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Abstract

Continuous normalizing flows (CNFs) can model data distributions with expressive
infinite-length architectures. But this modeling involves computationally expen-
sive process of solving an ordinary differential equation (ODE) during maximum
likelihood training. Recently proposed flow matching (FM) framework allows
to substantially simplify the training phase using a regression objective with the
interpolated forward vector field. In this paper, we propose an interpolant-free dual
flow matching (DFM) approach without explicit assumptions about the modeled
vector field. DFM optimizes the forward and, additionally, a reverse vector field
model using a novel objective that facilitates bijectivity of the forward and reverse
transformations. Our experiments with the SMAP unsupervised anomaly detection
show advantages of DFM when compared to the CNF trained with either maximum
likelihood or FM objectives with the state-of-the-art performance metrics.

1 Introduction

Discrete-time (DNF) and continuous-time (CNF) normalizing flows have been previously extensively
studied and compared in details [Ruthotto and Haber, 2021]. With the pros and cons in each ap-
proach, we are motivated to apply CNFs in real-world generative and density estimation applications.
Theoretically, an infinite-length architecture with arbitrary parameterization can lead to a significant
advantages of CNFs when compared to DNF shortcomings. Meanwhile, CNFs with the ordinary
differential equation (ODE) integration step endure higher computational complexity, numerical
instabilities and approximation errors [Chen et al., 2018]. In particular, the latter is crucial in density
estimation which requires accurate estimates of the Jacobian matrix trace.

Recent flow matching (FM) framework [Lipman et al., 2023] simplifies the training phase in CNFs
by introducing a new regression objective. This objective minimizes mean square difference of a
parameterized vector field model and an interpolated vector field between two data distributions.
While the former is a conventional neural network with time-dependent conditioning, the latter
relies on certain assumptions about modeled data distributions. As a result, there is an extensive
line of research that proposes various forms of the interpolated vector fields and the corresponding
probability paths. We summarize recent works in Table 1 with the formal introduction in Section 2.
Diffusion models [Song and Ermon, 2019, Ho et al., 2020] that solve stochastic differential equations
(SDEs) can also be generalized using the FM framework [Tong et al., 2024].

In this paper, we analyze current interpolation-based FM approach and its inherent limitations i.e. the
Gaussian probability path assumption between two data distributions [Lipman et al., 2023]. To
address this limitation, we propose a novel interpolant-free dual flow matching (DFM) method.
Specifically, we accomplish interpolant-free FM using an additional parameterized reverse vector
field model. For simplicity, we model the reverse vector field using exactly the same architecture as
for the forward one. Then, we optimize our DFM using an objective that enforces transformation
bijectivity of the modeled forward and the reverse vector fields.
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Table 1: Generalization of probability paths for diffusion and flow matching methods by the [Tong
et al., 2024] framework. Unlike ours, these methods rely on an interpolation of the probability paths.

Probability Path q(z) µt(z) σt

Var. Exploding SDE [Song and Ermon, 2019] q(x1) x1 σ1−t

Var. Preserving SDE [Ho et al., 2020] q(x1) α1−tx1

√
1− α2

1−t

FM [Lipman et al., 2023] q(x1) tx1 tσ − t+ 1
Rectified FM [Liu et al., 2023] q(x0)q(x1) tx1 + (1− t)x0 0
Var. Preserving FM [Albergo and Vanden-Eijnden, 2023] q(x0)q(x1) cos(πt/2)x0 + sin(πt/2)x1 0
I-CFM [Tong et al., 2024] q(x0)q(x1) tx1 + (1− t)x0 σ

2 CNF Preliminaries and Prior FM Methods

Continuous normalizing flows. We follow Lipman et al. [2023] and Tong et al. [2024] notation.
We consider a pair of data distributions q(x0) and q(x1) over RD with densities p(x0) and p(x1),
respectively. Often, the p0 = p(x0) density represents a known prior distribution while the data
density p1 = p(x1) is not given with only access to an empirical q̂(x1) and p1 needs to be estimated.

Then, there are a probability density path p : [0, 1] × RD → R> 0, which is a time-dependent
probability density function pt(x) with t = [0, 1] such that

∫
pt(x)dx = 1, and a Lipschitz-smooth

time-dependent vector field u : [0, 1] × RD → RD. The vector field ut is used to construct a
time-dependent diffeomorphism i.e., the CNF ϕ : [0, 1]× RD → RD that is defined via the ODE as

dϕt(x)/dt = ut(ϕt(x)) and ϕ0(x) = x0, (1)

where ϕt(x) is the ODE solution with ϕ0(x) initial condition that transports x from time 0 to time t.

On the other hand, ϕt induces a push-forward pt = [ϕt]#(p0) that transports the density p0 from time
0 to time t. The time-dependent density pt is characterized by the continuity equation written by

∂pt(x)/∂t = −div(pt(x)ut(ϕt(x))) = −div(ft(x)), (2)

where the divergence operator, div, is defined as the sum of derivatives of ft(x) ∈ RD w.r.t. all
elements xd or, simply, the Jacobian matrix trace: div(f(x)) =

∑D
d=1 ∂fd(x)/∂xd = Tr(J).

The vector field ut(ϕt(x)) is often modeled without ϕt(x) invertability requirement by an arbitrary
neural network vθ(t,xt) with the learnable weight vector θ. Then, the continuity equation in (2) for
(1) neural ODE can be written using the instantaneous change of variables [Chen et al., 2018] as

d log pt(xt)/dt+Tr(∂vθ(t,xt)/∂x
T
t ) = 0. (3)

The (3) neural ODE can be solved both for a point x0 and the log-likelihood change as integration[
x0

log(p1/p0)

]
=

∫ t=0

t=1

[
vθ(t,xt)

−Tr(∂vθ(t,xt)/∂x
T
t )

]
dt, and initially

[
xt

log(p1/pt)

]
=

[
x1

0

]
. (4)

Then, the CNF maximizes likelihood (MLE) during training and uses its estimate at the evaluation as

argmaxθ LMLE := log p̂1 = log p0 −
∫ t=0

t=1

Tr
(
∂vθ(t,xt)/∂x

T
t

)
dt, (5)

where log p0 is the likelihood of a point x0 from (4) when evaluated using a known prior q(x0).

Flow matching training. Typically, solving the ODE (4) for the MLE objective (5) is computationally
expensive [Grathwohl et al., 2019, Zhuang et al., 2020]. The FM framework [Lipman et al., 2023]
proposes an alternative objective that regresses the vθ(t,xt) to ut by conditioning the latter by a
vector z = x1. This has been extended by the conditional FM (CFM) framework [Tong et al., 2024]
where the ut(x|z) and pt(x|z) are conditioned on a more general z ∼ q(z) such that the marginal
probability density path and the corresponding marginal vector field are defined as

pt(x) =

∫
pt(x|z)q(z) dz, and ut(x) = Ez∼q(z) [ut(x|z)pt(x|z)/pt(x)] . (6)
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The Gaussian conditional probability path in (6) has the unique conditional vector field such that
pt(x|z) = N (x |µt(z), σt(z)

2I) =⇒ ut(x|z) = (x− µt(z))σ
′
t(z)/σt(z) + µ′

t(z), (7)
where the mean µt(z) and the standard deviation σt(z) functions parameterize the path pt(x|z).
Finally, the CFM objective for the simplified CNF training using (7) result can be written as

argminθ LCFM := Et∼U(0,1),xt∼pt(x|z),x∼N (0,I),z∼q(z)∥vθ(t,xt)− ut(x|z)∥2. (8)

Recently proposed µt(z) and σt(z) for interpolation of Gaussian conditional probability path pt(x|z)
in (7) are given in Table 1. The above CFM framework is inherently limited by the (6) interpolation
assumption and (7) path choice. To overcome this, Chen and Lipman [2024] extend the Euclidean FM
to Riemannian manifolds. Kapusniak et al. [2024] introduce the metric FM that learns parameterized
interpolants. There are attempts to support FM for categorical data Stark et al. [2024], Cheng et al.
[2024], Campbell et al. [2024] and mixed categorical-continuous data [Dunn and Koes, 2024]. In
this paper, we are motivated by a different perspective: is it feasible to avoid the interpolation in FM
framework with a reasonable computational cost?

3 The Proposed Interpolant-free Dual Flow Matching

Figure 1: The CFM (top) regresses the Gaussian-
interpolated forward vector field by a neural net-
work with the affine transformation ϕt(x). Our
DFM (bottom) has two neural networks with the
free-form transformations with only the bijectivity
objective xt = ϕ−1

λ (ϕθ(xt)) for an arbitrary vec-
tor field and a probability path.

Dual CNF via a reverse vector field. Let’s ex-
tend the CNF framework that is defined in (1-4).
We introduce a dual CNF where its first part, im-
plemented as the above non-invertible vθ(t,xt),
approximates the vector field ut(ϕt(x)). In ad-
dition, we employ an extension vλ(t,yt) with
learnable parameters λ that models a reverse
vector field model ut(ϕ

−1
t (y)). In other words,

there is the forward transformation xt = ϕt(x)
and the inverse transformation yt = ϕt(y) =
ϕ−1
t (x) of the bijective map ϕt.

Then, we can reformulate the equations (4) for
vλ(t,yt) model with minor modifications. The
neural ODE in (3) can be solved in reverse simul-
taneously for a point x1 and the log-likelihood
change with the initial condition yt ∼ q(x0)
and log(p0/pt) = 0 as integration[

x1

log(p0/p1)

]
=

∫ t=1

t=0

[
vλ(t,yt)

−Tr
(

∂vλ(t,yt)

∂yT
t

)]
dt.

(9)

Interestingly, the (9) approach with the modified
maximum likelihood LMLE(λ) is known in the
DNF literature as a reverse divergence objective [Papamakarios et al., 2021]. When the target data p1
cannot be analytically evaluated, the (9) is impractical for CNF training with the MLE objective.

Interpolant-free DFM. On the other hand, the proposed dual CNF with the reverse model in (9) can
be used for the interpolant-free flow matching. Instead of the less expressive affine transformation
(ϕt(x|z) = µt(z)+σtx,x ∼ N (0, I)) induced by the Gaussian interpolation (7), the proposed DFM
only requires bijectivity of the free-form transformations ϕt and ϕ−1

t produced by, correspondingly,
the forward vθ(t,xt) and the reverse vλ(t,yt) vector field models.

Then, the proposed dual CNF with the bijective ϕt can be expressed as ODEs expressed by{
dϕt(x)/dt = ut(ϕt(x)) = vθ(t,xt)

dϕt(y)/dt = ut(ϕt(y)) = vλ(t,yt).
(10)

Assuming the ϕt(y) = ϕ−1
t (x) bijectivity in a neighborhood of t for x and y, (10) can be rewritten

using the univariate inverse function theorem by substituting the top to bottom as

dϕ−1
t (x)/dt = 1/ (dϕt(x)/dt) =⇒ diag (vθ(t,xt)⊙ vλ(t,yt)) = I. (11)
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The (11) objective can be achieved by minimizing the cosine distance between two unit vectors as

argminθ,λ LDFM := Et∼U(0,1),xt∼q̂(x1),yt∼q(x0) distcos (vθ(t,xt), vλ(t,yt)) , (12)

where this loss with vector normalization is more numerically stable in practice.

Once the (12) loss is minimized, the density estimation i.e. log p̂1 can be performed using the
conventional MLE approach (5) without the extension vλ(t,yt). On the other hand, the extension can
be used to improve log p̂1 by integrating (9) from t = 1 to t = 0. We use the latter strategy. While
we yet to accomplish sampling experiments, we expect DFM to outperform previous FM methods
due to the enforced bijectivity which is a common issue in ODEs [Gholami et al., 2019].

4 Experiments

Benchmark. We employ real-world SMAP [Hundman et al., 2018] time series benchmark for
unsupervised anomaly detection. The soil moisture active passive satellite (SMAP) dataset contains
soil samples and telemetry information from the Mars rover with 135K and 428K data points in the
training (without anomalies) and test sets, respectively. SMAP data has 25 data dimensions collected
from 55 entities. We follow Su et al. [2019] and transform the regression task into a classification
task using sliding windows (window size = 8) and replication padding [Tuli et al., 2022].

Flow models. We report experimental results for the Glow-type DNF [Kingma and Dhariwal, 2018]
from [Gudovskiy et al., 2024] with the state-of-the-art baselines. Second, we experiment with the
vanilla CNF from Section 2 and the CNF trained using the CFM framework i.e., the FM from [Lipman
et al., 2023] and I-CFM from [Tong et al., 2024]. All CNF models have exactly the same U-Net
architecture [Ronneberger et al., 2015], learnable N (µ,σ2I) prior and identical evaluation using (5).

Evaluation. We follow Su et al. [2019] and report precision (P), recall (R), AuC and F1 score. We
provide results when we solve ODE using the fixed-step (F) Euler method with 4 steps and the
variable-step (V) Dopri5 method (atol=1e-1, rtol=1e-2) from the [Zhuang et al., 2021] library. We
use the Hutchinson stochastic estimator of the Jacobian matrix trace [Hutchinson, 1990].

Table 2: SMAP unsupervised anomaly detection.
The best and the second best metrics, %.

Model
∫

P R AUC F1

OmniAnom. ✗ 81.3 94.2 98.9 87.3
CAE-M ✗ 81.9 95.7 99.0 88.3
TranAD ✗ 80.4 99.9 99.2 89.2

Glow DNF ✗ 87.4 84.9 91.6 86.1

Base CNF F 87.5 98.8 98.4 92.8
FM F 88.2 98.9 98.5 93.3

I-CFM F 88.0 99.2 98.6 93.3
DFM (ours) F 94.7 98.1 98.7 96.4

Base CNF V 86.5 91.9 94.9 89.1
FM V 87.4 99.6 98.7 93.1

I-CFM V 89.3 98.2 98.3 93.6
DFM (ours) V 89.7 98.9 98.6 94.1

Quantitative results. We compare flow mod-
els to other popular baselines: OmniAnomaly
[Su et al., 2019], CAE-M [Zhang et al., 2021],
TranAD [Tuli et al., 2022]. It is common in
these baselines to train and evaluate a separate
model for each SMAP entity. In contrast, all our
flow models use a single model for all entities
in Table 2 i.e. they are entity-unconditional.

We can derive several important conclusions
from Table 2 results. First, continuous-time
normalizing flows models, if properly trained
and evaluated, are able to outperform discrete-
time normalizing flows as well as other non-
flow models in this density estimation task. Sec-
ond, recent integration-free FM training meth-
ods using (8) perform similarly or better than
the CNF trained by computationally-expensive
MLE from (5). Third, the proposed DFM significantly outperforms prior FM methods with only the
2× complexity increase. In particular, DFM increases the non-saturated metrics such as precision and
F1 score by, correspondingly, 6.5 (88.2% →94.7% ) and 3.1 (93.3% →96.4% ) percentage points.

5 Conclusions

In this paper, we analyzed limitations of the interpolation-based flow matching framework that allows
to efficiently train a CNF model. To address the limitations, we proposed the interpolant-free dual
flow matching method. Our experiments with the SMAP benchmark showed that our DFM achieves
state-of-the-art results for the entity-unconditional unsupervised anomaly detection. In future, the
DFM objective (11) and the practical loss (12) can further be extended to multivariate case.
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