Under review as a conference paper at ICLR 2022

REWARDLESS OPEN-ENDED LEARNING (ROEL)

Anonymous authors
Paper under double-blind review

ABSTRACT

Open-ended learning algorithms aim to automatically generate challenges and
solutions to an unending sequence of learning opportunities. In Reinforcement
Learning (RL) recent approaches to open-ended learning, such as Paired Open-
Ended Trailblazer (POET), focus on collecting a diverse set of solutions based
on the novelty of an agents pre-defined reward function. In many practical RL
tasks defining an effective reward function a priori is often hard and can hinder
an agents ability to explore many behaviors that could ultimately be more perfor-
mant. In this work we combine open-ended learning with unsupervised reinforce-
ment learning to train agents to learn a diverse set of complex skills. We propose a
procedure to combine skill-discovery via mutual information, using the POET al-
gorithm as an open-ended framework to teach agents increasingly complex groups
of diverse skills. Experimentally we demonstrate this approach yields agents ca-
pable of demonstrating identifiable skills over a range of environments, that can
be extracted and utilized to solve a variety of tasks.

1 INTRODUCTION

Development of machine learning over the past several decades has principally relied upon re-
searchers solving a series of challenges proposed by experts within the community (e.g. MNIST
Lecun et al.|(1998), ATARI Bellemare et al.| (2013) and robotics |Yu et al. (2021)). Learning al-
gorithms typically solve these challenges through a huge number of observations, and whilst they
have exceeded human-level performance on a variety of these tasks (Silver et al.l 2017), (Berner,
et al., |2019), they often require significantly more examples before coming close to matching hu-
man performance (Toromanoff et al.,|2019). Humans in contrast leverage many diverse experiences
to solve complex tasks (Wang et al.,|2018)) often without a well defined objective or reward. Should
we attempt to teach reinforcement learning (RL) agents in a similar fashion? We use this question
to motivate the design a procedure that aims to learn a diverse set of increasingly complex novel
behaviors without supervision (labels) or incentives (external rewards).

Open-ended algorithms aim to automatically generate challenges to be solved (Forestier et al.,|2020),
(Schmidhuber, 2012), (Standish| [2002), (Secretan et al., 2011)) that can serve as stepping stones to
increasingly complex problems. These algorithms are useful in designing a general unsupervised
learning procedure because they do not rely upon manually selected challenges; instead they search
for challenges that form stepping stones to solve larger ones, collecting a diverse set of experiences
along the way. Designing algorithms to achieve these open-endedness can be challenging. Often
requiring a careful balance between diversity, optimization (Mouret & Clunel [2015), (Pugh et al.|
2016), and a domain complex enough for sufficient experiences/challenges to be generated in order
to learn a suitable curricula.

The Paired Open-Ended Trailblazer (POET) algorithm (Wang et al.| [2019), (Wang et al., 2020) is
a recent example of an attempt to solve these challenges in the context of supervised RL. POET
uses the Minimal Criterion Coevolution (MCC) algorithm (Brant & Stanley, 2017) to co-evolve in-
creasingly complex environments and agents and then directly optimizes an RL objective either with
evolution strategies (ES) (Salimans et al.,|2017) or proximal policy optimization (PPO) (Schulman
et al.,|2017). Within POET both the MCC for suitable learning outcomes and agent optimization rely
upon the extrinsic reward within the environment. This approach works well for the reward-dense
bipedal walker control problem (Brockman et al.,[2016) but can often become challenging, even in
conceivably simple RL problems, to generate desired outcomes (Vecerik et al., 2018)).
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This problem becomes more challenging when the reward is sparse, especially with a long-horizon,
where the agent effectively has no reward until termination. Reward-shaping can be used (Ng et al.,
1999) to help improve the density of reward and aide exploration. However, reward-shaping does
not encourage open-ended learning, because it rewards the agent for following a hand-designed
objective driven path, which limits open-endedness and often leads to poor performance (Lehman &
Stanley, |2011b). An alternate approach is found in the field of unsupervised RL where we don’t use
an extrinsic reward function at all. Instead the objective is to learn a group of behaviors and hope
to observe the agent solving task through one of our explorations, an approach that shares some
characteristics with the problem of novelty search (NS) in open-ended learning (Lehman & Stanley,
2011a).

The acquisition of a diverse set of useful skills without extrinsic reward is in itself no-easy task.
We consider a skill as a latent-variable conditioned policy that alters the state of the environment
consistently (Gregor et al., |2016), (Eysenbach et al.,|2018). The utility of a skill is typically based
on its diversity to another, for example whilst one skill might be standing still, walking, dancing
and running are all vastly different and a good algorithm will aim to learn the entire set of skills.
Skills are then often selected for a task specific problem either by imitation learning or by directly
selecting an encoding on the latent-variable conditioned policy. The learned behaviors can also be
used as a pre-conditioned policy for regular RL with rewards similar to pre-training on ImageNet
(Deng et al.,[2009))

In this paper we propose Rewardless Open-Ended Learning (ROEL) an unsupervised deep RL algo-
rithm based upon the POET framework. The key-idea of this work is to use constant environment
mutation to generate a diverse set of skills capable of solving increasingly complex and novel prob-
lems. We hypothesize this combination of open-ended learning with unsupervised RL will generate
sets of behaviors that are more diverse and general than unsupervised RL agents simply trained on
a static environment. Behaviors can then be selected for a specific task by directly selecting from a
latent encoding, or by comparing the state-space transition to a demonstration. Then, if a skill can
only be demoed on a single environment, our environment generalist approach ensures this type of
behavior will generalize across many environments.

Our paper makes the following contributions:

* We present a new algorithm, ROEL, that combines unsupervised RL with open-ended
learning to generate diverse and general behaviors (Section [3). An approach that has not
been attempted before with agent-environment co-evolution (Section [2)).

* We train an unsupervised learning algorithm on the bipedal-walker environment. An envi-
ronment with a difficult task objective and a non-stationary environment transition.

* We prove empirically, that our approach is capable of learning more general and diverse
groups of policies than single environments, especially when deployed to environments
with dynamics that differ from the training set (Section [5).

2 RELATED WORK

Central to recent open-ended learning solutions is quality diversity (QD), based on NS, (Lehman
& Stanley), |2011a), (Lehman & Stanleyl, 2011b) QD algorithms aim to return a diverse set of high-
quality solutions by carefully balancing diversity and optimization (Pugh et al., 2016)), (Mouret &
Clunel |2015). In traditionally hard RL exploration problems Ecoffet et al.| (2021) produced signifi-
cant performance improvements by maintaining an archive of stepping stones from state to state.

QD itself however does not necessarily provide open-ended learning, most approaches for open-
ended learning rely upon constantly generating new challenges for the agent to overcome. This
can be through co-evolution (de Jong & Pollack] [2004), with an adversarial agent (Florensa et al.,
2018a)) or simply the agent itself (Team et al., [2021). In a similar vein research into self-generated
curricula aims to automatically generate a sequence of objectives that efficiently allow the agent to
learn complex behaviors. These approaches include: reverse goal-oriented curriculum generation
(Florensa et al.,|2018b)), teacher-student curriculum learning (Matiisen et al.| |2017)), and procedural
content generation (Justesen et al., 2018)), (Hafner, 2021)).
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Another approach, world-agent based co-evolution, aims to constantly evolve the environment with
the agent to generate pressure for agents to gather new skills. To facilitate open-ended learning
we make use of a similar framework to POET (Wang et al., |2019) (Wang et al.l 2020) where
environment-agent pairs are evolved based on their QD using insights from the minimal criterion
coevolution algorithm (MCC) (Brant & Stanley,[2017). The MCC performance ranking of agents in
POET is based upon the agents total average episodic return from the extrinsic reward. Our approach
extends this problem to the unsupervised domain, allowing for the discovery of diverse and useful
sets of behaviors. PAIRED (Dennis et al.| [2021)) co-evolves 2 agents, a protagonist and antagonist
where the protagonist aims to solve tasks generated by the antagonist. Regret is then defined as the
average score of the protagonist and the best score of the antagonist over multiple trials. A separate
adversary agent is then also trained, with the objective to minimax regret between the 2 agents by
automatic environment generation. In contrast POET effectively maintains a population of minimax
agents. We found the POET framework to be a suitable procedure to design a rewardless open ended
learning algorithm. The results in PAIRED are inconclusive as to whether POETs population QD
approach outperforms PAIREDs adversarial approach, we leave this investigation to future work.

Our methodology aims to extend open-ended learning to the unsupervised RL setting, in an effort to
generate increasingly sophisticated predictable and diverse behaviors. Significant previous work in
fixed environment unsupervised RL has focused on intrinsic motivation (Oudeyer;, 2007), (Oudeyer
et al., |2007), (Chentanez et al.l [2005)), with examples including: empowerment (Klyubin et al.,
20035), (Mohamed & Rezende, 2015a), state count based exploration (Bellemare et al., 2016), cu-
riosity driven exploration (Pathak et al., 2017), surprise maximization (Achiam & Sastryl[2017) and
minimization (Berseth et al., 2021). Compared to intrinsic motivation skill discovery aims to explore
a group of skills that can then be exploited by imitation learning (Schaal, [1997), inverse reinforce-
ment learning (Russell, |[1998)), or fine-tuning. Skill discovery has generally made use of relations
between RL and information theory (Ziebart et al., |2008)), (Florensa et al., [2017), (Daniel et al.|
2012), (Eysenbach et al., [2018)), (Wang et al., [2018)), (Sharma et al., [2020). DIAYN (Eysenbach
et al.l 2018)) explicitly aimed to exploit HRL by designing a reward function to maximize state-
entropy, so that skills are differentiated by visiting different state-space regions. DADS (Sharma
et al., [2020) subsequently aimed to discover skills that are both diverse and predictable. Our work
then develops the methodology in DADS to train agents over a range of increasingly complex en-
vironments, creating unending environmental pressure for agents to evolve ever more complex and
diverse skills.

Gupta et al.|(2020) provides another interesting approach to the problem of generalized unsupervised
reinforcement learning by combining meta-learning (Finn et al., 2017) with DIAYN (Eysenbach
et al., 2018)) to automatically generate meta-training tasks. This is a useful approach for the fixed
environment setting, but does not address the challenge of open-ended learning, only meta-training
on a static state-transition distribution.

3 REWARDLESS OPEN-ENDED LEARNING (ROEL)

Building on previous work in unsupervised RL and mutual-information based exploration (Eysen-
bach et al., 2018), (Sharma et al., 2020), ROEL uses the POET framework (Wang et al.| [2019)) to
endlessly generate agents capable of exhibiting increasingly complex, diverse and predictable be-
haviors. The policies learnt by ROEL can then be exploited to maximize a task specific objective
using some form of supervision. Importantly our algorithms use of non-stationary environmen-
tal representations allows for the discovery of new emergent behaviors based on previous simpler
behaviors.

3.1 POET FRAMEWORK

We use POET as a framework to endlessly discover agents with increasingly complex novel behav-
iors. POET accomplishes this through growing and optimizing a paired population of agents and
unique environments (ea-pairs), contained within an environment-action list (ea-list). To control
the evolution of the ea-list each environment is represented by an environmental encoding (EE),
which maps environment attributes to an environment representation, and can easily be encoded and
mutated. The Environmental Characterization (EC) is then used to describe the qualities of that en-
vironment, in ROEL we use the domain-general Performance of All Transferred Agents (PATA-EC)
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from (Wang et al. [2020). The procedure to generate and search for behaviors within POETs main
loop can then be summarized in the following steps:

1. Mutate: Every M steps, provided an ea-pair exhibits suitable performance, it is mutated
to a generate new child EEs. The children are then filtered via a minimal criterion (MC)
(Brant & Stanley, |2017) to ensure the environment is not too easy or hard. EEs that satisfy
the MC are then ranked based on the performance of the best agents and the most novel
EEs added to the active population. When the active population reaches a predefined size
the least novel pairs are dropped from the active environment and added to a set of archived
environments. Novelty of newly-generated environments is based on how different the
ranking of agents trained on the new environment changes compared to the ranking of
agents on old environments, based on the idea that useful challenges should make novel
distinctions amongst agents in a system (de Jong & Pollackl |[2004).

2. Optimize: Every step POET optimizes every agent to maximize its reward on the given
environment. In the original POET architecture this is the extrinsic reward from a Markov
decision process, optimized with the Evolution Strategies (ES) algorithm (Salimans et al.,
2017). In ROEL we optimize the mutual-information based reward as an RL optimization
problem using Soft-Actor Critic (Haarnoja et al., 2018a)).

3. Transfer: Every N steps of POET’s outer loop, the performance of all active agents is
compared and ranked. If an agent on a different environment outperforms the current agent
then the agent is replaced with the more performant agent. This constant transfer proved
critical in POETs original implementation (Wang et all 2019) for discovering stepping
stones to more performant behaviors and to drive useful open-ended learning.

3.2 REWARDING ROEL

ROEL aims to create agents that exhibit a diverse set of predictable and useful behaviors across a
range of problems. POET uses the extrinsic return generated from the agents interaction with the
environment to generate an objective to minimize, as a supervised learning problem. The return of
each ea-pair in POET is key to calculate each EEs PATA-EC and decide how to evolve the ea-pair.
Subsequently in ROEL we use mutual information Z to construct a reward function that aims to drive
open-ended learning and motivate exploration, similar to [Houthooft et al.[(2017) and Mohamed &
Rezende (2015b).

I(X;Y) = H(X) = H(X]Y) (1

Following the definition of mutual information, shown in equation [I] Maximizing Z with respect to
Y is equivalent to maximizing the entropy (X ) whilst minimizing conditional entropy H(X|Y"),
where X and Y are functions of state and actions respectively. This objective therefore aims to find
actions to maximize state entropy, and is therefore exploratory as an RL policy. This property was
recently used by |Achiam et al.| (2018), Eysenbach et al| (2018)), |[Gregor et al.|(2016) and |Sharma
et al.| (2020) to learn a diverse and distinct set of skills in a policy.

In ROEL we make use of the reward function specified by DADS (Sharma et al., |2020) to learn a
policy conditioned on a latent variable z, sampled from the transition dynamics prior p(z) ~ Z.
DADS differs from previous conditional entropy based approaches through the insight to leverage
work in model based reinforcement learning (MBRL), where an objective is to learn a model to
estimate the dynamics of the system p(s’|s, a). Therefore DADS learns 2 functions:

* A skill-conditioned policy 7(al|s; z) where skills are drawn from the larger skill set such
that z € Z.

* Skill-dynamics: A skill-conditioned transition function g4(s’|s; z), that predicts the state
transition given a skill z.

I(s'; 2|s) = H(z]s) — H(z|s', s) )

DADS then uses the mutual-information between the next state with respect to a skill z, given the
current state, to quantify how informative a skill z is of the transition s’ — s, this is shown in
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equation [2] Using a suitable approximation and the definition of conditional mutual information
a reward function can be defined, as shown in equation [3| (full derivation found in [Sharma et al.
(2020)).

, gs(s']s, 2) )
ra(s,a,8") = log | =222 ) 4 log(L) 3)
(zf_lqasws,zi)

The reward 7, in equation [3|encourages agents to exhibit skill diversity by sampling L skills from
the prior z; ~ p(z), to be used with the skill dynamics estimate ¢,. We then use the return generated
over several episodes to generate a statistic for the average return, that can be used to mutate and
transfer agents within ROEL under the POET framework. This approach introduces non-stationarity
into the skill transition and offers the following distinct advantages over simply training on a static
environment.

ROEL learns an open-ended diverse set of skills

The combination of mutation and transfer learning was the key to POET learning increasingly com-
plex skills in a supervised setting. For ROEL this procedure of gradually improving novelty via
increased environmental complexity allows for simple, foundational, skills to be uncovered early in
training. These are then used by ROEL as stepping stones to more complex skills when the chal-
lenge of more complex environments are presented (which in turn provide the opportunity to learn
more complex behaviors). Generally this has the effect of improving the diversity of the set of skills
uncovered as there is simply a larger distribution of possible state trajectories in more complex envi-
ronments. But, designing building blocks to transfer the set of skills to the agent is key to efficiently
discovering a large set of skills.

ROELSs outer loop searches for environments that allow access to greater intrinsic reward, balancing
novelty over performance via an MCC algorithm. This is implemented with a PATA-EC (Perfor-
mance of All Transferred Agents Environmental Characterization) ranking, described inWang et al.
(2020), where each agent is ranked on an environment based on its performance against all other
environments. EEs that change the ordering of other agents PATA-EC are favoured as this implies
that the EE provides a new set of challenges to the set of active agents. To overcome this new chal-
lenge the agent will need to optimize different behaviors improving the diversity of skills learnt in
the long run.

ROEL is able to generalize over a large group of environments

The search for novel environments in ROELSs outer loop can also serve to improve the generalization
of ROEL at test-time. By evolving EEs to generate novel behaviors ROEL is able to sample a large
distribution of possible environments, but unlike domain randomization this search is directed to
find environments that explicitly cause a change in behavior. This allows for ROEL to replicate the
skills it learns across a much broader range of environments than if we were to simply train on a
single-static environment. We explore this characteristic further in section [5.2] by comparing the
performance of ROEL to DADS when tested on a hard EE unobserved at train-time.

4 EXPERIMENT SETUP

Using an implementation similar to DADS (Sharma et al., [2020), we use Soft Actor-Critic (SAC)
(Haarnoja et al., |2019), an off-policy actor-critic deep RL algorithm, specifically EC-SAC, to train
our policy 7(als, z). SAC (Haarnoja et al., 2018b)) is based on the maximum entropy framework
and uses entropy regularization to tradeoff robustness for exploration, as policies are encouraged to
discover action-sequences with similar trajectories under a given skill.

To test ROEL we use the bipedal control environment (Brockman et al.,|2016) with the custom EE
extension described in Wang et al.| (2019), allowing us to mutate the environment by varying a set
of hand-picked obstacle hyper-parameters, such as stump shape, surface-roughness and gap width.
This encoding offers sufficient opportunities for ROEL to discover diverse behaviors and is described
in more detail in Appendix [B| In future work we would like to investigate how much improving the
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EEs expressiveness effects ROELs performance by using CPPNs (Compositional Pattern Producing

Networks) (Stanley}, 2007), similar to[Wang et al.| (2020)).

For the experiments in section [5 we trained ROEL over 24 iterations (5400 episodic iterations)
using a total of 224 processing cores distributed over 8 nodes (each with dual socket CPUs) for ~
12 hours. ROEL is highly parallel allowing for each ea-pair to be run asynchronously during the
training step. Our baseline DADS environment is trained using the same parameters as the ROEL
inner-loop, using the original bipedal normal environment. We find that ROEL takes slightly longer
to train than DADS (= 9 hours) as there is no need to calculate the PATA-EC and minimal criterion
at the mutation and transfer steps. We also train a domain randomized (DR) DADS baseline on
the parameters contained within the ROEL EC to test the capabilities of ROELs auto-curricula to
generalize to unseen environments. We provide further details of our specific training-evaluation
architecture and hyperparameters in Appendix [A]

5 RESULTS

In this section, we present our results from using ROEL with the bipedal walker environment. Ini-
tially we qualitatively evaluate the types of skills learnt by ROEL and compare ROELSs in and out-
of-sample performance when used on a fixed skill z. We then quantitatively evaluate ROEL using
DADS as a baseline, aiming to assess our initial hypothesis that ROELSs use of open-endedness al-
lows it to learn skills that are more diverse and general than unsupervised RL, trained on a single
environment.

5.1 QUALITATIVE ANALYSIS

Shuffling Forward

Flip

Leap

~
N

Splits

Shuffling Backwards

One Leg
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- - X - ii

Figure 1: Examples of novel skills learnt by ROEL. Images are generated through policy rollout
under a fixed skill z specified at the beginning of each episode.

Figure [I] shows 7 of the 20 skills learnt by ROEL hand selected from a single run. Some of the
skills are clearly motivated by the environments ROEL is exposed to during training. For example
the shuffling forward skill allows the agent to move over pits generated in the training environment
and keeps the LIDAR sensor close to the ground, helping to improve sensor accuracy. The leap
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skill likely improves the intrinsic return when hills are present in the environment. The one-leg and
perching skills may not immediately appear useful, but could prove key stepping stones to learn more
complex modes of locomotion. For example the one-leg prior has learnt how to use the ungrounded
leg to maintain balance for a short period.

Selecting a Stance RO E I.

Crossing the Gap

Climbing the Hill
Selecting a Stance

DADS
= 7 - % il =

Crossing the Gap

T T TS T T T o= T

Figure 2: ROEL and DADS solving the same out-of-sample EE. ROEL is able to leverage its knowl-
edge of previous tasks to rapidly cross a gap and climb the hill, whilst DADS meanders around the

gap.

Figure 2] demonstrates how ROELSs behavior differs from DADS in out-of-sample environments,
using an EE containing gaps and roughness different from that seen by any agent at during training.
When the ROEL agent in figure [2] crosses the pit it rapidly places a leg on the other side and pushes
itself over the hole, it is then able to move its leg up to pull itself over the hill. The DADS agent
on the other hand stops upon reaching the pit and explores the hole with its legs ground sensor, the
agent then slowly shuffles over the hole, it never gets over the hill in the time horizon. We find this
is a good qualitative example of how ROEL is able to leverage experience gained through mutation
and goal-switching to respond to out-of-sample challenges.

5.2 QUANTITATIVE ANALYSIS

To assess the ability of ROEL to perform out-of-sample we use the EE seen in figure 2] and the
original environmental encoding to generate samples under each skill prior.

It is difficult to directly measure the diversity of each agents prior based on samples from the en-
vironment. Observing diversity from the agents interaction with the environment alone requires us
to characterize each with a suitable statistic. If the environment itself features stationary agents-
environment dynamics, the variance of the trajectories can be used to measure behavioral diversity
as the behavior is time-invariant. This is the case in Mujoco (Todorov et all,[2012) where the environ-
ment is a flat-plane: DADS therefore compares novelty via the agents state-transition. With bipedal,
we cannot make this assumption, because the terrain is non-uniform and the agent-environment
dynamics change with time. For ROEL, this shift in dynamics is also made intentionally via our
constant evolution of the EE.

An ideal statistic for ROEL would characterize each skills policy dynamics, independent of the
environment based on observations alone. We find that the state-space bayesian forecasting literature
[West & Harrison| (1997) does offer some interesting possible solutions to this problem but this
is still challenging. We would need to design a transfer function capable of capturing the skills
fundamental dynamics but we find this to be outside the scope of this paper and leave this future
work. Alternatively, we use the return (cumulative reward) from each episode to characterize each
prior. This is based on the intuition that if the reward function itself describes an example of a novel
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behavior, the difference in return of priors can be used as a heuristic to measure diversity. In bipedal,
the reward function is based on the ability of the agent to reach the end of the episode.

In-Sample Out-of-Sample

0.10+ 1 (DADS
0.05 1
_A
0.00 1 S |
—250 —200 —150 —100 —50 0 250 —200 —150 —100 —50 0
Return [-] Return [-]

Figure 3: Dispersion of skill returns using the original bipedal extrinsic reward function. Each skill
sample has been fitted to a normal distribution and assigned a unique color.

Figure [3] shows the fitted distribution of returns from each prior, both for ROEL and DADS, on the
in- and out-of-sample environments. To fit the distribution we sample 100 episodes from each prior
and calculate the empirical mean and variance of each to fit a normal distribution. In-sample, the
prior of each sampled mean is more dispersed than in DADS. This suggests greater skill diversity,
helping to explain the behavior we qualitatively observe in figure [I[] Out-of-sample, the return of
each prior in ROEL is generally unchanged, whilst DADS features a large change in dispersion.
This indicates that the skills learnt by ROEL generalize well to this new out-of-sample challenge
and highlights the importance of providing a diverse set of environments during training if we want
to learn a diverse set of skills.

Another useful indicator of the capability of our agent to generalize to new environments is the
error between the expected observation trajectory from the skill-dynamics network and the actual
observation trajectory. If the skill-dynamics network is capable of accurately predicting the future
observations, then the value of intrinsic motivation used to train agents will promote skills that are
more diverse and predictable. The implementation of probabilistic ensembles with trajectory sam-
pling (PETS) in (Chua et al. (2018) suggests, that accurate state estimation is key for successful
model based reinforcement learning, and adds a degree of confidence in our approach. The accu-
racy of our skill-dynamic network is therefore a useful heuristic for the performance of ROEL on
downstream tasks.

Figure [] plots the error in the prediction from the skill-dynamics network for both in- and out-of-
sample EEs on the core hull dynamics. For our baseline, we instead used DADS trained with domain
randomization (DR) across the same EE as ROEL. This provides a more accurate comparison of
how our auto-curricula based approach in ROEL compares to a naive DR approach (when training
without DR the error of DADS out-of-sample diverges to 100 times that of ROEL due to over-fitting).
In-sample, we find DADS outperforms ROEL consistently with a smaller mean and variance on all
3 parameters.

Out-of-sample however, DADS often fails to predict the skill dynamics, rapidly diverging to an error
3 times that of ROEL in some cases whilst ROEL is generally unchanged. An exception to this is in
the y-velocity, where the mean of ROEL and DADS-DR is generally the same, but DADS-DR has
less variance. The x-velocity state offers some of the most interesting results, showing DADS-DR
rapidly diverging in both mean and variance, whilst the error in ROEL is minimal. This difference
can be explained by the differences in the DADS-DR and ROEL training procedures. In ROEL,
the auto-curricula encourages longer episodes so that the behavior dynamics are longer. However,
in DADS-DR, the environment selection is random and this means that the hardest obstacles often
appear within the training environment so that the agent finds it difficult to traverse and this causes
the episode to terminate earlier. This helps to explain why the x-velocity prediction is better, be-
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Figure 4: Comparison of the in and out-of-sample performance of the skill-dynamics network, sam-
pled from 5 random discrete priors. The average error between the predicted and actual observation
is plotted and enclosed by a shaded region out to 1-SD. Note the different y-axis scale in each graph.

cause ROEL is able to observe a more practical set of trajectories to learn generally diverse skills.
Whilst the y-velocity prediction is relatively accurate for both ROEL and DADS-DR the reduced
variance in ROEL is likely due to the environment observing a larger range of failures caused by the
environment, which are more likely in the off-sample harder bipedal environment.

The fact that ROELSs prediction error is unchanged in the out-of-sample environment is evidence that
the skill-dynamics accurately generalize to unknown environments. Consequently, this suggests that
the intrinsic reward received by ROEL during training captures the general environment dynamics.
ROEL is therefore able to learn skills that generalize over a much larger distribution of possible
environments. These skills are then pushed to be more diverse, as the outer loop of ROEL encourages
the development of environments that lead to long term maximization of intrinsic reward leading to
a set of novel, predictable and useful skills.

6 CONCLUSION

In this work we described how combining previous work in conditional entropy based unsupervised
RL with POETs open-ended framework lead to the development of ROEL. An algorithm that aims
to automatically generate increasingly complex and useful skills by generating its own curricula
without the need for supervision. We demonstrated that this approach produces agents with skills
that are more robust, when used in out-of-sample environments, than simply training on a single
static environment.

The most compelling potential of this work lies in the open-ended nature of our methodology. Our
skills are automatically generated by solving challenges presented by co-evolution, but as we do not
need to specify an extrinsic reward function, provided a suitably expressive EC, ROEL should learn
to generate skills indefinitely that constantly increase in complexity as the agent is presented with
increasingly difficult challenges.

In future work, we aim to further investigate the open-endedness of ROEL, by training the agent
for many more iterations and aiming to discover how diverse the learnt skills may become. Further,
we plan to investigate how ROEL can be combined with CPPNs to generate a more expressive EC
(Stanley, [2007), and how this could be directed to guide novel skill generation beyond the MCC
criteria. Following this, we plan to investigate how ROELSs learnt skills can be used in concert to
exhibit more complex behaviors at test time, perhaps by simultaneously learning a meta-controller
(Gupta et al., 2020) that searches for novel skill combinations.
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STATEMENT OF REPRODUCIBILITY

To ensure reproducibility of the algorithm and results described within our paper we have included
parameters of the setup used to train and evaluate ROEL in Appendix [A] along with a general
description of our implementation in sectionfd] After opening the discussion forums for all submitted
papers we shall make a directed comment to the reviewers and area chairs with an anonymous
repository containing:

* Source Code of our model, including methods to train, test and evaluate ROEL.
* Videos of demonstrations of the behavior of our trained agents.

* Models and Datasets used to evaluate the agents and generate figures in the report.
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A IMPLEMENTATION DETAILS

In this appendix we provide details of our training setup for our DADS baseline and ROEL imple-
mentation.

A.1 BASELINE

We use similar hyperparameters to the DADS implementation for our baseline. All skills are pa-
1

rameterized via a one-hot vector sampled from the uniform prior p(z) = 4, where D = 20 is the
number of skills, we only resample z at the beginning of an episode. We use the EC-SAC imple-
mentation (Haarnoja et al., 2018a) to optimize the policy 7(a|s; z), based on the implementation
found in TF-Agents|Guadarrama et al.|(2018). The SAC actor and critic networks both use 2 hidden
layers with dimensions (512, 512). The critic network is updated using Adam (Kingma & Ba,[2015))
with a fixed learning rate 3 x 10~%, trained over a fixed initial entropy coefficient o = 0.1, updated
via a soft update target function with co-efficient 0.005. Similar to DADS the policy is stochastic
and parameterized on a normal distribution N'(u(s, 2), >.(s, 2)), where X is a diagonal covariance

matrix that transforms the output to be in the range [—1, +1] via a tanh function.

The skill-dynamics network uses the same dimensions (512, 512) as the actor and critic networks.
Our implementation uses a replay buffer to collect samples of reward and trajectory, with batch size
of 256. The policy and critic networks are then updated via gradient descent every 500 steps for 64
steps of Adam.

A.2 ROEL

Our ROEL implementation is built on-top of the DADS baseline and use the same architecture and
hyper-parameters to calculate ROELSs intrinsic reward. To train ROEL we maintain a list of 6 active
ea-pairs ranked via their PATA-EC (Wang et al., |2020). Each active ea-pair is eligible to reproduce
if it’s average intrinsic reward is > -0.1, the child will then be considered for addition if its average
intrinsic reward over 5 episodes on any active agent satisfies an MCC (Brant & Stanleyl, [2017) in
the range [0.05, 100]. We found that a min MCC of 0.05 provided frequent updates but prevented
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Table 1: Bipedal walker observations

Num Observation Min Max  Units
0 Hull Angle 0 2w °

1 Hull Angular Velocity —00 +o0 °/s
2 Vel x -1 +1 m/s
3 Vel y -1 +1 m/s
4 Hip Joint 1 Angle —00 +00 °

5 Hip Joint 1 Speed —0o0 +00 °/s
6 Knee Joint 1 Angle —00 +00 ©

7 Knee Joint 1 Speed —00 +00 °/s
8 Leg 1 Ground Contact Flag FALSE TRUE -

9 Hip Joint 2 Angle —00 +00 ©

10 Hip Joint 2 Speed —00 +o0 °/s
11 Knee Joint 2 Angle —00 +00 °

12 Knee Joint 2 Speed —00 +oo °/s
13 Leg 2 Ground Contact Flag FALSE TRUE -
14-23  10x LIDAR Readings —00 +00 m

Table 2: Bipedal walker actions
Num Name Min Max

0 Hip 1 -1 1
1 Kneel -1 1
2 Hip 2 -1 1
3 Knee2 -1 1

the worst environments, we did not investigate the effect of reducing the max criterion. The same
parameters are used to re-rank based on PATA-EC and conduct transfer learning across the ea-list
every 8 steps of ROEL.

We train each environment in the active ea-pairs list for 40 steps every ROEL iteration, each parent
can only produce 3 offspring each reproduction step, which itself occurs every 3 steps of ROELs
outer loop. Therefore, during the first 3 loops of ROEL we only have 3 children and for the rest of
training the entire capacity of the ea-pairs list is full. This produces a total number of 5400 training
steps on all ea-pairs using 24 ROEL iterations: ((3 x 3 x 40) + (3 x 21 x 40)). The baseline is
trained for 5600 steps, the closest value to 5400 when check-pointing every 400 iterations.

B BIPEDAL ENVIRONMENT

B.1 WALKER

The bipedal walker environment used is an openAl gym environment (Brockman et al.,|2016) with a
continuous observation type Box(24) and continuos action space, type Box(4). Table[I|shows the 24
observations received by the agent at each state that we represent with s in our definition of ROEL.
Similarly, table 2] shows the 4 actions available to the walker. Figure [5]shows the states and actions
labelled on the bipedal walker.

B.2 EXTRINSIC REWARD

AlgorithmT|outlines the procedure used to obtain the extrinsic reward r from each step of the bipedal
walker environment. This is based principally on the distance from the start point in the horizontal =
direction and 4 motor action states, encoded as a tuple, a = (pip, » Chipy s Aknee, s Gknees ). A reward
shaping term (A) is also included to encourage the agent to move forward and ensure the head is
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Contact Flag

Figure 5: Components of the bipedal walker

kept straight. The episode terminates if it reaches the finish position ( fn:sn) or falls over and
collides with the ground. All terms are normalized by a scale variable to ensure reward behavior is
generated correctly regardless of the rendering viewport size.

Algorithm 1: Bipedal Walker Reward reward function takes an input of hull x position from the
state-transition, actions a, and reward shaping term Ay cvious

Function reward(z, a, Aprevious) is

end

Acurrent < jffﬁ — 5lz]; > Calculate reward shaping
T A;m“em’ous — Lcurrents
for a; in a do

| 7 <7 —(0.00035 Trmotor X clip(lal,0,1)) ; > Slow motor rate
end
if fallen == True then

\ r < —100; >Punish model if fallen over
end
Aprevious < Dcurrent 3 > Update reward shaping term

return 7, A,rcvious

B.3 ENVIRONMENTAL ENCODING (EE)

Our EE is inherited from the original POET bipedal implementation 2019) and includes
the following attributes:

Ground roughness, controls how much the terrain moves up and down. ROEL sees a max
of 1.0 at train time and our out-of-sample evaluation uses 5.0

Pit, controls how large the pit gaps are in the environment, we use a large range at train
time but the out-of-sample evaluation [0.5, 0.5] small gap is not seen during train time.

Stump, controls how large stumps are made in the environment and are used in several
train environments and are not used during the out-of-sample environment.

Stair, adds stairs for the agent to traverse and are not used during training or out-of-sample.

The default EC used to start ROEL and train the DADS baseline sets all the EE variables to zero.
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