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ABSTRACT

Spiking Neural Networks (SNNs) have garnered considerable attention due to
their energy efficiency and unique biological characteristics. However, the widely
adopted Leaky Integrate-and-Fire (LIF) model, as the mainstream neuron model in
current SNN research, has been revealed to exhibit significant deficiencies in deep-
layer gradient calculation and capturing global information on the time dimension.
In this paper, we propose the Learnable Multi-hierarchical (LM-H) model to address
these issues by dynamically regulating its membrane-related factors. We point out
that the LM-H model fully encompasses the information representation range of
the LIF model while offering the flexibility to adjust the extraction ratio between
historical and current information. Additionally, we theoretically demonstrate the
effectiveness of the LM-H model and the functionality of its internal parameters,
and propose a progressive training algorithm tailored specifically for the LM-H
model. Furthermore, we devise an efficient training framework for our novel
advanced model, encompassing hybrid training and time-slicing online training.
Through extensive experiments on various datasets, we validate the remarkable
superiority of our model and training algorithm compared to previous state-of-
the-art approaches. Code is available at https://github.com/hzc1208/
STBP_LMH.

1 INTRODUCTION

Spiking Neural Networks (SNNs) are considered as the third generation of artificial neural net-
works (Maass, 1997), which represents a fascinating paradigm with superior biological plausibility
and high energy efficiency in the field of computational neuroscience. Unlike traditional Analog
Neural Networks (ANNs), which rely on continuous-valued outputs, SNNs draw inspiration from
the structure of the human brain and emulate the behavior of real biological neurons by utilizing
binary and sparse spiking signals to transmit information. In SNNs, neurons only generate spikes
and transmit them to the postsynaptic layer when their membrane potential exceeds a certain firing
threshold. This event-driven characteristic of SNNs provides significant advantages in terms of
computational efficiency and power consumption reduction (Roy et al., 2019), especially when
deployed on neuromorphic chips (Merolla et al., 2014; Davies et al., 2018; DeBole et al., 2019).
In recent years, SNNs have garnered increasing attention due to their potential to address certain
limitations of ANNs. They have shown promise in applications such as image recognition (Fang
et al., 2021b), object detection (Kim et al., 2020b), natural language processing (Lv et al., 2023), cue
combination (Yu et al., 2020), and network robustness (Bu et al., 2023), etc.

The Leaky Integrate-and-Fire (LIF) model (Gerstner & Kistler, 2002) is a widely used spiking
neuron model that consists of three main processes: charging, membrane potential leakage, and
firing of spikes. However, the non-differentiable nature of the spike firing process poses challenges
for gradient calculations. To address this issue, researchers have developed the current mainstream
Spatio-Temporal Back-propagation (STBP) algorithm (Wu et al., 2018), which introduces surrogate
gradients to enable gradient-based learning in LIF-based SNNs. Nevertheless, the LIF model still
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encounters gradient calculation failures when applied to deep residual networks (Fang et al., 2021a).
Additionally, the LIF model struggles to effectively utilize historical information, such as the input
current and membrane potential at previous time-steps, which can be crucial for capturing temporal
dependencies and improving network performance.

To address these issues, we propose a novel Learnable Multi-hierarchical (LM-H) model. In the LM-H
model, the scaling factors from the dendrite layer regulate the proportion of historical information
extracted by the model, while the factors from the soma layer determine the degree of potential
leakage and the intensity of the input current at present. By effectively leveraging these factors, the
LM-H model enables precise gradient calculation and optimal learning performance. It is worth
noting that our model is inspired by the TC-LIF model (Zhang et al., 2023). However, the TC-LIF
model suffers from the issue of setting certain membrane-related parameters to fixed or contradictory
values. Moreover, it fails to accurately recognize the relationship between the LIF and advanced
neurons, resulting in a significant impact on the stability of learning gradients. In this work, we
investigate the relationship between the LIF and LM-H models, and achieve more precise information
extraction and gradient propagation by designing appropriate optimization intervals and calculation
modes for membrane-related parameters. Our main contributions can be summarized as follows:

• We identify the limitations of the vanilla LIF model in terms of its representation capabilities
and propose the LM-H model with a wider calculation scope. We mathematically demon-
strate that our proposed model can effectively extracting global information along the time
dimension and propagate gradients in deep networks.

• We systematically analyze the specific roles of parameters on the dendrite and soma layers,
and further develop a progressive STBP training algorithm for the LM-H model, which can
dynamically optimize the membrane-related parameters during the learning process.

• To enhance the energy efficiency of SNN learning, we propose an efficient training frame-
work specifically designed for the LM-H model, which includes hybrid training and time-
slicing online training.

• Experimental results validate the significant advantages of the LM-H model in the field of
SNN supervised learning. Our proposed method achieves state-of-the-art performance on
multiple datasets with various scales and data types. For example, we achieve 80.31% top-1
accuracy with 4 time-steps on CIFAR-100 using the ResNet-19 architecture.

2 RELATED WORK

Supervised Learning for SNNs. STBP algorithm has emerged as the most mainstream supervised
learning approach in the SNN community, which draws inspiration from the Back-Propagation
Through Time (BPTT) gradient computation framework used in Recurrent Neural Networks (RNNs).
Pioneered by researchers such as Wu et al. (2018) and Neftci et al. (2019), STBP addresses the
non-differentiable nature of firing spikes during the back-propagation process by employing surrogate
gradient functions. Building upon the foundation laid by STBP, subsequent studies have further
enhanced the accuracy and stability of SNN training. For instance, Li et al. (2021) and Wang et al.
(2023) proposed families of differentiable functions that can be adaptively evolved during the learning
process, leading to improved training outcomes. Deng et al. (2022) and Guo et al. (2022a) introduced
novel loss functions to regulate the distribution of spikes and membrane potentials along the temporal
dimension, resulting in more precise alignment of learning gradients. Furthermore, researchers have
developed various batch normalization structures tailored for SNN learning (Wu et al., 2019; Zheng
et al., 2021; Duan et al., 2022). These structures facilitate better network performance and training
convergence. Additionally, Fang et al. (2021a) significantly advanced the effective learning of SNNs
on deep networks with more than 100 layers by improving the connection patterns of residual blocks.
It is worth noting that supervised learning methods based on spike firing timing (Mostafa, 2017; Kim
et al., 2020a; Zhou et al., 2021) have garnered significant attention in recent years. However, these
approaches are currently limited to shallow networks and small-scale datasets, and further research is
needed to extend their applicability to more complex scenarios (Zhu et al., 2022).
Efficient Training for SNNs. The ANN-SNN Conversion (Cao et al., 2015; Han et al., 2020; Bu
et al., 2022) is another widely used algorithm family of SNN learning, which converts pre-trained
ANNs into SNNs based on the approximate linear relationship between the average spike firing
rate of adjacent layers. While the precision of ANN-SNN Conversion may be compromised under
a few time-steps (Hao et al., 2023a;b), it offers significant time and memory savings compared to
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(a) LIF Neuron (b) Learnable Multi-hierarchical Neuron

Figure 1: The structural description for the vanilla LIF and LM-H models.

STBP. Furthermore, efficient training frameworks such as online learning (Xiao et al., 2022; Yang
et al., 2022; Meng et al., 2023) have been proposed. These frameworks perform gradient updates at
each time-step, maintaining constant memory consumption instead of linearly increasing it. Hybrid
training (Rathi & Roy, 2023; Wang et al., 2022) is another popular training method, which typically
employs STBP to optimize and fine-tune parameters based on models obtained from ANN-SNN
Conversion. Researchers have discovered that applying STBP for a limited number of epochs (≤ 30)
can significantly enhance the performance of SNNs under low time-latency.
Structural optimization for spiking neurons. In early research, the relevant model parameters
of spiking neurons were often viewed as hyper-parameters, which hindered the ability of SNNs to
effectively capture and extract information during the training process. Rathi & Roy (2023) and Fang
et al. (2021b) set the membrane leaky constant and firing threshold as learnable variables, thereby
enhancing the biological similarity of spiking neurons. Stöckl & Maass (2021) further optimized
membrane-related parameters by aiming to reduce spike firing rate. Another advanced model, GLIF
(Yao et al., 2022), selectively regulates the input current, decay factor, and reset mechanism, thereby
improving the dynamic learning ability of SNNs. Additionally, Wang et al. (2023) proposed a
novel spiking neuron with mixed output to alleviate the impact of the non-differentiable problem on
gradient precision. TC-LIF (Zhang et al., 2023) aimed to enhance the capability of SNNs to tackle
long-term sequences, which also provided inspiration for this work. However, the problem of gradient
divergence still exists for TC-LIF within a certain parameter range.

3 PRELIMINARIES

3.1 LEAKY INTEGRATE-AND-FIRE (LIF) NEURON MODEL

The LIF model is a widely used spiking neuron model in the neuroscience community. As shown in
Fig.1(a), the LIF model emulates the functioning of biological neurons by incorporating three key
processes: charging, leakage, and firing. The following equations describe the iterative version of the
LIF model in discrete form.

ml[t] = λlvl[t− 1] + I l[t], vl[t] = ml[t]− sl[t]θl.

I l[t] = W lsl−1[t]θl−1, sl[t] = H(ml[t]− θl) =

{
1, ml[t] ≥ θl

0, otherwise
. (1)

In the equations, ml[t] and vl[t] represent the membrane potential before and after emitting a spike
at the t-th time-step, respectively. I l[t] denotes the presynaptic input current and W l is the weight
matrix of the l-th layer. The membrane decay constant λl controls the extent to which neurons retain
previous information. When λl = 1, the LIF model degenerates into the Integrate-and-Fire (IF)
model. The binary variable sl[t] determines whether a spike is fired or not. We choose the soft-reset
mechanism in Eq.(1), where the membrane potential vl[t] is decreased by a threshold magnitude
when it exceeds the firing threshold θl. The relationship between sl[t] and ml[t] is mathematically
represented by the Heaviside step function H(·).

3.2 SPATIAL-TEMPORAL BACK-PROPAGATION (STBP) WITH SURROGATE GRADIENT

Drawing inspiration from the calculation mode of vanilla BPTT, we can transfer it to the learning of
SNNs. As shown in Eq.(2), it can be observed that the gradient propagation in SNNs unfolds from
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Figure 2: The specific extraction process of the historical and current information in the LM-H model.

back to front in both spatial and temporal dimensions. Here L represent the chosen loss function. Note
that the Heaviside function is non-differentiable, which introduces an intractable node ∂sl[t]/∂ml[t]
in the gradient calculation graph. To address it, previous works have used a surrogate function H ′(·)
that closely resembles the Heaviside function but is differentiable for back-propagation. In Eq.(3), we
employ the well-known triangle function, where γ controls the width of the non-zero interval.

∂L
∂ml[t]

=
∂L

∂sl[t]

∂sl[t]

∂ml[t]
+

∂L
∂ml[t+ 1]

∂ml[t+ 1]

∂ml[t]
, (2)

∂sl[t]

∂ml[t]
= H ′(ml[t]− θl) =

1

γ2
max

(
0, γ − |ml[t]− θl|

)
. (3)

4 METHODOLOGY

4.1 REPRESENTATION DEFECTS OF THE LIF MODEL

The gradient vanishing & exploding problem in deep residual architectures. For the ResNet
family, researchers have identified a potential issue with gradient calculation in the LIF model when
it comes to the identity mapping path (Fang et al., 2021a). Considering a residual network with L
blocks, if we assume ∀l ∈ [1, L],vl[t− 1] = 0 and choose an identity mapping path for each residual
block, at the t-th time-step, we obtain the overall back-propagation chain

∏L
l=1

∂sl[t]
∂Il[t]

∂Il[t]
∂sl−1[t]

=∏L
l=1 H

′(sl−1[t] − θl). Since sl[t] is a binary variable, the value of H ′(sl[t] − θl) can be less
or greater than 1. Consequently, as the number of blocks increases, there is a possibility that∏L

l=1 H
′(sl−1[t] − θl) −→ 0 or

∏L
l=1 H

′(sl−1[t] − θl) −→ +∞, leading to the ineffectiveness of
identity mapping and gradient calculation.

The inability to differentiate the current response through extracting past information. Con-
sidering two LIF neurons i and j in the l-th layer, if vl

i[t − 1] = vl
j [t − 1] and I l

i [t] = I l
j [t], both

neurons i and j will exhibit identical spike response and membrane potential renewal at the t-th
step. However, during the preceding t− 1 steps, neurons i and j may actually have different spike
firing sequences {sli[1], ..., sli[t− 1]} and {slj [1], ..., slj [t− 1]}, which corresponds to different latent
information. Unfortunately, the LIF model lacks the capability to differentiate between neurons i and
j at the t-th time step based on their previous spike firing patterns.

4.2 LEARNABLE MULTI-HIERARCHICAL (LM-H) NEURON MODEL

To overcome the limitations of the LIF model discussed earlier, we propose a brand-new LM-H
neuron model. As shown in Fig.1(b), the LM-H model incorporates separate dendrite and soma
layers. The input current flows through the dendrite layer before reaching the soma layer, where the
decision to generate spikes is determined by the specific membrane potential of the soma layer. We
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Figure 3: Progressive STBP Training framework for the LM-H Neuron.

provide a dynamic description of the LM-H model as follows.

vl
D[t] = µl

Dvl
D[t− 1] + µl

Sv
l
S [t− 1] + I l[t].

vl
S [t] = ml

S [t]− sl[t]θl, ml
S [t] = λl

Sv
l
S [t− 1] + λl

Dvl
D[t].

I l[t] = W lsl−1[t]θl−1, sl[t] = H(ml
S [t]− θl) =

{
1, if ml

S [t] ≥ θl

0, otherwise
(4)

Here vl
D[t] is the dendrite membrane potential at the t-th step. ml

S [t] and vl
S [t] denote the soma

potential before and after firing a spike, respectively. µl
D, µl

S , λ
l
D, λl

S are the relevant scaling factors
of the LM-H model.

Interpreting the variables and parameters in the LM-H model. In order to facilitate a comprehen-
sive analysis of this multi-layer neuron, we can transform the LM-H model into a single-layer form
by applying Eq.(4) iteratively along the temporal dimension. This allows us to express all variables in
terms of equations involving vl

S [t] and I l[t]. Here we set vl
D[0] = 0 to simplify the expression.

vl
D[t] = µl

Sv
l
S [t− 1] + I l[t] + µl

Dvl
D[t− 1]

= (µl
Sv

l
S [t− 1]+I l[t])+µl

D(µl
Sv

l
S [t− 2]+I l[t− 1])+(µl

D)2vl
D[t− 2]

=

t∑
k=1

(µl
D)t−k(µl

Sv
l
S [k − 1] + I l[k]), (5)

ml
S [t] = λl

Sv
l
S [t− 1] + λl

Dvl
D[t]

=

t−1∑
k=1

λl
D(µl

D)t−k(µl
Sv

l
S [k − 1] + I l[k])︸ ︷︷ ︸

historical representation

+
(
(λl

S + λl
Dµl

S)v
l
S [t− 1] + λl

DI l[t]
)︸ ︷︷ ︸

current representation

. (6)

In Eq.(5), one can find that vl
D[t] retains information about the membrane potential and input current

at each previous time step, which implies that the dendrite layer plays a role in long-term memory.
Furthermore, Eq.(6) reveals that the LM-H neuron extracts two types of information, as depicted in
Fig.2. One type is historical information obtained from previous time-steps, while the other type
corresponds to the current information, which aligns with the behavior of a vanilla LIF neuron.
Among them, µl

D determines the overall proportion of historical information extraction, while µl
S

describes the ratio of previous potential information in the historical representation. λl
S affects the

extent of current potential leakage, and λl
D scales the input current. Notably, λl

D also plays a crucial
role in regulating gradient calculation in deep residual structure. Regarding the possible gradient
failure on the identity path mentioned above, the corresponding calculated gradient chain for the
LM-H model becomes

∏L
l=1 λ

l
DH ′(λl

Dsl−1[t]− θl), which means that appropriately chosen values
for λl

D can ensure proper gradient calculations in deep networks.

Furthermore, from Eq.(6), we note that the current LM-H model can only obtain historical in-
formation through the form of exponential decay by regulating µl

D, which cannot flexibly deter-
mines the proportion of information extraction at each time-step. Therefore, as shown in Fig.2, we
also consider a more radical version where we set membrane-related parameters at each time-step
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Figure 4: Efficient Training framework for the LM-H Neuron.

(∀t, µl
D,t, µ

l
S,t, λ

l
S,t, λ

l
D,t) to be learnable, resulting in Eq.(6) becoming the following form:

ml
S [t] =

t−1∑
k=1

λl
D,k

t∏
j=k+1

µl
D,j(µ

l
S,kv

l
S [k−1]+I l[k])+

(
(λl

S,t+λl
D,tµ

l
S,t)v

l
S [t−1]+λl

D,tI
l[t]
)
. (7)

4.3 A PROGRESSIVE STBP TRAINING FRAMEWORK FOR LM-H MODEL

From Eq.(6), we observe that when µl
D = µl

S = 0 and λl
D = 1, the LM-H model degenerates into a

vanilla LIF model with a decay constant equal to λl
S . This indicates that the LIF model is a special

case of the LM-H model. Inspired by this, we propose to progressively optimize the model parameters
(e.g., µl

D, µl
S , λl

D, λl
S) during the training process, starting with the degradation of the LM-H model

to the LIF model.

As illustrated in Fig.3, we set µl
D, µl

S , λ
l
D, λl

S in each layer as learnable parameters. To optimize
these parameters stably and smoothly, we propose a scalable-shiftable sigmoid learning function
defined as h(x) = a ∗ σ(x) + b, where a controls the length of the parameter optimization interval,
while b represents the initial position where the parameters can be chosen, and σ(x) denotes the
sigmoid function. In our training process, we set µl

D := alµ,D ∗ σ(xl
µ,D) + blµ,D, where xl

µ,D is the
actual learnable tensor. To maintain consistency with the initial condition of our progressive training,
we set alµ,D = alµ,S = alλ,D = alλ,S = 1, blµ,D = blµ,S = −0.5, blλ,D = blλ,S = 0.5 and the initial
values of xl

µ,D, xl
µ,S , x

l
λ,D, xl

λ,S to 0.

Eqs.(8)-(9) outline the back-propagation chain of our progressive training framework. As shown in
Fig.3, our gradient calculation involves spatial and temporal dimensions. For spatial dimension, it
further involves two distinct levels: the dendrite-level and soma-level. During the training process,
we set ∂vl

S [t]

∂ml
S [t]

= 1 rather than ∂vl
S [t]

∂ml
S [t]

= 1− θl ∂sl[t]

∂ml
S [t]

. This choice allows the connection strength of

various propagation chains to be entirely regulated by the parameters µl
D, µl

S , λ
l
D, λl

S .

∂L
∂ml

S [t]
=

∂L
∂sl[t]

∂sl[t]

∂ml
S [t]

+
∂L

∂ml
S [t+ 1]

∂ml
S [t+ 1]

∂ml
S [t]

,

∂L
∂vl

D[t]
=

∂L
∂ml

S [t]

∂ml
S [t]

∂vl
D[t]

+
∂L

∂vl
D[t+ 1]

∂vl
D[t+ 1]

∂vl
D[t]

. (8)

∂ml
S [t+ 1]

∂ml
S [t]

=
∂ml

S [t+ 1]

∂vl
S [t]

∂vl
S [t]

∂ml
S [t]

+
∂ml

S [t+ 1]

∂vl
D[t+ 1]

∂vl
D[t+ 1]

∂ml
S [t]

= λl
S + λl

Dµl
S ,

∂vl
D[t+ 1]

∂vl
D[t]

=
∂vl

D[t+ 1]

∂vl
D[t]

+
∂vl

D[t+ 1]

∂ml
S [t]

∂ml
S [t]

∂vl
D[t]

= µl
D + λl

Dµl
S . (9)

4.4 OPTIMIZING THE LM-H MODEL THROUGH EFFICIENT TRAINING

Based on previous discussions, we have established that the LIF model is a special case of the LM-H
model. In this section, we aim to extend the hybrid training method proposed in (Rathi & Roy, 2023)
and the online training method proposed in (Xiao et al., 2022) to the LM-H model.
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Table 1: Comparison with previous SOTA works. * denotes an improved network structure.

Dataset Method Architecture Time-steps Accuracy(%)

CIFAR-10

STBP-tdBN (Zheng et al., 2021) ResNet-19 4 92.92
Dspike (Li et al., 2021) ResNet-18 4 93.66
TET (Deng et al., 2022) ResNet-19 4 94.44

GLIF (Yao et al., 2022) ResNet-18 4, 6 94.67, 94.88
ResNet-19 4, 6 94.85, 95.03

Ours ResNet-18 4 95.62
ResNet-19 4 96.36

CIFAR-100

Dspike (Li et al., 2021) ResNet-18 4 73.35
TET (Deng et al., 2022) ResNet-19 4 74.47

GLIF (Yao et al., 2022) ResNet-18 4, 6 76.42, 77.28
ResNet-19 4, 6 77.05, 77.35

TEBN (Duan et al., 2022) ResNet-19∗ 4, 6 78.71, 78.76

Ours
ResNet-18 4 78.58
ResNet-19 4 80.31
ResNet-19∗ 4 81.65

ImageNet-200

DCT (Garg et al., 2020) VGG-13 125 56.90
Online-LTL (Yang et al., 2022) VGG-13 16 54.82
Offline-LTL (Yang et al., 2022) VGG-13 16 55.37

ASGL (Wang et al., 2023) VGG-13 4, 8 56.57, 56.81
Ours VGG-13 4 59.93

DVS-CIFAR10

STBP-tdBN (Zheng et al., 2021) ResNet-19 10 67.80
RecDis-SNN (Guo et al., 2022a) ResNet-19 10 72.42

MPBN (Guo et al., 2023) ResNet-19 10 74.40
Ours ResNet-19 10 79.10

Hybrid Training. Similar to the LIF model, the average spike firing rate of the LM-H model also
follows an approximate linear relationship between layers. By combining the dynamic equations
for vl

S [t] and vl
D[t] from Eq.(4), and then performing sum and average operations along the time

dimension, we arrive at the following equation:∑T
t=1 s

l[t]θl

T
=

∑T
t=1 W

lsl−1[t]θl−1

T
−

(∑T
t=1 δ

l
D[t]

T
+

∑T
t=1 δ

l
S [t]

T

)
,

δlD[t] = (1− λl
D)vl

D[t]− µl
Dvl

D[t− 1], δlS [t] = vl
S [t]− (λl

S + µl
S)v

l
S [t− 1]. (10)

Here T denotes the total time period. δlD[t] and δlS [t] are the conversion errors generated by the
dendrite and soma layer. When µl

D + λl
D = 1, µl

S + λl
S = 1, the impact of conversion errors is

further reduced. By defining rl[T ] =
∑T

t=1 s
l[t]θl/T , we obtain the following simplified results.

rl[T ] = W lrl−1[T ]−
(
(1− λl

D)vl
D[T ]− µl

Dvl
D[0]

T
+

vl
S [T ]− vl

S [0]

T

)
. (11)

One can find that Eq.(11) further simplifies to rl[T ] = W lrl−1[T ] − vl
S [T ]−vl

S [0]
T when λl

D =

1, µl
D = 0. In this case, the relationship between the spike firing rates of adjacent layers in the

LM-H model aligns completely with that of the LIF model. To leverage this similarity, as depicted in
Fig.4(a), we initially utilize the conventional ANN-SNN conversion framework (Bu et al., 2022) to
obtain a specialized LM-H model with λl

D = 1 and µl
D = 0. We then proceed to optimize the model

parameters through the progressive learning approach mentioned earlier. Notably, the progressive
learning stage requires only a small number of epochs (typically ≤ 30) to significantly enhance
the performance of the LM-H model. Considering that the time and memory costs of ANN-SNN
conversion are O(1), and the corresponding costs of STBP are O(T ), our proposed hybrid training
method will significantly save energy consumption.

Online Training. For the LIF model, previous works achieved gradient renewal at each step by can-
celing the dependencies between propagation chains at different time-steps (e.g. ∂ml[t]/∂ml[t− 1]),
ensuring that memory consumption does not increase linearly with the growth of time-steps. However,
for the LM-H model, it is not possible to cancel the gradient calculation for the learnable parameters
connecting propagation chains from different time steps (e.g. µl

D, µl
S , λ

l
S). To address it, we propose

an online training framework called time-slicing training. As shown in Fig.4(b), we group consecutive
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Table 2: Performance of hybrid training for LM-H model.

Dataset Method Architecture Time-steps Accuracy(%)

CIFAR-10
QCFS (Bu et al., 2022) ResNet-18 4 93.66

ResNet-20 4 83.75

Ours ResNet-18 4 94.02
ResNet-20 4 87.56

CIFAR-100
QCFS (Bu et al., 2022) VGG-16 4 69.62

ResNet-20 4 34.14

Ours VGG-16 4 73.11
ResNet-20 4 57.12

ImageNet-200 QCFS (Bu et al., 2022) VGG-13 4 45.15
Ours VGG-13 4 49.09

Table 3: Performance of time-slicing online training on ResNet-18.

Dataset Method Time-steps Accuracy(%)
CIFAR-10 SLTT (Meng et al., 2023) 6 94.44

3 time-steps per slice, 2 slices 4, 6, 8 95.05, 95.42, 95.49

CIFAR-100

SLTT (Meng et al., 2023) 6 74.38
2 time-steps per slice, 2 slices 4, 6, 8 76.27, 77.10, 77.56
2 time-steps per slice, 3 slices 4, 6, 8 75.99, 77.35, 77.81
2 time-steps per slice, 4 slices 4, 6, 8 74.81, 76.28, 77.01
3 time-steps per slice, 2 slices 4, 6, 8 77.28, 78.21, 78.66
4 time-steps per slice, 2 slices 4, 6, 8 77.23, 78.30, 78.59

k time steps into a single slice, effectively dividing the total time period into ⌈T/k⌉ slices. Within
each slice, we cancel the gradient calculation between different slices. After each time slice ends, a
gradient refresh will be performed to ensure that the total memory overhead does not exceed O(k).

5 EXPERIMENTS

5.1 EXPERIMENTAL SETTINGS

To validate the effectiveness of our proposed model and training frameworks, we conduct experimen-
tation on various datasets, including CIFAR Family (Krizhevsky et al., 2009), ImageNet-200 (Deng
et al., 2009), and DVS-CIFAR10 (Li et al., 2017) datasets. We specifically select mainstream network
architectures that are consistent with previous works, including VGG (Simonyan & Zisserman, 2014)
and ResNet (He et al., 2016). More additional experiments and details are provided in the Appendix.

5.2 COMPARISON WITH PREVIOUS STATE-OF-THE-ART WORKS

CIFAR Family (standard dataset). We have selected previous state-of-the-art works in various areas
of SNN learning as benchmarks for comparing our proposed method. These benchmarks include
optimization of learning function (Deng et al., 2022), surrogate gradient (Li et al., 2021), batchnorm
layers (Zheng et al., 2021; Duan et al., 2022), and membrane-related parameters (Yao et al., 2022).
As shown in Tab.1, the LM-H model demonstrates significant advantages over other methods in terms
of performance. For example, on the CIFAR-100 dataset, the LM-H model achieves a top-1 accuracy
of 78.58% and 80.31% on ResNet-18 and ResNet-19 with 4 time-steps, respectively, which is 2.16%
and 3.26% higher than GLIF on the corresponding network architecture. Furthermore, for ResNet-19
with the improved structure, our method outperforms TEBN with a 2.94% accuracy improvement
under 4 time-steps. It is worth noting that the performance of our method at 4 time-steps significantly
surpasses that of other works at 6 time-steps for the CIFAR-10 and CIFAR-100 datasets.
ImageNet-200 (large-scale dataset). From Tab.1, we can note that the performance of our progressive
training is 3.36% higher than ASGL, a current advanced neuron model with adaptive smoothing
gradient. Additionally, our model exhibits superior performance at 4 time-steps compared to other
methods (Garg et al., 2020; Yang et al., 2022; Wang et al., 2023) at higher time-step ranges of 8-125.
DVS-CIFAR10 (neuromorphic dataset). We also evaluate the representation ability of the LM-
H model on the neuromorphic dataset. Compared to STBP-tdBN (Zheng et al., 2021), RecDis-
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Figure 5: Performance of LM-H neuron (which is obtained after T-steps training) at different time-
steps on the CIFAR-100 dataset.

SNN (Guo et al., 2022a) and MPBN (Guo et al., 2023), our model achieves accuracy improvements
of 11.30%, 6.68% and 4.70%, which demonstrate the effectiveness of our proposed method.

5.3 PERFORMANCE ANALYSIS OF EFFICIENT TRAINING FRAMEWORK

Hybrid Training. We utilize the QCFS (Bu et al., 2022) as our ANN-SNN conversion framework
during the first stage to obtain an LM-H model under special conditions (µl

D = 0, λl
D = 1, µl

S+λl
S =

1). For the progressive training stage, since we will merely optimize the LM-H model with very
limited iterations (30 epochs), we can consider this stage as a fine-tuning process. For the CIFAR
Family and ImageNet-200 datasets, we set the initial learning rate as 2 × 10−4 and 1 × 10−4,
respectively. As shown in Tab.2, we note that the second stage still plays a crucial role, even with a
finite number of optimization iterations. This is particularly evident for QCFS conversion models
that exhibit poor performance under low time-latency conditions. For example, on the CIFAR-100
dataset, we achieve accuracy improvements of 3.49% for VGG-16 and 22.98% for ResNet-20 during
further optimization within 30 epochs.
Online Training. We have chosen the current state-of-the-art work of online training (Meng et al.,
2023) as the target for our comparison. As shown in Tab.3, our proposed scheme (3 time-steps per
slice, 2 slices) outperforms SLTT by 3.83% on the CIFAR-100 dataset with 6 time-steps. In addition,
we investigate the impact of slice length and slice quantity on network performance. It is evident that
using a very short slice length (e.g. 2 time-steps per slice) may lead to a slight decrease in training
precision. On the other hand, increasing the number of slices excessively (e.g. 4 slices) does not yield
further improvements in network performance.

5.4 LONG-RANGE PERFORMANCE REWARD FOR LM-H MODEL

We also discover an interesting phenomenon regarding the LM-H model: despite using specific
training steps during the learning process, the model’s precision can still be further improved as the
number of time-step increases during the inference stage. As shown in Fig.5, we use pink dotted
lines to indicate the accuracy achieved under specific training steps, while purple numbers represent
the peak performance of our model during the inference process. Across various training parameter
configurations, we observe that the models exhibit an improvement range of approximately 0.6% to
3.3% over an extended period of time. We named this phenomenon as “Long-Range Performance
Reward”, which indicates that the membrane-related parameters we have learned during the training
stage (e.g. µl

D, µl
S , λ

l
S , λ

l
D) can still effectively extract information over a prolonged time range.

6 CONCLUSIONS

In this paper, we propose the LM-H neuron that can comprehensively utilize historical and current
information. We demonstrate that the LM-H model is the generalization of LIF neurons and addresses
the calculation deficiencies associated with LIF neurons. Moreover, we design a progressive STBP
training framework to dynamically regulate historical and current representation, and propose efficient
training schemes to significantly reduce the computational overhead. Considering that our method has
outperformed previous state-of-the-art works in multiple experiments, we believe that the proposal of
the LM-H model will further promote relevant research in the field of advanced spiking neurons.
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A APPENDIX

A.1 EXPERIMENTAL IMPLEMENTATION DETAILS

In this paper, we choose Stochastic Gradient Descent (SGD) optimizer (Bottou, 2012) and Cosine
Annealing scheduler (Loshchilov & Hutter, 2017) for all experimental cases. Following the approach
of previous works, we incorporate data-augmentation techniques to enhance the performance of SNN
models, including Cutout (DeVries & Taylor, 2017) and Auto-Augment (Cubuk et al., 2019). For
the DVS-CIFAR10 dataset, we resize the neuromorphic data to 48 × 48 pixels and integrate each
image into 10 frames. In the progressive STBP training framework, we consider two optimization
configurations: TET function (Deng et al., 2022) with vanilla batchnorm layers and Cross-Entropy
function based on firing rate with tdBN layers (Zheng et al., 2021). We select the configuration that
achieves optimal performance on the CIFAR and ImageNet-200 datasets. In addition, for ImageNet-
1k dataset, we choose the combination of Cross-Entropy function, tdBN layers and an improved
version of ResNet (Hu et al., 2021). For the hybrid training framework, our further training is based
on the pre-trained QCFS models (Bu et al., 2022) with L = 4 or L = 8, where L denotes the
quantization level of the QCFS function. For time-slicing online training, we adopt the TET function
to optimize gradients for each time slice. The detailed hyper-parameter settings can be found in
Tab.S1.

Table S1: Experimental hyper-parameter configuration.

Framework Dataset Architecture Optimizer (lr, wd) Batchsize Epochs

Progressive Training

CIFAR-10 ResNet-18

SGD (0.025, 5× 10−4) 64 300

ResNet-19

CIFAR-100
ResNet-18
ResNet-19
ResNet-19∗

ImageNet-200 VGG-13
DVS-CIFAR10 ResNet-19 SGD (0.1, 5× 10−4) 32
ImageNet-1k ResNet-34 SGD (0.1, 0) 64× 4 320

Hybrid Training

CIFAR-10 ResNet-18

SGD (0.002, 5× 10−4) 64 30
ResNet-20

CIFAR-100
VGG-16

ResNet-20
ImageNet-200 VGG-13 SGD (0.001, 5× 10−4)

2 time-steps per slice CIFAR-10

ResNet-18

SGD (0.0125, 5× 10−4)

64 300

CIFAR-100

3 time-steps per slice CIFAR-10 SGD (0.01875, 5× 10−4)CIFAR-100

4 time-steps per slice CIFAR-10 SGD (0.025, 5× 10−4)CIFAR-100

A.2 PERFORMANCE OF THE LM-H MODEL UNDER SPARSE LEARNING

We further explore the representation ability of the LM-H model under sparse weights by employing
the STDS pruning strategy (Chen et al., 2022) to sparsify the weights of SNN models. The specific
equations for weight sparsification are described as follows:

W l
sparse = sign(W l) · max(|W l| − d, 0), (S1)

dt =
1

2

(
sin
(
tπ

Td
− π

2

)
+ 1

)
D. (S2)

Here d, dt represents the clipping width of the current weights, while D denotes the final target width.
Td is the total number of updates to d during the training process. Throughout the sparse training
procedure, d continuously increases according to Eq.S2, with D set to 0.05.

Tab.S2 demonstrates the superior capability of the LM-H model in sparse learning. Even when the
sparsity exceeds 80%, we still outperform ESL-SNN (Shen et al., 2023) by 4.94% and 5.83% on the
CIFAR-10 and CIFAR-100 datasets, respectively. Notably, the performance of the LM-H model under
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Figure S1: The learning situation for LM-H model on DVS-CIFAR10, ResNet-19.

sparse weights is significantly better than that of previous works under normal learning. In addition,
we observe that despite trimming more than 80% of the weights, the LM-H model’s performance
does not exhibit significant degradation (with accuracy loss generally below 1%).

Table S2: Comparison of sparse STBP training with previous works.

Dataset Method Architecture Sparsity(%) Accuracy(%)

CIFAR-10

STBP-tdBN (Zheng et al., 2021)

ResNet-19

- 92.92
TET (Deng et al., 2022) - 94.44
GLIF (Yao et al., 2022) - 94.85

ESL-SNN (Shen et al., 2023) 50.00 91.09

Ours ResNet-19 89.59 96.03
- 96.36

CIFAR-100

TET (Deng et al., 2022)
ResNet-19

- 74.47
GLIF (Yao et al., 2022) - 77.05

ESL-SNN (Shen et al., 2023) 50.00 73.48

Ours ResNet-19 81.60 79.31
- 80.31

A.3 LEARNING SITUATION OF MEMBRANE-RELATED PARAMETERS

We visualize the learning results of the relevant membrane-related parameters on the LM-H model.
As shown in Fig.S1, µl

D, µl
S , λ

l
S , λ

l
D dynamically learn suitable values for different layers, achieving

effective global information extraction layer by layer.
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A.4 DETAILED EXPLANATION ABOUT EFFICIENT TRAINING FOR THE LM-H MODEL

Hybrid Training. The first stage of the hybrid training framework is an ANN-SNN Conversion with
Quantization-Clip-Floor-Shift (QCFS) function, which can be described as follows:

al =
θl

L
clip

(⌊
al−1L

θl
+

1

2

⌋
, 0, L

)
. (S3)

Here al represents the activation output of the QCFS ANN model in the l-th layer and L denotes
the quantization level. Bu et al. (2022) has proved that the discrepancy between rl[T ] and al will be
optimized to a minimum value for IF model under the condition of adopting QCFS function. As the
LM-H model will degenerate to a vanilla IF model when µl

D = 0, µl
S + λl

S = 1, λl
D = 1, we can

obtain an LM-H model under special conditions through QCFS ANN-SNN Conversion.

Once the ANN-SNN Conversion procedure is completed, we will copy the weights and membrane-
related parameters from the QCFS ANN model to the corresponding positions in the LM-H model.
Due to the fact that the dendrite layer is actually hidden when µl

D = 0, the initial value of the
membrane potential θl/2 and the learnable firing threshold θl are directly copied to the soma layer.

During the progressive training stage, we introduce learnable parameters for the membrane-related
factors and weights to facilitate more stable fine-tuning. However, the firing thresholds are treated as
scalars. As the QCFS function simulates the average firing rate of an LM-H neuron over L steps, we
typically set the training step T at this stage to L. The overall algorithm description can be found in
Algorithm 1.

Algorithm 1 Hybrid training framework for the LM-H model.

Require: Pretrained QCFS ANN model fANN(W , θ) with L layers; Dataset D; Number of time-
steps used for training T ; Loss function L; Cross-Entropy function LCE .

Ensure: SNN model fSNN(W , θ,vD,vS , s, µD, µS , λS , λD).
1: # Convert ANN to SNN
2: for l = 1 to L do
3: fSNN.W

l = fANN.W
l

4: fSNN.θ
l = fANN.θ

l

5: fSNN.v
l
D[0] = 0, fSNN.v

l
S [0] = 1

2fSNN.θ
l

6: fSNN.µ
l
D = 0, fSNN.µ

l
S + fSNN.λ

l
S = 1, fSNN.λ

l
D = 1

7: end for
8: # Progressive training for LM-H model
9: # Set µD, µS , λS , λD as learnable parameters and θ as scalars

10: for (Image,Label) in D do
11: # LM-H model performs forward propagation based on Eq.(4)
12: for l = 1 to L do
13: if Use tdBN layer then
14: {fSNN.s

l[1], ..., fSNN.s
l[T ]} = fSNN({fSNN.W

lfSNN.s
l−1[1], ..., fSNN.W

lfSNN.s
l−1[T ]})

15: end if
16: if Use vanilla batchnorm layer then
17: for t = 1 to T do
18: fSNN.s

l[t] = fSNN(fSNN.W
lfSNN.s

l−1[t])
19: end for
20: end if
21: end for
22: if Use TET loss function then
23: L = 1

T

∑T
t=1 LCE(fSNN.s

l[t],Label)
24: end if
25: if Use vanilla loss function then
26: L = LCE(

1
T

∑T
t=1 fSNN.s

l[t],Label)
27: end if
28: # LM-H model performs back-propagation based on Eq.(8)
29: end for
30: return fSNN(W , θ,vD,vS , s, µS , µD, λS , λD)
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Time-slicing Online Training. Algorithm 2 has depicted the overall procedure of time-slicing
training. Assume two adjacent k time-steps slices: slice n and slice n + 1. Within the slice, we
perform normal progressive STBP training for the LM-H model. For the calculation chains between
slices (e.g. ∂ml

S [n×k+1]

∂ml
S [n×k]

,
∂vl

D[n×k+1]

∂vl
D[n×k]

), we separate them from the entire gradient calculation graph,
which means that forward propagation can calculate normally on these chains but back-propagation
cannot. During back-propagation, the slices are completely detached from each other, which achieves
gradient updates slice by slice and effectively saves computational memory overhead.

Algorithm 2 Time-slicing online training framework for the LM-H model.

Require: Dataset D; Time-slice containing k time-steps; Number of time-steps used for training T ;
Loss function L; Cross-Entropy function LCE .

Ensure: SNN model fSNN(W , θ,vD,vS , s, µD, µS , λS , λD).
1: # Set µD, µS , λS , λD as learnable parameters and θ as scalars
2: for (Image,Label) in D do
3: for slice = 1 to ⌈T/k⌉ do
4: for l = 1 to L do
5: # LM-H model performs forward propagation based on Eq.(4)
6: if Use tdBN layer then
7: {fSNN.s

l[k× (slice−1)+1], ..., fSNN.s
l[k× slice]} = fSNN({fSNN.W

lfSNN.s
l−1[k×

(slice − 1) + 1], ..., fSNN.W
lfSNN.s

l−1[k × slice]})
8: end if
9: if Use vanilla batchnorm layer then

10: for t = 1 to k do
11: fSNN.s

l[k × (slice − 1) + t] = fSNN(fSNN.W
lfSNN.s

l−1[k × (slice − 1) + t])
12: end for
13: end if
14: # Detach fSNN.v

l
D[k × slice], fSNN.v

l
S [k × slice] from the gradient computational graph

15: end for
16: # LM-H model performs gradient updates for each time-slice
17: if Use TET loss function then
18: L = 1

k

∑k×slice
t=k×(slice−1)+1 LCE(fSNN.s

l[t],Label)
19: end if
20: if Use vanilla loss function then
21: L = LCE(

1
k

∑k×slice
t=k×(slice−1)+1 fSNN.s

l[t],Label)
22: end if
23: # LM-H model performs back-propagation based on Eq.(8)
24: end for
25: end for
26: return fSNN(W , θ,vD,vS , s, µS , µD, λS , λD)

Table S3: Experimental results about the radical version on multiple datasets.

Dataset Method Architecture Time-steps Accuracy(%)

CIFAR-10 Ours ResNet-18 4 95.62
Ours (radical version) ResNet-18 4 95.82

CIFAR-100 Ours ResNet-18 4 78.58
Ours (radical version) ResNet-18 4 78.90

ImageNet-200 Ours VGG-13 4 59.93
Ours (radical version) VGG-13 4 60.37

ImageNet-1k

STBP-tdBN (Zheng et al., 2021) ResNet-34 6 63.72
TET (Deng et al., 2022) ResNet-34 6 64.79

RecDis-SNN (Guo et al., 2022a) ResNet-34 6 67.33
MBPN (Guo et al., 2023) ResNet-34 4 64.71

SEW ResNet (Fang et al., 2021a) ResNet-34 4 67.04
GLIF (Yao et al., 2022) ResNet-34 4 67.52
Ours (radical version) ResNet-34 4 69.73
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A.5 COMPARISON BETWEEN THE VANILLA AND RADICAL VERSIONS OF THE LM-H MODEL

As shown in Eq.(6), the overall proportion term for historical information is represented as (µl
D)t−k,

indicating that the extracted proportions at different time-steps follow an exponential distribution.
In contrast, in Eq.(7), the corresponding term changes to

∏t
j=k+1 µ

l
D,j , allowing for more freedom

and randomness in the extracted proportions. In addition, in the radical version, relevant factors that
regulate the membrane potential (µl

S,t, λ
l
S,t) and input current (λl

D,t) are independently assigned at
each time-step, making the information representation range of the radical version wider than that of
the vanilla version.

Tab.S3 shows the relevant performance of the radical version on CIFAR and ImageNet datasets,
which demonstrates that the radical version does have the advantage of learning membrane-related
parameters more precisely. In addition, during the experimental procedure, we noticed that the
convergence speed of the radical version of the training accuracy was also ahead of the vanilla version,
especially on large-scale datasets.

A.6 ADDITIONAL EXPERIMENTS ON VGG STRUCTURE

We have also conducted additional experiments using the VGG architecture on the CIFAR-10 and
CIFAR-100 datasets. As shown in Tab.S4, our results demonstrate superior performance compared to
previous SOTA methods, even when employing smaller network structures and fewer time-steps.

Table S4: Comparison with previous works on the CIFAR datasets.

Dataset Method Architecture Time-steps Accuracy(%)

CIFAR-10

Diet-SNN (Rathi & Roy, 2023) VGG-16 5 92.70
Real Spike (Guo et al., 2022b) VGG-16 5, 10 92.90, 93.58

Ours VGG-13 4 93.98
Ours (radical version) VGG-13 4 94.80

CIFAR-100

Diet-SNN (Rathi & Roy, 2023) VGG-16 5 69.67
RecDis-SNN (Guo et al., 2022a) VGG-16 5 69.88
Real Spike (Guo et al., 2022b) VGG-16 5, 10 70.62, 71.17

Ours VGG-13 4 73.99
Ours (radical version) VGG-13 4 74.79
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