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Abstract

While NLP models significantly impact our001
lives, there are rising concerns about privacy in-002
vasion. Although federated learning enhances003
privacy, attackers may recover private training004
data by exploiting model parameters and gra-005
dients. Therefore, protecting against such an006
embedding attack remains an open challenge.007
We propose Subword Embedding from Bytes008
(SEB) and encode subwords to byte sequences009
using neural networks that are harder to retrieve010
in attacks. Importantly, our method requires a011
smaller memory with only 256 bytes of vocab-012
ulary while keeping efficiency with the same013
input length as usual. Thus, our solution outper-014
forms conventional approaches by preserving015
privacy without sacrificing efficiency or accu-016
racy. Our experiments show SEB can effec-017
tively protect against embedding-based attacks018
from recovering original sentences in feder-019
ated learning. Meanwhile, we verify that SEB020
obtains comparable and even more accurate021
prediction results over standard subword em-022
bedding methods in machine translation, sen-023
timent analysis, and language modeling with024
even lower time and space complexity.025

1 Introduction026

Advances in Natural Language Processing (NLP),027

such as Large Language Models (LLMs), have028

made noticeable advancements in performance029

over the last decades, partially attributed to the030

large datasets available. Since most data are from031

users, their privacy concerns play an increasingly032

critical role, which is essential to building user trust,033

encouraging the responsible use of language data,034

protecting personal information, ensuring ethical035

use, and avoiding potential harm to individuals.036

Federated learning (FL) enables training shared037

models across multiple clients without transferring038

the data to a central server to preserve user privacy.039

Although only the model updates are sent to the040

central server, adversaries can still use model up-041

dates to reconstruct the original data and leak sensi-042

tive information to compromise the user’s privacy.043

Figure 1(a) demonstrates an FL framework, and 044

Figure 1(b) shows how embedding-based attacks 045

work as in Gupta et al. (2022). In the illustrated ex- 046

ample, the attacker extracts all candidate words in 047

a batch of data from the embedding gradients and 048

can easily reconstruct the text with beam search 049

and reordering since one can perform straightfor- 050

ward lookups when a vector is updated due to the 051

one-to-one mapping between word/subword tokens 052

and embedding vectors. 053

Our intuitive idea is to apply the byte embed- 054

ding method because the same bytes are repeatedly 055

used for multiple subwords. We aim to design 056

a one-to-many mapping between words/subwords 057

and embedding vectors to increase the difficulty 058

of the simple lookup so that retrieving input sub- 059

words with the updated byte embeddings is harder, 060

which makes the byte embedding in NLP models a 061

potential defense. For example, in subword embed- 062

ding, if the word “good” is updated, the attacker 063

will only retrieve this word based on embedding 064

updates. However, if we tokenize “good” into four 065

bytes, such as “50, 10, 128, 32", all subwords con- 066

taining at least one of these bytes will be retrieved, 067

resulting in a larger search space and more possibil- 068

ities to recover the original sentence. As shown in 069

Figure 1(c), although the attacker extracts a set of 070

bytes, the number of candidate subwords is much 071

greater than that of using subword embeddings. 072

There are two major challenges to directly apply 073

existing byte encodings (Xue et al., 2022; Shaham 074

and Levy, 2021; Zhang and Xu, 2022) to enhance 075

privacy: First, smaller textual granularity cannot 076

show the semantic meaning of each word, leading 077

to a less interpretable and analyzable model. Sec- 078

ond, byte-based models are more computationally 079

expensive, as input sequences become much longer 080

after byte tokenization. 081

To address these challenges in byte-based mod- 082

els, we propose to encode subwords with bytes and 083

aggregate the byte embeddings to obtain a single 084

subword embedding. The procedure consists of 085

three steps: (1) Construct a mapping between sub- 086
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words and bytes. (2) Convert the input text into a087

byte sequence. (3) Retrieve the corresponding byte088

embeddings and aggregate them back into subword089

embeddings using a feed-forward network while090

maintaining the subword boundaries. By adopting091

this approach, we can leverage the privacy protec-092

tion provided by bytes while preserving the seman-093

tic meaning of the input sequence with the same094

input length but a constant number of vocabulary095

size of 256.096

Our main contributions are:097

• We introduce a novel text representation method098

SEB, which achieves a vocabulary size of 256 of099

the learned model without increasing the input100

sequence length.101

• We verify that our SEB can protect NLP models102

against data leaking attacks based on embedding103

gradients. To the best of our knowledge, our104

work is the first one to study privacy preservation105

with byte representations in FL.106

• We demonstrate that SEB improves privacy and,107

at the same time, achieves comparable or better108

accuracy with enhanced time and space efficiency109

without the privacy-performance/efficiency trade-110

off in conventional approaches.111

2 Related Work112

Attacks and defenses in language model Some113

recent works consider the reconstruction as an114

optimization task (Zhu et al., 2019; Deng et al.,115

2021; Balunovic et al., 2022). The attacker up-116

dates its dummy inputs and labels to minimize the117

distance between the gradients of the victim up-118

loaded and the gradients the attacker calculated119

based on its dummy inputs and labels. Gupta et al.120

(2022) shows that the attackers can reconstruct a121

set of words with the embedding gradients, then122

apply beam search and reorder with a pretrained123

language model for input recovery. One defense124

described in Zhu et al. (2019); Deng et al. (2021);125

Balunovic et al. (2022) is to encrypt the gradients126

or make them not directly inferable. However, en-127

cryption requires special setups and could be costly128

to implement. Moreover, it does not provide ef-129

fective protection against server-side privacy leak-130

age (Aono et al., 2017; Huang et al., 2021; Fang131

and Qian, 2021). Differential privacy is another de-132

fense strategy, but it can hurt model accuracy (Zhu133

et al., 2019; Wei et al., 2020; Yin et al., 2021; Li134

et al., 2021). While Zhang and Wang (2021) pro-135

posed a secure federated learning framework that136

can prevent privacy leakage based on gradient re- 137

construction, it does not effectively address the 138

retrieval of a bag of words from the embedding ma- 139

trix gradients, as proposed in Gupta et al. (2022). 140

Subword-level and byte-level language mod- 141

els Despite the wide application of subword to- 142

kenization such as BPE (Sennrich et al., 2015), it 143

still has some limitations. It cannot handle out- 144

of-vocabulary subwords and requires language- 145

specific tokenizers. Another challenge is the high 146

space complexity of the embedding matrix when 147

the vocabulary size is huge. Byte tokenization is 148

a solution to address these issues (Shaham and 149

Levy, 2020; Zhang and Xu, 2022; Xue et al., 2022). 150

UTF-8 can encode almost all languages. There- 151

fore, there will be no out-vocabulary words and the 152

language-specific tokenizer is unnecessary. In addi- 153

tion, as the total number of bytes in UTF-8 is 256, 154

the embedding matrix for byte vocabulary is much 155

smaller than most subword vocabularies, reducing 156

the number of parameters in the embedding layer 157

and saving memory space. 158

Subword-level model with character- or byte- 159

level fusion The character/byte-based models of- 160

ten result in longer input sequences and higher time 161

complexity compared to the subword-based model. 162

To make the model efficient, recent works have 163

explored character/byte-level fusion. For example, 164

Tay et al. (2021) propose CHARFORMER, using 165

a soft gradient-based subword tokenization mod- 166

ule to obtain “subword tokens”. It generates and 167

scores multiple subword blocks, aggregates them 168

to obtain subword representation, and then per- 169

forms downsampling to reduce the sequence length. 170

Although CHARFORMER is faster than vanilla 171

byte/character-based models, it does not maintain 172

subword boundaries, limiting the model’s inter- 173

pretability. Sreedhar et al. (2022) propose Local 174

Bytes Fusion (LOBEF) to aggregate local seman- 175

tic information and maintain the word boundary. 176

However, it does not reduce the sequence length, 177

making training and inference time-consuming. 178

3 Preliminaries 179

3.1 Federated Learning 180

In federated learning (FL), multiple clients jointly 181

train a model using their private data. Assume we 182

have N clients, C = {c1, c2, . . . , cN}, and a server 183

s, in an FL system. The jointly trained model is 184

f with parameters θ. The clients’ private data are 185

D1,D2, . . . ,DN and the objective function is L. 186

For easier illustration, we assume all the clients 187

participate in each communication and clients use 188
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Tom lives in New York.
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"##cian","##ture",
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(c)

Figure 1: An attack example of recovering text in FL. (a): An FL framework. (b) and (c): Recovering text using
embedding gradients of subwords and bytes.

FedSGD (McMahan et al., 2017) to update the189

model parameters. In each communication round t,190

server s first sends the model parameters θt to all191

clients. Then each client ci compute ∇θtLθt(Bi),192

the gradients of current model fθt , based on a193

randomly sampled data batch Bi ⊂ Di. After194

local computation, the clients send the gradients195

∆t
1,∆

t
2, . . . ,∆

t
N to server and server s aggregate196

all the gradients and update the model:197

θt+1 = θt − η
N∑
i=1

∇θtLθt(Bi). (1)198

Here, Equation (1) is the gradient descent, and η is199

the learning rate.200

3.2 Threat Model201

Adversary’s capabilities and objective We fol-202

low the attack settings in (Gupta et al., 2022). The203

optimized model is a language model L, param-204

eterized by θ. This scenario makes the attacker205

white box access to the gradients∇θtLθt(Bi) sent206

by the victim client ci. θt is the model parameter207

that the server sends to the clients at any communi-208

cation round t. From parameters θt and gradients209

∇θtLθt(Bi), the attacker can get the information210

of the vocabulary V and the embedding matrix W211

to retrieve which tokens are updated. The goal of212

the attacker is to recover at least one sentence from213

Bi, based on∇θtLθt(Bi) and θt.214

Attack model This paper does not address the215

gradient leakage attack which aims to obtain pri-216

vate data by minimizing the difference between217

gradients derived from a dummy input and the ac-218

tual gradients of the victim’s data, because several219

methods have been proposed to mitigate this partic-220

ular attack (Zhu et al., 2019; Deng et al., 2021; Wei221

et al., 2020). Instead, we focus on a specific attack222

model, FILM, introduced in Gupta et al. (2022), for223

which effective defenses have yet to be explored. In 224

this model, the attacker attempts to reconstruct sen- 225

tences from the victim’s training batches through a 226

three-step process: (1) extracting candidate tokens 227

from the gradients, (2) applying beam search with a 228

pre-trained Language Model, such as GPT-2, to re- 229

construct the input sentence, and (3) reordering the 230

subword tokens to achieve the best reconstruction. 231

4 Proposed Method 232

We propose Subword Embedding from Bytes 233

(SEB) shown in Figure 2, including byte sequence 234

for input text, byte embeddings, aggregation of 235

byte embeddings, and a feed-forward network to 236

output the subword embedding. 237

We aim to develop subword encoding using a 238

smaller byte embedding matrix to save space and 239

protect against attacks based on the embedding 240

gradients while preserving subword boundaries to 241

maintain the model’s time efficiency. This raises 242

two main challenges: 1) how to convert subwords 243

into a byte sequence? and 2) how to obtain subword 244

embeddings using byte representations? 245

4.1 Subword to Byte Sequence Mapping 246

UTF-8 encoding results in different sequence 247

lengths for subwords. In real practice, all byte 248

sequences need to be padded to the same length, 249

making the byte sequence of the subword even 250

longer. Instead of using the existing byte encoding 251

system, we define our subword to byte sequence 252

mappingM : Vw → (Vb)n. Vw and Vb are sub- 253

word and byte vocabularies with size of Vw and Vb, 254

respectively. (Vb)n is a sequence of n bytes in Vb. 255

Here the byte vocabulary size Vb and the number 256

of bytes n to represent a subword are hyperparam- 257

eters. In this way, every subword is represented 258

with the same length, getting rid of the longer byte 259

sequence with padding. 260
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Figure 2: (a): An overview of the transformer model with SEB. (b): An example of calculating subword embeddings
with byte embedding.

To construct the mapping, for every subword261

wi ∈ Vw, we randomly sample n bytes with re-262

placement from Vb to obtain the byte sequence263

(bi1, bi2, . . . , bin). If the byte sequence already ex-264

ists inM, we repeat the sampling until a unique265

byte sequence is obtained. For example, we set266

Vb = 64 and n = 4. A subword “Hello” can be rep-267

resented with (14, 3, 10, 4), shown in Figure 2(b).268

We analyze the probability p that two subwords269

are mapped to the same byte sequence. With the270

byte vocabulary size Vb and the number of bytes271

per subword n, the probability p = 1/(Vb)
n. For272

example, if Vb = 16 and n = 4 then p = 1.5 ×273

10−5. For Vb = 128 and n = 8 in our experiment,274

p = 1.39× 10−17, which means there is almost no275

possibility to map two words into the same subword276

sequence. Therefore, SEB is highly expressive for277

representing subwords.278

4.2 Subword Embedding from Bytes279

Different from the byte-based models which have280

higher time complexity due to longer input se-281

quences, our method tokenizes the text into a se-282

quence of bytes while preserving the subword283

boundary. We first tokenize the original text into284

subwords using a common subword tokenization285

method such as BPE. Then, we token each subword286

into a byte sequence with the mapping we designed287

above and then aggregate byte representations back288

to subword embeddings. The two detailed algo-289

rithms are in Appendix, Algorithms 1 and 2.290

Let the byte embedding matrix be B ∈ RVb×d,291

where d is the embedding size. Given a text292

S, we tokenize S into a subword sequence293

(w1, w2, . . . , wm), then further use the mapping294

M defined above to tokenize this sequence into295

a byte sequence (b11, . . . , b1n, . . . , bm1, . . . , bmn)296

with mn bytes. We retrieve the byte embeddings297

E ∈ Rmn×d for these bytes from B.298

To get a subword embedding, adding the byte 299

representations for every n bytes in E is a simple 300

way. However, this approach does not consider the 301

position of each byte within the subword. Con- 302

sidering that incorporating positional information 303

can improve model performance for subword to- 304

kens, we induce positional information for byte 305

sequences of subwords by concatenation. This en- 306

ables the model to capture the position of each 307

byte within the subword and obtain a more accu- 308

rate and informative representation of the subword. 309

Given the retrieved byte embeddings E ∈ Rmn×d, 310

we reshape E to Ẽ ∈ Rm×nd in a row-major order, 311

which is equivalent to concatenation. Then, an FFN 312

is applied to project Ẽ into the dimension d′ of the 313

original subword embedding for language models: 314

E′ = FFN(Ẽ) ∈ Rm×d′ . Note that, the byte embed- 315

ding matrix B can be either a real-valued or one-hot 316

embedding matrix because the vocabulary size is 317

small for bytes. We compare the performances for 318

both embedding methods in experiments. 319

4.3 Complexity Anlysis 320

Embedding Memory Time

Subword O(Vwd) O(m2d)
Byte O(Vbd) O(c2m2d)
SEB (Ours) O((nd+ Vb)d) O(m2d)

Table 1: Complexity for conventional subword embed-
dings, byte embedding, and our proposed SEB.

To demonstrate the efficiency of the proposed 321

SEB, we summarize the space and time complexity 322

of each embedding method in Table 1. Here, the 323

column “Memory” represents the memory usage 324

for each embedding, and the column “Time" shows 325

the time complexity in Transformer attention. For 326

simplicity, we let d′ = d and use one linear layer 327

as FFN in SEB which contains nd2 parameters. 328
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Figure 3: The distribution of subword number, unique subword number, and unique byte number in a batch when
batch size is 1, 4, 16. The vocabulary sizes of subwords and bytes are 50K and 256.

In terms of space complexity, subword embed-329

dings typically have an exponentially large vocab-330

ulary size Vw, exceeding 104, while the dictionary331

size of byte embeddings is no more than 256. For332

the proposed SEB, the number of parameters in333

embedding is O(nd2 + Vbd) = O((nd + Vb)d),334

including the FFN and byte embedding matrix. In335

practice, nd + Vb ≪ Vw. As a result, both byte336

embeddings and our proposed SEB significantly337

reduce the memory cost required for embeddings.338

In B.6, we show the analysis for space complexity339

in our experiments. Regarding time complexity,340

we analyze the attention in the widely used Trans-341

former (Vaswani et al., 2017). Given the sequence342

length m, byte embedding is more time-consuming343

since the input length is c times longer than sub-344

word embedding. Here c is the average ratio be-345

tween the lengths of byte and subword sequences.346

Based on the statistics (Shaham and Levy, 2020), c347

is usually around 5. However, our proposed SEB348

maintains the same time efficiency as conventional349

subword embeddings because we preserve the sub-350

word sequence along with its boundaries.351

One may consider the frequency analysis in352

cryptanalysis to get the original text if the attacker353

also has information about the tokens used for the354

text and the frequency of each byte. In Appendix C,355

we discuss the frequency analysis is not applicable356

to our proposed defense.357

5 Experiment358

We conduct experiments to demonstrate the advan-359

tages of SEB in reducing space complexity, main-360

taining time efficiency, and preserving privacy for361

NLP models in federated learning. In all exper-362

iments, we set Vb = 256 and n = 8, which is363

sufficient to prevent encoding two subwords into364

the same byte sequences. We use a 2-layer FFN in365

the proposed SEB.366
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Figure 4: The average coverage of subwords given a
random set of bytes with GPT-2 tokenizer.

5.1 Experiments on Privacy Protection 367

Dataset, attack task, and evaluation metrics 368

We followed the settings in the FILM attack (Gupta 369

et al., 2022). The dataset is WikiText-103 (Merity 370

et al., 2016). For the attack task, we use GPT-2 371

base (Radford et al., 2019) with 117M parameters 372

to recover the input batches. The ROUGE-1/2/L 373

F-Scores (Lin, 2004) are used to evaluate the simi- 374

larity between the recovered and original text. 375

Quantitative analysis of defense We first show 376

that it is difficult to retrieve a bag of candidate sub- 377

words in SEB with Figure 3 and 4. In Figure 3, we 378

present the distributions of the subword number, 379

unique subword number, and unique byte number 380

in a client’s batch of data. We observe that even 381

a single sample contains over 120 unique bytes 382

on average, while only having approximately 25 383

unique subwords. In Figure 4, we present the av- 384

erage coverage of subwords for a subset of bytes. 385

Based on Figure 4, 120 bytes cover about 50K sub- 386

words. It means recovery is a random generation 387

using almost the entire vocabulary. 388

Additionally, Figure 5 shows the FILM attack 389

performances using various batches on WikiText- 390

103, with subword embedding and SEB. As the 391

candidate subwords are almost the whole vocabu- 392

lary, beam search takes huge memory which is not 393

executable on our device. To show the defense per- 394

formance, we loose the constraints and randomly 395

5



1 2 4 8
Batch Size

0.0

0.5

1.0
RO

UG
E-

1

1 2 4 8
Batch Size

0.0

0.5

1.0

RO
UG

E-
2

1 2 4 8
Batch Size

0.0

0.5

1.0

RO
UG

E-
L

BSE (Ours) FILM(a) ROUGE-1

1 2 4 8
Batch Size

0.0

0.5

1.0
RO

UG
E-

1

1 2 4 8
Batch Size

0.0

0.5

1.0

RO
UG

E-
2

1 2 4 8
Batch Size

0.0

0.5

1.0

RO
UG

E-
L

BSE (Ours) FILM(b) ROUGE-2

1 2 4 8
Batch Size

0.0

0.5

1.0

RO
UG

E-
1

1 2 4 8
Batch Size

0.0

0.5

1.0

RO
UG

E-
2

1 2 4 8
Batch Size

0.0

0.5

1.0

RO
UG

E-
L

BSE (Ours) FILM (c) ROUGE-L

1 2 4 8
Batch Size

0.0

0.5

1.0

RO
UG

E-
1

1 2 4 8
Batch Size

0.0

0.5

1.0

RO
UG

E-
2

1 2 4 8
Batch Size

0.0

0.5

1.0

RO
UG

E-
L

BSE (Ours) FILM

Figure 5: Recovery performance for batch size 1, 2, 4,
8 on WikiText-103.

sample 7,000 subwords, combined with the sub-396

words in the original text. We randomly select397

5 tested batches for each batch size and take the398

average ROUGE F-Scores. When batch size is 1,399

ROUGE-1/2/L scores are close to 1 for attacks with400

subword embedding, indicating a nearly perfect re-401

covery. However, these scores are quite low when402

using SEB, showing the effectiveness of SEB to403

defend the attacks based on embedding gradients.404

Qualitative analysis of defense To intuitively405

show the difference between the recovered sen-406

tences of FILM using subword embedding and the407

proposed SEB, we select the best-recovered sen-408

tences of these two methods based on the ROUGE-409

L F-score and list the results in Table 2. In the410

recovered sentence with the subword embedding,411

all words are successfully retrieved and have a very412

close order to the original sentence. However, with413

SEB, only a few words are retrieved, and many of414

them are stop words. The results show that SEB415

can prevent the attacker from recovering private416

information in the original sentence even though417

the batch only contains one sentence.418

We also compare our method with the defense419

method of gradient pruning in the FILM attack420

(Gupta et al., 2022) for batch size = 8, 16, 32. The421

results are shown in Appendix B.7.422

5.2 Experiment on Performance423

To provide a more comprehensive assessment of424

our proposed technique’s applicability and perfor-425

mance of federated learning and across different426

NLP tasks, we conduct experiments on machine427

translation, sentiment analysis, and Language Mod-428

eling (LM) tasks. The environmental settings are429

described in Appendix B.1.430

5.2.1 Translation 431

Dataset and evaluation metrics In the trans- 432

lation task, we consider two datasets, one is 433

the medium-size IWSLT14 (Cettolo et al., 2014) 434

dataset and a large scale dataset WMT14 (Bo- 435

jar et al., 2014). We follow the settings as prior 436

work (Shaham and Levy, 2020; Zhang and Xu, 437

2022) and translate German (de) to English (en) in 438

IWSLT14 (Cettolo et al., 2014). The translation of 439

WMT is English (en) to German (de) and the pre- 440

processing is the same as Fairseq (Ott et al., 2019). 441

We use SacreBLEU, case-sensitive, with the 13a 442

tokenizer (Post, 2018) as the evaluation metric. A 443

detailed description of preprocessing, model archi- 444

tecture, and hyperparameter settings can be found 445

in Appendix B.3. 446

Main results For IWSLT14, we run 5 trials and 447

report the average performance with the standard 448

deviation. We show the translation results of Trans- 449

former with subword embedding and SEB in Table 450

3. The hidden dimension of the two-layer FFN is 451

2048 for IWSLT because we try to keep the total 452

parameters of SEBco the same as the original Trans- 453

former. For WMT, the hidden dimension of FFN 454

is 4096. Here, we test three variants of SEB when 455

aggregating the byte embedding back to subword 456

embedding: added real-valued embedding (SEBar), 457

concatenated real-valued embedding (SEBcr), and 458

concatenated one-hot embedding (SEBco). In this 459

experiment, the dimensions of real-valued and one- 460

hot vectors are 512 and 256. Table 3 shows that 461

SEBcr and SEBco can achieve better performances 462

than subword embedding. Concatenating the one- 463

hot vectors yields better results even with fewer 464

model parameters than concatenating byte embed- 465

ding. Therefore, we can conclude that SEB is a bet- 466

ter alternative to using large subword embeddings. 467

Additionally, based on the comparison between 468

SEBar and SEBcr, we find that concatenation is 469

better than the simple adding of byte embeddings. 470

This is expected as Section 4.2 because adding does 471

not consider the positional information of bytes. 472

The result of WMT14 shows the same performance 473

as the subword-based model but with a smaller size 474

of embedding parameters. It is important to em- 475

phasize that while privacy is improved, our model 476

achieves the same or better accuracy than the base- 477

line methods. 478

Sensitivity analysis on FFN hidden units In 479

this experiment, we test the sensitivity of SEBco 480

on FFN hidden units, because it is one of 481

the major factors for embedding parameters. 482

Here, we set different FFN hidden units as 483

6



Original Sentence Best Recovered Sentence

Subword The historic rainfall caused several
dams to fill throughout northeast Mex-
ico.

The rainfall caused several historic dams to fill throughout north-
east Mexico.

SEB Pujols is a highly regarded hitter who
has shown a "combination of con-
tact hitting ability, patience, and raw
power"

He is a professional who has a very high degree of ability, and
always takes great advice, without ever assuming power" ("Pivotal
Decision Making With Your Head". Retrieved 12 Dec 2007 16
Mar)

Table 2: The best recovered sentences by FILM using subword embedding and SEBwith batch size 1. Text in green
are successfully recovered phrases and words.

Datasets Embeddings # Params BLEU

IWSLT14

Subword 5.2M 34.54 ± 0.10
SEBar 4.3M 34.64 ± 0.15
SEBcr 9.6M 35.32 ± 0.15
SEBco 5.2M 35.44 ± 0.10

WMT14 Subword 22.3M 26.0
SEBco 6.3M 26.0

Table 3: BLEU score of IWSLT14 and WMT14. SEBar

and SEBcr: SEB with added and concatenated real-
valued embeddings, respectively. SEBco: SEB with
concatenated one-hot byte embeddings.

{128, 256, 512, 1024, 2048, 4096}, with the total484

embedding parameter numbers of 0.3M, 0.7M,485

1.3M, 2.7M, 5.2M, and 10.5M, respectively. The486

number of embedding parameters and translation487

BLEU scores are shown in the left of Figure 6.488

When the numbers of hidden units are 256, 512,489

and 1024, SEBco can obtain better performance490

with fewer parameters. Although the model can491

still achieve better performance when hidden units492

are larger than 2048, it does not have advantages493

over the original transformer on model size.494

Byte Tokens
per Subword (n)

Byte Vocabulary Size (Vb)

64 128 256

4 0.79M 1.05M 1.57M
8 1.05M 1.57M 2.62M
16 1.57M 2.62M 4.72M

Table 4: Number of embedding parameters.

Sensitivity analysis on Vb and n To investigate495

the impact of the byte vocabulary size Vb and496

number of bytes per subword n, we set Vb as497

64, 128, 256 and n as 4, 8, 16. Based on the pre-498

vious experiments, we set the hidden units in the499

2-layer FFN to 1024 in SEBco, which provides500

good performance with a small scale of parameters.501

We first discuss the model size in terms of embed-502

ding parameter numbers in Table 4. All settings503

have smaller embedding parameter numbers than 504

the original Transformer. We further demonstrate 505

the translation performance under these settings in 506

Figure 6 (right). It indicates that increasing n leads 507

to better model performance for a fixed Vb. The 508

reason is increasing n results in more possible po- 509

sitions per byte token, providing more information 510

in the aggregated vector. Similarly, when we fix 511

n and increase Vb, the increased byte vocabulary 512

diversity makes the aggregated vector more expres- 513

sive. Therefore, increasing the byte vocabulary 514

size and the number of byte tokens per subword 515

can improve the model’s expressiveness, leading 516

to improved performance. Furthermore, Figure 6 517

(right) and Table 4 show that models with similar 518

amounts of parameters have similar performance. 519

As long as Vb and n ensure that SEBco has suffi- 520

cient expressive ability, the model performance is 521

more related to the number of parameters than to 522

specific Vb and n. 523

5.2.2 Sentiment Analysis 524

Dataset and evaluation metrics We use 525

IMDb (Maas et al., 2011) and SST2 (Socher 526

et al., 2013) datasets provided by Hugging Face. 527

The detailed preprocessing of the dataset is 528

shown in Appendix B.3. We use the accuracy 529

for evaluation which is a routine in prior work 530

(Minaee et al., 2019; Yenter and Verma, 2017). 531

The implementation details are in Appendix B.4. 532

Main results We compare the same BiLSTM 533

models with subword embedding and SEBco. The 534

classification accuracies are shown in Table 5. The 535

results show that SEBco can replace the conven- 536

tional subword embedding without hurting the 537

model performance. For SST2, SEBco even has 538

better performance. The reason for that is the pa- 539

rameters of the conventional subword embedding 540

layer in BiLSTM take a large portion of the model 541

parameters, making the model easily overfitting. In 542

this experiment, SEBco has smaller embedding pa- 543
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Figure 6: Results on embedding parameters, vocabulary size, and number of bytes per subword. Left: The BLEU
scores versus hidden dimension in FFN and embedding parameters. Right: Comparison of mean BLEU scores for
different byte vocabulary sizes and different numbers of bytes per subword.

rameters, which can address overfitting. We show544

that SEB also learns the semantic meaning of sub-545

word in B.5.546

IMDb (%) SST2 (%)

Subword 85.6 ± 0.5 81.2 ± 0.7
SEBco 85.8 ± 0.2 82.5 ± 0.7

Table 5: Results on Sentiment analysis.

5.2.3 Language Modeling547

Dataset and evaluation metrics We use the548

same data as Fairseq did for the language modeling549

tasks. The dataset we use is WikiText-103. We use550

the same preprocessing and training settings as the551

official Fairseq does. The number of samples for552

training, testing, and validation are 1801350, 3760,553

and 4358 respectively. We evaluate the language554

modeling performance with perplexity.555

Main results For language modeling (LM), our556

proposed method achieved better performance on557

perplexity while using a smaller size of param-558

eters. The results are shown in Table 6, which559

demonstrate that our method SEBis an effective560

and efficient alternative to the traditional subword561

embedding.562

# Paramters Perplexity

Subword 13.7M 30.84
SEBco 10.5M 30.55

Table 6: Perplexity of language modeling for subword
embedding and SEB.

5.2.4 Federated Learning563

we experiment with federated learning on the SST2564

sentiment analysis task using the FedAvg frame-565

work(McMahan et al., 2017). In this experiment,566

we have 20 clients and distribute training samples 567

uniformly to these clients. In training, we sample 568

a part of the clients with the ratio c in every com- 569

munication round. The results are shown in the 570

following table. 571

Embeddings c=0.2 c=0.4 c=0.6 c=0.8 c=1.0

Subword 81.5% 80.6% 81.1% 80.7% 80.9%

SEB 82.0% 81.7% 81.9% 82.4% 81.7%

Table 7: Accuracies for subword embedding and our
method for federated learning. c is the participation
ratio in each communication round.

We can see that even in the federated learning 572

framework, our SEBmethod is still comparable to 573

subword embedding and can achieve stable results 574

when the number of clients in training varies. 575

6 Conclusion 576

This paper introduces SEB, Subword Embedding 577

of Bytes, a novel subword embedding method that 578

defends against privacy leakage attacks based on 579

embedding gradients in federated learning. Differ- 580

ent from traditional approaches that learn a large 581

subword embedding matrix, SEB uses smaller byte 582

embedding matrices or byte one-hot encoding and 583

aggregates byte representations to obtain subword 584

embeddings. With SEB, attackers cannot retrieve 585

a small set of subwords and generate private text, 586

even with a well-trained large language model. Our 587

extensive experiments show that SEB is effective 588

for machine translation, sentiment analysis and lan- 589

guage modeling tasks without sacrificing model 590

performance or efficiency. Additionally, we demon- 591

strate that SEB makes it difficult for attackers to 592

recover private text with embedding gradients in 593

federated learning. 594
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7 Limitations595

Despite the SEB can preserve data privacy without596

sacrificing efficiency or accuracy in different lan-597

guage models and tasks, it still has some limitations598

and and can be explored further.599

Large language model and more tasks Limited600

to the computation resources, the Transformer mod-601

els in our experiments are small. We also only ex-602

periment with moderate size of datasets. Moreover,603

we consider three common tasks such as machine604

translation, sentiment analysis, and language Mod-605

eling to show the effectiveness of our proposed606

method. The efficiency and effectiveness of our607

proposed method on large language models as well608

as other natural language processing tasks still need609

exploration.610

Pretraining exploration All of the models in611

the experiments are trained from scratch. We have612

not experimented with the pretraining and finetu-613

ing/prompting paradigm with SEB. However, our614

proposed SEB is an effective alternative to subword615

embedding, and we think that our method is gener-616

alizable to popular NLP models, tasks, and training617

paradigms. In the future, we will further investigate618

the performance of our proposed method under the619

pretraining and finetuing/prompting paradigm.620

8 Ethical Consideration621

In this work, we use the IWSLT14 (Cettolo et al.,622

2014), WMT14 (Bojar et al., 2014), SST2 (Socher623

et al., 2013), IMDb (Maas et al., 2011), and624

WikiText-103 (Merity et al., 2016). All these 5625

datasets are widely used pubic datasets in NLP626

tasks, which do not have personal or sensitive infor-627

mation. For the first four datasets, they are freely628

used without any license. For the WikiText-103629

dataset, it is used under the "Creative Commons630

Attribution-ShareAlike License".631

We believe our work does not bring more risk in632

training and using NLP models. Our intention is to633

provide practical privacy-preserving collaboration634

and build trust among clients while maintaining the635

model’s performance and efficiency. We hope this636

work can motivate more effective defenses, and637

encourage secure and privacy-preserving collabo-638

rations in practical applications and have a positive639

effect on popular large-scale language models.640
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Algorithm 1: Construction of Subword to
byte sequence mapping
Input :Byte vocabulary

Vb = {0, 1, . . . , Vb − 1};
Subword vocabulary

Vw = {w0, w1, . . . , wVw−1};
The number of bytes per subword

n
Output :Mapping:M : Vw → (Vb)n

1 for wi ∈ Dw do
2 repeat
3 for j ← 1 to n do
4 Sample bij ∼ Uniform[0, Vb)

// P(bij) =
1
Vb
, bij ∈ Vb

5 end
6 until (bi1, bi2, . . . , bin) /∈M
7 Add wi → (bi1, bi2, . . . , bin) toM
8 end
9 returnM

Algorithm 2: Subword embedding with
SEB
Input :Subword to byte sequence

mappingM : Vw → (Vb)n;
Subword sequence

S = (w1, w2, . . . , wm);
A feed-forward network FFN;
Embedding matrix is B ∈ RVb×d;
Subword embedding dimension d′

Output :Subword embeddings E′ ∈ Rm×d′

1 for i← 1 to m do
2 (bi1, bi2, . . . , bin)←M[wi]
3 end
4 Byte sequence for

S : (b11, . . . , b1n, . . . , bm1, . . . , bmn)
5 E ∈ Rmn×d ← retrieve

(b11, . . . , b1n, . . . , bm1, . . . , bmn) from B
6 Ẽ ∈ Rm×nd← reshape E (in a row-major

order)
7 E′ = FFN(Ẽ) ∈ Rm×d′

8 return E′

B Experimental Details and More805

Results806

B.1 Enviormental Settings807

All the programs in our work are implemented us-808

ing Python 3.9.0, Fairseq (Ott et al., 2019), Py-809

Torch 1.13.0, and CUDA 11.7. For the hardware810

environment, we run all codes on a machine with811

Intel i7-11700K CPU, 64G memory, and NVIDIA 812

GeForce RTX 3080 GPU. 813

B.2 Dataset and evaluation metrics 814

Translation In the translation task, we con- 815

sider two datasets, one is the medium-size 816

IWSLT14 (Cettolo et al., 2014) dataset and a large- 817

scale dataset WMT14 (Bojar et al., 2014). We fol- 818

low the settings as prior work (Shaham and Levy, 819

2020; Zhang and Xu, 2022) and translate German 820

(de) to English (en) in IWSLT14 (Cettolo et al., 821

2014). The translation of WMT is English (en) 822

to German (de) and the preprocessing is the same 823

as Fairseq (Ott et al., 2019). We use SacreBLEU, 824

case-sensitive, with the 13a tokenizer (Post, 2018) 825

as the evaluation metric. 826

Sentiment Analysis We use IMDb (Maas et al., 827

2011) and SST2 (Socher et al., 2013) datasets pro- 828

vided by Hugging Face. The detailed preprocessing 829

of the dataset is shown in Appendix B.3. We use 830

the accuracy for evaluation which is a routine in 831

prior work (Minaee et al., 2019; Yenter and Verma, 832

2017). 833

Language modeling We use the same data as 834

Fairseq did for the language modeling tasks. The 835

dataset we use is WikiText-103. We use the same 836

preprocessing and training settings as the official 837

Fairseq does. The number of samples for training, 838

testing, and validation are 1801350, 3760, and 4358 839

respectively. We evaluate the language modeling 840

performance with perplexity. 841

B.3 Preprocessing Details 842

Translation For IWSLT14, there are 166K sen- 843

tence pairs for training and validation and 5.6K for 844

testing. The vocabulary shared by the source and 845

target languages is built by BPE (Sennrich et al., 846

2015) with 10K tokens. 847

For WMT14, en-de contains 4.5M sentence 848

pairs. Newstest2013 is used for validation and 849

newstest2014 for testing respectively. The merge 850

operation is 32K for BPE and the dictionary is 851

shared by source and target. 852

Sentiment analysis There are 25000 training 853

samples and 25000 testing samples for IMDb. We 854

take 25% of the training data for validation and the 855

rest for training. For SST2, The training, valida- 856

tion, and test examples in SST2 are 67349, 872, and 857

1821, respectively. The tokenizer is “basic_english” 858

in the TorchText package. The minimum frequency 859

needed to include a token in the vocabulary is 5. 860

The maximum length of the sentence is 256. 861
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good great funny bad worse boring

good 1 0.63 0.49 -0.58 -0.61 -0.58
great 0.63 1 0.40 -0.53 -0.33 -0.38
funny 0.49 0.40 1 -0.72 -0.61 -0.60
bad -0.58 -0.53 -0.72 1 0.72 0.85

worse -0.61 -0.33 -0.61 0.72 1 0.88
boring -0.58 -0.38 -0.60 0.85 0.88 1

Table 8: The cosine similarity of the subword embeddings calculated based on SEB.

B.4 Implementation Details862

Translation The baseline we compare is the863

transformer with subword embedding (Vaswani864

et al., 2017). Our proposed method only replaces865

the subword embedding with SEB.866

For IWSLT14, the encoder and decoder layers867

are both 6 and have 4 attention heads. The hidden868

dimension of attention is 512 and the dimension869

of the feedforward layer is 1024. The optimizer870

is Adam (Kingma and Ba, 2014) with an inverse871

square root learning rate scheduler, and warm up872

4000 steps. The learning rate is 5×10−4. The total873

training epochs are 100, and we average the best 5874

checkpoints for testing.875

For WMT14, the encoder and decoder layers876

are both 6 and have 8 attention heads. The hidden877

dimension of attention is 512 and the dimension878

of the feedforward layer is 2048. The optimizer879

is Adam (Kingma and Ba, 2014) with an inverse880

square root learning rate scheduler, and warm up881

4000 steps. The learning rate is 5×10−4. The total882

training epochs are 100 and we use the early stop883

if the validation loss does not decrease in 5 epochs.884

We average the best 5 checkpoints for testing.885

Sentiment Analysis We use 2-layer BiLSTMs886

for both IMDb and SST2 classification tasks. We887

keep all model architectures the same for the base-888

line models and models with our SEBco except for889

the embedding parts. The subword embedding di-890

mension is 64 and 256 for IMDb and SST2. The891

hidden units are 64 and 300 for IMDb and SST2.892

The hidden dimension of 2-layer FFN in SEBco is893

128 for both datasets. We optimize the model using894

Adam (Kingma and Ba, 2014) and the learning rate895

is 5×10−4 for the baseline and our method on both896

datasets. The best model parameters evaluated on897

validation data are applied for testing.898

Language modeling In this experiment, we also899

use a two-layer FFN in SEB, which has 4096 hid-900

den units. The architecture is transformer_lm901

in the Fairseq framework. We share the input and902

output embedding in the encoder and the other hy- 903

perparameters and settings are the same as Fairseq. 904

B.5 Analysis for Semantic Meaning 905

In this section, we will analyze whether the derived 906

subword embeddings from our method can truly 907

encode the meaning of the words in the embedding 908

space. To experiment on this aspect, we mainly 909

calculate the cosine similarity between two word 910

embeddings obtained based on our method SEB. 911

We list some examples in IMDb sentiment analysis 912

in Table 8. 913

The cosine similarity demonstrates that the sub- 914

word embedding of our proposed SEBwill learn 915

the semantic meaning from the task. For example, 916

positive words (good, great, and funny) have pos- 917

itive and high-value similarities with each other, 918

which is also the same case for all negative words 919

(bad, worse, and boring). However, all the negative- 920

positive pairs have negative similarities, which 921

means the subword embedding of our proposed 922

SEBcan automatically learn the semantic meaning. 923

B.6 Analysis for Space Complexity 924

We analyze the space complexity in the experi- 925

ments. We mainly take the translation on IWSLT14 926

and sentiment analysis as examples. Transformer 927

model for translation on IWSLT14 de-en with 256 928

hidden units in our method SEBas the translation 929

results are close to the traditional subword embed- 930

ding. 931

The tables below present the sizes of both the 932

entire model’s parameters and the embedding layer 933

for translation on IWSLT and sentiment analysis, 934

respectively. The numbers in “()” represent the 935

percentage reduction achieved by our method com- 936

pared to the subword model. 937

In all of these tasks, our method SEBco can de- 938

crease the space complexity, which shows the abil- 939

ity of our method to reduce the model size. In 940

scenarios where model training is necessitated on 941

a device with limited memory, it will be better to 942
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# Params Whole model Embedding BLEU

Subword 37M 5.2M 34.54 ± 0.10
SEBco 33M (↓ 12%) 0.7M (↓ 94%) 34.62 ± 0.12

Table 9: Transformer model for translation on IWSLT14
de-en.

# Params Whole model Embedding Accuracy

Subword 5.9M 2.4M 81.2 ± 0.7
SEBco 3.8M (↓ 36%) 0.8M (↓ 68%) 82.5 ± 0.7

Table 10: Sentiment analysis on SST2

make the model smaller while keeping the model’s943

performance.944

B.7 Comparison with Gradient Prune Defense945

We compare the defense method of gradient prun-946

ing in the FILM attack for batch size = 8, 16, 32.947

Tables 12,13, and 14 show the precision and recall948

for gradient pruning and our method. Even without949

pruning, our method has a very low recall com-950

pared to FILM on subword embeddings when all951

batch sizes we experimented on, which shows the952

effectiveness of our defense.953

C Discussion of Frequency Analysis954

Frequency analysis is useful in cryptanalysis. For955

simple substitution ciphers, there is a characteristic956

distribution of letters that is roughly the same for957

almost all samples of that language. Frequency958

analysis uses the characteristic distributions of the959

plaintext and ciphertext to guess the mapping be-960

tween them.961

In the scenario of the threat model and our pro-962

posed method, the attacker only knows the gra-963

dients, model parameters and the mapping from964

subword to byte sequence. Based on these, the at-965

tacker can only get the information about distinct966

byte candidates which are updated in training. The967

attacker cannot determine the frequencies of the968

bytes based on the gradients.969

To demonstrate the effectiveness of our method,970

we further assume the attacker have the informa-971

tion about the frequency of each byte. The goal of972

the attacker is to get the plaintext, given the plain-973

text to ciphertext mapping, and the characteristic974

# Params Whole model Embedding BLEU

Subword 1.5M 1.5M 85.6 ± 0.5
SEBco 0.4M (↓ 72%) 0.5M (↓ 80%) 85.8 ± 0.2

Table 11: Sentiment analysis on IMDb

Prune ratio Precision Recall

Subword SEB Subword SEB

0 1 1 1 0.003
0.9 1 1 1 0.003
0.99 1 1 1 0.003
0.999 1 1 0.53 0.003
0.9999 1 0.46 0.08 0.003

Table 12: Defense results on precision and recall for
batch size is 8.

Prune ratio Precision Recall

Subword SEB Subword SEB

0 1 1 1 0.005
0.9 1 1 1 0.005
0.99 1 1 1 0.005
0.999 1 1 0.49 0.005
0.9999 1 0.50 0.06 0.005

Table 13: Defense results on precision and recall for
batch size is 16.

Prune ratio Precision Recall

Subword SEB Subword SEB

0 1 1 1 0.009
0.9 1 1 1 0.009
0.99 1 1 1 0.009
0.999 1 0.99 0.51 0.009
0.9999 1 0.47 0.07 0.009

Table 14: Defense results on precision and recall for
batch size is 32.

distributions of the ciphertext. 975

To infer the plaintext, the attacker needs to know 976

the order for combining all of the byte candidates 977

and then use the ciphertext to plaintext mapping to 978

obtain the original text. However, the attacker only 979

knows a bag of bytes without ordering. It is difficult 980

to infer the correct combination of the bytes as 981

possible combinations of bytes is extremely large. 982

13


	Introduction
	Related Work
	Preliminaries
	Federated Learning
	Threat Model

	Proposed Method
	Subword to Byte Sequence Mapping
	Subword Embedding from Bytes
	Complexity Anlysis

	Experiment
	Experiments on Privacy Protection
	Experiment on Performance
	Translation
	Sentiment Analysis
	Language Modeling
	Federated Learning


	Conclusion
	Limitations
	Ethical Consideration
	SEB Algorithm
	 Experimental Details and More Results
	Enviormental Settings
	Dataset and evaluation metrics
	Preprocessing Details
	Implementation Details
	Analysis for Semantic Meaning
	Analysis for Space Complexity
	Comparison with Gradient Prune Defense

	Discussion of Frequency Analysis

