REOrdering Patches Improves Vision Models

Declan Kutscher! David M. Chan? Yutong Bai> Trevor Darrell> Ritwik Gupta?

'University of Pittsburgh 2University of California, Berkeley

Abstract

Sequence models such as transformers require inputs to be represented as one-
dimensional sequences. In vision, this typically involves flattening images using
a fixed row-major (raster-scan) order. While full self-attention is permutation-
equivariant, modern long-sequence transformers increasingly rely on architectural
approximations that break this invariance and introduce sensitivity to patch ordering.
We show that patch order significantly affects model performance in such settings,
with simple alternatives like column-major or Hilbert curves yielding notable
accuracy shifts. Motivated by this, we propose REOrder, a two-stage framework for
discovering task-optimal patch orderings. First, we derive an information-theoretic
prior by evaluating the compressibility of various patch sequences. Then, we learn a
policy over permutations by optimizing a Plackett-Luce policy using REINFORCE.
This approach enables efficient learning in a combinatorial permutation space.
REOrder improves top-1 accuracy over row-major ordering on ImageNet-1K by
up to 3.01% and Functional Map of the World by 13.35%.

1 Introduction

Autoregressive sequence models have become the backbone of leading systems in both language and
vision. These models operate on images by first converting their 2-D grid structure into a 1-D sequence
of patches. Conventionally, a row-major order is used for this linearization under the assumption that
full self-attention is utilized by the model. As self-attention, augmented with positional embeddings,
is permutation-equivariant, the exact patch order has been treated as inconsequential.

However, this assumption does not hold in the context of modern, long-sequence models which
introduce strong inductive biases such as locality [!], recurrence [2], or input-dependent state
dynamics [3] that are sensitive to input ordering. Through mechanisms such as sparse attention via
masking summarizing early parts of a long-sequence into latent representations, these methods are
able to model long-sequences in a computationally tractable fashion. However, these design choices
introduce a strong dependency on patch ordering, something that has previously been overlooked.

In this work, we demonstrate that merely swapping the row-major scan for an alternative, such as
column-major or Hilbert curves, yields measurable accuracy gains across multiple long-sequence
backbones. Further, we introduce REOrder, a method to learn an optimal patch ordering. REOrder
first approximates which patch ordering may lead to best performance and then learns to rank patches
in order of importance with reinforcement learning. Specifically, to convert the 2-D image into
a 1-D sequence, we first quantify the compressibility resulting from each of six different patch
orderings. Then, a Plackett-Luce ranking model is initialized with the least compressible ordering and
further trained to minimize classification loss with REINFORCE. REOrder improves performance on
ImageNet-1K by up to 3.01% (£0.23%) and Functional Map of the World by 13.35% (+0.21%).
Code and animations are available on

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://d3tk.github.io/REOrder/

Row Major Column Major Hilbert Spiral Diagonal Snake

== N

c3

—+

Figure 1: Visualizations of alternate patch sequence orderings. Six different patch orders—row-major,
column-major, Hilbert curve, spiral, diagonal, and snake—are shown as trajectories over a 14 x 14 grid of
patches. Each trajectory begins at the red dot and progresses to the black dot, illustrating the 1-D ordering
imposed on the 2-D patch grid.

2 Related Works

Transformers as sequence models for vision. The concept of treating visual data as linearized
sequences for generative modeling and other tasks has been explored for some time, with early work
using models like LSTMs on sequences of visual frames [4]. Building on the success of transformers
in image-sequence modeling, the Image Transformer [5] adapted this architecture to single images by
dividing each image into patches and processing these patches as a 1-D sequence. To manage the
computational cost for images, the original Image Transformer employed self-attention mechanisms
constrained to local neighborhoods of patches. The Vision Transformer (ViT) [0] expanded this
attention approach, applying global self-attention over the entire sequence of image patches. However,
this global attention mechanism, while effective, is an O(n?) operation in computation and space
w.r.t. the number of patches, becoming computationally prohibitive for long-sequences. To overcome
this challenge and enable the application of transformers to larger images, subsequent research
has developed various strategies, including hierarchical tokenization and more efficient attention
mechanisms. Hierarchical tokenization, for instance, involves processing images at multiple scales to
reduce the sequence length at higher levels. Gupta et al. [7] show how such hierarchical tokenization
can be used for tractably modeling the resulting long-sequences. Motivated by this history of
linearizing 2-D images into 1-D sequences for transformer processing and the methods developed
to handle the resulting sequence length and computational complexity, in this work, we explore
whether the specific order in which a 2-D image is converted to a 1-D sequence matters for model
performance.

Long-sequence vision models. As established, the quadratic computational cost of full self-
attention with respect to sequence length makes processing long-sequences of patches very expensive
for standard Vision Transformers. To address this, significant research has focused on developing
efficient transformer architectures and long-sequence models that reduce this complexity, such as
Sparse Attention [8], Longformer [!], Transformer-XL [?], and Mamba [3, 9]. While making
modeling tractable, these methods often introduce specific inductive biases in how they process
sequences, potentially making them sensitive to the order of the input tokens (which we discuss
further in Section 3.3). In this work, we study the effect of patch ordering on Longformer, Transformer-
XL, and Mamba, demonstrating that the inductive biases inherent in these different long-sequence
modeling approaches lead to substantial accuracy variance across different patch orders.

Patch order sensitivity. Qin et al. [10] provided an in-depth study of the self-attention mechanism,
establishing its property of permutation equivariance. However, a comparable analysis for long-
sequence models that process vision tokens remains largely unexplored. This gap is significant,
especially when considering findings from NLP, where studies like [| |] revealed that long context
models tend to neglect tokens in the middle of a sequence. Motivated by these observations and
the underexplored nature of token ordering in long visual sequences, our work aims to investigate
these effects. While some initial work in vision, such as ARM ["], has touched upon scan order for
Mamba models (settling on small, row-wise clusters), this exploration did not comprehensively cover
the wider space of possible orderings. Our research addresses this limitation by more rigorously
examining the search space through experiments with six different orderings across multiple sequence
models. Furthermore, to move beyond predefined arrangements, our method, REOrder, employs
reinforcement learning to explore the space of possible permutations for the patch sequence.

Learning to rank with reinforcement learning. The foundation of learning to rank from pairwise
comparisons was established by Bradley and Terry [12] who proposed a probabilistic model to
estimate item scores via maximum likelihood. More recent work has extended learning to rank with
reinforcement learning frameworks, particularly in information retrieval [3] and recommendation
systems [!4]. Wu et. al. [15] assign importance scores to image tokens based on their impact on
CLIP’s predictions then trains a supervised predictor to replicate these scores for efficient token
pruning. Learning to rank patches can be reformulated to learning a permutation resulting from the
ordering of patches by rank. Biichler et. al. learns to select effective permutations of patches or
frames through a reinforcement policy that maximizes the improvement in self-supervised permutation
classification accuracy in a discrete action space. In contrast, REOrder models a stochastic policy
over permutations using a Plackett-Luce distribution [16, 17] and optimizes it with REINFORCE
[1&] and Gumbel Top-k sampling which allows for more flexible orderings.

3 Preliminaries

We first establish the properties of the self-attention mechanism, specifically its equivariance under
conjugation by permutation matrices and the matrix multiplication that lends it O(n?) complexity.
We then examine how Transformer-XL, Longformer, and Mamba model relationships between long-
sequences and the design choices they make to side-step the quadratic complexity of self-attention.
This establishes the sensitivity of long-sequence models to patch ordering.

3.1 Self-attention and permutation equivariance

Self-attention is the primary mechanism used in the Vision Transformer. Let the n image patches
form the matrix

X = [21;...;2,] € R™

Self-attention can then be computed as

Attn(X) = softmax(%) XW,, W, Wi, W, € RP*4 1)

where W, Wy, and W, are learnable query, key, and value matrices, respectively.

The n x n similarity matrix inside the softmax is O(n?) which is undesirable for large X. However,
full self-attention has useful symmetry.

Proposition 3.1 (Permutation equivariance of self-attention). For every permutation matrix P €
{07 l}nxn9
Attn(PX) = P Attn(X). 2)

Equation (2) states that self-attention is equivariant to arbitrary permutations of the patch ordering.
Hence, the Vision Transformer, composed entirely of self-attention, is also permutation-equivariant.
A proof for Proposition (3.1) is in Appendix B; a thorough analysis is conducted by Xu et. al. [19].

3.2 Position embeddings

The permutation equivariance of full self-attention is undesirable for image processing tasks. The
spatial arrangement of patches in an image carries critical semantic information that must be preserved
or made accessible to the model. Positional embeddings were introduced to explicitly provide the
model with information about the original 2-D location of each patch within the image grid by
summation with the image tokens. This allows the model to understand the spatial relationships
between patches, regardless of their position in the input 1-D sequence.

We use learned absolute position embeddings across our models. In Transformer-XL, these are
incorporated in conjunction with its native relative positional encoding. When a specific base patch
ordering is adopted for an experiment, the positional embeddings are learned to align with that
particular fixed sequence. Crucially, the positional embedding for the [CLS] token is consistently
learned for the initial sequence position and is not reordered with the patch tokens, thereby maintaining
a stable reference for classification tasks.

3.3 Self-attention approximations and sensitivity to patch order

Recent work reduces the O(n?) cost of full attention by sparsifying the attention pattern, factoring
the softmax kernel, or replacing it with a learned recurrence. These changes, however, also break the
full permutation-equivariance guarantee of Eq. (2). Below we inspect three representative models.
Their attention patterns are visualized in Appendix G.

Transformer-XL. Transformer-XL [?] adds segment-level recurrence with memory. After a
segment of length L is processed, each layer caches its hidden states as memory M € R™*¢. At the
next step the layer concatenates that memory with the current segment’s hidden states H € R* 4

H = concat [SG(M), H] € R(m+L)xd
where SG(+) is a stop-gradient. Following Eq. (1), we define a single set of projection matrices as
Q:HW(]7 K:I:IWk7 V:I:IWU

Let P permute the L patches of only the current segment (but not the memory). Memory corresponds
to previous segments, so its rows are fixed under permutation.

PH = [SG(M); PH]
Because the second and third logit terms of Mrxy (¢,) depend on the relative index i — j, conjugating
by P does not commute with the soft-max:
AT (PH) # P A™(H).
Thus, Transformer-XL is permutation-sensitive even though its content-content term alone would be
equivariant.

Longformer. Longformer [!] uses a sliding-window pattern of width w plus g global tokens with

their own projections W&, W'® W¥ . Because the local mask M fixes which (i, ;) pairs are

valid, applying P to the rows/columns re-labels many entries as illegal (—oco) and others as legal, so
softmax(PMUPT) £ P softmax(M") PT

The same holds for the global mask unless P preserves the hand-picked global positions. Therefore,
Longformer is sensitive to patch ordering by design. It converts O(n?) complexity to O(nw) under a
rigid spatial prior.

Mamba and ARM. Mamba [3] does not implement quadratic attention and instead introduces a
content-dependent state-space update.

h; = A;hy 1 + Byxy, yt = Cihy,
with inputs x; produced by scanning the patch sequence left-to-right. A permutation P re-orders the
stream, changing (B, C¢, A;) and the sequence of matrix multiplications, so the recurrence yield is

different. Therefore Mamba is also permutation sensitive. Its O(n) complexity comes at the price of
a fixed processing order.

In this work, we use ARM as introduced by Ren et. al. [9]. In ARM, every Mamba layer runs four
causal scans in different directions d and sums their outputs before the channel-mixing MLP.

Foreachd € {—,+, |, 1} let ng” be the patch encountered at time step ¢ when traversing the image
in direction d. The direction-specific recurrence is
d d) 4.(d d) _(d d d)1.(d
b = AU LB, = ClOn,
and the layer output combines the four scans via

Yi = Z ygd)~

de{—,« 1,1}

Similar to Mamba, because each scan is individually directional, an arbitrary permutation P of
the patch order both re-orders the input streams {xid)} and alters the learned parameter sequences
{Agd), B!Y c!? }. Hence the mapping still violates permutation equivariance y(PX) # P y(X).
Further discussion in regards to the symmetry and performance implications of ARM with different
orderings is discussed in Appendix A

o6 ImageNet-1K 4 Functional Map of the World

6.9 1.9
5.2 1.5

3.4 1.0 dy
1.7 = T 0.5 .] I
0.0 e am — 0.0 T = I
17 0.5 T
34 1.0
EYY SR W— B - 15
6.9 -] s -1.9

-8.6 T T T T 2.4 T T T
ViT Longformer Mamba T-XL ViT Longformer Mamba T-XL

—

A from Row Major (pp)
H
A from Row Major (pp)

Column Hilbert Diagonal Spiral Snake

Figure 2: Patch order affects the performance of long-sequence models. This figure compares the top-1
accuracy of Vision Transformer (ViT), Longformer, Mamba, and Transformer-XL (T-XL) on ImageNet-1K
and Functional Map of the World when using alternate patch orderings, relative to their standard row-major
performance. As expected, ViT remains equivariant to patch sequence permutations. In contrast, long-sequence
models exhibit substantial performance variability depending on the patch ordering. No single ordering
consistently outperforms others across models or datasets, necessitating dynamic patch ordering strategies.

4 Does Patch Order Matter?

Conventional autoregressive vision models default to a raster-scan (row-major) order for flattening
2-D images into 1-D sequences. We investigate the question of whether the sequence in which image
patches are presented to autoregressive vision models has an impact on their performance. We begin
by outlining the datasets and models used in our empirical evaluation, followed by details of our
training methodology. We then present results demonstrating that variations in patch ordering, even
simple ones like column-major scans, can lead to differences in model outcomes, thereby motivating
a search for more optimal, potentially learned, orderings. We define and explore six fixed patch
orders: row-major, column-major, Hilbert curve, spiral, diagonal, and snake. These are visualized
in Figure 1 and formally defined in Appendix F.

Datasets. Images captured in different contexts demonstrate varying structural biases. To study
whether such datasets are susceptible to patch ordering effects to different degrees, we run experiments
on two datasets: ImageNet-1K [20] (natural images) and Functional Map of the World [2 1] (satellite).
We train on their respective training sets and report results on the validation sets. Details on the
dataset licenses are provided in Appendix E

Models. We experiment with the Vision Transformer (ViT) [0], Transformer-XL (TXL) [?], Long-
former [1], and ARM model as our Mamba variant [3, 9]. These three long-sequence architectures
were chosen to represent distinct approaches to efficient sequence modeling: Transformer-XL em-
ploys segment-level recurrence and relative positional encodings to extend context length; Longformer
reduces the quadratic attention cost through a combination of sliding-window and global attention;
and Mamba introduces a structured state-space model with linear-time complexity and constant mem-
ory scaling. Together, they span the major design paradigms for long-range dependency modeling.
We then test whether patch-ordering effects persist across fundamentally different inductive biases.

We utilized the timm implementation for the Vision Transformer (ViT) and the HuggingFace imple-
mentation for Longformer. Both were adapted with minor modifications to accommodate varying
patch permutations. TXL is based on the official implementation and includes a newly introduced,
learned absolute position embedding to account for changing patch orders across batches. We use
ARM [Y] as our vision Mamba model of choice due to its training stability. For all of the models, the
image size is 224 x224 with a patch size of 16x16. The Transformer-XL memory length (M) was
set to 128 and the attention window size (M'°¢%!) for Longformer was set to 14. All four models
prepend a learnable class [CLS] token as a fixed-length representation for image classification. The
[CLS] token is always retained as the first token in the sequence. All models use their respective
Base configurations. Complete details about the model configurations are in Appendix C.

Training. Experiments are conducted on machines equipped with either 8 x80GB A100 GPUs
or 4x40GB A100 GPUs. We apply basic data augmentations of resizing to 256x256, center
crop to 224x224 and then a horizontal flip with p = 0.5. We ablate this augmentation choice
in Appendix D.3. All models are trained for 100 epochs the AdamW optimizer using 3; = 0.9,

Bo = 0.999, weight decay of 0.03, and a base learning rate of o = 1.0 x 10~%. Batch sizes are
held constant for all runs across all model-dataset pairs (details in Appendix D). We apply cosine
learning rate decay with a linear warmup over 5 epochs. For the reinforcement learning experiments
introduced in Section 6, we use the same optimizer configuration but with a reduced base learning
rate of & = 1.0 x 10~° and no decay.

4.1 Performance Variation Across Orderings

We evaluated top-1 accuracy on validation sets, estimating the Standard Error of the Mean (SEM)
using a non-parametric bootstrap method with 2,000 resamples. Our analysis focused on how model
performance varied with different patch orderings across datasets.

As anticipated, the Vision Transformer (ViT) demonstrated permutation equivariance, achieving
consistent top-1 accuracy (approx. 37.5% on ImageNet-1K and 46.5% on FMoW) irrespective of
patch order (Figure 2). In contrast, long-sequence models like Longformer, Mamba, and Transformer-
XL (T-XL) showed performance variations dependent on patch order. T-XL and Mamba were
particularly sensitive; on ImageNet-1K, T-XL'’s accuracy increased by 1.92%(+0.21 percentage
points) with column-major ordering and decreased by 6.43%(+0.21 percentage points) with spiral.
Longformer also benefited from alternative orderings (column-major, Hilbert, snake) on ImageNet- 1K,
improving by up to 1.83%(£0.22 percentage points) over row-major.

Dataset characteristics altered these trends. On FMoW, Longformer’s optimal ordering shifted (e.g.,
diagonal increased accuracy by 1.3%(+0.22 percentage points) while column-major was detrimental).
T-XL still favored column-major but also benefited from diagonal ordering on FMoW. Overall, FMoW
exhibited less sensitivity to patch ordering than ImageNet, likely due to the greater homogeneity of
satellite imagery compared to diverse natural images. Mamba consistently performed worse with
non-row/column major orderings, likely because its fixed causal scan directions (d € {—, +,], 1})
conflict with other patch sequences. Adapting Mamba’s scan order to the patch ordering could
potentially mitigate this performance drop.

These results highlight that there is no one ordering that works best for all models or datasets. Given
that in many cases an alternate ordering outperforms the standard row-major order, this raises an
important question: can we discover an optimal ordering tailored to a specific model and dataset?
Moreover, are there useful priors we can identify to guide the search for such orderings?

5 Learning an Optimal Patch Ordering with REOrder

The observation that patch order influences model performance suggests the existence of an optimal
ordering for each model-dataset pair. To find such orderings, we introduce REOrder, a unified
framework that combines unsupervised prior discovery with task-specific learning. We begin with an
information-theoretic analysis, examining the link between sequence compressibility and downstream
performance. REOrder automates this process to derive a prior over effective patch orderings.
Building on this, it employs a reinforcement learning approach to directly learn task-specific orderings,
leveraging the prior as guidance.

Information-Theoretic Initialization The order in which image patches are arranged affects the
compressibility of the resulting sequence. For example, in a conventional raster-scan order, adjacent
patches often contain similar content, making the sequence more compressible. This local redundancy
might make the prediction task more trivial, as the model could focus on learning simple local
correlations rather than capturing more complex, long-range dependencies. We first explore whether
compression metrics could serve as a proxy for evaluating different patch orderings. Specifically, we
discretize images using a VQ-VAE based model [2”] and encode the resulting token sequence codes
using both unigram and bigram tokenization. For each configuration, we measure the compression
ratio achieved by LZMA, which provides a quantitative measure of local redundancy in the sequence.

In Figure 3, we observe that different patch orderings indeed lead to varying compression ratios.
The row-major order, which is commonly used in vision transformers, achieves higher compression
ratios, suggesting strong local redundancy. Interestingly, the Hilbert curve ordering, which aims to
preserve spatial locality, shows similar compression characteristics to row-major order. In contrast,
the column-major/spiral orderings exhibit lower compression ratios, indicating less local redundancy.

Longformer Mamba Transformer-XL ViT

r=-0.16 58.0 1r = 0.10 r=-0.46 4r=-0.31
55.0 [¢] e 62.0 ° 383
§ 56.0 1 600 . e 38.0 q
54.0 0 \
) Q o
9% (9 54.0 w0 (S 37.5 %‘,,O.
= 530 o o °
52.0
k] 5 o 56.0 4 37.01
52.0 | o 0
50.0 o 54.0 © 36.5
! T T |
r=-0.40 48.04r =024 s6.0]r=-015 4737~ 092
56.0 o
3 o o 47.0
> = 46.0 - 55.0
29 5504
og . .o 46518y
uE_ ~ E 44.0 4 54.0 f@“’l
Q 54.0 46.0 4
Q v 42.0 1 . 53.0 = ‘
T RO
53.0 45.5
T T T ! T T T ! T T T ! T T T !
17.31 17.65 17.99 1833 18.67 17.31 17.65 17.99 1833 18.67 1731 17.65 17.99 1833 18.67 17.31 17.65 1799 1833 18.67
Compression % reduction Compression % reduction Compression % reduction Compression % reduction
@ Row O Column © Hilbert O Diagonal © Spiral @ Snake | e INIK = FMOW

Figure 3: Compression of 1-D sequences can serve as a weak prior for optimal patch ordering. Top-1
accuracy is compared to percentage reduction for different patch orderings across four models for both ImageNet-
1K and FMoW.

This result highlights the limitations of applying a 1D compression algorithm (LZMA) to sequences
derived from 2D data. While Hilbert curves preserve 2D locality better, this may not translate to
higher compressibility for a 1D algorithm.

While this analysis provides a useful lens for examining patch dependencies, it produces only a
weak and model-dependent correlation with downstream accuracy. That is, lower compressibility
does not consistently imply improved task performance. For instance, while column-major ordering
in Figure 3 shows lower compression ratios, it does not consistently lead to better model performance
across all architectures. This result is itself significant as it demonstrates that no simple, universal
heuristic exists for a 1-D sequence of image tokens.

This insight motivates the second stage of our approach, in which we employ reinforcement learning
to discover task-specific orderings. We use compressibility as a weak prior to give a warm start to our
exploration. We assess the importance of such initializations in Appendix D.2.

6 Learning to Order Patches

Our findings in Section 4 reveal that patch ordering can significantly affect the performance of long-
sequence vision models. This suggests the potential value of discovering a data- and model-specific
ordering to improve task performance. Unfortunately, learning a discrete permutation poses a unique
challenge. For an image with N patches, there are N! possible orderings. For N = 196, there are
more than 103%° options. Searching this combinatorial space exhaustively is infeasible. A naive
approach would require evaluating each permutation’s classification loss on every training example,
which is computationally intractable and incompatible with gradient-based learning. We instead treat
the selection of patch orderings as a stochastic policy learning problem, where the policy outputs a
distribution over permutations. This allows us to sample permutations during training and optimize
the policy against the downstream classification loss with reinforcement learning.

6.1 Learning the Permutation Policy via REINFORCE

Because permutations are discrete and non-differentiable, we adopt the REINFORCE algorithm
[18, 23], a score-function estimator, to search over the space of all possible permutations and optimize
a permutation policy. REOrder is outlined in Algorithm 1. This formulation treats the permutation
sampler as a stochastic policy, whose parameters are updated based on the classification reward.

REINFORCE is unbiased but can have high variance. To mitigate this, we subtract a running baseline
b; from the reward, giving A; = r; — by, where b1 = Bby+(1—) ry, with 8 (= 0.99) controlling
the baseline’s momentum. The vision transformer’s parameters 6 depend only on the cross-entropy
loss Lci, while the policy model receives gradients from Lcg and the REINFORCE loss.

Algorithm 1 REOrder with a Plackett-Luce policy

Requlre mini-batch {(z®, y®)}E_,, backbone fy, logits z, Gumbel temperature 7, baseline b, momentum 3
: g ~ Gumbel(0,1)"
DT 4= argsortye. (2 + 79) > Gumbel-top-k permutation

2 « PERMUTE(z",) Vb
. A(b <—f9(7(Tb))

B
. 1 NO)
: Log -5 Zlogyy

-Jk‘u_al\)»—*

5
b=1
r < —LcE > Reward
b pb+(1—p)r
A+r—> > Advantage

: Lpolicy < —A log P(7 | 2)
Ctotal <~ [»CE + Cpolicy
: Back-propagate Vy . Liotal and update with Adam

—_—

6.2 The Plackett-Luce Policy for Patch Orderings

To parameterize the permutation distribution, we use the Plackett-Luce (PL) model [16, 17]. This
model defines a distribution over permutations based on a learned logit vector z € R™ associated
with the image patches. Each patch gets a single parameter, so a 224 X224 image with patch size
1616 results in a model with 196 parameters. This is negligible added overhead for training. A
permutation is sampled sequentially: at each step, a yet-unplaced patch is selected according to a
softmax over the remaining logits:

(| 2) H E exp zm 3)

k=i exp(zﬂ'k)

Sampling from this distribution naively requires drawing one patch at a time in a sequential loop,
which is inherently slow and difficult to parallelize across a batch. To make training efficient, we
use the Gumbel-top-k trick [24] which generates samples from the Plackett-Luce distribution by
perturbing logits with Gumbel noise and sorting. A policy 7 is sampled as ® = argsort(z + 79g)
where g; ~ Gumbel(0,1) and 7 > 0 is a temperature parameter that trades off exploration and
exploitation. The Gumbel-top-k sampler is fully parallelizable and faster than iterative sampling,
allowing permutation sampling in O(n logn) time.

The log-probability of a sampled permutation is computed in closed form:

n

logP(m|z) = Z Zm; — logz exp(zr,)] 4

i=1
which we implement efficiently using cumulative logsumexp in reverse.

The logit vector z is initialized as a linear ramp from 0 to —1, then permuted according to the
information-theoretic prior described in Section 5. This gives the model a sensible starting point
that reflects structural cues discovered during unsupervised analysis, while still allowing gradients to
adapt the ordering throughout training.

During training, a single set of Gumbel samples is drawn per batch so that every image shares
the same permutation. At test time, we compute a deterministic maximum-likelihood permutation
7 = argsort(z). To ensure stability, we permute only the positional embeddings of image tokens
with 7, keeping the [CLS] token fixed.

6.3 Curriculum for Policy Learning

We adopt a three-stage curriculum that cleanly separates representation learning from policy learning.
For the first N epochs the classifier is trained with the canonical row-major patch order. This gives
the vision transformer a stable starting point before any permutation noise is introduced. Beginning
at epoch N the Plackett-Luce policy is activated and trained with REINFORCE for M epochs.
Sampling uses the Gumbel-top-% trick with a temperature schedule 7; that climbs to a peak value

Column

Row

Epoch 15 Epoch 22 Epoch 30 Epoch 37 Epoch 44

Figure 4: The logits of the Plackett-Luce model, and therefore the permutation order, changes over the
course of training. Longformer is initialized with column and row-major patch ordering and optimized with
REOrder on ImageNet-1K. The image is of the class “keyboard.” We track two patches over the course of the
policy curriculum: a keyboard key (light red arrow) and an irrelevant orange beak (dark red arrow). As the
policy learns to order patches, we see the patches move toward the back of the sequence (i.e., are back-loaded)
reflecting the dataset’s center bias.

before decaying to zero. While 7 > 0 the permutation remains stochastic, encouraging exploration
and allowing the policy to discover beneficial orderings. Once the temperature hits zero at epoch
N + M, sampling collapses to the single maximum-likelihood permutation & = argsort(z). The
policy gradients vanish, freezing the permutation, and the remaining epochs let the backbone finish
optimizing with its now-determinate input order.

For our experiments. the curriculum was set with N = 15 and M = 30. 7 follows a triangle
pattern where it increases linearly from 7 = 0.0 at epoch N to M /2 with 7 = 0.2. It then decreases
linearly from epoch M /2 to M ending at 7 = 0. The optimizer for the policy was AdamW(3;=0.9,
[2=0.999, weight decay 0.03) with a learning rate of 1 x 10~*. The evolution of the policy over
training is visualized in Figure 4, demonstrating how salient patches for the target class of “keyboard”
move to the end of the sequence to maximize classification accuracy.

6.4 Effectiveness of Learned Patch Ordering

The Plackett-Luce policy introduced by REOrder is a simple drop-in addition to model training,
and as visualized in Figure 5, in almost all cases, improves performance over their respective base
patch order runs. Mamba observes gains of 2.20% (+0.22 percentage points) on average across
different patch orderings for IN1K, and 9.32% (+0.22 percentage points) on FMoW. For ImageNet,
the Hilbert curve ordering for Mamba is improved by 3.01% (4-0.23 percentage points) while for
Functional Map of the World, the diagonal ordering is improved by 13.35% (40.21 percentage
points). Transformer-XL demonstrates modest gains with REOrder. On IN1K, Transformer-XL
accuracy improves by an average of 0.70% (4-0.22 percentage points) but sees significant gains with
the Hilbert curve (1.50% (40.21 percentage points)) and spiral (1.09% (40.21 percentage points))
patch orderings. On FMoW, REOrder improves the best-performing column-major order by an
additional 1.10% (4-0.21 percentage points), demonstrating that simply using a basic patch ordering
alone may not be sufficient to get best performance. Longformer is unable to improve its accuracy on
either dataset. However, since Longformer was the model that was initially also the least susceptible
to changes in patch ordering due to its near-full approximation of self-attention, it is unsurprising that
the use of REOrder does not achieve any noticeable performance gains.

To verify that these gains are not artifacts of training dynamics or limited training duration, we
conducted two complementary robustness analyses (see Appendix D.2 and D.1). The first examines
the role of policy-driven exploration by comparing static and dynamic random permutation strategies.
The second extends Transformer-XL training from 100 to 300 epochs to test stability under longer
optimization schedules. Together, these experiments confirm that performance improvements arise
from the reinforcement learning process itself and persist under extended training.

ImageNet-1K Functional Map of the World

o
&

o
5

w
@
L

Top-1 Accuracy (%)
5 & 8
PR

-

w
&
I

i

— [— o — i — i i — i — (R — [— [i
Row Column Hilbert Diagonal Spiral Snake Row Column Hilbert Diagonal Spiral Snake

Longformer Mamba Transformer-XL | RL Improves RL Hurts
Figure 5: REOrder finds improvements over the best patch ordering prior in almost all cases. Across
all models, REOrder can find a better patch ordering than a static prior and improve accuracy across both
ImageNet-1K and Functional Map of the World.

In summary, REOrder’s approach of learning a patch ordering proves to be a broadly effective strategy
for boosting classification performance with long-sequence models, consistently elevating results
even beyond the strongest baseline patch orderings for nearly all tested models and datasets. We
outline current limitations of our study and potential future directions in Appendix A. We also
provide a thorough interpretability analysis in Appendix H.

7 Conclusion

This work establishes that contemporary vision models are sensitive to patch order and that row-major
patch ordering, an extremely common way of converting 2-D images to 1-D sequences, can be
suboptimal in many cases. Architectural modifications in models like Transformer-XL, Mamba,
and Longformer, while enabling the processing of long-sequences, break permutation equivariance,
leading to significant accuracy variations with different scan orders. We introduce REOrder, a
method to learn optimal patch orderings by first deriving an information-theoretic prior and then
learning a patch ranking by optimizing a Plackett-Luce policy with REINFORCE. This learned policy,
implemented as a simple drop-in addition to model training, demonstrably improves classification
accuracy for multiple long-sequence models on datasets such as ImageNet-1 and Functional Map of
the World by up to by up to 3.01% and 13.35%, respectively, surpassing the best fixed orderings.

Acknowledgements

Thank you to Jiaxin Ge and Lisa Dunlap for generously reviewing this paper for clarity and content.
Stephanie Fu lent her keen design instinct and helped make the figures look pretty. Anand Siththa-
ranjan and Sanjeev Raja were always game for late night discussions about how to search over a
combinatorial space and the pitfalls of reinforcement learning. As part of their affiliation with UC
Berkeley, the authors were supported in part by the National Science Foundation, the U.S. Department
of Defense, and/or the Berkeley Artificial Intelligence Research (BAIR) Industrial Alliance program.
The views, opinions, and/or findings expressed are those of the authors and should not be interpreted
as representing the official views or policies of any supporting entity, including the Department of
Defense or the U.S. Government. This work utilized the infrastructure at the DoD’s High Performance
Computing Modernization Program (HPCMP).

References

[1] Iz Beltagy, Matthew E. Peters, and Arman Cohan. Longformer: The long-document transformer,

[2] Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Carbonell, Quoc V. Le, and Ruslan Salakhutdinov.
Transformer-xI: Attentive language models beyond a fixed-length context, 2019.

[3] Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces,
2024.

10

[4] Subhashini Venugopalan, Marcus Rohrbach, Jeffrey Donahue, Raymond Mooney, Trevor
Darrell, and Kate Saenko. Sequence to Sequence - Video to Text. In Proceedings of the IEEE
International Conference on Computer Vision, pages 4534-4542, 2015.

[5] Niki Parmar, Ashish Vaswani, Jakob Uszkoreit, Lukasz Kaiser, Noam M. Shazeer, Alexander
Ku, and Dustin Tran. Image transformer. In International Conference on Machine Learning,
2018.

[6] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly,
Jakob Uszkoreit, and Neil Houlsby. An Image is Worth 16x16 Words: Transformers for Image
Recognition at Scale. In International Conference on Learning Representations, October 2020.

[7] Ritwik Gupta, Shufan Li, Tyler Zhu, Jitendra Malik, Trevor Darrell, and Karttikeya Mangalam.
xT: Nested Tokenization for Larger Context in Large Images. In Proceedings of the 41st
International Conference on Machine Learning, pages 17060—17071. PMLR, July 2024.

[8] Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating long sequences with
sparse transformers, 2019.

[9] Sucheng Ren, Xianhang Li, Haoqin Tu, Feng Wang, Fangxun Shu, Lei Zhang, Jieru Mei, Linjie
Yang, Peng Wang, Heng Wang, Alan Yuille, and Cihang Xie. Autoregressive Pretraining with
Mamba in Vision, June 2024.

[10] Yao Qin, Chiyuan Zhang, Ting Chen, Balaji Lakshminarayanan, Alex Beutel, and Xuezhi Wang.
Understanding and improving robustness of vision transformers through patch-based negative
augmentation, 2023.

[11] Nelson F Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio Petroni,
and Percy Liang. Lost in the middle: How language models use long contexts. arXiv preprint
arXiv:2307.03172, 2023.

[12] Ralph Allan Bradley and Milton E. Terry. Rank analysis of incomplete block designs: 1. the
method of paired comparisons. Biometrika, 39(3/4):324-345, 1952.

[13] Tie-Yan Liu et al. Learning to rank for information retrieval. Foundations and Trends® in
Information Retrieval, 3(3):225-331, 2009.

[14] Alexandros Karatzoglou, Linas Baltrunas, and Yue Shi. Learning to rank for recommender
systems. Proceedings of the 7th ACM conference on Recommender systems, 2013.

[15] Cheng-En Wu, Jinhong Lin, Yu Hen Hu, and Pedro Morgado. Patch ranking: Efficient clip by
learning to rank local patches, 2024.

[16] R. Duncan Luce. Individual Choice Behavior. Individual Choice Behavior. John Wiley, Oxford,
England, 1959.

[17] R. L. Plackett. The Analysis of Permutations. Journal of the Royal Statistical Society Series C:
Applied Statistics, 24(2):193-202, June 1975.

[18] Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforce-
ment learning. Machine learning, 1992.

[19] Hengyuan Xu, Liyao Xiang, Hangyu Ye, Dixi Yao, Pengzhi Chu, and Baochun Li. Permutation
Equivariance of Transformers and Its Applications, January 2024.

[20] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. ImageNet: A large-
scale hierarchical image database. In 2009 IEEE Conference on Computer Vision and Pattern
Recognition, pages 248-255, June 2009.

[21] Gordon Christie, Neil Fendley, James Wilson, and Ryan Mukherjee. Functional Map of the

World. In 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
6172-6180, Salt Lake City, UT, USA, June 2018. IEEE.

11

[22] Chameleon Team. Chameleon: Mixed-modal early-fusion foundation models. arXiv preprint
arXiv:2405.09818, 2024.

[23] Junzi Zhang, Jongho Kim, Brendan O’Donoghue, and Stephen Boyd. Sample Efficient Re-
inforcement Learning with REINFORCE. Proceedings of the AAAI Conference on Artificial
Intelligence, 35(12):10887-10895, May 2021.

[24] Wouter Kool, Herke van Hoof, and Max Welling. Stochastic Beams and Where to Find Them:
The Gumbel-Top-k Trick for Sampling Sequences Without Replacement, May 2019.

12

Appendix

A Discussion and Limitations

There are many details and nuances to our experiments that are worth discussing further. Particularly,
there are areas for improvements that we would like to introduce in future versions of this work.

Directional Asymmetry and ARM Interpretation. While our work primarily focuses on improv-
ing the permutation sensitivity of sequence-based vision models through REOrder, it is important
to contextualize the architectural behavior of ARM. Although ARM’s four-directional scanning
mechanism is symmetric in principle, our experiments show that its performance varies across
different input orderings due to the anisotropic statistics of natural images and the model’s fixed
directional composition. In particular, ARM achieves higher accuracy with a row-major ordering than
with a column-major one, reflecting the stronger horizontal correlations inherent in natural scenes.
This empirical asymmetry persists despite theoretical symmetry between the two configurations,
revealing how data bias and architectural inductive bias jointly shape model behavior. Moreover,
a Hilbert-curve ordering, which maximizes spatial locality, performs significantly worse because
it disrupts ARM’s directional continuity. ARM’s recurrence dynamics are optimized for specific
scanning patterns rather than spatial adjacency alone.

REOrder addresses these mismatches by learning an adaptive permutation of the input sequence
that jointly benefits all four directional scans. When initialized from a row-major order, it improves
validation top-1 accuracy to 58.25%, and from a column-major order to 58.58% on ImageNet-
1K. Even from a suboptimal Hilbert initialization, REOrder recovers much of the lost performance,
reaching 53.42%. These results indicate that the learned permutations do not merely refine an existing
scan but instead adaptively reorganize the patch sequence to better align the input statistics with
ARM’s directional processing. This demonstrates that REOrder can serve as a practical mechanism
for reconciling architectural symmetry with anisotropic visual data.

Random baseline. A random baseline for a learned permutation baseline involves sampling a
random ordering of patches for every batch during training. We set up this baseline with Transformer-
XL on the ImageNet-1K dataset. This model achieved a maximum top-1 accuracy of 39.07% which
is 15.25 percentage points worse than the worst patch ordering tested for T-XL on IN1K (spiral).
While a random baseline should be run for every model and dataset combination, the drastically lower
performance of the random baseline gives us confidence in the veracity of our results.

Under-explored and under-tuned policy. Images with N = 196 patches have more than 1036
permutations. Searching this space exhaustively is computationally infeasible (it is estimated that
there are between 1078-10%2 atoms in the observable universe—our quantity is slightly larger than
that). The Plackett-Luce policy exploration runs for a vanishingly small amount of time. The
curriculum, as tested in our experiments, is only active for 30 epochs. The majority of these epochs
is spent warming up and cooling down the Gumbel noise temperature, with the peak noise (and
therefore exploration) occurring for only one epoch. We were not able to tune these parameters due
to computational constraints. Therefore, much is left “on the table” with respect to improving results
with REOrder.

Dynamic Image Policy. A key limitation of the present work is that REOrder learns a single
global ordering shared across all samples within a dataset. While this design enables clean isolation
of ordering effects and ensures stable optimization, it constrains the model’s flexibility in adapting
to image-specific structures. A promising future direction is to extend REOrder toward dynamic,
per-image ordering, where a lightweight policy network predicts ordering logits conditioned on patch
embeddings. Such an approach would allow the ordering to adapt to spatial and semantic content,
potentially capturing intra-dataset variability while preserving the benefits of learned sequencing.
Investigating the trade-offs between global stability and dynamic adaptability represents an important
next step for our future work.

Long Sequence Training. To assess scalability, we initiated experiments on ultra—high-resolution
images (5888x5888), a setting where standard ViT models exceed GPU memory limits. These

13

experiments are ongoing, and we plan to include results in future work exploring how REOrder
behaves in extended sequence regimes.

B Proof of Proposition 3.1

Theorem 1 (Permutation equivariance of self-attention). Let X € R"*< and let P € {0,1}"*" be
any permutation matrix. With Attn(-) defined in Eq. (1), we have

Attn(PX) = P Attn(X).

Proof. Let
(XW,)(XW})"
Vd

Conventionally, softmax for Attn is applied row-wise over (XW,)(XW,)" so that the ensuing
multiplication by the value matrix serves as a normalized weighted sum over value columns. Since a
permutation merely re-orders rows and columns, it satisfies the conjugation property

S(X) = softmax() € R™*™.

softmax(PMP') = P softmax(M) P)
for any square matrix M and any permutation matrix M.
Then,
Attn(PX) = softmax(%) PXW,
= softmax(P(XW‘Z)E/)%W’“)TPT) PXW,
2p5(X)PT PXW,
=P S(X)XW, (PP =1)
Lp Attn(X).
Hence self-attention is permutation equivariant. O

C Model Details

Table 1: Patch Order Models

Model Size #of Parameters Width Depth
ViT Base 86570728 768 12
Transformer-XL. Base 93764 584 768 12
Longformer Base 107 683 048 768 12
Mamba Base 85036264 768 12
ViT Large 304330216 1024 24
Transformer-XL. Large 329601512 1024 24
Longformer Large 379702760 1024 24
Mamba Large 297041352 1024 24

We attempt to parameter match each model we experiment with in an effort to remove one axis of
variability from our results. We experiment with the Base variant of each model in our experiments.
Despite the intention for the Base variants to be roughly equivalent to each other, Longformer-Base
and Mamba-Base vary by ~22M parameters. To contextualize how width and depth affect the number
of parameters, we provide details for Base and Large variants in Table 1.

14

D Additional Model Training Details

Each training run required 100 epochs for completion. ImageNet experiments were run on 8 x 80GB
A100 GPUs, while Functional Map of the World experiments were run on 4 x 40GB A100 GPUs.
Transformer-XL, ViT and Mamba, and the Plackett-Luce policy were compiled with TorchDynamo
using the Inductor backend. The Longformer encoder provided by HuggingFace was unable to be
compiled. For ImageNet runs, Vision Transformer runs took ~8.5 hours to run, Transformer-XL runs
took ~10 hours, Longformer runs took ~12 hours, and Mamba runs took ~19 hours. For Functional
Map of the World, Vision Transformer runs took ~17.5 hours, Transformer-XL runs took ~21 hours,
Longformer runs took ~26 hours, and Mamba runs took ~31 hours. All runs were executed on
dedicated datacenters accessed remotely.

All runs nearly maximized the available VRAM on their respective GPUs. The breakdown of models
and batch sizes is provided below:

Table 2: Batch sizes for every model-dataset pairing.

Model Size Dataset Batch Size
ViT Base INIK 896
ViT Base FMOW 448
Transformer-XI. Base IN1K 640
Transformer-XI. Base FMOW 320
Longformer Base INIK 640
Longformer Base FMOW 320
Mamba Base INIK 640
Mamba Base FMOW 320

In sum, the total set of experiments run required a total of ~ 9,336 A100 GPU hours.

Models were trained with a minimal set of augmentations, namely: resize to 256 x 256 pixels, center
crop to 224 x 224 pixels, and a random horizontal flip with p = 0.50.

D.1 Increased Training Time

We continued training our Transformer-XL Row and Transformer-XL. REOrder Row models from
100 epochs to 300 epochs to test the robustness of our conclusions with longer training. The models
were trained with the same recipe and learning curriculum. The gains from REOrder are maintained
and even increased after 300 epochs. At 100 epochs (Table 3), Transformer-XL Row achieves 60.80%
Top-1 Validation accuracy whereas REOrder improves on this by 0.6 percentage points to 61.40%.
Extending training to 300 epochs, Transformer-XL Row achieves 61.20%, a 1.19 percentage points
increase over 100 epochs; however, Transformer-XL REOrder Row, increases performance to 63.34%
which is a 2.14 percentage points increase over the Transformer-XL Row model at the same epoch.
These findings show that REOrder continues to provide consistent gains under extended optimization,
supporting its robustness beyond the initial training regime.

Table 3: REOrder widens the gap between standard models when training is extended. When
training is extended from 100 epochs to 300 epochs, REOrder still shows significant Top-1 Validation
Accuracy gains over training without REOrder.

Model Dataset Patch Order RL Top-1 Validation Accuracy Gain at 300 Epochs

T-XL INIK Row - 60.80 +1.19pp
T-XL INIK Row v 61.40 +1.94pp

D.2 Random and Static Permutation Results

To better understand the effects of the REOrder learning process on the performance of the models
we performed three additional runs with Transformer-XL on ImageNet-1k:

15

1. Using a fixed random permutation for the entire training
2. Sampling a random permutation for every batch through all of training

3. Using the final learn permutation of our best performing REOrder Transformer-XL model
for all of training

The results in Table 4 indicate that simply picking random patch orderings is not sufficient (and
therefore, any one random ordering will also perform poorly). The structured exploration provided
by REOrder is necessary to improve performance. A novel outcome of this exploration is that simply
using a learned patch ordering is not sufficient for gains in performance; the guided exploration
process introduced by REOrder is necessary for improved performance.

Table 4: Top-1 validation accuracy on ImageNet-1K using Transformer-XL under four alterna-
tive permutation schemes. Each variant controls how patch sequences are presented during training.
Only REOrder’s reinforcement-learning curriculum (second row) adaptively explores the ordering
space, leading to a large performance gain over all static or unguided random strategies.

Permutation Strategy RL Top-1 Accuracy
Row Major - 60.80
REOvrder Row-major initialization v 61.40
One random permutation for all epochs - 53.10
Every batch random - 50.23
Best learned ordering - 53.07

D.3 Results Without Flips

We additionally run experiments where the only data processing steps applied are a resize to 256 x 256
pixels and a center crop to 224 x 224 pixels with no flips at all. The results presented in Table 5
show the effects observed in the main experiments are maintained albeit with different accuracy
magnitudes. With no augmentations, the effect of REOrder is even greater. All tested patch orders
exhibit performance gains when optimized by REOrder. The performance boost ranges from 1.58%
with row-major to 2.94% with the Hilbert curve ordering. Diagonal and spiral orderings get moderate
gains of 2.41% and 2.47% respectively, while column-major and snake orderings show more modest
improvements of 1.67% and 1.82% respectively. These results confirm that REOrder consistently
enhance task accuracy across the patch orderings even without extensive data augmentation.

Table 5: REOrder consistently improves performance across all patch orders with no augmenta-
tions. Top-1 validation accuracy on IN1K using different patch orders with and without our REOrder
using minimal data processing (resize and center crop only).

Model Dataset Patch Order RL Top-1 Accuracy Difference
Transformer-XL IN1K Row 57.95
Transformer-XL. IN1K Row v 59.53 +1.58%
Transformer-XL. IN1K Column 57.33
Transformer-XL. IN1K Column v 59.01 +1.67%
Transformer-XL IN1K Diagonal 52.79
Transformer-XL IN1K Diagonal v 55.20 +2.41%
Transformer-XL. IN1K Hilbert 50.29
Transformer-XL. IN1K Hilbert v 53.22 +2.94%
Transformer-XL IN1K Spiral 49.93

Transformer-XL IN1K Spiral v 52.40 +2.47%
Transformer-XL IN1K Snake 52.20
Transformer-XL. IN1K Snake v 54.02 +1.82%

16

E Dataset Licenses and References

In this work, we use ImageNet-1K as provided by the 2012 ImageNet Large-Scale Visual Recognition
Challenge [20] and the RGB version of Functional Map of the World [2 |]. ImageNet-1K is obtained
from the and Functional Map of the World is obtained from their

ImageNet-1K is licensed non-commercial research and educational purposes only as described on
their . Functional Map of the World is licensed under a custom version of the Creative
Commons license available on their

F Rasterization Orders

Let an image be composed of N = H x W patches, arranged in a grid of height H (number of rows)
and width W (number of columns). Each patch is identified by its zero-indexed 2D coordinates (7, ¢),
where 0 < r < H and 0 < ¢ < W. A rasterization order (or scan order) 7 is a bijection that maps a
1D sequence index k € {0,1,..., N — 1} to the 2D coordinates of the k-th patch in the sequence.
We denote this mapping as 7(k) = (7k, ¢k). In all cases besides row- and column-major, a direct
formula for (7, ¢i) from k is not provided; the order is algorithmically defined by their respective
procedures.

F.1 Row-Major Order

Row-major order, also known as raster scan, is the most common default. Patches are scanned row by
row from top to bottom. Within each row, patches are scanned from left to right. The coordinates
(rg, cx) for the k-th patch are given by:

F.2 Column-Major Order

In column-major order, patches are scanned column by column from left to right. Within each column,
patches are scanned from top to bottom. The coordinates (7, ¢) for the k-th patch are given by:

N

re =k (mod H)

F.3 Hilbert Curve Order

The Hilbert curve is a continuous fractal space-filling curve. Ordering patches according to a Hilbert
curve aims to preserve locality, meaning that patches close in the 1D sequence are often (but not
always perfectly) close in the 2D grid. The coordinates (7, c) for the k-th patch are given by:

m(k) = (rk, cx) = Huw (k)
where H i w (k) denotes the coordinates of the k-th point generated by a Hilbert curve algorithm
adapted for an H x W grid.

F.4 Spiral Order

In a spiral scan, patches are ordered in an outward spiral path, typically starting from a corner patch,
e.g., (0,0). The path moves along the perimeter of increasingly larger (or remaining) rectangular
sections of the grid. The coordinates (7, ¢) for the k-th patch are:
m(k) = (rk, cx)

These are the k-th unique coordinates visited by a path that starts at (0, 0) and spirals outwards. The
path typically moves along segments of decreasing lengths (or until a boundary or previously visited
cell is encountered) in a sequence of cardinal directions (e.g., right, down, left, up, then right again
with a shorter segment, etc.), effectively tracing successive perimeters of nested rectangles.

17

https://image-net.org/download.php
s3://spacenet-dataset/Hosted-Datasets/fmow/fmow-rgb/
s3://spacenet-dataset/Hosted-Datasets/fmow/fmow-rgb/
https://www.image-net.org/
https://github.com/fMoW/dataset/blob/master/LICENSE

F.5 Diagonal Order (Anti-diagonal Scan)

In a diagonal scan, patches are ordered along anti-diagonals, which are lines where the sum of the
row and column indices (r + c) is constant. These anti-diagonals are typically scanned in increasing
order of this sum, starting from r 4+ ¢ = 0. Within each anti-diagonal, patches are typically ordered
by increasing row index r (or, alternatively, by increasing column index ¢). The coordinates (r, ¢)
for the k-th patch are:

m(k) = (rk, ck)

such that (7, ¢ is the k-th patch when all patches (r, ¢) are ordered lexicographically according to
the tuple (s,), where s = r + ¢ is the anti-diagonal index and 7' = r is the row index. Patches with
smaller anti-diagonal sums s come first. For patches on the same anti-diagonal (i.e., with the same s),
those with a smaller row index r’ come first.

F.6 Snake Order

This scan traverses patches along anti-diagonals (where the sum of row and column indices, s = r+c,
is constant). The anti-diagonals are processed in increasing order of s. The direction of traversal
along each anti-diagonal alternates. For example, for even s, patches are visited by increasing column
index c, and for odd s, by decreasing column index c.

Let s, = ri + cx be the anti-diagonal index for the k-th patch w(k) = (7, ¢k). The sequence of
patches 7 (k) is generated by iterating s from 0 to H + W — 2. For each s:

1. Define the set of coordinates on the anti-diagonal: Ss = {(r,¢) | r+¢c¢=15,0<r < H,0 <

c< W}
2. Order the coordinates in Ss. For instance, by increasing column index c¢: P, =
[(r0,c0), (r1,¢1)y oy (Pmyem)] Where cg < ¢1 < -+ < ¢

3. If sis odd (or based on an alternating flag), reverse the order of P;.

4. Append the (potentially reversed) Py to the overall sequence.

G Attention Patterns for Tested Models

ViT Transformer-XL Longformer Mamba

Figure 6: Token-level attention coverage across different model architectures. Each grid cell
represents a patch in a 224 x224 input image split into 49 non-overlapping 32x32 patches, plus a
[CLS] token. Numbers indicate how many tokens attend to each patch. ViT and Mamba exhibit
full attention to all patches. In contrast, Transformer-XL’s causal attention and Longformer’s local
attention restrict the number of tokens that can attend to each patch, leading to a strong asymmetry
and localized attention, respectively.

To produce Figure 6, we visualized how many tokens attend to each patch in a 224 x224 image
divided into 49 patches (plus a [CLS] token), using the following methods for each model.

ViT and Transformer-XL: We extracted the raw attention weights across all layers and heads
during a forward pass. After computing the element-wise maximum across layers and heads, we
obtained a binary N x N matrix indicating whether token ¢ attends to token j. Summing over rows
yields how many tokens attend to each patch.

18

Longformer: Due to its local attention structure, we reconstructed a dense N x N attention matrix
by extracting local and (if applicable) global attention indices. We then counted how many tokens
had access to each patch through these sparse connections.

Mamba: Since Mamba does not use attention, we used a gradient-based saliency method. We
computed the gradient of the Ly norm of each output token with respect to the input embeddings. This
yielded a sensitivity matrix indicating the influence of each input token on each output. Thresholding
non-zero entries allows us to analogously count how many tokens “attend” to each patch.

These results reveal how the structural design of each model affects its ability to aggregate spatial
information. ViT and Mamba attend to all patches uniformly, while Transformer-XL’s causal structure
and Longformer’s locality lead to uneven and limited attention coverage. These patterns explain their
respective sensitivities to input token ordering.

H Policy Evolution During Training

Column

Epoch 15 Epoch 22 Epoch 30 Epoch 37 Epoch 44

Figure 7: Mamba observes patches most related to the class label move to the end of the sequence. Mamba
is trained with column- (top) and row-major (bottom) patch orderings and optimized with REOrder. The image
is of the class “keyboard.” We track two patches over the course of the policy curriculum: a keyboard key (light
red arrow) and an irrelevant orange beak (dark red arrow). As training progresses, the keyboard-related patches
shift into the final indices of the sequence.

The REOrder policy learned distinct and consistent rearrangements of image patches that reflect
both dataset structure and model-specific inductive biases. As seen in the “keyboard” example from

Epoch 15 Epoch 22 Epoch 30 Epoch 37 Epoch 44

Figure 8: Transformer-XL observes patches most related to the class label move to the end of the sequence.
Transformer-XL is initialized with column- (top) and row-major (bottom) patch orderings and optimized with
REOrder. The image is of the class “keyboard.” We track two patches over the course of the policy curriculum:
a keyboard key (light red arrow) and an irrelevant orange beak (dark red arrow). As training progresses, the
keyboard-related patches shift into the final indices of the sequence.

19

Figure 5, REOrder progressively shifts semantically important patches toward specific sequence
positions, indicating that the learned permutations encode spatial continuity and capture architectural
preferences in how visual information should be processed.

To quantify these effects, we analyzed how REOrder repositions patches originating from the central
region of an image relative to their initial raster order. Both ImageNet-1K and FMoW exhibit a
pronounced center bias, where salient content typically lies near the image’s center. We observed that
REOrder with different long-sequence architectures exploit this bias in distinct ways.

Mamba consistently front-loads central patches, shifting them earlier in the sequence (mean shift of
+6.8 positions). This ordering aligns with Mamba’s recurrent state-space mechanism as processing
salient central regions early allows the model to form a strong initial hidden state that informs
subsequent token processing.

Transformer-XL and Longformer exhibit the opposite tendency, back-loading central patches (average
shifts of —2.2 and —20.4 positions, respectively). For Transformer-XL, this allows these tokens
to utilize information from the entire image rather than only from half of it. For Longformer, the
attention window accumulates context over the sequence which positioning maximizes contextual
support from earlier tokens for the salient tokens.

This contrast demonstrates that REOrder does not converge to a trivial or dataset-wide ordering.
Instead, it learns model-dependent strategies that align spatial inductive biases with sequence-
processing dynamics, revealing that ordering optimization can adapt meaningfully to the architecture’s
internal computation pattern.

20

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction state that the order in which patches are pro-
vided to long sequence models changes downstream performance. They also discuss the
introduction of an RL-based method to learn a better sequencing. The paper covers exactly
those topics.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We consistently discuss the limitations of our work throughout the paper. For
example, in Section 5, we detail why our compression prior is weak. For completeness, we
provide a discussion of the paper’s limitations in Appendix A.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms

and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to

address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

21

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: All theorems, formulas, and proofs are numbered. Section 3 and Appendix B
provide key background on self-attention and approximate attentions mechanisms and how
their properties under permutations.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: All model configurations and hyper-parameters for training are detailed in the
main body and supplement. Fixed seeds are used for all runs. The anonymized repository
for this work is made available

Guidelines:

» The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

22

https://anonymous.4open.science/r/patch-order-8C3D/

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We use open datasets for evaluations which can be downloaded from their
respective websites. The anonymized code is made available , and instructions to run
experiments are in the README.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (
) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (

) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: These details are provided in Section 4, and additional, but non-critical, details
are added in Appendix D.
Guidelines:
* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Yes, we report the standard error of the mean for all of our experimental results.
The calculation of SEM is explained in Section 4.1. Our figures include the necessary error
bars.

23

https://anonymous.4open.science/r/patch-order-8C3D/
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: In Section 4, we detail the necessary GPUs needed to reproduce our experi-
ments. Appendix D provides complete details on runtimes and experiment configurations.

Guidelines:

» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

 The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics ?

Answer: [Yes]

Justification: Our research conforms to the NeurIPS Code of Ethics completely. As our
experiments are pointing out an overlooked inductive bias in the modeling process, we are
removing a bias from model training.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts

24

https://neurips.cc/public/EthicsGuidelines

11.

12.

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Our work has neither positive nor negative societal impacts as it is foundational
research. There is no direct path to any negative applications.

Guidelines:

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our paper presents foundational research and as such does not present a high
risk for misuse.

Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We appropriately cite the original papers for ImageNet-1K and Functional
Map of the World. Complete details on where to access these datasets and their licenses are
in Appendix E.

25

13.

14.

15.

Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets,
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: This paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This paper did not involve any crowdsourcing or research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

26

paperswithcode.com/datasets

Justification: This paper was not subject to IRB/HSR as it did not involve any crowdsourcing
or research with human subjects.

Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: LLMs were only utilized for writing and editing. None of the core methods
were derived from any LLMs.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy ()
for what should or should not be described.

27

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Related Works
	Preliminaries
	Self-attention and permutation equivariance
	Position embeddings
	Self-attention approximations and sensitivity to patch order

	Does Patch Order Matter?
	Performance Variation Across Orderings

	Learning an Optimal Patch Ordering with REOrder
	Learning to Order Patches
	Learning the Permutation Policy via REINFORCE
	The Plackett-Luce Policy for Patch Orderings
	Curriculum for Policy Learning
	Effectiveness of Learned Patch Ordering

	Conclusion
	Discussion and Limitations
	Proof of Proposition 3.1
	Model Details
	Additional Model Training Details
	Increased Training Time
	Random and Static Permutation Results
	Results Without Flips

	Dataset Licenses and References
	Rasterization Orders
	Row-Major Order
	Column-Major Order
	Hilbert Curve Order
	Spiral Order
	Diagonal Order (Anti-diagonal Scan)
	Snake Order

	Attention Patterns for Tested Models
	Policy Evolution During Training

