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Abstract

While NLP models significantly impact our
lives, there are rising concerns about privacy in-
vasion. Although federated learning enhances
privacy, attackers may recover private training
data by exploiting model parameters and gra-
dients. Therefore, protecting against such an
embedding attack remains an open challenge.
We propose Subword Embedding from Bytes
(SEB) and encode subwords to byte sequences
using neural networks that are harder to retrieve
in attacks. Importantly, our method requires a
smaller memory with only 256 bytes of vocab-
ulary while keeping efficiency with the same
input length as usual. Thus, our solution outper-
forms conventional approaches by preserving
privacy without sacrificing efficiency or accu-
racy. Our experiments show SEB can effec-
tively protect against embedding-based attacks
from recovering original sentences in feder-
ated learning. Meanwhile, we verify that SEB
obtains comparable and even more accurate
prediction results over standard subword em-
bedding methods in machine translation, sen-
timent analysis, and language modeling with
even lower time and space complexity.

1 Introduction

Advances in Natural Language Processing (NLP),
such as Large Language Models (LLMs), have
made noticeable advancements in performance
over the last decades, partially attributed to the
large datasets available. Since most data are from
users, their privacy concerns play an increasingly
critical role, which is essential to building user trust,
encouraging the responsible use of language data,
protecting personal information, ensuring ethical
use, and avoiding potential harm to individuals.
Federated learning (FL) enables training shared
models across multiple clients without transferring
the data to a central server to preserve user privacy.
Although only the model updates are sent to the
central server, adversaries can still use model up-
dates to reconstruct the original data and leak sensi-
tive information to compromise the user’s privacy.

Figure 1(a) demonstrates an FL framework, and
Figure 1(b) shows how embedding-based attacks
work as in Gupta et al. (2022). In the illustrated ex-
ample, the attacker extracts all candidate words in
a batch of data from the embedding gradients and
can easily reconstruct the text with beam search
and reordering since one can perform straightfor-
ward lookups when a vector is updated due to the
one-to-one mapping between word/subword tokens
and embedding vectors.

Our intuitive idea is to apply the byte embed-
ding method because the same bytes are repeatedly
used for multiple subwords. We aim to design
a one-to-many mapping between words/subwords
and embedding vectors to increase the difficulty
of the simple lookup so that retrieving input sub-
words with the updated byte embeddings is harder,
which makes the byte embedding in NLP models a
potential defense. For example, in subword embed-
ding, if the word “good” is updated, the attacker
will only retrieve this word based on embedding
updates. However, if we tokenize “good” into four
bytes, such as “50, 10, 128, 32", all subwords con-
taining at least one of these bytes will be retrieved,
resulting in a larger search space and more possibil-
ities to recover the original sentence. As shown in
Figure 1(c), although the attacker extracts a set of
bytes, the number of candidate subwords is much
greater than that of using subword embeddings.

There are two major challenges to directly apply
existing byte encodings (Xue et al., 2022; Shaham
and Levy, 2021; Zhang and Xu, 2022) to enhance
privacy: First, smaller textual granularity cannot
show the semantic meaning of each word, leading
to a less interpretable and analyzable model. Sec-
ond, byte-based models are more computationally
expensive, as input sequences become much longer
after byte tokenization.

To address these challenges in byte-based mod-
els, we propose to encode subwords with bytes and
aggregate the byte embeddings to obtain a single
subword embedding. The procedure consists of
three steps: (1) Construct a mapping between sub-



words and bytes. (2) Convert the input text into a
byte sequence. (3) Retrieve the corresponding byte
embeddings and aggregate them back into subword
embeddings using a feed-forward network while
maintaining the subword boundaries. By adopting
this approach, we can leverage the privacy protec-
tion provided by bytes while preserving the seman-
tic meaning of the input sequence with the same
input length but a constant number of vocabulary
size of 256.
Our main contributions are:

* We introduce a novel text representation method
SEB, which achieves a vocabulary size of 256 of
the learned model without increasing the input
sequence length.

* We verify that our SEB can protect NLP models
against data leaking attacks based on embedding
gradients. To the best of our knowledge, our
work is the first one to study privacy preservation
with byte representations in FL.

* We demonstrate that SEB improves privacy and,
at the same time, achieves comparable or better
accuracy with enhanced time and space efficiency
without the privacy-performance/efficiency trade-
off in conventional approaches.

2 Related Work

Attacks and defenses in language model Some
recent works consider the reconstruction as an
optimization task (Zhu et al., 2019; Deng et al.,
2021; Balunovic et al., 2022). The attacker up-
dates its dummy inputs and labels to minimize the
distance between the gradients of the victim up-
loaded and the gradients the attacker calculated
based on its dummy inputs and labels. Gupta et al.
(2022) shows that the attackers can reconstruct a
set of words with the embedding gradients, then
apply beam search and reorder with a pretrained
language model for input recovery. One defense
described in Zhu et al. (2019); Deng et al. (2021);
Balunovic et al. (2022) is to encrypt the gradients
or make them not directly inferable. However, en-
cryption requires special setups and could be costly
to implement. Moreover, it does not provide ef-
fective protection against server-side privacy leak-
age (Aono et al., 2017; Huang et al., 2021; Fang
and Qian, 2021). Differential privacy is another de-
fense strategy, but it can hurt model accuracy (Zhu
et al., 2019; Wei et al., 2020; Yin et al., 2021; Li
et al., 2021). While Zhang and Wang (2021) pro-
posed a secure federated learning framework that

can prevent privacy leakage based on gradient re-
construction, it does not effectively address the
retrieval of a bag of words from the embedding ma-
trix gradients, as proposed in Gupta et al. (2022).

Subword-level and byte-level language mod-
els Despite the wide application of subword to-
kenization such as BPE (Sennrich et al., 2015), it
still has some limitations. It cannot handle out-
of-vocabulary subwords and requires language-
specific tokenizers. Another challenge is the high
space complexity of the embedding matrix when
the vocabulary size is huge. Byte tokenization is
a solution to address these issues (Shaham and
Levy, 2020; Zhang and Xu, 2022; Xue et al., 2022).
UTF-8 can encode almost all languages. There-
fore, there will be no out-vocabulary words and the
language-specific tokenizer is unnecessary. In addi-
tion, as the total number of bytes in UTF-8 is 256,
the embedding matrix for byte vocabulary is much
smaller than most subword vocabularies, reducing
the number of parameters in the embedding layer
and saving memory space.

Subword-level model with character- or byte-
level fusion The character/byte-based models of-
ten result in longer input sequences and higher time
complexity compared to the subword-based model.
To make the model efficient, recent works have
explored character/byte-level fusion. For example,
Tay et al. (2021) propose CHARFORMER, using
a soft gradient-based subword tokenization mod-
ule to obtain “subword tokens”. It generates and
scores multiple subword blocks, aggregates them
to obtain subword representation, and then per-
forms downsampling to reduce the sequence length.
Although CHARFORMER is faster than vanilla
byte/character-based models, it does not maintain
subword boundaries, limiting the model’s inter-
pretability. Sreedhar et al. (2022) propose Local
Bytes Fusion (LOBEF) to aggregate local seman-
tic information and maintain the word boundary.
However, it does not reduce the sequence length,
making training and inference time-consuming.

3 Preliminaries

3.1 Federated Learning

In federated learning (FL), multiple clients jointly
train a model using their private data. Assume we
have N clients, C = {¢1,¢a,...,cn}, and a server
s, in an FL system. The jointly trained model is
f with parameters 6. The clients’ private data are
D1,Ds, ..., Dy and the objective function is L.
For easier illustration, we assume all the clients
participate in each communication and clients use
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Figure 1: An attack example of recovering text in FL. (a): An FL framework. (b) and (c): Recovering text using

embedding gradients of subwords and bytes.

FedSGD (McMabhan et al., 2017) to update the
model parameters. In each communication round ¢,
server s first sends the model parameters 6° to all
clients. Then each client ¢; compute Vgt Lyt (B;),
the gradients of current model fy:, based on a
randomly sampled data batch B; C D;. After
local computation, the clients send the gradients
AULAL AL to server and server s aggregate
all the gradients and update the model:

N
0" = 0" — > VLo (By). (1)
i=1

Here, Equation (1) is the gradient descent, and 7 is
the learning rate.

3.2 Threat Model

Adversary’s capabilities and objective We fol-
low the attack settings in (Gupta et al., 2022). The
optimized model is a language model £, param-
eterized by 6. This scenario makes the attacker
white box access to the gradients Vgt Lg: (5;) sent
by the victim client ¢;. 6 is the model parameter
that the server sends to the clients at any communi-
cation round ¢. From parameters #' and gradients
Vgt Lot (B;), the attacker can get the information
of the vocabulary V and the embedding matrix W
to retrieve which tokens are updated. The goal of
the attacker is to recover at least one sentence from
B;, based on Vg: Lg:(B;) and 6.

Attack model This paper does not address the
gradient leakage attack which aims to obtain pri-
vate data by minimizing the difference between
gradients derived from a dummy input and the ac-
tual gradients of the victim’s data, because several
methods have been proposed to mitigate this partic-
ular attack (Zhu et al., 2019; Deng et al., 2021; Wei
et al., 2020). Instead, we focus on a specific attack
model, FILM, introduced in Gupta et al. (2022), for

which effective defenses have yet to be explored. In
this model, the attacker attempts to reconstruct sen-
tences from the victim’s training batches through a
three-step process: (1) extracting candidate tokens
from the gradients, (2) applying beam search with a
pre-trained Language Model, such as GPT-2, to re-
construct the input sentence, and (3) reordering the
subword tokens to achieve the best reconstruction.

4 Proposed Method

We propose Subword Embedding from Bytes
(SEB) shown in Figure 2, including byte sequence
for input text, byte embeddings, aggregation of
byte embeddings, and a feed-forward network to
output the subword embedding.

We aim to develop subword encoding using a
smaller byte embedding matrix to save space and
protect against attacks based on the embedding
gradients while preserving subword boundaries to
maintain the model’s time efficiency. This raises
two main challenges: 1) how to convert subwords
into a byte sequence? and 2) how to obtain subword
embeddings using byte representations?

4.1 Subword to Byte Sequence Mapping

UTF-8 encoding results in different sequence
lengths for subwords. In real practice, all byte
sequences need to be padded to the same length,
making the byte sequence of the subword even
longer. Instead of using the existing byte encoding
system, we define our subword to byte sequence
mapping M : V,, — (W)". V,, and V, are sub-
word and byte vocabularies with size of V,, and V},
respectively. (V)" is a sequence of n bytes in V.
Here the byte vocabulary size V, and the number
of bytes n to represent a subword are hyperparam-
eters. In this way, every subword is represented
with the same length, getting rid of the longer byte
sequence with padding.
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Figure 2: (a): An overview of the transformer model with SEB. (b): An example of calculating subword embeddings

with byte embedding.

To construct the mapping, for every subword
w; € V,, we randomly sample n bytes with re-
placement from V), to obtain the byte sequence
(bi1, bia, - . . , bin). If the byte sequence already ex-
ists in M, we repeat the sampling until a unique
byte sequence is obtained. For example, we set
V, = 64 and n = 4. A subword “Hello” can be rep-
resented with (14, 3,10, 4), shown in Figure 2(b).

We analyze the probability p that two subwords
are mapped to the same byte sequence. With the
byte vocabulary size V;, and the number of bytes
per subword n, the probability p = 1/(V},)"™. For
example, if V, = 16 and n = 4 then p = 1.5 X
1075. For Vj, = 128 and n = 8 in our experiment,
p = 1.39 x 10~'7, which means there is almost no
possibility to map two words into the same subword
sequence. Therefore, SEB is highly expressive for
representing subwords.

4.2 Subword Embedding from Bytes

Different from the byte-based models which have
higher time complexity due to longer input se-
quences, our method tokenizes the text into a se-
quence of bytes while preserving the subword
boundary. We first tokenize the original text into
subwords using a common subword tokenization
method such as BPE. Then, we token each subword
into a byte sequence with the mapping we designed
above and then aggregate byte representations back
to subword embeddings. The two detailed algo-
rithms are in Appendix, Algorithms 1 and 2.

Let the byte embedding matrix be B € R"6*4,
where d is the embedding size. Given a text
S, we tokenize S into a subword sequence
(wy,wa, ..., wn), then further use the mapping
M defined above to tokenize this sequence into
a byte sequence (b11,...,b1n,--,bmis--,0mn)
with mn bytes. We retrieve the byte embeddings
E € R™"*4 for these bytes from B.

To get a subword embedding, adding the byte
representations for every n bytes in E is a simple
way. However, this approach does not consider the
position of each byte within the subword. Con-
sidering that incorporating positional information
can improve model performance for subword to-
kens, we induce positional information for byte
sequences of subwords by concatenation. This en-
ables the model to capture the position of each
byte within the subword and obtain a more accu-
rate and informative representation of the subword.
Given the retrieved byte embeddings E € Rmnxd,
we reshape E to E € R”*"? in a row-major order,
which is equivalent to concatenation. Then, an FFN
is applied to project E into the dimension d’ of the
original subword embedding for language models:
E’ = FFN(E) € R™*% Note that, the byte embed-
ding matrix B can be either a real-valued or one-hot
embedding matrix because the vocabulary size is
small for bytes. We compare the performances for
both embedding methods in experiments.

4.3 Complexity Anlysis

Embedding Memory Time
Subword O(Vpd) O(m?d)
Byte O(Vd) O(c*m?d)
SEB (Ours) O((nd +V3)d) O(m?d

Table 1: Complexity for conventional subword embed-
dings, byte embedding, and our proposed SEB.

To demonstrate the efficiency of the proposed
SEB, we summarize the space and time complexity
of each embedding method in Table 1. Here, the
column “Memory” represents the memory usage
for each embedding, and the column “Time" shows
the time complexity in Transformer attention. For
simplicity, we let d’ = d and use one linear layer
as FFN in SEB which contains nd? parameters.
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In terms of space complexity, subword embed-
dings typically have an exponentially large vocab-
ulary size Vj,, exceeding 10, while the dictionary
size of byte embeddings is no more than 256. For
the proposed SEB, the number of parameters in
embedding is O(nd? + Vid) = O((nd + V;)d),
including the FEN and byte embedding matrix. In
practice, nd + V;, < V,,. As a result, both byte
embeddings and our proposed SEB significantly
reduce the memory cost required for embeddings.
In B.6, we show the analysis for space complexity
in our experiments. Regarding time complexity,
we analyze the attention in the widely used Trans-
former (Vaswani et al., 2017). Given the sequence
length m, byte embedding is more time-consuming
since the input length is ¢ times longer than sub-
word embedding. Here c is the average ratio be-
tween the lengths of byte and subword sequences.
Based on the statistics (Shaham and Levy, 2020), ¢
is usually around 5. However, our proposed SEB
maintains the same time efficiency as conventional
subword embeddings because we preserve the sub-
word sequence along with its boundaries.

One may consider the frequency analysis in
cryptanalysis to get the original text if the attacker
also has information about the tokens used for the
text and the frequency of each byte. In Appendix C,
we discuss the frequency analysis is not applicable
to our proposed defense.

5 Experiment

We conduct experiments to demonstrate the advan-
tages of SEB in reducing space complexity, main-
taining time efficiency, and preserving privacy for
NLP models in federated learning. In all exper-
iments, we set V;, = 256 and n = &, which is
sufficient to prevent encoding two subwords into
the same byte sequences. We use a 2-layer FFN in
the proposed SEB.
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Figure 4: The average coverage of subwords given a
random set of bytes with GPT-2 tokenizer.

5.1 Experiments on Privacy Protection

Dataset, attack task, and evaluation metrics
We followed the settings in the FILM attack (Gupta
et al., 2022). The dataset is WikiText-103 (Merity
et al., 2016). For the attack task, we use GPT-2
base (Radford et al., 2019) with 117M parameters
to recover the input batches. The ROUGE-1/2/L
F-Scores (Lin, 2004) are used to evaluate the simi-
larity between the recovered and original text.

Quantitative analysis of defense We first show
that it is difficult to retrieve a bag of candidate sub-
words in SEB with Figure 3 and 4. In Figure 3, we
present the distributions of the subword number,
unique subword number, and unique byte number
in a client’s batch of data. We observe that even
a single sample contains over 120 unique bytes
on average, while only having approximately 25
unique subwords. In Figure 4, we present the av-
erage coverage of subwords for a subset of bytes.
Based on Figure 4, 120 bytes cover about 50K sub-
words. It means recovery is a random generation
using almost the entire vocabulary.

Additionally, Figure 5 shows the FILM attack
performances using various batches on WikiText-
103, with subword embedding and SEB. As the
candidate subwords are almost the whole vocabu-
lary, beam search takes huge memory which is not
executable on our device. To show the defense per-
formance, we loose the constraints and randomly
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sample 7,000 subwords, combined with the sub-
words in the original text. We randomly select
5 tested batches for each batch size and take the
average ROUGE F-Scores. When batch size is 1,
ROUGE-1/2/L scores are close to 1 for attacks with
subword embedding, indicating a nearly perfect re-
covery. However, these scores are quite low when
using SEB, showing the effectiveness of SEB to
defend the attacks based on embedding gradients.

Qualitative analysis of defense To intuitively
show the difference between the recovered sen-
tences of FILM using subword embedding and the
proposed SEB, we select the best-recovered sen-
tences of these two methods based on the ROUGE-
L F-score and list the results in Table 2. In the
recovered sentence with the subword embedding,
all words are successfully retrieved and have a very
close order to the original sentence. However, with
SEB, only a few words are retrieved, and many of
them are stop words. The results show that SEB
can prevent the attacker from recovering private
information in the original sentence even though
the batch only contains one sentence.

We also compare our method with the defense
method of gradient pruning in the FILM attack
(Gupta et al., 2022) for batch size = 8, 16, 32. The
results are shown in Appendix B.7.

5.2 Experiment on Performance

To provide a more comprehensive assessment of
our proposed technique’s applicability and perfor-
mance of federated learning and across different
NLP tasks, we conduct experiments on machine
translation, sentiment analysis, and Language Mod-
eling (LM) tasks. The environmental settings are
described in Appendix B.1.

5.2.1 Translation

Dataset and evaluation metrics In the trans-
lation task, we consider two datasets, one is
the medium-size IWSLT14 (Cettolo et al., 2014)
dataset and a large scale dataset WMT14 (Bo-
jar et al., 2014). We follow the settings as prior
work (Shaham and Levy, 2020; Zhang and Xu,
2022) and translate German (de) to English (en) in
IWSLT14 (Cettolo et al., 2014). The translation of
WMT is English (en) to German (de) and the pre-
processing is the same as Fairseq (Ott et al., 2019).
We use SacreBLEU, case-sensitive, with the 13a
tokenizer (Post, 2018) as the evaluation metric. A
detailed description of preprocessing, model archi-
tecture, and hyperparameter settings can be found
in Appendix B.3.

Main results For IWSLT14, we run 5 trials and
report the average performance with the standard
deviation. We show the translation results of Trans-
former with subword embedding and SEB in Table
3. The hidden dimension of the two-layer FFN is
2048 for IWSLT because we try to keep the total
parameters of SEB, the same as the original Trans-
former. For WMT, the hidden dimension of FFN
is 4096. Here, we test three variants of SEB when
aggregating the byte embedding back to subword
embedding: added real-valued embedding (SEB;-),
concatenated real-valued embedding (SEB.; ), and
concatenated one-hot embedding (SEB.,). In this
experiment, the dimensions of real-valued and one-
hot vectors are 512 and 256. Table 3 shows that
SEB., and SEB_, can achieve better performances
than subword embedding. Concatenating the one-
hot vectors yields better results even with fewer
model parameters than concatenating byte embed-
ding. Therefore, we can conclude that SEB is a bet-
ter alternative to using large subword embeddings.
Additionally, based on the comparison between
SEB,, and SEB,,, we find that concatenation is
better than the simple adding of byte embeddings.
This is expected as Section 4.2 because adding does
not consider the positional information of bytes.
The result of WMT14 shows the same performance
as the subword-based model but with a smaller size
of embedding parameters. It is important to em-
phasize that while privacy is improved, our model
achieves the same or better accuracy than the base-
line methods.

Sensitivity analysis on FFN hidden units In
this experiment, we test the sensitivity of SEB.,
on FFN hidden units, because it is one of
the major factors for embedding parameters.
Here, we set different FFN hidden units as



Original Sentence

Best Recovered Sentence

Subword  The historic rainfall caused several The rainfall caused several historic dams to fill throughout north-
dams to fill throughout northeast Mex-  east Mexico.
ico.

SEB Pujols is a highly regarded hitter who  He is a professional who has a very high degree of ability, and

has shown a "combination of con-
tact hitting ability, patience, and raw
power"

always takes great advice, without ever assuming power" ("Pivotal
Decision Making With Your Head". Retrieved 12 Dec 2007 16
Mar)

Table 2: The best recovered sentences by FILM using subword embedding and SEBwith batch size 1. Text in green

are successfully recovered phrases and words.

Datasets Embeddings # Params BLEU
Subword 52M 34.54 +0.10
SEB,- 4.3M 34.64 + 0.15

IWSLT14 SEB., 9.6M 3532+ 0.15
SEB., 5.2M 35.44 £ 0.10
Subword 22.3M 26.0

WMTI4 - ogp,, 63M 260

Table 3: BLEU score of IWSLT14 and WMT14. SEB,,,
and SEB.,: SEB with added and concatenated real-
valued embeddings, respectively. SEB.,: SEB with
concatenated one-hot byte embeddings.

{128,256, 512,1024, 2048, 4096}, with the total
embedding parameter numbers of 0.3M, 0.7M,
1.3M, 2.7M, 5.2M, and 10.5M, respectively. The
number of embedding parameters and translation
BLEU scores are shown in the left of Figure 6.
When the numbers of hidden units are 256, 512,
and 1024, SEB., can obtain better performance
with fewer parameters. Although the model can
still achieve better performance when hidden units
are larger than 2048, it does not have advantages
over the original transformer on model size.

Byte Tokens Byte Vocabulary Size (V4)
per Subword (n) o4 128 256

4 0.79M 1.05M 1.57M

8 1.05SM  1.57M  2.62M

16 1.57TM  2.62M  4.72M

Table 4: Number of embedding parameters.

Sensitivity analysis on V;, and n  To investigate
the impact of the byte vocabulary size V} and
number of bytes per subword n, we set V} as
64,128,256 and n as 4,8,16. Based on the pre-
vious experiments, we set the hidden units in the
2-layer FFN to 1024 in SEB.,, which provides
good performance with a small scale of parameters.
We first discuss the model size in terms of embed-
ding parameter numbers in Table 4. All settings

have smaller embedding parameter numbers than
the original Transformer. We further demonstrate
the translation performance under these settings in
Figure 6 (right). It indicates that increasing n leads
to better model performance for a fixed V},. The
reason is increasing n results in more possible po-
sitions per byte token, providing more information
in the aggregated vector. Similarly, when we fix
n and increase V}, the increased byte vocabulary
diversity makes the aggregated vector more expres-
sive. Therefore, increasing the byte vocabulary
size and the number of byte tokens per subword
can improve the model’s expressiveness, leading
to improved performance. Furthermore, Figure 6
(right) and Table 4 show that models with similar
amounts of parameters have similar performance.
As long as Vj, and n ensure that SEB., has suffi-
cient expressive ability, the model performance is
more related to the number of parameters than to
specific V3 and n.

5.2.2 Sentiment Analysis

Dataset and evaluation metrics We use
IMDb (Maas et al., 2011) and SST2 (Socher
et al., 2013) datasets provided by Hugging Face.
The detailed preprocessing of the dataset is
shown in Appendix B.3. We use the accuracy
for evaluation which is a routine in prior work
(Minaee et al., 2019; Yenter and Verma, 2017).
The implementation details are in Appendix B.4.

Main results We compare the same BiLSTM
models with subword embedding and SEB.,. The
classification accuracies are shown in Table 5. The
results show that SEB., can replace the conven-
tional subword embedding without hurting the
model performance. For SST2, SEB., even has
better performance. The reason for that is the pa-
rameters of the conventional subword embedding
layer in BiLSTM take a large portion of the model
parameters, making the model easily overfitting. In
this experiment, SEB, has smaller embedding pa-
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Figure 6: Results on embedding parameters, vocabulary size, and number of bytes per subword. Left: The BLEU
scores versus hidden dimension in FEN and embedding parameters. Right: Comparison of mean BLEU scores for
different byte vocabulary sizes and different numbers of bytes per subword.

rameters, which can address overfitting. We show
that SEB also learns the semantic meaning of sub-
word in B.5.

IMDb (%)  SST2 (%)
Subword 85.6£0.5 81.2+0.7
SEB.,, 858+02 825+0.7

Table 5: Results on Sentiment analysis.

5.2.3 Language Modeling

Dataset and evaluation metrics We use the
same data as Fairseq did for the language modeling
tasks. The dataset we use is WikiText-103. We use
the same preprocessing and training settings as the
official Fairseq does. The number of samples for
training, testing, and validation are 1801350, 3760,
and 4358 respectively. We evaluate the language
modeling performance with perplexity.

Main results For language modeling (LM), our
proposed method achieved better performance on
perplexity while using a smaller size of param-
eters. The results are shown in Table 6, which
demonstrate that our method SEBis an effective
and efficient alternative to the traditional subword
embedding.

# Paramters  Perplexity
Subword 13.7M 30.84
SEB., 10.5M 30.55

Table 6: Perplexity of language modeling for subword
embedding and SEB.

5.2.4 Federated Learning

we experiment with federated learning on the SST2
sentiment analysis task using the FedAvg frame-
work(McMabhan et al., 2017). In this experiment,

we have 20 clients and distribute training samples
uniformly to these clients. In training, we sample
a part of the clients with the ratio ¢ in every com-
munication round. The results are shown in the
following table.

Embeddings ¢=0.2 ¢=04 ¢=0.6 c=0.8 c=1.0
Subword 81.5% 80.6% 81.1% 80.7% 80.9%
SEB 82.0% 81.7% 819% 824% 81.7%

Table 7: Accuracies for subword embedding and our
method for federated learning. c is the participation
ratio in each communication round.

We can see that even in the federated learning
framework, our SEBmethod is still comparable to
subword embedding and can achieve stable results
when the number of clients in training varies.

6 Conclusion

This paper introduces SEB, Subword Embedding
of Bytes, a novel subword embedding method that
defends against privacy leakage attacks based on
embedding gradients in federated learning. Differ-
ent from traditional approaches that learn a large
subword embedding matrix, SEB uses smaller byte
embedding matrices or byte one-hot encoding and
aggregates byte representations to obtain subword
embeddings. With SEB, attackers cannot retrieve
a small set of subwords and generate private text,
even with a well-trained large language model. Our
extensive experiments show that SEB is effective
for machine translation, sentiment analysis and lan-
guage modeling tasks without sacrificing model
performance or efficiency. Additionally, we demon-
strate that SEB makes it difficult for attackers to
recover private text with embedding gradients in
federated learning.



7 Limitations

Despite the SEB can preserve data privacy without
sacrificing efficiency or accuracy in different lan-
guage models and tasks, it still has some limitations
and and can be explored further.

Large language model and more tasks Limited
to the computation resources, the Transformer mod-
els in our experiments are small. We also only ex-
periment with moderate size of datasets. Moreover,
we consider three common tasks such as machine
translation, sentiment analysis, and language Mod-
eling to show the effectiveness of our proposed
method. The efficiency and effectiveness of our
proposed method on large language models as well
as other natural language processing tasks still need
exploration.

Pretraining exploration All of the models in
the experiments are trained from scratch. We have
not experimented with the pretraining and finetu-
ing/prompting paradigm with SEB. However, our
proposed SEB is an effective alternative to subword
embedding, and we think that our method is gener-
alizable to popular NLP models, tasks, and training
paradigms. In the future, we will further investigate
the performance of our proposed method under the
pretraining and finetuing/prompting paradigm.

8 Ethical Consideration

In this work, we use the IWSLT14 (Cettolo et al.,
2014), WMT14 (Bojar et al., 2014), SST2 (Socher
et al.,, 2013), IMDb (Maas et al., 2011), and
WikiText-103 (Merity et al., 2016). All these 5
datasets are widely used pubic datasets in NLP
tasks, which do not have personal or sensitive infor-
mation. For the first four datasets, they are freely
used without any license. For the WikiText-103
dataset, it is used under the "Creative Commons
Attribution-ShareAlike License".

We believe our work does not bring more risk in
training and using NLP models. Our intention is to
provide practical privacy-preserving collaboration
and build trust among clients while maintaining the
model’s performance and efficiency. We hope this
work can motivate more effective defenses, and
encourage secure and privacy-preserving collabo-
rations in practical applications and have a positive
effect on popular large-scale language models.
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Algorithm 1: Construction of Subword to
byte sequence mapping
Input

:Byte vocabulary
Vo ={0,1,...,V, — 1};
Subword vocabulary
Vw = {wo,wl, ‘e ,wvw_l};
The number of bytes per subword
n
Output : Mapping: M : V,, — (V)"

1 for w; € Dy, do

2 repeat

3 for j <+ 1tondo

4 Sample b;; ~ Uniform[0, V})
/1 P(bij) = 3, bij €V

5 end

6 until (bil, big, Ce ,bm) ¢ M

7 Add w; — (bil,big,...,bz‘n) to M

s end

9 return M

Algorithm 2: Subword embedding with
SEB

Input :Subword to byte sequence
mapping M : V,, = (V)™
Subword sequence

S = (wi,wa, ..., Wwn);

A feed-forward network FFN;
Embedding matrix is B € R"»*4;
Subword embedding dimension d’
Output : Subword embeddings E/ € R™*?
1 fori <— 1tomdo
2 ‘ (bila big, ceey bzn) — ./\/l[wl]
3 end
4 Byte sequence for
S: (blla"'ublTU"')bml)'
s E ¢ R™*4 ¢« retrieve
~(1)11, .. -,blm .. .,bml, .. 7bmn) from B
6 E € R™*" < reshape E (in a row-major
order)
7 E/ = FFN(E) € R™*¢
8 return E’

ooy bmn)

B Experimental Details and More
Results

B.1 Enviormental Settings

All the programs in our work are implemented us-
ing Python 3.9.0, Fairseq (Ott et al., 2019), Py-
Torch 1.13.0, and CUDA 11.7. For the hardware
environment, we run all codes on a machine with

Intel i7-11700K CPU, 64G memory, and NVIDIA
GeForce RTX 3080 GPU.

B.2 Dataset and evaluation metrics

Translation In the translation task, we con-
sider two datasets, one is the medium-size
IWSLT14 (Cettolo et al., 2014) dataset and a large-
scale dataset WMT14 (Bojar et al., 2014). We fol-
low the settings as prior work (Shaham and Levy,
2020; Zhang and Xu, 2022) and translate German
(de) to English (en) in IWSLT14 (Cettolo et al.,
2014). The translation of WMT is English (en)
to German (de) and the preprocessing is the same
as Fairseq (Ott et al., 2019). We use SacreBLEU,
case-sensitive, with the 13a tokenizer (Post, 2018)
as the evaluation metric.

Sentiment Analysis We use IMDb (Maas et al.,
2011) and SST2 (Socher et al., 2013) datasets pro-
vided by Hugging Face. The detailed preprocessing
of the dataset is shown in Appendix B.3. We use
the accuracy for evaluation which is a routine in
prior work (Minaee et al., 2019; Yenter and Verma,
2017).

Language modeling We use the same data as
Fairseq did for the language modeling tasks. The
dataset we use is WikiText-103. We use the same
preprocessing and training settings as the official
Fairseq does. The number of samples for training,
testing, and validation are 1801350, 3760, and 4358
respectively. We evaluate the language modeling
performance with perplexity.

B.3 Preprocessing Details

Translation For IWSLT14, there are 166K sen-
tence pairs for training and validation and 5.6K for
testing. The vocabulary shared by the source and
target languages is built by BPE (Sennrich et al.,
2015) with 10K tokens.

For WMT14, en-de contains 4.5M sentence
pairs. Newstest2013 is used for validation and
newstest2014 for testing respectively. The merge
operation is 32K for BPE and the dictionary is
shared by source and target.

Sentiment analysis There are 25000 training
samples and 25000 testing samples for IMDb. We
take 25% of the training data for validation and the
rest for training. For SST2, The training, valida-
tion, and test examples in SST2 are 67349, 872, and
1821, respectively. The tokenizer is “basic_english”
in the TorchText package. The minimum frequency
needed to include a token in the vocabulary is 5.
The maximum length of the sentence is 256.



good great funny bad worse boring
good 1 063 049 -0.58 -0.61 -0.58
great  0.63 1 040 -0.53 -033 -0.38
funny 049 040 1 -0.72  -0.61  -0.60
bad -0.58 -0.53 -0.72 1 0.72 0.85
worse -0.61 -033 -0.61 0.72 1 0.88
boring -0.58 -038 -0.60 085 0.88 1

Table 8: The cosine similarity of the subword embeddings calculated based on SEB.

B.4 Implementation Details

Translation The baseline we compare is the
transformer with subword embedding (Vaswani
et al., 2017). Our proposed method only replaces
the subword embedding with SEB.

For IWSLT14, the encoder and decoder layers
are both 6 and have 4 attention heads. The hidden
dimension of attention is 512 and the dimension
of the feedforward layer is 1024. The optimizer
is Adam (Kingma and Ba, 2014) with an inverse
square root learning rate scheduler, and warm up
4000 steps. The learning rate is 5 x 10~4. The total
training epochs are 100, and we average the best 5
checkpoints for testing.

For WMT14, the encoder and decoder layers
are both 6 and have 8 attention heads. The hidden
dimension of attention is 512 and the dimension
of the feedforward layer is 2048. The optimizer
is Adam (Kingma and Ba, 2014) with an inverse
square root learning rate scheduler, and warm up
4000 steps. The learning rate is 5 x 10~4. The total
training epochs are 100 and we use the early stop
if the validation loss does not decrease in 5 epochs.
We average the best 5 checkpoints for testing.

Sentiment Analysis We use 2-layer BILSTMs
for both IMDb and SST2 classification tasks. We
keep all model architectures the same for the base-
line models and models with our SEB_, except for
the embedding parts. The subword embedding di-
mension is 64 and 256 for IMDb and SST2. The
hidden units are 64 and 300 for IMDb and SST2.
The hidden dimension of 2-layer FFN in SEB_, is
128 for both datasets. We optimize the model using
Adam (Kingma and Ba, 2014) and the learning rate
is 5 x 10~ for the baseline and our method on both
datasets. The best model parameters evaluated on
validation data are applied for testing.

Language modeling In this experiment, we also
use a two-layer FFN in SEB, which has 4096 hid-
den units. The architecture is transformer 1m
in the Fairseq framework. We share the input and
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output embedding in the encoder and the other hy-
perparameters and settings are the same as Fairseq.

B.5 Analysis for Semantic Meaning

In this section, we will analyze whether the derived
subword embeddings from our method can truly
encode the meaning of the words in the embedding
space. To experiment on this aspect, we mainly
calculate the cosine similarity between two word
embeddings obtained based on our method SEB.
We list some examples in IMDb sentiment analysis
in Table 8.

The cosine similarity demonstrates that the sub-
word embedding of our proposed SEBwill learn
the semantic meaning from the task. For example,
positive words (good, great, and funny) have pos-
itive and high-value similarities with each other,
which is also the same case for all negative words
(bad, worse, and boring). However, all the negative-
positive pairs have negative similarities, which
means the subword embedding of our proposed
SEBcan automatically learn the semantic meaning.

B.6 Analysis for Space Complexity

We analyze the space complexity in the experi-
ments. We mainly take the translation on IWSLT14
and sentiment analysis as examples. Transformer
model for translation on IWSLT14 de-en with 256
hidden units in our method SEBas the translation
results are close to the traditional subword embed-
ding.

The tables below present the sizes of both the
entire model’s parameters and the embedding layer
for translation on IWSLT and sentiment analysis,
respectively. The numbers in “()” represent the
percentage reduction achieved by our method com-
pared to the subword model.

In all of these tasks, our method SEB,, can de-
crease the space complexity, which shows the abil-
ity of our method to reduce the model size. In
scenarios where model training is necessitated on
a device with limited memory, it will be better to



# Params  Whole model Embedding BLEU
Subword 37 5.2M 34.54 +0.10
SEB.o 3BM (. 12%) 0.7M (. 94%) 34.62 £0.12

Table 9: Transformer model for translation on IWSLT14
de-en.

#Params  Whole model Embedding Accuracy
Subword 5.9M 2.4M 81.2+0.7
SEB.o 3.8M (1 36%) 0.8M({ 68%) 825=£0.7

Table 10: Sentiment analysis on SST2

make the model smaller while keeping the model’s
performance.

B.7 Comparison with Gradient Prune Defense

We compare the defense method of gradient prun-
ing in the FILM attack for batch size = 8, 16, 32.
Tables 12,13, and 14 show the precision and recall
for gradient pruning and our method. Even without
pruning, our method has a very low recall com-
pared to FILM on subword embeddings when all
batch sizes we experimented on, which shows the
effectiveness of our defense.

C Discussion of Frequency Analysis

Frequency analysis is useful in cryptanalysis. For
simple substitution ciphers, there is a characteristic
distribution of letters that is roughly the same for
almost all samples of that language. Frequency
analysis uses the characteristic distributions of the
plaintext and ciphertext to guess the mapping be-
tween them.

In the scenario of the threat model and our pro-
posed method, the attacker only knows the gra-
dients, model parameters and the mapping from
subword to byte sequence. Based on these, the at-
tacker can only get the information about distinct
byte candidates which are updated in training. The
attacker cannot determine the frequencies of the
bytes based on the gradients.

To demonstrate the effectiveness of our method,
we further assume the attacker have the informa-
tion about the frequency of each byte. The goal of
the attacker is to get the plaintext, given the plain-
text to ciphertext mapping, and the characteristic

#Params  Whole model Embedding BLEU
Subword 1.5M 1.5M 85.6 £0.5
SEB., 04M (L 72%) 0.5M (] 80%) 85.8+0.2

Table 11: Sentiment analysis on IMDb
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. Precision Recall
Prune ratio
Subword SEB Subword SEB
0 1 1 1 0.003
0.9 1 1 1 0.003
0.99 1 1 1 0.003
0.999 1 1 0.53 0.003
0.9999 1 0.46 0.08 0.003

Table 12: Defense results on precision and recall for
batch size is 8.

. Precision Recall
Prune ratio
Subword SEB Subword SEB
0 1 1 1 0.005
0.9 1 1 1 0.005
0.99 1 1 1 0.005
0.999 1 1 0.49 0.005
0.9999 1 0.50 0.06 0.005

Table 13: Defense results on precision and recall for
batch size is 16.

. Precision Recall
Prune ratio
Subword SEB Subword SEB
0 1 1 1 0.009
0.9 1 1 1 0.009
0.99 1 1 1 0.009
0.999 1 0.99 051 0.009
0.9999 1 047 0.07 0.009

Table 14: Defense results on precision and recall for
batch size is 32.

distributions of the ciphertext.

To infer the plaintext, the attacker needs to know
the order for combining all of the byte candidates
and then use the ciphertext to plaintext mapping to
obtain the original text. However, the attacker only
knows a bag of bytes without ordering. It is difficult
to infer the correct combination of the bytes as
possible combinations of bytes is extremely large.
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