
OPT2024: 16th Annual Workshop on Optimization for Machine Learning

SOAP: Improving and Stabilizing Shampoo using Adam

Nikhil Vyas* NIKHIL@G.HARVARD.EDU
Harvard University

Depen Morwani∗ DMORWANI@G.HARVARD.EDU
Harvard University

Rosie Zhao† ROSIEZHAO@G.HARVARD.EDU
Harvard University

Itai Shapira† ITAISHAPIRA@G.HARVARD.EDU
Harvard University

David Brandfonbrener DAVID BRANDFONBRENER@G.HARVARD.EDU
Kempner Institute at Harvard University

Lucas Janson LJANSON@FAS.HARVARD.EDU
Harvard University

Sham Kakade SHAM@SEAS.HARVARD.EDU

Kempner Institute at Harvard University

Abstract
There is growing evidence of the effectiveness of Shampoo, a higher-order preconditioning method, over
Adam in deep learning optimization tasks. However, Shampoo’s drawbacks include additional hyperparam-
eters and computational overhead when compared to Adam, which only updates running averages of first-
and second-moment quantities. This work establishes a formal connection between Shampoo (implemented
with the 1/2 power) and Adafactor — a memory-efficient approximation of Adam — showing that Shampoo
is equivalent to running Adafactor in the eigenbasis of Shampoo’s preconditioner. This insight leads to the
design of a simpler and computationally efficient algorithm: ShampoO with Adam in the Preconditioner’s
eigenbasis (SOAP).

With regards to improving Shampoo’s computational efficiency, the most straightforward approach
would be to simply compute Shampoo’s eigendecomposition less frequently. Unfortunately, as our empirical
results show, this leads to performance degradation that worsens with this frequency. SOAP mitigates this
degradation by continually updating the running average of the second moment, just as Adam does, but in
the current (slowly changing) coordinate basis. Furthermore, since SOAP is equivalent to running Adam in a
rotated space, it introduces only one additional hyperparameter (the preconditioning frequency) compared to
Adam. We empirically evaluate SOAP on language model pre-training with 360m and 660m sized models.
In the large batch regime, SOAP reduces the number of iterations by over 40% and wall clock time by over
35% compared to AdamW, with approximately 20% improvements in both metrics compared to Shampoo.

1. Introduction

With ever-increasing costs of LLM training, optimization efficiency has become a central question in the
field of deep learning. Several recent works have tackled this challenge by addressing both the memory
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[46, 50] and compute [1] footprint of optimizers. In Algoperf [4], a recent optimization efficiency bench-
mark, Shampoo [17], a second-order algorithm, outperformed all other submissions, including Adam [22],
reducing wall-clock time by 28%. Higher-order preconditioning has also been applied in large-scale training
runs, such as Gemini-1.5 Flash [14].

The success of Shampoo has drawn increasing attention from the deep learning community. Several
works have explored ways to scale Shampoo by improving its memory and compute efficiency [1, 43, 46].
Other research [32] has examined the theoretical foundations of Shampoo and proposed minor adjustments
(such as using power 1/2 rather than 1/4) that align with prior empirical findings [1]. Moreover, Mor-
wani et al. [32] also showed that Shampoo with the aforementioned modifications is close to the optimal
Kronecker approximation of the Adagrad [10] optimizer.
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Figure 1: Comparing performance of tuned runs for AdamW, Shampoo (using DistributedShampoo [43] im-
plementation) and SOAP. In left and middle figures, Shampoo and SOAP use a preconditioning frequency
of 10. The ”shorter LR schedule” plot is where we tuned the cosine decay so as to achieve the same terminal
performance as AdamW. There we observe a ≥ 40% reduction in the number of iterations and a ≥ 35%
reduction in wall clock time compared to AdamW, and approximately a 20% reduction in both metrics com-
pared to Shampoo. In the right figure we ablate preconditioning frequency and observe a slower degradation
of performance of SOAP as compared to Shampoo. See Section 5 for a discussion of experimental results
and ablation of batch size and Section 4 for experimental methodology.

Our first contribution is demonstrating that the variant of Shampoo proposed by Morwani et al. [32] is
equivalent1 to running Adafactor [42, 48] in the eigenbasis provided by Shampoo’s preconditioner. This
interpretation of Shampoo connects it to a broader family of methods (e.g. [15]) that design second-order
algorithms by running a first-order method in the eigenbasis provided by a second-order method. Building
on this insight, we can explore a broader design space for combining first and second order methods. Many
of our design choices are a synthesis of conceptual ideas from prior works of Anil et al. [1], George et al.
[15], Morwani et al. [32] as well as implementation ideas from works of Wang et al. [46], Zhao et al. [50].

1. Given this connection, the results of Morwani et al. [32] can be interpreted as showing that the eigenbasis provided by Sham-
poo’s preconditioner is close to the “optimal” basis for running Adafactor.
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Explicitly, we study SOAP (ShampoO with Adam in the Preconditioner’s eigenbasis) an algorithm that
runs AdamW in the eigenbasis provided by Shampoo. Our main contributions are as follows:

• We make a formal connection between the Shampoo and the Adafactor algorithm. This insight leads
us to consider the SOAP algorithm, which runs AdamW in the preconditioned space provided by
Shampoo.

• SOAP outperforms both Shampoo and Adam in LLM pre-training tasks with model sizes 360m and
660m, even after extensive hyperparameter tuning of Shampoo.

• SOAP reduces the number of hyperparameters compared to Shampoo, resulting in only one addi-
tional hyperparameter compared to AdamW: preconditioning frequency. Further, SOAP demonstrates
greater robustness to large preconditioning frequency compared to Shampoo.

We should also note that while similar algorithmic variants have been discussed in the literature (e.g.
see the appendix of Anil et al. [1]), we are the first to systematically evaluate it.

Organization: In Section 3, we start by showing an equivalence between Shampoo (with exponent 1/2)
and running Adafactor in the eigenspace given by Shampoo, then with this equivalence as the starting point
we describe SOAP. In Section 4, we provide our experimental methodology and in Section 5, we compare
the performance of AdamW, Shampoo and SOAP on language modeling tasks. In Appendices F.2 and F.3
we discuss the the space and time complexity of SOAP and how it can be improved.

2. Notation and Background

We denote the weight matrix of a neural network layer by W ∈ Rm×n, and the corresponding gradient by
G ∈ Rm×n. At a given time step t, these are denoted as Wt and Gt, respectively. For a batch of inputs at time
t, denoted by Bt, the loss and its gradient evaluated at Wt are represented as ϕBt(Wt) and ∇WϕBt(Wt),
respectively.

Adagrad [10] is an online learning second-order algorithm that maintains a preconditioner H ∈ Rmn×mn.
If the vectorized gradient at time t is denoted by gt (i.e., gt = vec(Gt) ∈ Rmn), then the update of the pre-
conditioner and the vectorized weights wt ∈ Rmn with learning rate η is given by

Ht = Ht−1 + gtg
⊤
t ; wt = wt−1 − ηH

−1/2
t gt

Adam [22], a widely used first-order optimization algorithm in deep learning is a diagonal approximation
of Adagrad. It maintains an exponential moving average of the gradients Gt (denoted as Mt) and of element-
wise squared gradients G2

t (denoted as Vt) for a given weight matrix W . Its update rule with learning rate η
is given by

Wt ←Wt−1 − η
Mt√
Vt

,

where the division is performed element-wise.
Adafactor [42, 48], a variant of Adam, replaces Vt with its best rank-1 approximation V ′

t to reduce
memory usage. While the original Adafactor paper [42] proposed additional modifications, such as changes
to the learning rate schedule, we focus on the version of Adafactor proposed in recent works [48, 52], whose
update with learning rate η is given by

Wt ←Wt−1 − η
Mt√
V ′
t

.
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Shampoo [18] is a second-order optimization algorithm that approximates Adagrad and maintains two
preconditioners, Lt ∈ Rm×m and Rt ∈ Rn×n, for a given weight matrix W ∈ Rm×n. The updates for the
preconditioners and the weights with learning rate η are as follows:

Lt ← Lt−1 +GtG
T
t ; Rt ← Rt−1 +GT

t Gt; Wt ←Wt−1 − ηL
−1/4
t GtR

−1/4
t .

In practice, Shampoo is implemented with several other modifications such as layerwise learning rate
grafting and exponents other than −1/4. We will use the DistributedShampoo [43] implementation which
has these variations available as hyperparameters.

3. Algorithm

3.1. Theory

We begin by describing an equivalence between Shampoo and running Adafactor in the eigenbasis of the
Shampoo preconditioner. For simplicity we omit momentum but the equivalence also holds with momen-
tum. For this equivalence we use Shampoo with the following modifications from the original Shampoo
optimizer [18]:

1. We use power 1/2 instead of power 1/4. This was already recommended in practical implementa-
tions [1, 43] and a theoretical connection between optimal Kronecker approximation of Adagrad [10]
preconditioner and Shampoo with power 1/2 was established in [32].

2. We also use the scalar correction to per layer learning rates described in Morwani et al. [32], Ren and
Goldfarb [41].

3. Instead of the running average of L and R across time steps, we use dataset averages.

With these changes in place, we define two algorithms which are “idealized” forms of Shampoo with
power 1/2 and running Adafactor in Shampoo’s eigenspace. We formally show in Appendix B that these
two algorithms are in fact equivalent.

Claim 1 (Informal, see Appendix B) Running “idealized” form of Shampoo with power 1/2 and running
“idealized” Adafactor in Shampoo’s eigenspace (see Algorithms 2 and 3 respectively in the Appendix) are
equivalent.

While these two algorithms are equivalent in their idealized forms, practical considerations reveal some
differences. Firstly, the algorithms differ when using running averages instead of dataset averages. Secondly,
and more significantly in practice, we do not invert or compute the eigenvector decomposition of L and R
at every step. This means that the “adaptivity” of learning rates in Shampoo is limited2 to the updates of L
and R. In contrast, with Adafactor in Shampoo’s eigenspace, the second moment estimates can be updated
at every step as they are computationally inexpensive. Additionally, instead of using Adafactor, we can
opt3 for Adam, which offers more generality. Combining these insights leads to Algorithm 1 which can be
interpreted as running Adam in Shampoo’s eigenspace. Further implementation details of our algorithm are
in Appendix C.

2. We note that practical implementations of Shampoo use grafting which allows for learning rate adaptivity at every step, but this
adaptivity is restricted to a single scalar per layer.

3. Though using AdamW over Adafactor only gives very small improvements in performance, see Figure 5 and Appendix F.2. We
also note that one can use any other diagonal preconditioner based optimizer in place of Adam, such as Lion [3], Sophia [26]
or Schedule-Free AdamW [5].
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Algorithm 1 Single step of SOAP for a m×n layer. Per layer, we maintain four matrices: L ∈ Rm×m, R ∈
Rn×n and V,M ∈ Rm×n. For simplicity we ignore the initialization and other boundary effects such as bias
correction. Hyperparameters: Learning rate η, betas = (β1, β2), epsilon ϵ, and preconditioning frequency
f .
An implementation of SOAP is available at https://github.com/nikhilvyas/SOAP.

1: Sample batch Bt.
2: G ∈ Rm×n ← −∇WϕBt(Wt)
3: G′ ← QT

LGQR

4: M ← β1M + (1− β1)G
5: M ′ ← QT

LMQR

6: {Now we “run” Adam on G′}
7: V ← β2V + (1− β2)(G

′ ⊙G′) {Elementwise multiplication}
8: N ′ ← M ′√

V̂+ϵ
{Elementwise division and square root}

9: {Now that we have preconditioned by Adam in the rotated space, we go back to the original space.}
10: N ← QLN

′QT
R

11: W ←W − ηN
12: {End of gradient step, we now update L and R and possibly also QL and QR. }
13: L← β2L+ (1− β2)GGT

14: R← β2R+ (1− β2)G
TG

15: if t % f == 0 then
16: QL ← Eigenvectors(L,QL)
17: QR ← Eigenvectors(R,QR)
18: end if

The main focus of the next sections will be to explore the empirical performance of this algorithm and
its variations.

4. Experimental Methodology

Hyperparameter tuning: We begin with hyperparameter values suggested by prior research for both
AdamW and Distributed Shampoo (e.g., β2 = 0.95). Initially, we conduct a learning rate sweep to determine
the optimal learning rate for each optimizer. Once the optimal learning rate is identified, we perform two-
dimensional sweeps for each of the remaining hyperparameters, where we vary the selected hyperparameter
alongside the learning rate. The purpose of these sweeps is to demonstrate that our default hyperparameter
settings are near-optimal, disregarding potential interactions between two non-learning-rate hyperparame-
ters. A detailed discussion of the hyperparameter sweeps is provided in Appendix D.

Throughput Measurement: We evaluate the throughput of each optimizer by measuring the number of
tokens processed per second. At present, we perform these measurements on a single H100 GPU and utilize
gradient accumulation to accommodate large batch sizes. While this approach may seem to disadvantage
AdamW— as the overhead of Shampoo/SOAP is compared against multiple gradient accumulation steps—
it is important to note that the overhead of Shampoo/SOAP can be amortized across layers by distributing the
updates across multiple GPUs. This technique is employed in the distributed implementation of Shampoo
[43]. A comprehensive comparison of distributed implementations of these algorithms is left to future work.
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5. Language Modeling Experiments

In this section we focus on empirically comparing AdamW, DistributedShampoo, and SOAP on language
modeling tasks. Within the main body we focus on highlighting the efficiency benefits and the robustness
of SOAP to preconditioning frequency; in Appendix E.2, we present additional experiments showing the
impact of decreasing the batch size on the performance of Shampoo and SOAP— even in this setting, we
find SOAP consistently outperforms both Shampoo and AdamW.

5.1. Measuring Efficiency Benefits

In Figure 1 (left and middle) we show train loss curves of 360m and 660m models with 2m token batch
size for AdamW, Shampoo, and SOAP, where SOAP outperforms the other two. To directly calculate
the efficiency benefit of SOAP, we also run SOAP with cosine decay for a shorter lr schedule, as shown
in Figure 1. This allows us to approximate the following efficiency benefits (when setting batch size to 2m
and preconditioning frequency to 10): ≥ 40% reduction in number of iterations and ≥ 35% reduction in
wall clock time as compared to AdamW; ≈ 20% reduction in iterations and wall clock time as compared to
Shampoo. We include analogous figures for 360m models in Appendix E.1.

Simply running SOAP for the same duration as Shampoo and AdamW cannot be directly used to calcu-
late the efficiency benefit (in terms of training steps or wall-clock time) of using SOAP since we use a cosine
schedule. Therefore, we run SOAP on .5, .625, .75 and .875 fraction of the training data and fit a scaling law
of the form a + bN−β through the final losses obtained, where N represents the number of training points
and a, b, β are the parameters of the fit. We show these points and the corresponding scaling laws obtained
in Figure 2. This scaling law is then used to calculate the efficiency benefit in terms of training steps and
wallclock time as shown in Figure 2 in Appendix E.1.

5.2. Effect of Frequency of Finding Eigenvectors/Inverse

In Figure 1 (right), we compare SOAP and Shampoo with respect to preconditioning frequency. We observe
the following:

• For all frequencies we tried from 1 to 100, both optimizers outperform AdamW.

• At frequency 1, SOAP and Shampoo are quite close in performance.

• At higher frequencies, the performance of both SOAP and Shampoo degrades but SOAP’s perfor-
mance degrades significantly slower than Shampoo’s.

6. Discussion and Future Work

We study an optimizer called SOAP: ShampoO with Adam in the Preconditioner’s eigenbasis. We show that
SOAP outperforms both AdamW and Shampoo in language modeling tasks and show that it is more robust
to changes in preconditioning frequency than Shampoo. For future work, we would like to explore further
improvements to the design of SOAP, in particular, related to using lower precision for the preconditioners
as well as a better distributed implementation. We would also like to explore the performance of SOAP on
other domains such as vision.
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Appendix A. Related Work

We begin by discussing works that are closely related, including Anil et al. [1], George et al. [15] and Zhao
et al. [50]. Subsequently, we cover extended related works.

KFAC [30] is a well-known second-order optimization algorithm designed for neural networks. E-
KFAC [15] builds upon KFAC in a manner analogous to our extension of Shampoo, introducing a diagonal
preconditioner that is updated between KFAC inversion steps. However, E-KFAC’s algorithm is not identical
to running Adam in KFAC’s eigenbasis, as the diagonal preconditioner is not Adam.

Anil et al. [1] introduced several algorithmic and numerical improvements to develop a practical and
scalable version of Shampoo [18]. Notably, they empirically found that using an exponent of 1/2 outper-
forms the original exponent of 1/4 in Shampoo. Of particular interest to our work is Appendix B of Anil
et al. [1], where, inspired by E-KFAC, they describe an algorithm that is essentially equivalent to SOAP for
2D layers. However, no experiments were provided, and the authors claimed that unpublished experiments
showed no empirical improvement over Shampoo. This discrepancy between our findings may be due to
some of the implementation details of SOAP.

GaLore [50] was recently proposed as a method to reduce Adam’s memory footprint by maintaining
momentum in a low-rank subspace derived from the singular value decomposition (SVD) of the gradients.
Their algorithm’s full-rank version bears similarity to ours, with some notable distinctions. Firstly, their
projection subspace is determined by the SVD of the current gradient, while we maintain an exponential
moving average of GGT and GTG. Secondly, we retain momentum in the original space and project it onto
the preconditioned space, whereas they maintain it in the preconditioned space and do not rotate it each
time the preconditioned space is updated. In Appendix G, we study GaLore’s performance and find that our
modifications are necessary for improving upon Shampoo. Moreover, their method only projects one side
of a layer using the eigenbasis while using the identity basis on the other side. We examine the impact of
one-sided projection for SOAP in Appendix F.1.

Diagonal Preconditioning based Optimizers: Other than AdamW, there are other optimizers which in-
volve diagonal preconditoning such as Lion [3], Sophia [26], and Adafactor [42]. Recent works of Kaddour
et al. [21], Zhao et al. [52] showed that these optimizers perform comparably to AdamW for LLM pretrain-
ing but do not surpass it. This suggests the need to explore non-diagonal preconditioners. We discuss prior
works on non-diagonal preconditioners below.

Second-Order Optimization: Research on second-order optimization in deep learning is generally
divided into two categories: Hessian-free methods and methods that estimate the Hessian.

Hessian-Free Methods: Hessian-free approaches [29, 30] optimize without explicitly computing the
Hessian matrix, instead employing iterative techniques to approximate the Newton step. Other recent works
[23, 24, 36] have focused on designing iterative preconditioners to improve the convergence specifically for
stochastic optimization algorithms.

Hessian Estimation Methods: These methods maintain an efficient approximation of the Hessian for
neural networks. KFAC [30] and Shampoo [18] are two widely recognized methods in this area.

KFAC [30] was one of the first approaches to go beyond diagonal preconditioners in neural networks,
demonstrating that a layer-wise Kronecker-factored preconditioner approximates the layer-wise Hessian in
multi-layer perceptrons (MLPs). Subsequent works [31, 33] extended KFAC to other architectures. Recent
research [13, 15] has further improved trace and diagonal estimates for KFAC. Efforts to scale up KFAC
[2, 12, 38, 39] have focused on making the inversion step more efficient or enhancing distributed implemen-
tations.

Shampoo [18], another second-order optimization algorithm, is motivated by the online learning al-
gorithm Adagrad [9]. Shampoo also employs a layer-wise Kronecker-factored preconditioner. A recent
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distributed implementation of Shampoo [43] won an optimization efficiency benchmark [4], highlighting
the practical utility of second-order methods in deep learning. Few recent works [11, 32] have provided
theoretical advancements on top of Shampoo. Other works [1, 25, 35, 46] have proposed various strategies
to improve Shampoo’s scalability. We defer a comparison of SOAP with these methods to future work.

Appendix B. Theoretical Results

As introduced in Section 3.1, we make three modifications to the Shampoo algorithm, yielding Algorithm 2
(first occurrence of these changes is highlighted in red in the algorithm below). We also formally define an
algorithm which can be interpreted as running Adafactor in Shampoo’s eigenspace in Algorithm 3.

Algorithm 2 Single step of idealized Shampoo with power 1/2.
1: Sample batch Bt.
2: Gt ∈ Rm×n ← −∇WϕBt(Wt)
3: L← EB[GBG

T
B] {Where the expectation is over a random batch B.}

4: R← EB[G
T
BGB]

5: Ĥ ← L⊗R/Trace(L)
6: Wt ←Wt−1 − ηĤ−1/2Gt = Wt−1 − ηL−1/2GtR

−1/2/Trace(L)−1/2

Algorithm 3 Single step of idealized Adafactor in Shampoo’s eigenspace.
1: Sample batch Bt.
2: Gt ∈ Rm×n ← −∇WϕBt(Wt)
3: L← EB[GBG

T
B]

4: R← EB[G
T
BGB]

5: QL ← Eigenvectors(L)
6: QR ← Eigenvectors(R)
7: G′

t ← QT
LGtQR

8: {Idealized version of code for Adafactor taking G′
t to be the gradient}

9: G′
Bt
← QT

LGBtQR

10: A = EB[G
′
B ⊙G′

B]1m where G′
B = QT

LGBQR

11: C = 1⊤nEB[G
′
B ⊙G′

B]

12: V̂t =
ACT

1⊤
nA
{Elementwise division}

13: G′′
t ←

G′
t√

V̂t+ϵ
{Elementwise division and square root}

14: G′′′
t ← QT

LG
′′
tQR {Projecting back to original space}

15: Wt ←Wt−1 − ηG′′′
t

Claim 2 Algorithms 2 and 3 are equivalent.

Proof
Consider Gt in the basis created after rotating by QL, QR i.e. G′

t = QT
LGtQR. Let the eigenvalues of

EBt [GBtG
T
Bt
] and EBt [G

T
Bt
GBt ] be given by λ1, ..., λm and µ1, ..., µn respectively. Algorithm 1 scales the

i, j coordinate by (λiµj/(
∑

i λi))
−1/2, while Algorithm 2 scales them by (AiCj/(

∑
iAi))

−1/2. We now
show that Ai = λi, an analogous argument shows Cj = µj .
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Ai = eTi EB[G
′
B ⊙G′

B]1m

= EB[
∑
j

(G′
B)

2
i,j ]

= EB[
∑
j

(uTi (GB)vj)
2] (Using definition of G′)

= EB[||uTi (GB)||2] (vj form a basis)

= EB[u
T
i GBG

T
Bui]

= λi (By definition of λi and ui)

Appendix C. Further Implementation Details of SOAP

In Section 3.1, we introduced SOAP and Algorithm 1 which runs Adam in Shampoo’s eigenspace. Here we
describe some additional implementation details:

1. Algorithm 1 describes the behavior of the algorithm for 2D layers. Following Zhao et al. [50], for 1D
layers we run standard AdamW. This reduces the overhead as compared to standard implementations
of Shampoo which solve an eigenvector problem for 1D layers too.

2. Following Wang et al. [46], we compute eigenvectors of L (and R) using one step of power method
(Algorithm 4). This requires doing one matrix multiplication followed by QR decomposition. QR
decomposition is faster [8] than standard eigenvector decomposition in PyTorch. For the first iteration,
eigenvectors are initialized by doing a standard eigenvector decomposition.

3. For layers with huge dimensions such as the first and last layer in language modeling transformers,
maintaining the eigenvectors would be space and time prohibitive. For such dimensions we fix the
rotation matrix (QL or QR) to be identity. Note that if we fix both QL and QR to be identity for a 2D
layer, we would recover Adam.

4. Algorithm 1 omits bias correction and weight decay for simplicity, but these are used in the actual
implementation, identical to their use in AdamW.

Algorithm 4 Eigenvectors function, implemented using power iteration and QR decomposition. Inputs:
PSD matrix P and estimate of eigenvectors Q. If the estimate was exact we would have P = QDQT where
D is the diagonal matrix with eigenvalues.

1: S ← PQ
2: Q← QR(S)
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Appendix D. Experimental Setup

Many aspects of our setup such as models are the same as in Zhao et al. [52]. We will restate those details
verbatim for completeness.

We train language models on C4 tokenized with the T5 tokenizer [40] and report results in terms of
validation loss.

Models. We start from the OLMo codebase [16] and train decoder-only transformer models of three sizes:
210m, 360m, and 660m, where the parameter count refers to non-embedding parameters. The models have
widths of 1024, 1024, and 1408 and depths of 12, 24, 24. We used the 210m model to explore various
ablations, most of our reported results are on 360m and 660m. The MLP hidden dimension is 4x of the
width. The activation function is GeLU [19]. We use RoPE positional encodings [44]. Attention heads
are always dimension 64. We use PyTorch default LayerNorm. We use QK layer norm [6]. Following
Wortsman et al. [47] we do not learn biases for the linear layers or LayerNorms. We train in mixed precision
with bfloat16.

Algorithms. We use the standard Pytorch implementation of AdamW [34], the DistributedShampoo [43]
implementation of Shampoo. We implement ourselves SOAP and GaLore starting from an older version of
Pytorch implementation of AdamW and the official GaLore implementation [51].

Default hyperparameters. We use β1 = 0.95, as we found it to outperform β1 = 0.9 in our sweeps for
the 360m model. Following Wortsman et al. [47] we use decoupled weight decay with coefficient 1e−4
and z-loss with coefficient 1e−4. We use the default value of ϵ = 1e − 8 in AdamW (actual or when used
for grafting), SOAP and GaLore. We use warmup followed by cosine decay as our scheduler. We start the
warmup and end the cosine decay at 0.1x the maximum learning rate.

Default hyperparameters for DistributedShampoo Shi et al. [43] state that they find the optimal expo-
nent to be either −1/2 or −1.82/4 ≈ −1/2.2. Our preliminary findings were similar to this. Hence we set
the default values of exponent to be −1/2.5 for both 1D and 2D parameters. We set ϵshampoo = 1e−12 and
βshampoo = 0.95 based on our initial set of experiments on the 210m model.

Default hyperparameters for GaLore GaLore introduces an additional hyperparameter called scale (α)
since due to low rank updates the overall update magnitude decreases. Since we are running a full rank
version of GaLore we set α = 1.

Token counts. For all of our runs we use a sequence length of 1024. For all models (except in Ap-
pendix E.2), we use a token batch size of 2048k ≈ 2m. We default to training models for the approximately
“chinchilla optimal” number of tokens that is ≈20 times the number of parameters. Explicitly, this means
for our default batch size of 2m, the 210m models are trained for 1600 steps or ≈ 3.3b tokens. The 360m
models are trained for 3200 steps, the 660m models are trained for 6400 steps.

D.1. Sweeping over hyperparameters

AdamW, 2m batch size: Starting from the default hyperparameters above we do the following sweeps:

1. We sweep over learning rate in {.1, .0316, .01, . . . , 3.16e−4}.

2. (360m) We sweep over the cross product of best 3 learning rates and β1 ∈ {0.9, 0.95, 0.99}.

3. (360m) We sweep over the cross product of best 3 learning rates and β2 ∈ {0.9, 0.95, 0.99}.
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The last two of the sweeps did not yield any benefit for the 360m model with 2m batch size hence we
only sweep over learning rate for the 660m model with 2m batch size.

DistributedShampoo, 2m batch size: Starting from the default hyperparameters above we do the fol-
lowing sweeps:

1. We sweep over learning rate in {.1, .0316, .01, . . . , 3.16e−4}.

2. (360m) We sweep over over the cross product of best 3 learning rates from above and ϵshampoo ∈
{1e−11, 1e−12, 1e−13}.

3. (360m) We sweep over over the cross product of best 3 learning rates from above and βshampoo ∈
{.9, .95, .975}.

4. Let e1, e2 denote the exponents used in DistributedShampoo for 1D and 2D parameters respec-
tively. We also sweep over the cross product of best 3 learning rates from above and (e1, e2) in
{(2, 2), (2.5, 2.5), (3, 3), (2, 4)}.

These sweeps did not yield any significant improvement in performance (< .004) for the 360m model.
Hence we only sweep over the learning rate for the 660m model.

SOAP, 2m batch size: Starting from the default hyperparameters above we sweep over learning rate in
{.1, .0316, .01, . . . , 3.16e−4}.

AdamW, 256k batch size: For the 360m model with 256 batch size we start from the default hyperpa-
rameters and do the following sweeps:

1. We sweep over learning rate in {.1, .0316, .01, . . . , 3.16e−4}.

2. We sweep over the cross product of best 3 learning rates and β2 ∈ {0.95, 0.99}.

In the second sweep we observe small improvements in performance by using β2 = .99, so our final
numbers use β2 = .99. This (small) improvement in performance by using a larger β2 at smaller batch sizes
was also observed by Porian et al. [37], Zhao et al. [52].

DistributedShampoo, 256k batch size: For the 360m model with 256 batch size we start from the
default hyperparameters and do the following sweeps:

1. We sweep over learning rate in {.1, .0316, .01, . . . , 3.16e−4}.

2. We sweep over the cross product of best 3 learning rates and (β2, βshampoo) ∈ {(.95, .95), (.99, .99)}.

In the second sweep we observe small improvements in performance by using β2 = βshampoo = .99, so
our final numbers use β2 = βshampoo = .99.

SOAP, 256k batch size: For the 360m model with 256 batch size we start from the default hyperparam-
eters and do the following sweeps:

1. We sweep over learning rate in {.1, .0316, .01, . . . , 3.16e−4}.

2. We sweep over the cross product of best 3 learning rates and β2 ∈ {.95, .99}.

In the second sweep we observe small improvements in performance by using β2 = .99, so our final
numbers use β2 = .99.

Preconditioning frequency sweeps: For the preconditioning frequency experiments of SOAP and
Shampoo ( Figure 1 (right)), for each frequency we do a learning rate sweep over the best 3 learning rates
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found at preconditioning frequency 10. Other hyperparameters are set to their optimal values obtained using
the precondition frequency 10 sweeps.

360m and 660m shorter runs: For each of the shorter runs of 360m and 660m models for the SOAP
optimizer (Figure 2), we did learning rate sweep over the best 3 learning rates found for the standard length
run. Other hyperparameters are set to their optimal values obtained using the standard length run.

Warmup: The warmup duration for the 360m and 660m models were 600 and 1200 steps respectively.
For the shorter runs (Figure 2), for 360m model, the warmup durations were 400, 400, 500 and 525 steps
for 0.5, 0.625, 0.75 and 0.875 runs respectively. For the 660m model, the warmup durations were 600, 750,
900 and 1050 steps for 0.5, 0.625, 0.75 and 0.875 runs respectively. For 360m model with 256k batch size
(Appendix E.2) we use a warmup for 4000 steps (total steps is 25000).

Appendix E. Additional Experimental Results

E.1. Efficiency Benefits

In this section, we provide additional results to accompany our main findings from Sections 5.1 and 5.2.
In Figure 2, we provide the precise efficiency benefit calculations after fitting a scaling law across multiple
SOAP runs on varying fractions of the data. In Figure 3 we provide analogous results from our main Figure 1
for 360m models.

E.2. Effect of Batch Size
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Figure 4: Comparing performance of tuned runs for AdamW, Shampoo (using DistributedShampoo [43] im-
plementation) and SOAP for token batch size of 256k. Shampoo and SOAP use preconditioning frequency
of 80. We observe a≥ 25% reduction in the number of iterations compared to AdamW, and approximately a
10% reduction compared to Shampoo. See Figure 2 (right) for wall-clock time improvement and Section 4
for detailed calculation of efficiency improvement.

In this section, we examine the impact of batch size on the performance of the Shampoo and SOAP optimiz-
ers. Specifically, we reduce the batch size by a factor of 8, from 2m to 256k. To maintain the same FLOPS
overhead for the eigenvector decomposition steps as in the 2m setting, we increase the preconditioning fre-
quency by a factor of 8, from 10 to 80. In Figure 4, we present the optimal runs for each optimizer. Our
results show that SOAP consistently outperforms both Shampoo and AdamW, demonstrating a reduction of
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Figure 2: Precise efficiency benefits of SOAP over AdamW and Shampoo for 360m (at 256k and 2m batch
size) and 660m (at 2m batch size) model. For the precise methodology, refer to Section 4.

25% or more in the number of iterations compared to AdamW, and approximately a 10% reduction com-
pared to Shampoo. In Figure 2 (right), we show that SOAP also improves in wall-clock time by ≥ 15%
over AdamW and approximately 10% over Shampoo. Note that we present these results as a preliminary
analysis for small batch size runs. It is quite likely that our increase in preconditioning frequency by a factor
of 8 is not optimal and a better trade-off is achievable. Furthermore, the overhead of SOAP can likely be
ameliorated by doing L and R updates in lower precision (instead of fp32).

We also note that the decrease in efficiency improvements at smaller batch sizes for second-order meth-
ods is consistent with prior works [20, 49].

Appendix F. Further Efficiency Improvements for SOAP

In this section, we discuss space and time complexity of SOAP and provide an overview of potential avenues
for further space and compute efficiency improvements in SOAP.
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Figure 3: Comparing performance of tuned runs for AdamW, Shampoo (using DistributedShampoo [43] im-
plementation) and SOAP. Shampoo and SOAP use preconditioning frequency of 10. We observe a ≥ 40%
reduction in the number of iterations and a ≥ 35% reduction in wall clock time compared to AdamW,
and approximately a 20% reduction in both metrics compared to Shampoo. See Figure 1 for 660m re-
sults, Section 5.2 and appendix E.2 for ablations of preconditioning frequency and batch size respectively,
and Section 4 for detailed calculation of efficiency improvement and experimental methodology.

F.1. One Sided Eigenbasis

As described in Appendix A, Zhao et al. [50] have an algorithm similar to ours. One of the differences is
that they only project the smaller side of the layer using the eigenbasis while using identity as the rotation
matrix for the larger side i.e. if m < n we set QR = In in Algorithm 1 and if m > n we set QL = Im.
Doing this leads to a reduction in space usage as well as reduction of optimizer time overhead, which is
discussed in Appendix F.2.1 and Figure 3.

In Figure 5, it is evident that the one-sided projection results in slightly reduced performance compared
to the original SOAP optimizer. However, it still performs on par with, or marginally better than, Shampoo,
while maintaining greater computational efficiency. Further investigation into the potential for these variants
to surpass the computational efficiency of original SOAP optimizer is left for future work.

F.2. Space usage of SOAP

For a m× n matrix where m > n we require

2m2 (for L,QL) + 2n2 (for R,QR) + 3mn (for gradient, M,V )

space usage4 (beyond weights and activations), specifically for L,QL, R,QR,momentum (M), AdamW’s
second order estimate (V ), and the gradient. This is the same space usage as DistributedShampoo while
AdamW uses 3mn.

4. One mn is for storing the gradients, this can be avoided (as long as there is no gradient accumulation) by applying gradients
along with backprop [28] but this is not implemented by default in standard deep learning frameworks such as PyTorch. Hence
we will include this term in all of our calculations.
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Figure 5: Performance of variants of SOAP which improve space usage or time overhead. 1. SOAP (factor-
ized): Uses Adafactor instead of Adam in Shampoo’s eigenbasis and 2. SOAP (one-sided): Uses Q = I (i.e.
no rotation) on the large side of weight matrix and 3. SOAP (factorized, one-sided): Combines both of these
changes. We observe that while using Adafactor instead of Adam causes a negligible increase in loss, using
the one-sided variant causes a larger increase. However, the one-sided variant also has much larger reduction
in time and space overhead. For computational benefits of these variants see Appendices F.2 and F.3.

F.2.1. IMPROVING SPACE USAGE OF SOAP

The most direct way to reduce memory is using low precision to store the L,R,QL, QR, V matrices, which
is done by Dettmers et al. [7], Wang et al. [46]. Orthogonal to the low precision approaches, there are two
algorithmic approaches to improving the space usage of SOAP:

• Using Adafactor instead of Adam as the diagonal preconditioner after rotating by QL and QR. This
reduces the space usage by mn.

• Using one sided version of SOAP (Appendix F.1). This reduces space usage from 2m2 +2n2 +3mn
to 2min(m,n)2 + 3mn.

• Combining these approaches yields space usage of 2min(m,n)2 + 2mn.

For standard transformer architectures the last variant which combines the two approaches would yield less
space usage overall compared to AdamW (which uses 3mn).

We try these approaches in Figure 5. We observe that using Adafactor instead of AdamW yields very
small reductions in performance while using one-sided preconditioner results in larger reductions. Nonethe-
less even after combining these two approaches the resulting optimizer outperforms AdamW while having a
smaller space requirement than AdamW. Regarding space usage we also note that Adafactor (with momen-
tum added back) itself utilizes only 2mn space usage and has been shown to perform comparable to AdamW
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for ViT training [48] and for language model training [52]. Further space reduction beyond Adafactor has
been studied in the Adalomo [27], GaLore [50], and AdaMeM [45] papers.

F.3. Time Overhead of SOAP

There are two types of overhead of Shampoo and SOAP over AdamW: the overhead per step and the over-
head when changing the preconditioner (or for SOAP, the preconditioner’s eigenbasis). Let us first analyze
the first one. For SOAP per step for a layer of size m× n we have an overhead of

m3 (updating L) + n3 (updating R) + (2m2n+ 2mn2) (projecting and projecting back on both sides).

We note that this is more than the overhead of Shampoo which is m3 + n3 +m2n+ n2m. This can be
observed in Figure 2 (bottom, right) but not in the other figures since there the second type of overhead is
the dominant term.

The second type of overhead is due to changing the preconditioner for Shampoo (or for SOAP, precon-
ditioner’s eigenbasis i.e. QL and QR). The DistributedShampoo [43] implementation of Shampoo uses a
direct call to torch.linalg.eigh for this. Following Wang et al. [46] we use Algorithm 4 which uses
power iteration based approach which calls torch.linalg.qr. We note that torch.linalg.qr is
faster than torch.linalg.eigh [8]. In Figure 6 (right) we see that using power iteration based approach
(torch.linalg.qr) performs as well as fresh eigenvector decomposition (torch.linalg.eigh).
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Figure 6: (Left) Depicting the overhead of SOAP over AdamW as a function of preconditioning frequency
(Right) Comparing the performance of SOAP with torch.linalg.eigh for computing the eigenvectors
with Algorithm 4, which uses torch.linalg.qr. Note that torch.linalg.qr is computationally
more efficient than torch.linalg.eigh (as mentioned in Documentation [8]); however, both seem to
have comparable performance throughout the preconditioning frequency spectrum.

Effect of frequency on overhead: In Figure 6 (left), we observe that the overhead decreases as the pre-
conditioning frequency increases, i.e., the frequency of invoking Algorithm 4. If the only additional compu-
tation occurred in Algorithm 4, we would expect the overhead to scale as 1.0/(preconditioning frequency),
approaching zero. However, empirical results (Figure 6 left) show that the overhead approaches an asymp-
tote greater than zero. This is attributable to the additional matrix multiplications required to update L,
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update R, project the gradient, and reproject the gradient (for each layer) in the optimizer. Currently, these
operations are performed in float32; reducing the precision of these operations, as proposed in [46], could
lower this asymptote.

F.3.1. IMPROVING TIME OVERHEAD OF SOAP

The per step overhead of SOAP can be reduced by using low precision to store the L,R,QL, QR, V matri-
ces [7, 46], which in turn will speed up computation done using these matrices. This approach cannot be
used for reducing the overhead for the preconditioner update in popular deep learning frameworks such as
Pytorch since torch.linalg.qr does not support precision lower than float32. Orthogonal to the
low precision approach we can improve the per step time overhead of SOAP by the following algorithmic
approaches:

• Using Adafactor instead of Adam (Appendix F.2) as the diagonal preconditioner after rotating by QL

and QR. In this version of SOAP the overhead can be improved by from m3+n3+2m2n+2n2m to
m3 + n3 +m2n+ n2m+max(m,n)2min(m,n) +min(m,n)3 by merging the project and project
back steps for the smaller dimension.

• Using one sided version of SOAP (Appendix F.1). This reduces overhead from m3 + n3 + 2m2n +
2n2m to min(m,n)3 + 2min(m,n)2max(m,n).

• Combining these approaches yields an overhead of min(m,n)2max(m,n) + 2min(m,n)3

Using one-sided version also reduces the second type of overhead from a calls to torch.linalg.qr
on a m×m and a n× n matrix to only a single call to min(m,n)×min(m,n) matrix.

Appendix G. GaLore

We tried GaLore for 210m model, and while it outperformed AdamW it performed worse than Shampoo.
Hence we do not try GaLore for higher model sizes.

Hyperparameter sweeps: We did the following sweeps:

1. We swept the cross product over learning rate (3.16e − 4, 1e − 3, 3.16e − 3, 1e − 2), precondition-
ing frequency (10, 50, 200), both sided and one sided versions. Frequency 200 had the best results
matching the observation of Zhao et al. [50].

2. We did a cross product sweep over learning rate (3.16e− 4, 1e− 3, 3.16e− 3, 1e− 2), both sided and
one sided versions with β2 = .99 instead of .95 and preconditioning frequency 200.

3. We did a cross product sweep over learning rate (3.16e− 4, 1e− 3, 3.16e− 3, 1e− 2), both sided and
one sided versions, preconditioning frequency (50, 200) with β1 = .9 instead of .95.

The best performing run among all of these achieved a final loss of 3.12 while the best Shampoo run
achieved a final loss of 3.10.
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