samples a datapoint z Itk uni-
formly from its local dataset S, (i.e., I, ]i follows the uniform
distribution over [n] := {1,2,...,n}), based on which it
computes a local gradient at its own model Hl(t). Then, it
receives local models from other agents for a weighted ag-
gregation, after which it moves along the negative direction
of local gradient with the step size 7;. This process can be
formulated as

O S Wb — e veoy z ). G2)

=1

In this paper, we always consider non-increasing step sizes,
ie., M1 < 1. We summarize the procedure of Decentral-
ized SGD in Algorithm 1.

To study D-SGD, we impose an assumption on the mix-
ing matrix, which is standard and has been widely used
in the analysis of decentralized learning algorithms (Sun
et al., 2021; Deng et al., 2023; Le Bars et al., 2024; Taheri
and Thrampoulidis, 2023; Zhu et al., 2022; Richards and
Rebeschini, 2020).

Assumption 3.1 (Mixing matrix). We assume W is
doubly stochastic, i.e., WT1T = W1 = 1 where
1 € R™ is the vector that contains only ones, and
max{|Ae(W)|, |Am (W)} < 1, where A;(W) denotes the
i-th largest eigenvalue of W.

Let A = max{\3(W), A2 (W)}. Then, 1 — v/X is referred
to as the spectral gap, which is defined as the difference

between the moduli of the two largest singular values of a
matrix associated with a graph. In decentralized learning,
the spectral gap measures the connectivity of the underlying
communication graph (Zhu et al., 2022). For instance, A\ =
0 for a fully connected graph, where each element of the
communication matrix is % Conversely, in a ring graph of
varying sizes, the value of \ increases with the size of the
graph and approaches 1 as the size of the ring approaches
infinity (Vogels et al., 2022). The inverse of the spectral
gap, i.e. ﬁ&, can significantly depend on the number of
agents m. For one of the most standard communication
matrices, the inverse of the spectral gap is O(1) in the fully
connected graph, O(m) in the grid graph and O(m?) in the
cycle graph (Lu and De Sa, 2023).

Algorithm 1 Decentralized SGD

Input: Initialize Vk, 9,(60) = 00 ¢ RY iteration number
T, stepsizes {n; }1—,', weight matrix .
fort=0,...,T—1do
for each agentk =1,...,m do
Sample I}, by the uniform distribution over [n]

91(f+1) =1 Wklol(t) - UtVf(az(f)§ 21t 1)
end for
end for

3.2. Stability and Generalization

Algorithmic stability measures how the output model will
change if we change a single example in the training
dataset (Bousquet and Elisseeff, 2002). Various stability
concepts have been proposed in the literature. In this paper,
we consider the on-average model stability which can relax
the smoothness and the Lipschitzness assumption. Below,
we adapt the stability concept in Lei and Ying (2020) to the
decentralized learning setting.

Definition 3.2 (On-average model stability). Let e > 0. Let
S = (517 ey Sm) with S}, = {Zl,lw R ,Zn’k} and S =
(5‘1, el Sm) with S), = {Z#1,ks - -, Zn1} be two indepen-
dent copies such that z; ;, ~ Pand Z; ;, ~ P. Forany i € [n]
and j € [m), denote by S(7) the dataset formed from S by
replacing the -th element of the j-th agent’s dataset by z; ;:

S = (8y,...,8;-1,5"

j >Sj717"'7sm)7
(@ _ 5
where Sj = {ZLj, ce ey Zi—1,55 R0, Bid1,5y 0+ s ij}. We

say an algorithm A is on-average e-model stable if

I y
Esga|—= 2D IA(S) - ASD)F] < .

i=1 j=1

To study the connection between stability and generaliza-
tion, we need to introduce standard concepts on the Holder
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continuity and Lipscthizness. Smooth loss functions include
the logistic loss for classification and the least square loss for
regression. Lipschitz loss functions include the logistic loss,
hinge loss and Huber loss (Mohri et al., 2018). Examples
of loss functions with Holder continuous gradients include
the g-norm hinge loss and g-th power absolute distance loss
with ¢ € [1, 2] (Steinwart and Christmann, 2008).

Definition 3.3 (Holder continuity). Let o € [0,1] and
L > 0. We say a function g has (o, L)-Holder continu-
ous gradients if

IVg(6) —

Especially, when a = 1, we say the function g is L-smooth.

Definition 3.4 (Lipschitzness). Let G > 0. We say a
function ¢ is G-Lipschitz continuous if |g(6) — g(8')| <
G||0 — ¢'||2 for any 0, ¢’

Vo @), < LI6—0l3. V0.6

The following lemma is a direct extension of a result in Lei
and Ying (2020) to the decentralized learning setting. We
give the proof in Section A for completeness.

Lemma 3.5. Let S, S and SU9) be constructed as in Defini-
tion 3.2, and let vy > 0. Let A be a randomized algorithm.

a) Suppose for any z, the function w — ((W; z) is non-
negative and L-smooth. Then

Es 4[R(A(S))~Rs(A(S))] < %ES,A[RS<A<S>>]+

PRAE

AlIA(SE) — A(S) 3],

b) If w — {(w; 2) is G-Lipschitz continuous, then

Es.A[RIA(S)) — Rs(A(S))]
S%ZZEWHA (56 — A(S)][a].

4. Convex and Smooth Problems

In this section, we present the generalization analysis in the
convex and smooth case.

4.1. Stability Analysis

We first present our main result on the stability of D-SGD,
which control the stability by the magnitude of gradients en-
countered in the trajectory. The proof is given in Section B.1.
We denote A < B if there exists a universal constant C' such
that A < CB. Wedenote A < Bif A < Band B < A.

Theorem 4.1 (Stability bound ). Let Assumption 3.1 hold.
Let S, SU"9) be defined in Definition 3.2. Assume the loss

Sunction £(+; z) is convex and L-smooth. Let 9?), e 0,(,? be
the t-th iterates of D-SGD run over S, and 0?’”), s 95,2’”)

be the t-th iterates of D-SGD run over S(?). Denote 6) =
Ly 9,@ and -19) = Ly Ql(f’”). Let

AS) =0T and  A(SW)) =§T4), “.1
If
2(1 + )\)Lnt 1
IS L) < .
( (1— )2 +2)n =% “4-2)
then

A(S)3] <

%ZZE[HA(S) -

T-1

mznz Zn: 3 i:( 1) [va J (E®) H;]
=1 j=1 t=
n m T-1 1
+w%22QM@WM%M@T-
=1 j= =

Remark 4.2. If we impose a G-Lipschitzness condition,
Theorem 4.1 implies (we assume 7, = 7 for brevity)

1 n m N
— _ @y)121 <
3" S EIAS) - AR <
=1 j5=1
G*n*T Ln 1 G?*n*T?
mn ((1—)\)2 %)—i_ m2n? (43)

If n < m(1— \)2/L, which is widely used in both the exist-
ing convergence analysis (Richards and Rebeschini, 2020)
and stability analysis (Taheri and Thrampoulidis, 2023) of
decentralized algorithms, then Eq. (4.3) further implies

m B G2 2 T T2
— ZZE JA(S) — A(S)[2]  —L (= + —).

mn "m mn
=1 j=1

(4.4)

If we impose a G-Lipschtizness condition in Lei and Ying
(2020), then it was shown that the vanilla SGD is on-average

e-model stable with €2 < % (T + %2) . Therefore, our on-
average model stability analysis recovers the existing result
for the specific single-machine serial case. Eq. (4.4) can be

rewritten as % (L + TWZ) with N = mn, showing that
increasing m improves stability even when the total number
of samples N is fixed. The underlying reason is that we
consider {5 on-average model stability, which is the second
moment of a random variable and can be decomposed as a
bias and a variance term. Since the average operator reduces
the variance by a factor of m, there is a factor of 1/m in our
stability bound (Theorem 4.1 gives a bound on the square
of the /5 on-average model stability). As a comparison,
the previous discussions either consider local iterates or the
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£y version of stability, which may not show the effect of
variance reduction of D-SGD with m agents. Our results
also match recent findings in Lei et al. (2023), which show
that the variance decreases by a factor of batch size or local
machines.

Remark 4.3 (Novelty). As compared to the stability anal-
ysis for the vanilla SGD, a challenge in the decentral-
ized case is to control the neighboring consensus er-
rors: i E[||6® — 9,(5) — ) 4 9,(:”) ||;] Existing
works (Sun et al., 2021; Taheri and Thrampoulidis, 2023)
decompose this term into two consensus errors and use the
estimate for the consensus error as follows

T—1 m
SCE[I0 - o 30 4 g
t=0 k=1
T—1 m T—1 m -
S YD E[6O-67 151+ >0 D (164 -6 ]
t=0 k=1 t=0 k=1

Lm T-1
S Ty O WEIRs ().
t=0

This decomposition ignores the important property that Q(t)

and 9 ) are produced based on two neighboring datasets,
Wthh should be close. Due to the ignorance of this impor-
tant property, the existing stability analysis implies some-
what crude bounds (Sun et al., 2021; Taheri and Thram-
poulidis, 2023). Instead, we give a bound of neighboring

consensus errors which can capture the closeness of Q,Ef)
and 9,(:’”) (see in Lemma B.3)

5 iE o0 02— 1 o092 <
t=0 k

1 SR : ) A
a2 kZ_IHW(e)g);ZIZ,) Voo 2|,

N t=0
where Zp ;. = 27y ;.. and Z}EJ,L =% if (k=7 &It = i)
and zp¢ otherwise. Our key observation is that the term

t). t,i3). (i 2
HVE(&’,(C ). Zrt k) — VK(O,(C ). Z}JJHZ can be offset by us-
ing the co-coercive property of the convex and smooth loss
functions. To this aim, we introduce an error decomposition

o get (6 — {7 W(e 71 — W(e“” Zi0))s

which offsets HV@ B ;Zr,g,k) - Ve z k Hz

(0 = 6,7 Ve 2y ) - VO Zi7))

1 i) (i) 1|2
> Z||\VU6: 21y 1) = VU0 25

We control the gradient norm with a self-bounding prop-
erty (Srebro et al., 2010), and derive the following stability

bounds involving training errors, which shows the benefit
of optimization in stability. Our analysis requires step sizes

to satisfy Eq. (4.2) and n; < (8(;2?71/\12,\) + "21 ) which are
satisfied if n; < (1 — \)/L. This is a mild assumption since
for D-SGD we often choose 7; =< 1/ \/T, which vanishes as

T — oo. The proof is given in Section B.1.

Corollary 4.4. Let Assumption 3.1 hold. Let ((-;z) be
convex and L-smooth. Let A(S), A(S")) be defined in

(132 niy 3
Eq. (4.1). If (4.2) holds and ny < ( 5 + 7) , then

SLZ(1+A
— SE)y]12
3D EIIAS) - AS)B)
=1 j=1
T-1
L L, Ly o ]
< = 4 \pPE f®)
~ mn ((1—)\)2 +m>nt [R5 (6]

2 2 T—-1
+ L Zt o T ZE[R 0® 4.5)

m2n2

Remark 4.5 (Comparison). For brevity, we consider con-
stant step sizes. We now compare our stability bounds with
existing results. Richards and Rebeschini (2020) consid-
ered a different variant of D-SGD, and derived uniform
stability bounds of order G"nT which was extended to the
D-SGD in Algorithm 1 (Sun et al., 2021). Under a Gaussian
weight difference assumption, a topology-aware stability

1
bound of order & (>0 Rs, (QLT))) >+ ﬁ + X was
derived (Zhu et al., 2022). Le Bars et al. (2024) developed
an improved stability bound as follows

—ZZE JA(S)—A(S) 5] S < onT + GInCw
mn
=1 j5=1
Ez Ski> ) ( 6)
where jo = ming RS 0),Cw = Z HWt Wt+1||2

and a bounded variance assumption was 1mposed

sup max — fz INV£(6; Zix — VRs, (0))]3 < 0. (4.7)

Taheri and Thrampoulidis (2023) showed that DGD is on-
average e-model stable with (detailed calculations are given
in section B.2)

. < (n\/LT

mn
Under a mild assumption that n < T'L, our analysis shows
that D-SGD is on-average e-model stable with

)(ZERS 61y )7 (4.9)

L”]Q\F)(Z]ERS )] )7. (4.8)

an
i

ES(LW\/T+

mn
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Table 1: Stability Bounds for Convex and Smooth Problems. C S, L denote the assumptions of convexity, L-smoothness and
G-Lipschitzness respectively. Here, A in the column “Type” means the variant A of D-SGD, i.e., 9,(:4'1) — > Wi (Hl(t) —

ntVE(é)l(t); zrt 1), B means the variant B of D-SGD, i.e., 0,(;“) — > Wkl0(t) ntVE(é),(:); zt 1) For the bound in
Le Bars et al. (2024), we use the notation R§, = ming Ry, 0),Cyw = Z \W* W1, and impose a bounded
variance assumption in Eq. (4.7).

Type Reference C|S|L Stability Bounds

SGD/A | Richards and Rebeschini (2020) | v | v/ | V C:;’nT

SGD/B Sun et al. (2021) vV Gut 4 St

SGD/B Zhu et al. (2022) Vv x %\/ LY Re (07) + =+ A

SGD/B Le Bars et al. (2024) VvV %\/ LS E[Rs, (0 ‘0))71%* ] 4 gnT+CTnCw

GD/B | Taheri and Thrampoulidis (2023) | v | v | x (”VmﬁT sz ) \/ ST IE[Rs(69)] (Section B.2)

SGD/B Ours Vv x (L:;{ + fy:?n ((1 7t m) )\/Z E[Rs(0®)]
Our analysis improves the stability analysis in Le Bars  and L-smooth. Define ) = LS~ 6,". ). If Assumption
et al. (2024) by removing the bounded variance assump- 3.1 holds and n, = n with
tion and the Lipschitzness assumption. While Eq. (4.6) also 8L2(1 4+ \)n? 1
involves training errors, the dominant term in the bound is — 4+ 2ln < = (4.11)
w if o is not sufficiently small. As a compari- (1= 2’
son, our stability analysis can imply fast rates in a low-noise then
condition. Our analysis also outperforms that in Taheri and - B
Thrampoulidi it i ’72ﬁ ig- E[||9(1) —0*|3]

poulidis (2023), as it involves a factor (we ig = Z (t) Rs(0)] < 2l
3 T & - nT
nore L for brevity), wh1ch is replace(i b))\/ ﬁ(l »tm f 1612(1 + Ay
in Eq. (4.9). If n 2> andn 2 , then our stabilit (— 4L ) Rg(0%)]. (4.12
q.(4.9).1tn 2 mnT nz VTnm y 1 -2 +4Ln )E[Rs(07)]. ( )

bound is better since
VT Ui

T R N g (4.10)

Our analysis suggests n < 1/y/mn and T < mn in Re-
mark 4.9, and in this case the left-hand side of Eq. (4.10) is
significantly larger than the right-hand side. Then, Eq. (4.9)
is sharper than Eq. (4.8). Finally, it should be emphasized
that we consider D-SGD, while Taheri and Thrampoulidis
(2023) considered DGD. We summarize the comparison
in Table 1. According to the table, it is also clear that our
stability analysis also improves Sun et al. (2021) and Zhu
et al. (2022) by removing the term GnT'/(1 — X) and A,
respectively, which do not converge to 0 even if nm goes to
infinity.

4.2. Convergence Analysis

Theorem 4.6 to be proved in Section B.3 gives convergence
rates of D-SGD for smooth and convex problems. It should
be mentioned that our assumption on step size in Eq (4.11)
is consistent with Eq. (4.2) and that in Corollary 4.4.

Theorem 4.6 (Optimization error). Assume {(+; z) is convex

Remark 4.7 (Comparison). For convex, L-smooth and G-
Lipschitz problems, it was shown (Richards and Rebeschini,
2020; Sun et al., 2021)

T
1 ; 1013  GLn  G*p?
- E (t * 2 )
T; [Rs(07)=Rs(07)] 5 0T 1At
4.13)

A key difference between our result and Eq. (4.13) is that
our optimization error bound involves the empirical risk of
0*. Therefore, it implies fast rates in an interpolation set-
ting. In more detail, by choosing 1 < 1/+/T, Theorem 4.6
implies convergence rates of order O(1/+/T) in a general
case. In the interpolation setting with a vanishing Rg(6*),
Theorem 4.6 implies fast convergence rates of order O(1/T")
by choosing n =< 1. As a comparison, Eq. (4.13) requires
an additional Lipschitzness assumption and can only im-
ply convergence rates of order O(1/ V/T). Convergence of
DGD was also recently studied in Taheri and Thrampoulidis
(2023). Their analysis considers learning with separable
data. As a comparison, our convergence analysis covers
a more general case and focus on D-SGD, which is more
computationally-efficient than DGD.
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4.3. Excess Risk Analysis

We combine the stability and convergence analysis together,
and derive the following excess risk bounds for D-SGD on
convex and smooth problems. Our bound is optimistic in
the sense of involving the risk of the best model (Srebro
et al., 2010). The proof is given in Section B.4.

Theorem 4.8. Let assumptions in Theorem 4.1 and Theorem
4.6 hold. Then for any ~v > 0 we have

E[R(A(S))] - R(6") 5 (RO") + lli’;lz) .

(L+T(L+7)L((1 bz + w)n? +(L+’Y)L2772T2)
2012
0 mn men
1613 , L*p? .
ILn)E .
s +(<1w2+ n)E[R(0")

Remark 4.9 (Illustration). In the standard setting with
R(6*) +1|0*]|3/(nT) < 1, Theorem 4.8 shows that

6=z | L*»*
sk = E[R(A(S))] — R(0%) < L
o = B{R(A(S)] ~R07) S V2 + s + I
+£+T(L+7)L(7af§>2 +%)772+(L+7)L2772T2
5 mn m2n2 :

We choose the optimal ~ to minimize this bound and get

0|2 L2n? LVTn, L 1\ LanT
2 L+ 77( n )+ 7
1‘15 4'—“— —+ .
= nT  (1-X)2 Vmn \(1-))2 mn
1
Since %((152)2)2 < (ILQ/\; + LMT and assuming
n < T'L, we further get
e*13 | L*n? LinT
1iS < L .
Crisk ~> nT Jr(1—)\)2+ m mn
: 16" 1l2
Taklngn \F(L-&—LS/?T/(mn))z glves
L)6°)3 AR
Erisk S +1|6* (*—F ) .
N T(A= N2 (14 VIT/ (mn)) 10727+ 2

Setting T' < mn//L, we get

LA LY
TS (1= 2)2 Vmn

The minimax statistical error for learning with a convex
and smooth function is O(1/4/n) (e.g., Theorem 7 in Chen

"For simplicity, we assume T is large so that such 7 satisfy the
condition < (1 — A)/L in Egs. (4.2) and (4.11). For example, a
suggested choice is T < mn,/+/L. Our assumption on step sizes
holds if mn is large.

et al. (2018)), where n is the sample size. Since our training
set has mn examples in total, our stability analysis implies
minimax optimal excess risk bounds of the order 1//mn.

We now consider a low-noise setting where R(6*) +
10%113/(nT) < 1/(nT). Theorem 4.8 with v = L shows

1+ L2?(1 -2+ 1L
ea < A=A+ Ln
nT
1 (1 n TLQ((l az m)7I2 L37)2T2)
nT mn m2n2 /)’
which can be simplified as
L? L 1 L3n? L3nT
Ty —1 7

S _
sk~ TA-XN?2 T T mn(l—X)?2 m3n?
We choose 77 < (1 — \)/L to meet our assumption on step

sizes, and get

< 71/ + i +
risk ~> T(1—X) mn

L2(1 - NT
m2n2

We choose T' < NSy

get fast rates of order 1/(mn) independent of the spectral
gap in a low-noise case.

3
and get € < % That is, we

Remark 4.10 (Comparison). Excess risk bounds of or-
der 1/y/mn were also developed in Richards and Rebes-
chini (2020) for a different variant of D-SGD, where the
model aggregation is performed after local update. The
work (Sun et al., 2021) considered our D-SGD and de-
ot 4 T,

which, however, will not converge due to the term i 77)\T

The recent work (Le Bars et al., 2024) con51dered the
generalization gap without discussions on optimization
error. Furthermore, their generalization bound involves

g ( > E[Rs, (9(0)) —R%. 1) ® 1tis not clear how
to control this term by optimization theory. Therefore, their
analysis fails to imply fast rates of order 1/(mn) even com-
bined with our optimization error bounds in a low-noise
setting. As a comparison, our stability bound involves
( Z:01 E[Rs(0W))) %, which can be controlled by opti-
mization theory and implies the first fast rates of order
O(1/(mn)) under a low-noise condition. Moreover, these
works (Richards and Rebeschini, 2020; Sun et al., 2021;
Le Bars et al., 2024) require a Lipschitzness assumption,
which is removed in our analysis.

veloped excess risk bounds of order T +

5. Convex and Nonsmooth Problems

In this section, we study the stability and generalization of
D-SGD applied to convex and nonsmooth problems. Instead,
we impose a Holder continuity assumption on the gradients.
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5.1. Stability Analysis

We first present a stability bound for D-SGD applied to non-
smooth problems. Our bound incorporates the magnitudes
of gradients encountered in the learning process, and shows
the benefit of optimization in improving generalization. The
proof is given in Section C.1.

Theorem 5.1 (Stability bound). Let Assumption 3.1 hold
and b = 2((11_+;‘))2\L + 2L. Let A(S) and A(S'9)) be defined
in Eq. (4.1). If £(-; 2) is convex and has (o, L)-Hélder
continuous gradients with o € [0, 1), then

— A(SUD)|I3)

=1 j=1
8 n m T—1 1 2 )
t
< Y (e 2 ym[ ez
i=1 j=1 t=0
16 n m T—1 (t) 5 % 2
2> (S m(E[vensz005]) )
i=1j=1 t=0
AL(1 —a) i e 2
o) S gy 5.1)

For Lipschitz continuous problems, we get the following
simplified stability bounds to be proved in Section C.1.

Corollary 5.2 (Stability bound for Lipschitz problems). Let
Assumption 3.1 hold. Let A(S) and A(S")) be defined in

(4.1). If €(+; 2) is convex and G-Lipschitz continuous, then
n m B
*ZZE IA(S) = A(S“)]3)
=1 j5=1
9 T-1 9 T-1
2 G 9

77t) + m Z ni- (5.2)

t=0 t=0

Remark 5.3. For convex and Lipschitz problems, it was
shown that the vanilla SGD is on-average e-model stable
with €2 < (T + T?/n?)n*G?. Our analysis recovers their
bound in the single machine case.

5.2. Convergence Analysis

We now study the convergence for nonsmooth problems.
Our optimization error bound involves the consensus errors
|©®) — 6® ||, which reflect the variation of the D-SGD
iterates around their agent center. The idea of using consen-
sus errors to study the convergence of D-SGD dates back to
Nedic et al. (2009). The proof is given in Section C.2.

Lemma 5.4 (Optimization error). Let Assumption 3.1 hold.
Assume £(-; z) is convex and has (o, L)-Holder continuous

gradients with o € [0,1). Define ) = L5~ 9,(5).

Then,
1 & Bl o 2
a,l ] ﬁ
7 O EIRs(0V)~Rs(0)] < <= (E[Rs(6)])
t=1 t=1
6 — ¢ o
E[] T 3] maTZE )||%}

L _
721[5 ®) _ gWpatl] (5

We can control the above consensus errors and derive the ex-
plicit convergence rates. For simplicity, we only consider the
Lipschitz case. By choosing 77 < 1/v/T, Theorem 5.5 im-
plies convergence rates of order O(1/+/T), which matches
that of vanilla SGD (Bottou et al., 2018).

Theorem 5.5 (Optimization Error for Lipschitz problems).

Let Assumption 3.1 hold. Assume ((-; 2) is convex and G-
Lipschitz continuous. Define §t) = 7; S kt) € R4,

If we choose a constant step size n and 5 > O such that
(14 B)2A2 < 1, then

T 2
B[00 —
(t) * <
§: [Rs(6D)—Rg(0%)] < T

L 10V3(1+1/8)5 G
(1= (1+B)5A%)ym

0" 13]

’ﬂ \
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5.3. Excess Risk Analysis

In this subsection, we combine the above stability and con-
vergence analysis together to derive excess risk bounds for
D-SGD. For simplicity, we only consider the Lipschitz case.
The proof is given in Section C.3.

Theorem 5.6 (Excess Risk for Lipschitz problems). Let
assumptions in Corollary 5.2 and Theorem 5.5 hold. Then

+13G?7

G277T G*nT=  16*|3 G?n
E[R(A — 1 .
[R(A(S))]-R(0") A T o Emd
Remark 5.7. We choose
0* T 1 -3
_ Hz(i+ VT 3 )
GVT\mn  1-X  (1-X\2m
and derive
Glo*lls T VT 1 3
E[R(A — < _— .
RASI-ROVS= 22 (ot iyt Tt

We can choose 7 < (mn)?/(1 — \)? to get

G|6* |2
vymn

E[R(A(S))] — R(67) <
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Excess risk bounds were also developed for D-SGD applied
to convex and Lipschitz problems based on a uniform con-
vergence approach (Richards and Rebeschini, 2020), where
it was assumed that (o; are Rademacher random variables,
i.e., taking values in {—1, +1} with the same probability)

JRRAEA 1
Eo. icin [sgp — Zl oil(0;2:)] S T 69
Under this assumption, D-SGD with appropriate param-
eters was shown to satisfy E[R(A(S))] — R(6*) <
1/(mn)% (Richards and Rebeschini, 2020). As a com-
parison, our stability analysis removes the assumption in
Eq. (5.5) and implies minimax optimal bounds of order

O(1/y/mn) (Chen et al., 2018).

6. Conclusions

We present a comprehensive stability and generalization
analysis of D-SGD for convex problems, covering both the
smooth and nonsmooth setting. Our stability bounds involve
the training errors of the D-SGD iterations, which establish
a connection between generalization and optimization. We
also get convergence rates that can interpolate between the
slow rate O(1/v/T) and the fast rate O(1/T), depending
on whether there exist models with small training errors.
We combine the generalization and convergence analysis to
develop optimistic excess risk bounds that can be of order
1/(mn) in a low-noise setting. We also give the first excess
risk bounds of order O(1/+/mn) for D-SGD applied to non-
smooth problems. Our studies remove several assumptions
in the literature such as the Lipschitzness condition and the
bounded variance assumption.

There remain several interesting problems for further stud-
ies. First, we only consider convex problems in this paper.
It is interesting to investigate whether our stability analy-
sis can be extended to a nonconvex setting. For example,
it is interesting to study the stability and generalization
analysis of decentralized algorithms for training overpa-
rameterized neural networks, where we can exploit some
weak-convexity (Richards and Kuzborskij, 2021; Wang
et al., 2025) and self-bounding weak-convexity (Taheri et al.,
2025; Deora et al., 2024) to develop stability bounds. Sec-
ond, we only develop excess risk bounds in expectation. It is
interesting to develop high-probability bounds to understand
the robustness of D-SGD.
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A. Proofs on Stability and Generalization

In this section, we present the proof of Lemma 3.5 on the connection between on-average model stability and generalization
for decentralized methods. The following lemma (Srebro et al., 2010) builds the self-bounding property for a smooth and
nonnegative function, meaning that the gradient can be bounded by function values. The self-bounding property has been
widely used to improve the theoretical guarantee of various learning algorithms (Srebro et al., 2010; Lei and Ying, 2020;
Taheri et al., 2025; Zhao et al., 2024).

Lemma A.1 (Self-bounding property). If g is L-smooth and nonnegative, then for any 6 we have |[Vg(0)||3 < 2Lg(6).

Proof of Lemma 3.5. Similar to the proof of Theorem 2 in Lei and Ying (2020), due to the symmetry, we know

Es.a [RA(S)) — Rs(A(S))] = Eg a2 3 D (RAGSS) - Rs(A(S))]
= Egs [ 30 DA ) 2 ) — HA(S):2))]. A

%

I
—
<.
Il
—

where the last identity holds since A(S(/)) is independent of ;5. The stated bound in part b) then follows directly from the
Lipschitzness condition.
We now prove part a). According to the L-smoothness of w — ¢(w; z), we know (Nesterov, 2015)

L G2
Uw; z) < U(W;z) + (W — W, VIW; 2)) + w7
which, together with Eq. (A.1), implies that

Es a[R(A(S)) — Rs(A(S))]

< o3 Eg g [(ABS) — A(S), VEA(S); 22.)) + 5 IAGSS) - AS)IE] (A2)

According to the Schwarz’s inequality we know
(A(SY) = A(S), VUA(S); 215)) < IASY) = A(S) 12/ VECA(S); 22.5) 2
v ij 1
< §||A(S( D)= A3 + EIIW(A(S);%,J‘)H%

< JIAGD) — AS)IE + ZHAS); 2.,), (A3)

where the last inequality is due to the self-bounding property of smooth functions (Lemma A.1). Combining Eq. (A.2) and
Eq. (A.3), we derive

Es a[R(A(S)) — Rs(A(S))]

L+79 - y L .
S G 2 2B IS — AG)IE| + 2o B Y B [((A(S)s )]
i=1j=1 i=1 j=1
= 9mn ;;ESS,A {”A(S( D) — A(S)Hz} + ;ES,A[RS(A(S))],
where we use the fact that - 3" | Z;nzl U(A(S); 21 j) = Rs(A(S)). -

B. Proofs for Convex and Smooth Problems
B.1. Proofs on Stability Analysis

Before our stability analysis, we first introduce some useful notations which will be used throughout the paper. Let
9@, ..., 0% be the t-th iterates of D-SGD run over S. Let 9?’” ) ..., 0" be the t-th iterates of D-SGD run over (SGa)),

12
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Denote () = L 5™ | 0@, gt = L s~ 9,?’”). For any k € [m], denote Zj¢ ), = 2 ), and

Z(ij) _

Zi)j, ifk::jandl,’;:i,
Ii k

21t ko else.

That is, Zﬁj L is the example selected by the k-th local machine at the ¢-th iteration when applied D-SGD to S(4). We
collect all the weights in matrices

0 =\, .. oNT e rmxd  @tid) — (p{-)  gtif))T ¢ gmxd
) 9 yYm 9 Bl
o — (g(t),”.’a(t ) c Rmxd’ g(tis) — (g(t,ij)’“.’é(t,ij))"r c Rmxd’ B.1)
where 0 = % Z;nzl 6; is an average over m agents. Furthermore, denote
VO 7)) = (VUG Zys 1), V0D, Zpe )T € R™*C,
VIO zp) = (VUG , Zys 1), .., V0D, Zpe )T € R™*C,
VO gy = (VIO Z0)), . Vel 26D )T e R,
VO gp) = (VUOHD, 28, Vo@D, Z4D )T e M
Then, we have
0w =wel=b _p,_ veO Yz, ), Ot =welt=—ti) _, vt .z, ). (B.2)
Let
a1 =1+ BA+201+B7iL% e =4(1+87"), as=(1+B)A as=1+5"" (B.3)

where we choose some > 0 such that a1, a3 < 1. For a matrix A, we denote by || A|| its Frobenius norm and || 4||2 its
operator norm.

The following lemma shows how to solve a quadratic inequality. We omit the proof for simplicity.
Lemma B.1. Leta,b > 0. If 2% < ax + b, then 2% < a® + 20.

The following lemma shows the co-coercivity of convex functions with Holder continuous gradients (Hardt et al., 2016; Lei
and Ying, 2020), which plays an important role in our stability analysis.

Lemma B.2 (Co-coercivity). If £(-; z) is convex and has (o, L)-Hélder continuous gradients with « € [0, 1], then

2L ||w (0:2) — Vel 2)| "

2

(6 —6',V0(0;2) — VU5 2)) >

Note if o = 0, the right-hand side means 0.

We first present a lemma to control the neighboring-consensus error in terms of the difference of gradients.

Lemma B.3. Ler Assumption 3.1 hold and a3, oy be defined in Eq. (B.3). Let ©), ©41), (1) and ©449) be defined as
in Eq. (B.1). Then,

T—1 m _ m
D I L e I S S VD 21 ) — 2
=0 " k=1 043 =0 =
Proof. Denote
1 1 1
1= € RmX1, Wee = %11T = % c RM™X™ (B.4)
1 1 1
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It is clear that ©) = WO By Eq. (B.2) and the standard inequality (a 4 b)? < (1 4 )a® + (1 4 1/8)b? for any
8 > 0, we know

0@ — W — gti) 4 gti) va
_ H@(t) et-1 _ gt L tt-1) _ gtij) 4 @t-Lij) 4 §tij) _ (:)(t—lyij)H H@(t) et-1 _ gti) 4 (:)(t_l’ij)Hi
— HW@(t 1) mqu(@(t_l);Zﬁfl) _9t-1) _ wet-1.) +nt_1vg(@(t 1,i5) Fpea) + @(t_l)ij)HQ

.. _ _ . 1
< (1+9)||W(OY —et-Li) _ (9U-1 — gU—1i)|* 4 (1 + B)nf_luw(@“—l); zpe1) — VOOV 7 )7,
where we have used [|© — O||r < ||O]|F for all © € R™*4 (Taheri and Thrampoulidis, 2023). For any © € R™*4, we
know
IWe -6 = |(W-W>)(©-06)|F < [W-Ww|3|e - o)k
< max{A3(W), A7, (W)}|© - O)[IF = A6 - ©)|, (B.5)
where we have used the inequality that ||[W — W || < max{|Aa(W)|, |\ (W)|} (Taheri and Thrampoulidis, 2023). Tt
then follows that
[0® —6® — gti) 4 gti) Hi
L _ 1 g
< (14 B)A|00D —et-1id) _ gl=b 4 gU—1i)||” 4 (14 — 3) 2 || VO Dz ) — VHOD 7 )|
L _ g 1 P
= (14 B)A|0U~Y — U1 — @(=1 L @U=1i) || | (14 ) 5 I 12HV€ s Zpr ) — (6, Z} - |-
k=1
By the definition of a3 and a4 in Eq. (B.3), we further get
[0® — 61 — et 4 gt Hi
< a3||®(t—1) —@t=Lij) _ gt=1) 4 gt—1.j) || +oaun? Z va 9(t 1) 1' ) = g(g(t Lij). Z;ij)l X H2
k=1
Applying this inequality repeatedly implies
t—1
j0® — 81 — et 4 oL < ay Y afIn? TZHVﬁ 0, "5 Zypr i) = VL0 Z}iﬂlk )
T=1
Since the step size sequence is non-increasing, i.e., ;4 < 1¢, we further get
Ui - t (t) t (t,i5) Qg Tt - - tT (t—7,43) . ~(ij
Z (100 =67 =00 4 0, < Z Z [V 2 = 00T 250 Dl
t=0 t=0 =1 k
T-1 T—1
1,2 (t—7). (t=7i3). 7(i7) 2
<SSENTY mai ek Dt o) = 00T 20
T=1t=7+1 k=1
T-1 T—1 m
Qg — ) 7
< ooy Z Qg ! Z 77t+r77t2 Z va(el(:)§zli, e(t 2 Z( J) H2
m
S Z ! Z N7 Z HVK k 7ZIt g(a(t ), Z(”) H2
k=1
T-1 T-1 m
« — ,%, % 2
<y oty owl Yo |Ivee: zy, K = o0 20|
=1 t=0 k=1
T-1 m
4 3 (1), (t,i4). (i)
< L0, Zrt ) — £(0 3 Z .
(1—az)m tzont;Hv( k) = 00 2 ),



Stability and Generalization Analysis of Decentralized SGD

The proof is completed. O

We first present a general stability bound with a general step size. As we will see, Theorem 4.1 follows as a direct corollary
of Theorem B .4.

Theorem B.4 (Stability bound). Let Assumption 3.1 hold. Let A(S) and A(S"9)) be defined in Eq. (4.1). Let {(-; ) be
convex and smooth. For any 1 > 0, B2 > é assume the step size sequence satisfies

((1aj5;3)m L+ 612)5771 - U)m B (% _ ﬁlz) <0 (B.6)
and 14 4

Then, we have

1 n o m () 9 8 n m T-1 a452 1 Bi (t)
1 (st :
i 2 2 BIIAS) — AS )||2]<m2n2i_1j_2(1_a3m+ JRE([VEE: 2|1

—
o
Il

e

+ mﬂ% zn:i (> (E[HW(@?;z,,j)||§])%)2. (B.8)

Proof. We first temporarily fix i € [n],j € [m] and control || A(S)— A(S(9))||5. Recall the notation in Eq. (B.1). According
to the implementation of D-SGD, we know

D = g(v) ”the (Zpi ) and QUL = gltin) ”tZw 05 200,
k=1 k=1

It then follows that

N 7 [} 77 77 “ ?
00+ — pUHLn |2 = |jg® — it tZW 6 2z + 5 VIO 201

5() _ pltii U , i) S0\ (12
=6 — 9D |E+ 5] Z (VOO 2y ) = Vo5 Z80) 3
k=1
2 e~ i i) (i
- TRy (O 0, VOO Zy 1) = VO Z00)). (B.9)
k=1

Part 1: For the second term in Eq. (B.9), for any 3; > 0, we have

m

||Z(W(a,(j>;zlz7k) — vl Z(”) )|l

k=1
3 1 1 3 1%
<<1+ﬁl>||§<ve<eét’;zzz,> VAo Zg ), + 1+ VU0 71 ) = Ve 2,
J
ij). &g 1 ij). (i
< (U4 B0(m =) (VU0 Za) = VO ZED) o + (4 ) [VU6Y: Z1.) = VU0 2D

k#j
(B.10)

where the last step uses the Cauchy-Schwartz inequality.

Part 2: For the last term in Eq. (B.9), we first consider two cases to control
i i t,ig). &(ij
(00 =04, V00 2y, 1) = VO Z10))).
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(1)if k = j and I; = 1, then it is clear
(80 — 64D V9D 2, 5) — VOO 7)) > —[|§O — 8D |V 2 ) — Ve z ), BID
(2)if (k = j and I} # i) orif k # j, then
<§(t) _ é(t’ij)’vg(el(:)§ Zl,ﬁ,k) _ Vﬂ(@,(:’”); Z}lzj;c» _ <91(:) . 9,?’”),W(9,(f);21,g,k) . vg(al(ct,w);Z%J’L»
+ (00 = 6,7 =609 1+ V0O Zyy 1) = VO 2))). (B.12)

The convexity and L-smoothness imply that the gradients are co-coercive (Lemma B.2), namely,

. i (i 1 9
(O = 0.0, VU0 2y 1) = VUL 2170)) = LIV Zig p) = V0O 21 5 (B.13)
For any 35 > 0, we know
(00 =6, =649 4 07 o) Zyy ) — VU6 Z17))
> |89 = 6,7 =64 1| IV ey ziy ) — Vo 2,
6 A A(t.ij i7) (12 K B 2
> 22| — 60 — 8¢9 1 o3 - TBQHW(@;);ZI,@,.) Vo 2|y (B.149
Plugging Eq. (B.13) and Eq. (B.14) into Eq. (B.12), we have, for (k = j and I; #i)ork # j:
(00 =04, 5706,; Zyy ) = VOO Z0))
> _%Hé(t) — 61— g )" (E - —)||w Dz ) = VO i), B5)
Then, we combine the results above to control
20 N ) (ks (1) (tig). 7(is)
- ; (09 — 00D VU0 Zyg 1) = VUG Z1))-
(HIf I;- = 1, by plugging in Eq. (B.15), we have
2 m B o ; ;
- %Z@(t) — 04D VU0 2y ) - VOO ZE)))
d k?
k=1
Bomt s | 7t ti (t,i) ( (t,i)
<R )00 - 67 — 6+ o 2 - E_E m;”wek,z,t W) = VIO ZG)5 B.16)
(2) If I} = 4, we know
20t = 5 o o
_ 2 Z <9(t) _ g(t»u)’ vg(gl(ct); le L) — vf(gl(:ﬂj); Zﬁ]L»
m > k>
k=1
2n¢ A A(ti] (t) (tig). 5(ij) 20t 5 A(ti ) (1), (i)
= =0 (00 00D U6, 2y ) - v $Zp0n)) = — (00 = 00D V0O Zry ) = VOO Z10))
k#j
2 =) mid i) s Mty ary s .
< 2SO0 — 00, VU0 Zyy 1) = VO Z50)) + 2[00 — 00| |0 21, 5) — O 5 5)]
m ’ m
ki
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From Eq. (B.15), we know

2n a(t) _ p(tij (t). (t.i7), (i5)
_ Ez:<9(f) — gt ]))vg(ek 7Z1,g, ) — VZ(H ) Zztjk)>

ko

k#j
5 P2 i i 7). 5 (ij
277t ZHg(t) (t) g(t-id) +9(t J)H2 L 52 mZva 9 21 VE(G,(; J);Z}ZJ}C)HE
k#j k#j
Bomt N~ 17 S(tid) L ot ). 5
< S LR =6 =0 o (= ) S92y - D Z

Combining these two inequalities above, for the case when I;f = 4, we have

m

e NS i) _ glead) o) ), 749
—sz — 0" 00, Zr 1) — VU0, Z0))

k=1
577 K i i5) . &3ig) |2
2Mt E‘ye(t) e(t gti) +9<t 7) H2 Z B E m;HW ( ’Zp W(e,(j ﬂ>;Z§,§,L>Hz

4 %Hg‘(t) _ g(t,ij)HQva G(t) $2i0) — v€(0§t,ij);§i7j)u2. (B.17)

Therefore, combining the cases when I;? # i and I; =i, i.e., Bq. (B.16) and Eq. (B.17), we have

k=1
< % Z Hg(t) _ 91(:) — gtid) 4 ez(ct’ij)H; L 52 - Z va 9 Zp V€(9 (t,ig). Z(”) H2
h=t k#j

2 1 7 7 1] 7). ~
(5= 5) V0 21 )~ T 0O ZD iy + ok [0 =0 [V 065 2,5)— V65 i) gy

(B.18)
where ]I{.} denotes the indicator function, i.e., returning 1 if the argument holds and 0 otherwise.
Iteration form: Plugging Eq. (B.10) and Eq. (B.18) into Eq. (B.9), we have
g+ _ p(t+1id) 12 < q1p(t) _ p(tid)|2 Bt \- g _ ) _ p(tig) 4 p(tid))?
I - s <l - ||2+?ZH — U~ + 0, Hg
2
n 2 tig) S5(ig 2
+ ((1 +B)(m — 1) — (F - @ m) S IveOs 2 i) = VU6 2D,
k#j
+((1+ 1 )nit _ (g _ i) ||vg Q(t) 7 ) VE(G(t’ij)'Z(ij))HQ]I
B m2 L By'm I, J 1215702 {1} #i}
1 ¢ tid) . = 2
1+ 5 2||(W (05 215) — VOO 2 ) 5T =sy
20t 15 St t i), ~
+ 80 = 8D V65 2i5) = VO 7| Ty (B.19)
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By Lemma B.3, we get

Batl X~ 1 3(6) g g(tid) o p(tid)
0 0 0\ ) + 0
; - ;H f
(S (2 1 ) 06, z 20D, Z00) )12
+ ; ((14—61)(7’71— l)mg (Z - E )ZH v k > It ) \4 ( k ) Iz7k>)"2
(S Lom 2 141 () (1i). (i)
3 ()2 = (5 = ) B Veos; zie ;) - v, 20 e
s ( Bl)mQ (L 62) || Il ) ( HZ {I;#4}
T-1
N ([ Qb (I+p8)(m—-1)y ) (t,i). (i) \) |12
< ; m(((l—a3)7]t+ )7775 kZ#JH V€ k ’ZI' ) V@(Qk ’Zlfc,k))HQ
T-1 1
e auf +a 2 NI
+;w§<(<1f§3>m+ el &’FD“W 1 Z135) = VO 2Dl
T-1,3 _
Mt 04452]1{1]4:7;} ) 1 4/82 {I =i} k¥ (15 2
*D T agm IVeOss 21 )=V 00 s 2175 < Z Ve i) - vee ) 2|5,
t=0 t=0
where we have used Eq. (B.6) and Eq. (B.7) in the last inequality. Therefore, taking a summation for¢t = 0,...,7 — 1 to
both sides of Eq. (B.19) and using Lemma B.3, we have
— B\t o0 (id),
g(T) _ (TU) 2 1\t t t,ij .
16 I3 étzo(l_a3nt+ L) L[(V00;515) = V00 5 DLir—y
S 2509 gies vl Voo, I B.20
Py L7605 25) — TU6L: 22 ) | sy (8.20)
t=0

Taking expectation to both sides of Eq. (B.20) and using the fact that I; is independent of (), §(t:17) Gét) and 9§t’ij ),
know

E[|0T) — 1) |2] 1 Z_: 0‘452 H%) 2E[|| (V00 2i5) — V0O 25)) 2]
mn m Un j o~ ) %,
t=0
1 )
+;mi 169 — g@ |, ||[veo; 2 5) — V@D 25|, (B21)

Introduce
_ o 1
A= (E[]0Y — D22, Ve e [T] and A= max Ay
By the Cauchy—-Schwarz inequality, we know

B[00 -89 |, [Ve(61:20) w65, ] < (B[J0O -89 ] (B[ a0 20— w6 ) 1))

It then follows that

!

2 1 cubs 1+é 2 (). (ti5). 5
A< o ) (Tt =) E(|[(VA s 7) — VO Ey )l3]
t=0
9 T-1 %
+— > (B[ VO zi) - VoS sl ) A (B.22)
t=0
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According to Lemma B.1, this further shows

A2 - lT*l( 0[452 n 1+ é) 2]E|:||(V‘€(9(f)2 ) Vg 9(1‘ ij) . ~ )H ]
- omn s T—as " m M i i
g T t , :
t o (Z"t(EU|W(9§ \zg) = VU0 2 )| ]) ) (B.23)
=0

By the symmetry between z; ; and Z; ;, we know

E[|Ve(0Y); 2 5) — Ve 2 )|13] < 2E[|VE0; 2 )[13] + 2E ]| V687 2 )|12]

J

= 4E[|Ve(0)"; 2 5)|3]- (B.24)
We combine the above two inequalities together, and get
T-1 1
. 8 L+ 5
E[J A(S) = A(S")|3] < —Z nt+ BR[| Ve 2 5)|13]
mn m
T-1 L
16 (®). 7\?
s (Y m(E[[veesznl]) ) B2s)
=0
Taking an average over all ¢ € [n] and j € [m], we get
n m n m T-1 1
1 i 8 a2 1+ 5 () 2
— E[|A(S) — A(S%))|3] < — n2E[||Ve6S"; zi s
o 2y 2 EUIA(S) — AGIB < s i:lj;tzo(l—as,“ BR[| Ve 1))

* e o 3 (m(e[iveeswol]) )

The proof is completed. O

Proof of Theorem 4.1. By choosing 8 = 2 /\ , we know

o Lo
e
>>
DO
_
+
X

oy 14571 o 1"‘% _
l—ag 1-(1+8N 1-(1+5090 15

>
—~
—_
I
>
~—
N

v ‘

The stated bound then follows from Theorem B.4 by choosing 51, = 1 and 82 = L (note Eq. (B.6) and (B.7) hold if Eq. (4.2)
holds). O]

Proof of Corollary 4.4. By the Cauchy—Schwarz inequality, we know

!
-

(S m(B[Ivee?s=0015))° ) Z:lnfZE[||V€(0§t);zi,j)||;] (B.26)

t

i
<

By the elementary inequality a® < 2(a — b)? + 2b?, the L-smoothness and self bounding property of the loss function £
(Lemma A.1), we know

||V€ ; ,z” ||2 <2||V€ G(t) $Zij) — Vﬁ(é(t);zi,j)H;+2||V€(§(t);zi7j){|§
< 2L2H9f) —00|J; +2) Va6 V: 2 )]
<2226 — 602 + 4L6(@Y, z; ). (B.27)
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Plugging Eq. (B.26) and Eq. (B.27) into Theorem 4.1, we have

m—gg [1A(S) — AS) 3] S = <(1,;)2 ZH@ 69];]

L L ot
+— <(1 _77)\)2 + %)U?E[% ; ;6(9( ); zij)]

L T-1 o9 T-1 1 n o m B
ey L S 60; z,)]. (B.28)
From Lemma B.5, we know
1 G ) T— T
Bl 2 107 7 ] 5[0 - 6|3 <a2LZa i B[R (007,

from which we know

Ly 1 1 & "
((1 et m)U?E[m; I3 = 0®l3]

t=0
T-1
Lnt T—1,2 n(t—7)
<
<X (o )WZ@ wElRs(00 )
t—1 T-1
T Ln 1 r
DI DN (s R L L)
=1 t=1+1
-1 T—T
< sl Z a7l Z ( Ly r + i)n n [R (G(t )]
1 (1 )\)2 m ) T S
T7=1 t=0
T—1 T—1
< LZ -1 Z (% + 1 ) [R (e(t))}
@2 @1 (1— )2 M7 S
T=1 t=0
T-1 T-1
<a LZaT” Z ( Ly i l) SRR (1)
2 1 1-N2 "m Ur S
=1 t=0
T-1
ool Le 1N apip.g®
1—o ; ((1 2t m)m]E[Rs(9 ) (B.29)
In a similar way, we can show
T-1 T-1
OéQL
E[— Z 65 — 0®)|13) ZnEE [Rs(6D)]. (B.30)
t=0
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Plugging Eq. (B.29), Eq. (B.30) into Eq. (B.28) and using the identity - >~ | 3>, £(01); 2; ;) = Rs (™), we get

S S EIAS) - AS)B) £
i=1 j=1

T-1

i 2 (5 BRSO

L </ Ln 1y .
o ; (ﬁ + a)”tE[RS“’( )

2 @)
T 0o )m2n? (1—a) m2n2 Z’hE

m2n2
If n, < 22;‘1 , we know n2asL?/(1 — ;) < 1 and get
n m T-1 T 1 2 —
1 y L L 1 _
— E[|A(S) — A(S)|3] < — (7 ) 2E[Rg(9®) s(6D)]
i 2 2L BIAS) = ASIE £ 205 (G5 + g B LAs@)] + e Z

By choosing 5 = 2/\ , we know

l—a;  1—(14B8A+2(14 8 p2L2  1— 1+ 5 A +2(1+ 25)niL?

Pay A1+ 5Y) - 2201+ )
PR AR ()2 i (B.31)
- AL2(1+N) - 8L2(1 + )\) 92" :
T—X
The proof is completed. O

B.2. Proof of Stability Bounds in Taheri and Thrampoulidis (2023)
According to Eq. (12) in the proof of Lemma 8 in Taheri and Thrampoulidis (2023) (with & = 1/2, ¢ = v/2L), we know

1 m n B I B
— 3 D E[6 "] Z [+ =L (3180 -0’
i=1 j=1 t=0 t=0
From Lemma 11 there, we know
T—1 B T— B o Ln2m T=1 B
(3160 - 60 <73 [0 — 603 < T Y E[Rs(0)],
t=0 t=0 t=0

where &3 = (3 + A)/4, & = 4(2/(1 — A) — 1). Combining the above two inequalities gives

1 = L 27 ¢ aL 4T ¢
- 9(T) _ g(T.ij) ’7 E[Rs(61)] + 22 Qb L E[Rs(0®
o 2 2l ] z s@)] + L ?2 5(60))
2 4
~ZZHZZERS 0]+ S B[R]

where we have used the fact that
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B.3. Proofs on Convergence Analysis

In this subsection, we study the convergence analysis of D-SGD. Our analysis is motivated by Taheri and Thrampoulidis
(2023), who derived convergence rates for DGD. We adapt their analysis to D-SGD, which is computationally efficient for
large-scale problems. Following the standard analysis of decentralized optimization, we first present a lemma to control the
distance between local models and their average.

Lemma B.5. Assume the loss function {(-; z) is L-smooth and Assumption 3.1 holds. Let O® and O be defined in

Eq. (B.1). Assume that GZ(O) are the same for different | € [m). Let oy, ag be defined in Eq. (B.3) with ay < 1. Then, there
holds

t—1
B0 — OWIE] < azkm 3 o ta_EIRs @)

Proof. Recall W defined in Eq. (B.4). For any 5 > 0, we have
H@(t) — @(t)H% - ||@(t) — et _g® 1 (:)(t_l)H% < ||@(t) _ (:)(t—l)”%
= [wel= —n_,ve©';zp) — 6 V|3
_ A (t— 1 -
<(1+p)wet D —et V5 + 1+ 5)77?_1IIW(®<‘ Yz, (B.32)

where the first inequality holds due to |© — ©||r < ||©|F for all © € R™*4 (Taheri and Thrampoulidis, 2023), and
the last inequality holds due to [ja + b]|> < (14 3)|la]® + (1 + %) |lb]|2. For any § € R™*4 Eq. (B.5) shows that

[WO — 0|2 < \||© — ©||%. Applying this to Eq. (B.32), we know
1
10 —0W|E < (L+ A0~ — 0t V|F + (1 + B)m{lllw( Dizp)| 3 (B.33)

By the L-smoothness of ¢(-, z) and the self-bounding property, we get
V0O Yz 0)|% = VOV z100) — VOV 2500) + VHOE D 20 0) |2
<2VLOF V2 0) = VUOE Yz )% + 2| VLOE Y 20 ) %
<2020t 9tV |2 L 41, ZM(H); 21 ) (B.34)
k=1

Taking expectation to both sides of Eq. (B.34), we have

E[|Ve©“ s zp-)|7] < 2LE[|0Y — UV |[Z] + ALE[Y | Rs, (847V)]
k=1

= 2L%E[|0V — 642 4 4LmE[Rs (6% 1)), (B.35)

where the first inequality holds due to the independence of §*~1) and I; ", and we use the fact that Rg(-) = L S°7" | Rg, (-)
for the last equality. Taking expectation to both sides of Eq. (B.33) and plugging Eq. (B.35) into it, we have

1 _ 1 _
B)L%A)E[ll@“‘” — 03] +4(1+ EmileE[Rs(e“—”)J.

By the definition of o1, ag in Eq. (B.3) and the assumption that the step size is nonincreasing, we further get

E[|0® —6W[F] < ((1+ /A +2(1+

E[|0® - 6W|F] < aiE[|0"Y — 0 VIF] + azni_y LmE[Rs (0 ~))]. (B.36)
Applying Eq. (B.36) repeatedly and using the assumption that t‘)l(o) are the same for [ € [m], we have
E[|0® —8®|%] < asLm Z ol 2 _E[Rg(6%7)]. (B.37)

The proof is completed. O
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Proof of Theorem 4.6. Let ©®) and ©*) be defined in Eq. (B.1). Firstly, we develop a bound for mT t LE[|je®
(1)]12,]. According to Lemma B.5, we know

1 T L T t—1 LfT T
T 2L EIOY — 8O < 235 of i EIRs(0 7)) < T 3 of P2 e ERs(CT)
t=1 t=2 =1 =1 t=71
o I/T 1 T—1 a L/T71 T—1
2 — 2
<2 o' D BRSO < = 3 ot > wiE(Rs(0¢
T=1 t=1 =1 t=1
T—1
E[R (B.38)
1—-&111;;77
Secondly, for any § € R?, there holds
_ _ 1 & 2
104+ — 9|2 = Hg(t) = ;w(e,@;z%k) — 9H2
L S opp® 2 L= oprp®
_ g0 gz o2l L 0. o gt _g L 0,
— 118 9||2+77thZW(9k ,z,}i,,c)H2 2m<0 0.— > Ve ,21i7k)>. (B.39)

k=1 k=1

By the Cauchy-Schwarz’s inequality, we know

| S wr0 a0 gzu% S (Ve 2, >-w@wamnuj+zu%iw<wz,@k>uj
k=1 =1

\ /\

ZHW s g k) — VEED; 21, 4 H +—ZHV€ ®; 2y, )Hz

IN

2172 - 4L ~
— >~ 00 + — LCITTS

k=1 k=1
212 _ AL &\
= 00— OWF + — > 00 2y 1), (B.40)
k=1

where the third inequality holds due to the L-smoothness of £(-

, z) and the self-bounding property (Lemma A.1). Taking
expectation to both sides of Eq. (B.40), we have

IE[H%XWL:VE 0 21 H } :jE[”@(t) — 03] + 4LE[Rs(8M))], (B.41)
k=1

where we use the fact that Rg(-) = -= 3" | Rg, (+). Note

(00 LS ) - 5 00500

k=1

NE

1
m

(89— 000,00 214)) + %i@(” 0,Ve0):21: 1))
k=1

ES
Il
—

WV
3|~
NE

_ _ 1 &
(009; 2,00 — €060 22,00 = S0~ BOR) + 3 (2068 21p.4) — €003 221.0))

k=1

~
Il
-

|
3|~
NE

_ L _
(5(9(”; zre k) — U0 210 1) — §||91(f) - 9(t)||§)’ (B.42)

ol
Il
—
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where the third inequality holds due to the L-smoothness and convexity of £(-, z). Taking expectation on both sides of
Eq. (B.42), we have

E[(6© -0, — ZW (:21¢.))] > EIRs(0©)] ~ EIRs(0)] — 5-E[|00 ~ 03] (B.43)

Taking expectation to both sides of Eq. (B.39) and plugging Eq. (B.41) and Eq. (B.43) into it, we have
E[[|6“+) — 6]13)

- 2L%n? + L
< B[O - 0)3] + =L =g

(10 — 8W 3] + (4L} — 20,)E[Rs(0"))] + 2mE[Rs (0)]

- 20202 + L
= E[I§ - 93] + =" ="E

[10© — 8W|5] + ALi7E[Rs (8")] + 2 E[Rs (8) — Rs(6"))].

Taking a summation of the above inequality gives

E[Rs(0") — Rs(0)]

Nl
uMﬂ

E[||9<1> —0)2] 2L2n+L a 2L < _
E| ®)121 o =4 E ()
< 2T Z (16 — W3] + = ; [Rs(6')]
EQO — 01] }:EH@a ~ 603+ 220 S BiRy@)]
< 0T T 2 s
Em§ﬂ>—9n] a2L22 d L 2L d _
< E[R (t) i E ()

E[IGD — g2 L2n? 2,2
_E[| ||2]+<az

D (o) <; s - Bins) + (2 an)eino),

where we have used the assumption that < 1/(2L) for the first inequality and Eq. (B.38). By Eq. (B.31), we know

l—a;  (1-))? +@ (1-X)2
L2ay  8L2(1+)) 2 ~ 8L2(1+A)’

Therefore, it follows from Eq. (4.11) that

s L?n? 8L2(1+ A\)n? oy
— 4+ 2In< ———— +2In < - B.44
A—ap M= "aaz THIE3 (B4

We now consider two cases. If E[Rs(6)] < + Zthl E[Rs(6®)], then we combine the above discussions to derive that

T T
1 E[|6™ —0]3] 1 ay L2
~ ST E[Rg(0) =IO — Olla) E[Rs(0?) Q2N orn)E
7 D ERs(0) = Rs(0)] € =55 784 gn S EIRS(0Y) — Rs(0)]+ (oo + 20 )EIRs @)L
from which and Eq. (B.44) we get
T _
E[|6) — 6]3] asL*n?
gt <2 42— +2Ln)E
z:: [Rs(8) ~ Rs(6)] < =7 4 2((2 L5 4 2Ln)EIRs (0)]
E[|6™ —0]3] | (16L°(1+ N1
4Ln |E .
<= (T AL EIRs(0)]
IfE[Rs(0)] > L 321 E[Rs(A™)], the above inequality still holds. The proof is completed. O
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B.4. Proofs on Excess Risk Analysis

In this subsection, we present the proof of Theorem 4.8 on excess risk bounds.

Proof of Theorem 4.8. By Lemma 3.5 and Eq. (4.5), we know

T-1
B AlR(A(S) ~ Rs(A(S))] § ZEIRs(0T)] + DB ST (20 o L) B[Re(0)

t=0

2 o T'—1
+(L+V)L 2t 0 % Z]E G(t
n

By noting that Rg(8(7)) < & Z Rs(A™®) and choosing a constant step size 77, = 7, this further implies
L (LANL(qy + 20’ (L+ ) LT —
E A(S)) — Rs(A(S))] < o). (B4
s.AlR(A(S)) = Rs(A(S))] S (WT + o ) Z} (B.45)
Eq. (4.12) and Eq. (4.11) imply that
S l6°13
= | SRO) + 2. B.4
0 ijo RO+ 57 (B.46)
We combine Eq. (B.45) and Eq. (B.46) together, and derive
Ln 1 2
10*113 ( L T(L+7)L((17/\)2 + o) (L4 ) L2272
E A — A < * . (B4
SAIR(A)) = Rs(AS))] < (R + E22) (2 + = e LX)

Plugging Eq. (B.47) and Eq. (4.12) into Eq. (3.1), we have

*]|2 T(L+~)L(72h: + 2 2, 272
ElR)) - 0 5 () + L1 (L Tt 2l (0 iy
1, (e

+ nT + ((1 - )2

+ Ln)E[Rs(6")]
The proof is completed. O

C. Proofs for Convex and Nonsmooth Problems
C.1. Proofs on Stability Analysis

In this subsection, we present the proof on the stability analysis of D-SGD for convex and nonsmooth problems. An useful
inequality for our analysis is the Young’s inequality

ab < p~Yal? + ¢ b|?, a,beR,p,g>0withp '+ ¢t =1. (C.1)

Proof of Theorem 5.1. Eq. (B.9) shows that

m

||§(t+1) 9(t+1 i) ||2 ||9(t g(t,m)Hg nt2HZ vg k ’th ) Vg(a(t 1) Z(U) )H2
k=1

20 N gt glead) ), (847). 5(9)
_EZ@ — 0D N06,; Zre 1) — VO, ). (C.2)

If k
k=1
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Part 1: For the first term in Eq. (C.2), Eq. (B.10) shows that for any 3; > 0,

132 (V@ 21y 1) = Ve Z)); < (1 B m = D) 3 [(VAO s 21 1) = Ve 7)),
=1 k#J
+(1+ Hw )\ Zpe ) — e, Zg;{;)”j (C3)

Part 2: For the last term in Eq. (C.2), we first consider two cases to control
(00 =649, Ve 2y, ) - VOO Z17))).
(D Ifk = j and I} = i, then it is clear
(80 — 9D 00\ 2, ) — VOO 5 5)) > |00 — 8D | |[V0OP; z5) — VeO Tz )], (€4
(2) If (k = j and I} # i) orif k # j, then

It K
+<9<t>—9§j> 0D 1 9" U0y Zye 1) — VE(H“” Zi))- (€3)

<§(t) _ é(tﬂ'j)7 vg(el(:); ZI}C, ) vg(e (ti7). Z(U) )> <9(t) _ H(t’ij) Vg(el(ct); ZIt ) Vﬁ(e(t 1i5) (ZJ) )>

The convexity and («, L)-Holder continuity imply that the gradients are co-coercive (Lemma B.2), namely,

(O =6, VU6 Ziy ) — VO 200))) > 2L Hw O 212 1) = VEO8 D 20|,
which further yields the following inequality for any b > 0
V6 zry 1) — Ve Z%DHE
< (G (0 = 0, VU605 2y ) - VUO D 27)))) e

L+ ) o) _ p(tid) wprp®) (tig), (i) \\\ TFe () 2o 28 20-w
= (W<0’“ 00 0D Zyy 1)~ VOO ZG))) T (b L)

L i J4, 7
< b—m<e§j> — 00D VU0 2y 1) = VOO Z0)) +

l1—a, 24 2o
bi-a 1—04[/27
1+a Ur

where we use Young’s inequality with p = Ha and q = 1+0‘ for the last inequality above. Therefore,
Jij i i bn 4 slH2 - 20
(01 0,77 000, 21y 1) =005 Z170)) = TV 2y )~ V00 ”;Z}é{)c)uz—(ua) (be) R L,
(C.6)
For any 2 > 0, we know
(00 =0 =60 + 07 00 Zyy ) = VOO Z50))
2 [0 00 = 50 1 o905 210 - VA 2D
B2 5 ®)  atif) 4 oiny2 L (t) (i) . (z) 2
> =00 = 6,7 =60+ 077 - TBQHVE(G,C Zpw) = VU0 2 ) 5 (€7
Plugging Eq. (C.6) and Eq. (C.7) into Eq. (C.5), we have, for (k = j and I]t- #i)ork # j:
p(t) _ p(tif) (t), (t)i), (w)
<9 6\ VL0, 21tk ) — VE(G g )>
B2\ 4 ) A(tij (i) |2 b77t (t,i5) (z ) 1- Lia
2—3”9(”7@ — 0" + 9,7+ (77—){|w i Zy ) = V0O 280 - a S (bm) T L.
(C.8)
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Then, we combine the results above to control — 2’7’ S (00 — gt Vé(@,g Zre k) — Vﬁ(@,(f’ij); Z;ijgc»
i

(HIf I; # 1, by plugging in Eq. (C.8), we have

2 m o .
21t Z<9 §(t:i9) vg(gk ,Z]t L) — Vé(@t” Z(” S me Z g(t) _9](:) ) +9[(fﬂ])”§

20m 1 77 ig). sty 2, 2Ll —a) 1ee 20
- (-3 tZHW i 2 = VO 2o+ b (€9)

(2) If I} = 4, we know

2 e - o N
_ A E <9(t) _ H(t’lj),VZ(tQ,(:); Z]£7k) _ vg(ggyw);zﬁjin
m £

k=1

2 n n(t,ij N (%] 2 n n(t,ij K %
= 2L Y00 — 60D, V00 2y ) - VHOLT Z)) = SE(0O — 840, VU6 2y ;) - VO Zi7))
k#j
2 - oy i 2 ~ oy
_% Z <9(t) — §tid) Vg(gl(:); Zye 1) — VE(Q (t.é5) Z;g;@» + %H@(t) _ a(t’U)H2|‘v£(9§t); 2i) — (t 2 %) H2
k#j

From Eq. (C.8), we know

o % Z <0_(t) - g(t,ij)’vf(gl(gt);ZIi7 ) — VE(H(t 1i7) Z ZJ) S Bane Z ||9(t) Q(t) g(t:id) + olit,ij)H;

™ kg
2b’l’]t 1 (t,35). ~(33) 2 2L(1 —a) lta 5
- ) S 2 ) - e A+ P Dy
k#j
Combining these two inequalities above, for the case when I;» =1, we have
200 50 it (0, (1.i5). (i)
ﬁ 2_:1 <9( ) — 9( J)vv‘g(ek aZIfc,k) - Vg(ek ! aZ[]ij’k)>
< Ban i _ g0 gl 4 g2 _ (2 _ i Z (V000 Zy, ) — Ve, 2002
k k 2 L I k VIR 2
2001500 atig (), (t,i4) 2L( Q) 1te 2o
+ 21|60 — 4D ||, |6 2 5) - VO 5)]|, + ﬁb Sne (C.10)
Therefore, combining the cases when I;- 2 i and I; =1, 1.e., Eq. (C.9) and Eq. (C.10), we have
Z 00 — gD o0 zpy ) — VOO Z0)))
k
k=1
S i) 4 p(tid) 2 1 (*) (145)., 70i3) |2
Z — Gt 4 g2 ( g mZHW 0,); Zrx) = VUG 27 ),
k=1 k#j
2 32 ,
= (%_f)”tnw 2y ) = VOO 2000 [
2n, ti (). (t,i5) . ~ 2L(1 — @), 1te
_i_HHQ — 0D, ||V 2 5) — V(0 ,zi,j)H;I{I;:i}JrTb —anl . (C.11)
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Iteration form: Plugging Eq. (C.3) and Eq. (C.11) into Eq.(C.2), we have
] ] ij ] A(t,ij Ban 114 n(t,ij Jig) (|2
[00+D — gD < 60 — 0G5+ 2S00 — 6 — 6 4 o
k=1

(s pym-n (2L ”t)zu (VOO 21y ) — VHOLD: ZE) |2

L B
1.7 2bn 1.n
«1+B);§4(4f375953HV€¢”ZN) VO 2 s
1 2L(1 — lta 2
(1+6 77t ||(V€ §t),2”) Vﬁ( (tm) Zi )HzH{I‘ o+ 1(+aa)b}fant1_a
™My - o
+ 2100 — 8| |6 20 5) = VO 2 Lrg=iy- (C.12)
By Lemma B.3, we get
T-1 B m ~
> Y00 - 6 — 0 6P|
t=0 m k=1
-« w2 Lym (7). i) ) ||2
+Z ((14—51)(771—1)@ (T_E )ZH (Ve ; 7ZF k) — VLU0 7Z1}C,k))H2
t=0 k#j
T-1
1, n? 2bm; 1\ ). (t35). Z(i3)N(|2
+ 2 ((1 e~ O ) m )HW (0375 Z12,5) = VOO 210D Ly
T-1
e (( Qafo (1+p1)(m—1) 2bnt 1 (ti5), Z(id) \)||2
< 3 (e T e O = ) TN 2 = weco )
T-1 1
m o, ouf Y5y, 2 1 ®). opatid). Hiy |2
+; m(((l_as)m+ —)m = (7 ﬁ2))||w<9j $Z15) = VOO 2D Ly
T—-1,3
;g Bl i i
4—§:Ai(r:5§——invz9“>2ﬁ )= Ve 2,
t=0
T—1
nallpi—iy ). (ti9) . i3y (|2
< 2 WHVE(H HZ1yg) = VOO 20 s
where we choose 81 = 1,85 = L/(bn;), and b = % 4+ 2L touse (b > L)
ayfo (I+p)(m—=1),  2bp 1, ayL 2(m—1) b
((lfozg)nt—i— m ) (T @) N (b(l—ag) + m Z)nt

IN

a4L
o + 2L
( 4 + 1

2- ey =0
1— s L e

and similarly
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Therefore, taking a summation for ¢ = 0

., T"— 1 to both sides of Eq. (C.12) and using Lemma B.3, we have
T—1

_ L L i7) ~
00— 8 < 3 (O 2 (a0 ) - V6 55) [
t=0

T-1 -
+ 27775 He(t) f(t: ZJ)H va ) 72;1]) Vf(@ (t,ij). = HQH{[t_Z} n % %ntl%a
B t=0
(C.13)

i 1 aysL 2 i)~ 2
160 - 60218 < 203 (G ag + )BT 215) = Ve 20 ) )
T—1 T—1
277t ) ©j (t) (t,i3). ~ 2L ].—Oé) 14a ﬁ
+ E[[|0® — 09)|||[Ve0;”;s 2i5) — VO 2 )|, + =—=) bran/ 7. (C.14)
Introduce X
_ a(t) _ p(tis))27) 2 _
Ay = (E[||6 6"93])2, Vte[T], and A_rglgajg(At.
By the Cauchy—Schwarz inequality, we know
1
8O0, [[7e(6”; 2:,5)-Ve@ s 2,1, < (B[[[6O-04D5])* (B][|Ve”: 205)- Ve 23] )™
It then follows that
1 —, ol 2 2
t tij). ~
82 S (e ¢ (70 - 95
T-1 1 T-1
2 ij) . - 3 2L(1 — 1t 2
+ = e (EB[[Ve0; 20) - Ve, u)||§])2A+%ZbJan; 7 (C.15)
t=0 t=0
According to Lemma B.1, this further shows
T-1
2 ayL %
A< oS (s BP0 - V62 )
T-1 1 T-1
4 if) o~ 3\2  4L(1 — 1ta o2
m2n2( Ut(E[HV@ _gt)wzzj) (t J)7 ZJ H ])2) szitun; . (C16)
t=0 t=0
Eq. (B.24) shows
B[V 25) — V067 2 )IIF] < 4E[|IV6); 2:5)]3].
‘We combine the above two inequalities together, and get
BIIAS) - AR < £ 3 (2 2o ) )
mn & ag)b m J E &
T—1 1 T—1
2 4L ].— 1+a 2
anQ( nt(E“w O 2i5)|I5 D) % iRl (CAT)
t=0
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Taking an average over all ¢ € [n] and j € [m], we get

1 n m ; m L 2
,,TZZ [IlA(S SEI3] < mznz Z T?))b+E)ntQE[va(eg('t)%zi,j)”i

16 0. 2D%>2 AL(1 - @) = i
+m3n3;;(t_o e (B[ 96805 e X
By choosing 3 = 15 =2 A we know
R - s = SR = W1 2
l—az 1-(1+/A 1-(1+20 52 (1-2)?
and further get
n m n m T-1
i 2(1+/\)L 2 2
%ZZE”A A(SUE < mznz > ( EVE ) 2EH|V€ J 2 s
i=1 j=1 i=1 j=1 t=0
n m ® 5 % 2 T—l
Fom 3 (el v s ) )+ S Sk
=1 j=1 t=0
Furthermore, we know
044L o 2L(1 +/\)
b_l—a3+2L TSN +2L.
The proof is completed. O

Proof of Corollary 5.2. From the G-Lipschitz continuity of the loss function £(-; z) (Definition 3.4), we know
IVE(8, 2) = VU 2) |2 < [V, 2)|| + [IVL(8', 2) ]2 < 2G, 7.0 € R,

i.e., the loss function has (0, 2G)-Hélder continuous gradients (Definition 3.3). Then, by choosing o = 0 in Theorem 5.1,
we know

n m n m T-1

i (®). 2
=Y S EIAS) ~ A < s 30303 (5 + ) w05
=1 j=1 i=1 j=1 t=0
n m 0. 1 T-1
t 2 2
m3n3 Z(Z (B[IVes; 20|15 ]) ) +8GbY . (CI8)
=1 j=1 t=0 t=0
From the G-Lipschitz continuity of the loss function #(+; z) (Definition 3.4), we know
VO, 2)||]s <G, VOeRY ze Z.
Plugging this into Eq. (C.18) and noting b = 4((11f;))§ + 4G give the stated bound. O

C.2. Proofs on Convergence Analysis

For the convergence analysis, we require the following two lemmas on functions with Holder continuous gradients.
Lemma C.1 shows the self-bounding property, while Lemma C.2 presents a bound on the first-order approximation for
functions with Holder continuous gradients.
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Lemma C.1 (Lei and Ying 2020). Assume the loss function {(-; z) is nonnegative and has (o, L)-Hélder continuous
gradients with o € [0, 1]. Then,

VLB, 2)|l2 < carlTa(0,2), VOERY z€ Z,

where c 1 is defined as

o _JasyarErds fa>o0
> sup, || VL(0; )||2+L ifa = 0.

Lemma C.2 (Nesterov 2015). Suppose [ has («, L)-Hélder continuous gradients over a given convex set D, where
a € [0,1]. Then for any x,y € D,
F(y) < 569 + (V10 y %)+~ fly — x|
- ’ a+1 '
Proof of Lemma 5.4. Let ©) and ©®) be defined in Eq. (B.1). For any # € R?, there holds

||§(t+1) —0)2 = Hé(t) — m% iVé(Hl(f);ZI,g,k) - HHz
k=1

=116 — 0|3 +n}

1 - 2 B 1 m
m ’; Vg(el(g); ZI,E,k)HQ - 277t<0(t) -0, — ;VE(GI(;); Zl,i,k)>~ (C.19)

By the Cauchy-Schwarz’s inequality, we know

|1 S we00: 20 < zui i (VU0 2130 = T 25,0) [+ 2 L S5 9e(@0s 2,0
k=1 k=1

2
2
2L2m Cioe . 2R N 2
D L S [ e WY e AU

k=1 k=1

212 _ 2¢% | SN e -
—_ Q)2 o1 E =5 (p).
< me H@ S} ”F + m farT (9 azli,k)v (C.20)

k=1

IN

where the second inequality holds due to the («, L)-Holder continuity of V/(-,z) and the self-bounding property
(Lemma C.1), and the last inequality holds due to the concavity of x — z®.

1 m © ~ 1 m ® ~ o
— E 0, — g(t) 200 < (7 E 0, — O(t) 2) . C.21
m Pt || k H2 = \m o H k ||2 ( )

Taking expectation to both sides of Eq. (C.20), and using the fact that

771% 0; 2 1) ( Ze ) 2pt ) T (E[Rs(00)]) 7,
k=1
we have
{H*zw Oz 0[] < ZCE(I00 603 + 262, (B[RS (59)]) 7T (€22)
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Since

<§(t)_9 ZW ¢ ,Z,t > g:l@(t) 0, VL ek 2 k)>

1
m
(89— 01", 72(0; 21y >+;§:<9“> 0,V 211 1))

I
3=
M3

k

Il
-

V
3=
NE

_ N 1 —
(00021 4) — 0021 ,ﬁ)fmna,(j) 0D + — > (U0 21 0) — €03 21,0
k=1

_ L .
(5(9(”; zre ) — 00521 1) — ﬁHO,(f) - e(t)||2+1), (C.23)

el
Il
—_

NE

1
m

>
Il
—

where the third inequality holds due to the («, L)-Holder continuity (Lemma C.2) and convexity. Taking expectation on
both sides of Eq. (C.23), we have

E[(00 ¢ Zw O:2.0)] = ELRS(0)) ~ E[Rs(0)] - ﬁﬂi[”@(“ —6W a2

where we have used the following inequality since « € [0,1] (i.e., if p < g, then ||a||, > ||a||, for a € R"™)

m 1 m 1
_ a Py — 3 " —
(D160 =605 )™ = (YN8 - 6913) " = [0 — 6|
k=1 k=1

Taking expectation to both sides of Eq. (C.19) and plugging Eq. (C.22) and Eq. (C.24) into it, we have

2L
(a+1)m
+ 262 n? (E[Rs (01)]) 7 + 2mE[Rs (6) — Rs(0)].

_ _ 212%n2 _ _
E{I9¢) — 6113) < E[18Y - 6]13] + = EE[|0® — 6|3 + E[61 — 6§*]

Taking a summation of the above inequality gives

1 A(t) E[J|6% — 0]j3] A1) |12
L Y EIRs(09) - R(0)] < maTZEH@ — 6]

P 2nT
L ®) _ 0o+ L ol S 7200
t t)||a+ <, t o+l
+(a+1mTZEH® oW % - > (B[Rs(0 a1
t=1
The proof is completed. O

The following lemma presents a bound on the distance between the D-SGD iterates around their mean over the nodes.

Lemma C.3. Assume the loss function {(-; z) has (v, L)-Holder continuous gradients and Assumption 3.1 holds. Let o
and ©Y) be defined in Eq. (B.1). For any = € (0,1], 8 > 0 and a € R, if we choose 1, such that

Qe = (14 B)" A" + a(2(1+1/8)L%)*m* = nf < 1,

then
_ 1 =1 _ 20z
E[|o® —eW|F] < (2¢2,(1+ B))xmm > ar it (B[Rs(817))]) T
=1

2:a

+(1—a)(2(1+ ﬂ m*(= O‘)Zaamnt ~° . (C25)
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Proof. Recall W defined in Eq. (B.4). Forany 0 < x < 1 and 8 > 0, we have
[@® —8®W|2 = |o® —et~b —_a® L et~—V|2 < |o®) — el~1) |2
= [Wel™D —n_,VeO szpn) — OV
(t—1) _ At—1)2 15 (t—1) 2\”
< (a+pIwet= —eCIF + (1 + iy |ve® ;zIH>HF)
< (L4 BT WOUTY — 0V + (14 1/8)" 0% [VAO" Vizr-1)[F,  (C26)

where the first inequality holds due to ||© — O| p < ||©|| ¢ for all © € R™*4 (Taheri and Thrampoulidis, 2023), the second
inequality holds due to [|la + b]|? < (1+ ) [la]* + (1 + %) [|b]|2, and the last inequality holds due to the fact that for any

a; > 0,as > 0,and z € (0,1],
(a1 + a2)* < af + a3.
For any © € R™*4 Eq. (B.5) shows that |[WO — 0]|2. < \||© — ©||2. Therefore,
We - 6|z < x*|le - o[

Applying this to Eq. (C.26), we know

10 —0W |3 < (1+ )" 27|00~ — O~ VIR + (1+1/8) 0%, [|VLOU ;s 2p01) |3 (C.27)
By the («, L)-Holder continuity of V(+, z) and the self-bounding property in Lemma C.1, we get

VO, )| = VO 1) — VUG ;s 2pis) + VEOED; 27012

< 2| veet- b, szpe) = VO[3 + 2 VO 2|17

—1 ~(t—1 a A(t—
<2230 — gV 23 Dizp-1)l3
k=1 k=1

< 2L2m17a||®(t 1) @(t 1)||2a +2€ 12634?1 e(til);zllifl,k)’

where we have used Eq. (C.21). Therefore,
IVe©" ;2|3 = (VO Vizp)|F)"
< (2L%m!~)" @Y — @U=b|2er 4 (2¢2 | ie%(é<t—l>; z,iflyk))”’. (C.28)
Due to the concavity of y — yl%, the independence of #*~1) and I;~!, and the fact that Rg(-) = LS Rg, (+), we

know

2

B2 S50y )] < (B[4 S0 0])
= (]E[% iRSk (g(t—l))D T ( [RS(G(t 1))]) o
k=1
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where we use the concavity of y — y for the first inequality above. Therefore, taking expectation to both sides of Eq. (C.28),
we have

2ax

E[|VEOU" zp0) 3] < (2L7m! ) E[|007D — 017D |130%] 4 (262 ) m” (E[Rs(0"1)])*F1.  (C.29)

Taking expectation to both sides of Eq. (C.27) and plugging Eq. (C.29) into it, we have

E[]0® - 0W|F] < (1 +B)*NE[|0""" — 0 VIF] + (2(1 + Z)L?) m )iz E[|o¢D — et~ V|j3e]

Q\H

+ (22 (1 + %)) mTn2 (E[Rg(9¢1Y]) e (C.30)
By Young’s inequality (i.e., Eq. (C.1)) with p = L and ¢ = 2, we know for any a € R,
o B[00 — etV |3ee] < (i B[]0 — ¢ D|jFE]) Syr e
< anf_ B[O — 80V + (1 - )y,
Therefore,
E[|0® —6W|[3#] < (1+8)"A" + a(2(1 + 1/8) L))" m™ =i B[]0~ — et~V |3]
+(2¢51(1+ %)) mni2 (B [Rs(é(t_l))])% + (1 —a)(2(1+ 1/3)L2)$m£(1_“)77%
(C.31)
By our definition of a, , we know
(1+B)" X"+ a(2(1 +1/8) L) " m™ =yl < aq, < 1.
Plugging this into Eq. (C.31), we get
E[|0® — 61 |3] < an E[|0¢ — 6V |F]+

2ax r—acx

(2c5,(1+ %)) my (E[Rs (0 )]) 7 + (1 - a)(2(1 + 1/B)L)m 0=, 55 (c32)

Applying Eq. (C.32) repeatedly gives

E[|0® — 0 F] < (2¢2,(1 + ) m* Z al e (B[R (00 7)]) 755

2z—aa

+(1_a)(2(1+ﬁ I(l a)zaamnt T

The proof is completed. O
Now, we are ready to present the proof of Theorem 5.5 on convergence of D-SGD for convex and nonsmooth problems.

Proof of Theorem 5.5. From Lemma 5.4, choosing oo = 0, we know for any 6 € R4,

E[6% — 0]3]
2nT

~

T T

1 L _
Y E[Rs(6"Y) - Rs(0)] < + (L + g )n+ — > E[0® - 6W||x]. (C.33)
t=1 7 mI t=1

From the G-Lipschitz continuity of the loss function #(+; z) (Definition 3.4), we know
IVE(0,2) = VO )12 < [IVEO, 2)]| + [IVEO', 2)]|z < 2G, V6,0 € RY,

34
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i.e., the loss function has (0, 2G)-Holder continuous gradients (Definition 3.3). Then, from Lemma C.3, by choosing oo = 0,

x =1/2,and L = 2G there and noting that ¢o,; < 3G, then there holds

E[6" - 60]|z] < 3V2(1 + 1/8)*Gm? Zao s+ 2v2(1+1/8) %szao,l M

=5v2m(1 +1/8) %Gzaoénf .

Plugging Eq. (C.34) into Eq. (C.33) and choosing a constant step size 1; = 7, we have

E[[|60 — 9]2] 10v2Zm(1 +1/B8)3G2 e~ x
- (t < 2 2 T—1
ZE (6 Rs(0)] < ——7 T 13G2n + — ;;aoé Ne—r
E[|6%) — 6|13 10v2m(1 + 1 2
BIOY 03] | ge, , 10V 1/8)3G
T (1 —ag1)m
where we use the following fact for the second inequality above
T t—1
T—1
;Zlao,;nm<2a Zm<2%12m—1 lZ”t
T 2 t=1

Furthermore, we know a, 1 = (1 + )2 Az. The proof is completed.

C.3. Proofs on Excess Risk Analysis

Proof of Theorem 5.6. By Lemma 3.5 and Jensen’s inequality, we know

[Es.alR(A(S)) - Rs(AS)I| < -3~ 3 Eg g 414S®) — A(S)]

m

<G Y B allAGS) - AG)IE)”

i=1 j=1

Nl=

Plugging Eq. (5.2) into Eq. (C.35), by choosing a constant step size 7, = 1, we know

B alR(A(S) — Rs(AS]| 5 & (g + 7o55)

Plugging Eq. (C.36) and Eq. (5.4) into Eq. (3.1), we have

1

~ m?n2 (1 —X)2

By choosing 3 = 2 /\ we know

a+1pr  (A+z=x)’ (0 V2(1 4 2)b
L= (1+8)2A7  1—(1+52)2 B ANz (V2 - (1+X)7)
V20 NE(VE2H(AENE)

(1=N22-01+N) ~@a-xnF

N
—_
[
—
4
>
~—
N
—~
—_
[

Therefore,

The proof is completed.
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