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Abstract

Pretraining datasets for large language models
(LLMs) have grown to trillions of tokens com-
posed of large amounts of CommonCrawl (CC)
web scrape along with smaller, domain-specific
datasets. It is expensive to understand the impact
of these domain-specific datasets on model capa-
bilities as training at large FLOP scales is required
to reveal significant changes to difficult and emer-
gent benchmarks. Given the increasing cost of
experimenting with pretraining data, how does
one determine the optimal balance between the
diversity in general web scrapes and the informa-
tion density of domain specific data? In this work,
we show how to leverage the smaller domain spe-
cific datasets by upsampling them relative to CC
at the end of training to drive performance im-
provements on difficult benchmarks. This simple
technique allows us to improve up to 6.90 pp on
MMLU, 8.26 pp on GSM8K, and 6.17 pp on Hu-
manEval relative to the base data mix for a 7B
model trained for 1 trillion (T) tokens, thus rival-
ing Llama-2 (7B)—a model trained for twice as
long. We experiment with ablating the duration of
domain upsampling from 5% to 30% of training
and find that 10% to 20% percent is optimal for
navigating the tradeoff between general language
modeling capabilities and targeted benchmarks.
We also use domain upsampling to characterize
at scale the utility of individual datasets for im-
proving various benchmarks by removing them
during this final phase of training. This tool opens
up the ability to experiment with the impact of
different pretraining datasets at scale, but at an
order of magnitude lower cost compared to full
pretraining runs.
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1. Introduction
Pretraining datasets for large language models (LLMs), such
as Dolma (Soldaini et al., 2023), have grown to trillions
of tokens. To accommodate such large scales, they are
typically composed of two types of data sources. First, they
contain large amounts of web scraped data processed from
CommonCrawl (CC) dumps. These are typically hundreds
of billions to trillions of tokens in size and contain a diverse
distribution of information. However, because of their size,
they are necessarily less information dense and are not as
filtered. Second, LLM pretraining mixes contain datasets
that either target certain domains or come from single high
quality sources. These are much smaller (often less than a
hundred billion tokens tokens). They are also more carefully
processed and are dense with information from domains we
want LLMs to be good at; however, since their sources are
limited, they are often less diverse (Computer, 2023).

Related Works: One of the biggest challenges to pretrain-
ing LLMs is determining the optimal strategy for mixing
datasets that come from CC and smaller domain specific
sources. Some previous works have opted to pretrain en-
tirely on heavily processed CC data (Penedo et al., 2023).
Others have used different heuristics to balance between CC
and more domain specific datasets (Computer, 2023). At
smaller scales, there have been attempts to algorithmically
optimize the data mix proportions, but these methods have
not been openly validated at the scale most modern language
models are trained (Xie et al., 2024). Given the sheer cost
of validating data mixing strategies at this scale, there is a
paucity of open research on pretraining data for LLMs.

Ideally one would conduct data mix experiments at smaller
scales to identify what is a good data mix. However, this is
often ineffective because large FLOP scales are required to
reveal significant changes in difficult and emergent bench-
marks. In fact, most LLMs trained at smaller scales register
random accuracy on many important benchmarks such as
MMLU (Wei et al., 2022). As a result, experiments at
smaller scales can often be misleading; the variation be-
tween different data mixes on important benchmarks is of-
ten due to noise rather then dataset quality at this scale. On
the other hand, it is prohibitively expensive and impracti-
cal to exhaustively characterize datasets by doing multiple
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training runs at the scale needed to measure above random
performance on these metrics.

In this work, our goal is to characterize the utility of an
alternative approach to conduct pretraining data experiments
at a reasonable scale. Our strategy is to modify the data
mixture at the end of training after we have already trained
for enough FLOPs to measure meaningful signal on difficult
benchmarks. We show that this is an effective strategy for
improving LLM pretraining data mixes with experiments
that are an order of magnitude cheaper than full training
runs.

Contributions:
• We begin with a baseline mix of publicly available

datasets that achieves the same scaling of performance
with FLOPs as the Llama-2 model family for a 7B
model trained for 1 trillion tokens (App. A).

• We introduce domain upsampling—a data interven-
tion which upsamples domain specific datasets rela-
tive to Common Crawl at the end of training—and
demonstrate that it can boost challenging metrics. In
particular, we observe improvements of up to 6.90 pp
on MMLU, 8.26 pp on GSM8K, and 6.17 pp on Hu-
manEval relative to the base data mix in our training
setup. This makes our performance comparable to
Llama-2 (7B) but at approximately half the training
FLOPs (Sec. 3.1).

• We ablate the percentage of training that utilizes do-
main upsampling and show 10%-20% is optimal for
navigating the tradeoff between general language mod-
eling capabilities and targeted benchmarks (App. B).

• We show how domain upsampling can be used as a
FLOP-efficient tool to characterize how datasets im-
pact model capabilities. By removing a subset of math-
heavy pretraining data from the datasets we upsampled
at the end of training, we quantified the impact these
datasets have on specific benchmarks (Sec. 3.2).

2. Training Details
We studied domain upsampling on 7B parameter models
trained for 1T tokens. This FLOP scale was chosen so the
model performed above the noise floor on key metrics like
MMLU, enabling us to see the effects of data interventions.

The 7B models trained for this work are decoder-only trans-
formers using the MPT architecture in LLM Foundry (Mo-
saicML et al., 2023). To evaluate our models we use the
latest version of the Eval Gauntlet v0.3 (MosaicML et al.,
2023), an evaluation framework consisting of 35 popular
in context learning evaluation tasks used to evaluate LLM
base models. The Gauntlet v0.3 aggregates scores on bench-
marks across 6 categories (Appendix C). We use an inverse
square root learning schedule similar to (Zhai et al., 2022).

Parameter Value

Optimizer LionW (Chen et al., 2024)
Learning Rate 0.00012
Betas 0.9, 0.95
Weight Decay 0.00012
Max Sequence Length 4096
Batch Size 960
Tokenizer Tiktoken (GPT-4)
Positional Embedding ALiBi (Press et al., 2022)

Table 1. Training Hyperparameters.

3. Results
Here we present the experiments demonstrating the perfor-
mance boost achieved by domain upsampling as well as
its utility in characterizing how datasets affect challenging,
emergent metrics.

3.1. Domain upsampling significantly boosts
performance on challenging metrics

For our baseline data mix, we grouped a set of publicly-
available datasets into 4 broad categories (App. A):

• Large-Scale Common Crawl: Datasets derived from
Common Crawl that emphasize scale. These datasets
trade off thorough quality filtering in favor of curating
a large and diverse set of tokens.

• Small-Scale Common Crawl: Datasets derived from
Common Crawl with more extensive filtering but are
smaller than large-scale Common Crawl.

• Domain Specific data: Small datasets that target cer-
tain domains or are from individual sources and are of
high quality (e.g. Wikipedia).

• Code: Code data across a variety of programming
languages.

Next, we introduce domain upsampling during the last 20%
of training for our 1T token training run. For this, we start
with a checkpoint at 0.8T tokens of training, change the
mixing proportions of our pretraining data mix, and continue
training for the remaining 0.2T tokens. The exact mixing
proportions of our domain upsampled pretraining mix are
in Table 2. These percentages were chosen based on the
following heuristic: we hypothesize that though the Large-
Scale CC adds a lot of diversity to the pretraining data mix,
it is advantageous to emphasize Domain Specific data at the
end of training to bias our model towards token distributions
that have high information density in domains we care about.
Thus, we remove Large-Scale Common Crawl from our
data mix while upsampling both Domain Specific and Code
subsets. We also maintain Small-Scale Common Crawl at
high percentage to prevent a large distribution shift in our
pretraining data.
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Figure 1. Domain upsampling (DU) using the proportions presented in Table 2 provides a significant performance boost on challenging
metrics for no additional FLOP cost. The dashed lines represent the same scaling for the Llama-2 family of models as described in
Figure 2. The square markers are the performance of our 7B model trained for 1T tokens with the data mix described in Appendix A; the
diamond markers are the resulting models when domain upsampling is performed with the proportions specified in Table 2 for the final
20% or 200B tokens of training. The light blue arrow emphasizes the improvement we observe from DU: 6.90 pp on MMLU, 8.26 pp on
GSM8K, 6.17 pp on HumanEval, and 3.95 pp on the Gauntlet v0.3

The results of this end-of-training data intervention are
shown in Figure 1 and Table 3. Domain upsampling was
incredibly effective in boosting model performance rela-
tive to the initial pretraining data mix on all challenging
benchmarks. Given the large amount of code and math re-
lated data in the domain upsampled data mix, it is perhaps
unsurprising that this intervention led to GSM8K and Hu-
manEval scores that are approximately 10pp higher than
Llama-2 (7B) despite the model being trained for half the
total number of tokens. Additionally, this did not come at
a cost to general language modeling capabilities; it led to
an overall model performance improvement as measured
by Gauntlet v0.3 Core Average. In fact, it improved world
knowledge—as measured by MMLU and the Gauntlet v0.3
subset—relative to the base data mix, bringing us closer
to Llama-2 (7B) performance on these metrics. There was
only a small 1pp tradeoff in the Language Understanding
subset.

Dataset Category No DU DU

Large-Scale Common Crawl 34.35% 0%
Small-Scale Common Crawl 36.70% 30%
Domain Specific 7.17% 35%
Code 21.78% 35%

Table 2. Domain upsampling (DU) is a data intervention in which
datasets are removed from the data mix at the end of training in
order to scale up or upsample the reamining data. We consider
results for removing Large-Scale Common Crawl and scaling up
the remaining datasets as specified in this table.

Overall, this across the board improvement on challenging
benchmarks establishes the efficacy of domain upsampling
as a pretraining data intervention for improving model per-
formance. Importantly, even using simple heuristics for
choosing the new data mix proportions has strong positive
effects, leaving opportunity for further improvement with
better tuned mixing proportions.

3.2. Domain upsampling is a FLOP-efficient tool to
characterize how datasets impact model capabilities

Having observed that upsampling code and our domain spe-
cific datasets for a small percentage of training leads to
significant improvements on difficult and emergent tasks,
we explore the question: how does one attribute improve-
ments to specific subsets of these data? Notably, as can
be seen in Figure 3 and Table 7, GSM8K scores—a task
measuring math and reasoning abilities—improves mono-
tonically as duration of domain upsampling is increased.
We hypothesize, given the quantity of math related data in
our high-quality datasets that these may be responsible for
some or all of this improvement. To quantify the impact of
these datasets we repeat our experiment, applying domain
upsampling for the last 10% of the training duration. We
keep our dataset proportions identical to those in Table 2,
but remove the math related subsets. We present the results
in Table 4.

We observe that not only do the the mathematical knowl-
edge and reasoning skills, as measured by MMLU (which
contains STEM subsets) & GSM8k, not reach the same
level of performance as the model trained using domain
upsampling that included them, but in fact performance is
worse then the baseline model with no domain upsampling.
Moreover, every Gauntlet v0.3 subcategory score for the
domain upsampling sans-math with the exception of pro-
gramming is lower than the baseline model. From this we
can draw the conclusion that these specific datasets are re-
sponsible for the majority of the mathematical knowledge
and reasoning capabilities in both the base model and the
domain upsampled variant.

With this observation we have successfully done something
which generally would be considerably more expensive.
That is, we have measured the impact of pretraining datasets
at a scale where difficult and emergent tasks can be reli-
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Us (7B, 1T tok) Llama-2 OpenLlama

Benchmark No DU 20% DU 7B (2T tok) 7Bv2 (1T tok)

MMLU (5-shot) 35.69 42.59 45.51 40.38
GSM8K (8-shot) 14.71 22.97 14.25 7.05
HumanEval (pass@1) 17.23 23.40 13.55 15.20

Gauntlet v0.3
Core Average 35.37 39.32 37.05 32.96
World Knowledge 41.77 44.19 50.94 43.79
Commonsense Reasoning 38.38 42.59 35.48 34.91
Language Understanding 61.52 60.08 65.02 61.00
Symbolic Problem Solving 16.28 20.23 22.23 19.09
Reading Comprehension 37.02 45.45 35.05 23.82
Programming (HE) 17.23 23.40 13.55 15.20

Table 3. Full evaluation reults for the models presented in Figure 1 along with a comparison to OpenLlama 7Bv2. Overall, our model with
20% domain upsampling outperforms Llama2 (7B) on the Gauntlet v0.3 despite being trained for 1T fewer tokens. Our model particularly
excels at GSM8K and HumanEval but still trails Llama-2 (7B) on MMLU.

ably measured, but at an order of magnitude fewer train-
ing FLOPS. We believe application of domain upsampling
opens up the ability for researchers to experiment with their
pretraining datasets in a tractable way as compared to full
pretraining runs.

10% DU

Benchmark No DU With Math Sans Math

MMLU (5-shot) 35.69 43.19 29.71
GSM8K (8-shot) 14.71 20.47 11.37
HumanEval (pass@1) 17.23 20.39 21.15

Gauntlet v0.3
Core Average 35.37 38.46 32.54
WK 41.77 44.72 39.08
CR 38.38 42.33 31.76
LU 61.52 60.41 59.97
SPS 16.28 19.55 16.80
RC 37.02 43.35 26.48
Programming 17.23 20.39 21.15

Table 4. Removing the math-specific datasets during domain up-
sampling results in significantly worse performance on all metrics
except programming vs. performing domain upsampling with
these datasets. Experiments such as this provide a significantly
cheaper method to characterize datasets on challenging bench-
marks like MMLU, GSM8K and HumanEval compared to full
pretraining runs with different data mixes. The Gauntlet categories
are abbreviated: World Knowledge (WK), Commonsense Rea-
soning (CR), Language Understanding (LU), Symbolic Problem
Solving (SPS), and Reading Comprehension (RC).

4. Discussion
Pretraining LLMs has become an increasingly costly and
clandestine endeavor given the scale of compute required for
each experiment. This problem is exacerbated by the multi-

faceted decision space presented to practitioners, especially
in the selection of pretraining data. Since many important
model capabilities emerge with scale, trying to explore this
design space at small compute budgets is often ineffective:
observations made about the effects of the pretraining data
mix typically do not transfer to larger models or training
budgets.

In this work, we take a crucial first step towards making
experimentation with pretraining datasets cheaper. We in-
troduce domain upsampling, a method that can strongly
impact the performance of the model by making targeted
changes to the data mix at the end of training. This en-
ables us to achieve the performance of Llama-2 (7B) but
with half the training budget. By varying the duration of
domain upsampling, we demonstrate how to navigate the
tradeoff between targeting specific domains and making
general purpose language models.

Finally, we show how making changes to the data mix only
during the domain upsampling period enabled us to cheaply
characterize the impact of several math-focused datasets,
and we see many opportunities to use this method as a
general tool for studying pretraining data in a FLOP-efficient
manner. It also creates a platform to test data interventions
at scale: instead of testing possible dataset optimization
algorithms at small scales and hoping they will generalize,
we can test them at the end of training to effectively measure
their impact at scale. Overall this brings down the cost of
experimentation, making pretraining data experiments more
accessible.
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A. Baseline data mix achieves Llama-2 scaling
To construct a baseline data mix, we grouped a set of publicly-available datasets into 4 broad categories as described in the
main text: Large-Scale Common Crawl, Small-Scale Common Crawl, Domain Specific, and Code. We set the proportions
for mixing these datasets based on a rough heuristic for the number of epochs each of these groups would be seen during
the 1 trillion token training duration. Specifically, we choose 0.5 epochs for the Small-Scale Common Crawl and Domain
Specific data and 1 epoch for Code. The remainder of the 1 trillion tokens are filled with Large-Scale Common Crawl. The
exact proportions are in Table 5.

The rationale behind choosing these proportions is as follows: we expect the Small-Scale Common Crawl and Domain
Specific data to be of high quality and we wanted them to be well represented on our 1 trillion token budget. Also, we wanted
to emphasize coding ability and so we decided to sample code data at a high percentage—initial experiments indicated that
a high percentage of code around 20% boosted programming and reasoning ability without negatively impacting language
abilities. We then treat the Large-Scale CC as filler tokens that increase the diversity of our dataset and allow us to fill our
token budget.

Figure 2. On key benchmarks, our 7B models trained with the data mix presented in Table 5 have errors at or below the error vs. FLOP
scaling line of the Llama-2 family of models. We first evaluated the performance of the 7B, 13B, and 70B variants of the Llama-2 models
on MMLU, GSM8K, HumanEval, and the Gauntlet v0.3 Core Average. We then performed linear regression on the log of the error on
these metrics vs. the log of the FLOPS used to train these models. This scaling relationship is plotted as a dashed line in the log-log
plots shown above; one can observe that the models in the Llama-2 family lie close to this scaling line. For MMLU, our models (square
markers) lie on the Llama-2 scaling line. For the other metrics, our models are significantly below the scaling line.

Importantly, since the goal of our experimental setup is to demonstrate the utility of domain upsampling at the end of training
(discussed in Section 3.1), we opt for choosing a reasonable heuristic for picking our initial data mix proportions without
too much optimization. Table 6 and Figure 2 show the performance of this initial pretraining data mix for two 7B models
trained for 0.5T and 1T tokens. This heuristic has indeed been validated by our empirical results; plotting error vs. FLOPs
shows that our models lie on or below the Llama-2 scaling line on the Gauntlet v0.3 Core Average, MMLU, GSM8K, and
HumanEval. Interestingly, though the overall performance scaling (as measured by Gaunlet v0.3 Core Average) is very
similar, our particular data choices and mixing coefficients have led to slightly different tradeoffs. The model trained for 1T
tokens outperforms the Llama-2 7B model trained for 2T tokens on GSM8K and HumanEval. This indicates that our models
have better mathematical and programming ability despite being trained for half the number of tokens. We also provide a
comparison to OpenLlama 7Bv2 (Geng & Liu, 2023), a 7B model that provides some open details about their data mix.

Dataset Category Percentage Tokens Epochs (1T)

Large-Scale Common Crawl 34.35% 343.5B 0.148
Small-Scale Common Crawl 36.70% 367.0B 0.5
Domain Specific 7.17% 71.7B 0.5
Code 21.78% 217.8B 1

Table 5. Proportions for our pretraining data mix in terms of the 4 dataset groups. Code data was included at twice the proportion of
other domain specific datasets to focus on boosting coding capabilities of our models. Large-scale Common Crawl was used to fill the
remainder of the tokens once the other proportions were chosen.
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Does your data spark joy? Performance gains from domain upsampling at the end of training

Us (7B) Llama-2 OpenLlama

Benchmark 0.5T tok 1T tok 7B (2T tok) 7Bv2 (1T tok)

MMLU (5-shot) 24.70 35.69 45.51 40.38
GSM8K (8-shot) 10.16 14.71 14.25 7.05
HumanEval (pass@1) 18.02 17.23 13.55 15.20

Gauntlet v0.3
Core Average 32.13 35.37 37.05 32.96
World Knowledge 39.29 41.77 50.94 43.79
Commonsense Reasoning 30.52 38.38 35.48 34.91
Language Understanding 61.47 61.52 65.02 61.00
Symbolic Problem Solving 14.10 16.28 22.23 19.09
Reading Comprehension 29.36 37.02 35.05 23.82
Programming (HE) 18.02 17.23 13.55 15.20

Table 6. Full evaluation results for the models presented in Figure 2. We note that a 7B model trained with our data mix for 1T tokens
outperforms Llama2-7B—a model trained for 2T tokens—on GSM8K, HumanEval, and the Commonsense Reasoning and Reading
Comprehension subsets of the Gauntlet v0.3. We also compare to OpenLlama 7Bv2, a similar model with a publicly available data mix
trained for 1T tokens. Note that HumanEval (HE) is the sole component of the programming section of the Gauntlet.

B. Changing the duration of domain upsampling enables us to navigate the trade-off between
targeting specific domains and general purpose language models

Figure 3. Ablating the duration of Domain Upsampling (DU). Here we consider performing DU for the final 5%, 10%, 20%, and 30%
(50B, 100B, 200B, and 300B tokens) of training for a 7B model for a total duration 1T tokens. We observe that GSM8K and HumanEval
performance continue to improve with increased DU while MMLU and the Gauntlet Core Average peak at 10% and 20% respectively.
Looking across the metrics presented in Table 7, we conclude that (1) DU for the final 10%-20% of training provides the best trade-off
and (2) the mix used for DU should not be used for the entire duration of training.

The success of domain upsampling for the last 20% of training raises the question: are the improvements from an end-
of-training data intervention or are they from overall better data mix proportions? Phrased another way, are the data mix
proportions in Table 2 better than our initial data mix and would training a model for 1T tokens with this data mix lead to
better performance? In this section, we provide evidence that this is not the case and in fact, treating domain upsampling as
an end-of-training data intervention helps us better tradeoff domain specific improvements and general language modeling
capabilities.

To identify when in training this intervention should be applied, we ablate our previous experiment by performing domain
upsampling for the last 5%, 10%, 20%, and 30% of training. The results of this experiment are shown in Figure 3 and
Table 7. Note, while the math and programming related benchmarks, such as HumanEval, GSM8K and related Gauntlet
v0.3 subscores, continue to improve as we increase the fraction of training that uses domain upsampling, other benchmarks
reach optimal performance at 20% or less. For example, MMLU peaks at 10% and Gauntlet v0.3 Core Average peaks at
20%. Thus, as we increase the fraction of training with domain upsampling beyond 20%, improvements on math and coding
benchmarks come at the cost of performance on general language modeling abilities.
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Does your data spark joy? Performance gains from domain upsampling at the end of training

Us (7B, 1T tok)

Benchmark 0% 5% 10% 20% 30%

MMLU (5-shot) 35.69 40.20 43.19 42.59 41.78
GSM8K (8-shot) 14.71 16.98 20.47 22.97 24.56
HumanEval (pass@1) 17.23 18.50 20.39 23.40 24.17

Gauntlet v0.3
Core Average 35.37 37.63 38.46 39.32 38.89
World Knowledge 41.77 43.52 44.72 44.19 43.71
Commonsense Reasoning 38.38 42.97 42.33 42.59 42.19
Language Understanding 61.52 61.05 60.41 60.08 60.35
Symbolic Problem Solving 16.28 18.50 19.55 20.23 20.44
Reading Comprehension 37.02 41.23 43.35 45.45 42.50
Programming (HE) 17.23 18.50 20.39 23.40 24.17

Table 7. Full evaluation results for the models presented in Figure 3.

This apparent trade-off indicates that the domain upsampling data mix proportions are not incontrovertibly better than the
initial data mix, and training with it for the full 1T token duration would not lead to a better general purpose language
model. We do not rule out that there is an alternate mix that achieves similar performance as the 20% domain upsampling
experiment when trained for the full training duration. However, finding such a mix is expensive to iterate on for the full
training run. Thus, the strength of domain upsampling is that it gives us a tool to navigate this tradeoff between targeted
domains and general language modeling abilities with experiments that are an order of magnitude cheaper.

C. Gauntlet v0.3
The Gauntlet v0.3 is a aggregation of benchmark developed by Mosaic Research. Rather than reporting a monolithic
metric in which all scores are aggregated together, the individual benchmarks were grouped into six broad competencies
corresponding to different capabilities we want our LLMs to have:

1. World Knowledge: Measures the model’s factual knowledge across a range of subjects.

2. Commonsense Reasoning: Evaluates the model’s ability to do basic reasoning tasks that require commonsense
knowledge of objects, their properties, and their behaviors.

3. Language Understanding: Assesses the model’s ability to understand structure and properties of language.

4. Symbolic Problem Solving: Tests the model’s ability to solve a diverse range of symbolic tasks including arithmetic,
logical reasoning, algorithms, and algebra.

5. Reading Comprehension: Measures a model’s ability to answer questions based on information in a passage of text.

6. Programming: Quantifies the ability to generate code from docstring descriptions.

These divisions allow for more fine-grained comparison between models and is especially useful for understanding how
datasets affect different capabilities of the model. The random baseline of each metric was subtracted out before aggregating.
For example, if the metric is 4-option multiple choice questions giving a random baseline of 25% and the model achieves
30% then this would be aggregated as (0.3− 0.25)/(1− 0.25) = 0.0667, essentially rescaling accuracy above change to be
between 0 and 1. If the random baseline is approximately 0, then the metric is reported as is. Table 8 list the benchmarks in
each category.
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Benchmark Citation

World Knowledge
Jeopardy (3-shot) (Wolfe et al., 2022)
MMLU (5-shot) (Hendrycks et al., 2020)
BIG-bench Wikidata (3-shot) (Srivastava et al., 2022)
ARC-easy (3-shot) (Clark et al., 2018)
ARC-challenge (3-shot) (Clark et al., 2018)
TriviaQA-Subsampled (3-shot) (Joshi et al., 2017)

Commonsense Reasoning
BIG-bench Strategy QA (Srivastava et al., 2022)
BIG-bench Strange Stories (Srivastava et al., 2022)
COPA (0-shot) (Roemmele et al., 2011)
PIQA (10-shot) (Bisk et al., 2020)
SIQA (3-shot) (Sap et al., 2019)
Openbook QA (10-shot) (Mihaylov et al., 2018)
Commonsense QA (0-shot) (Talmor et al., 2018)

Language Understanding
LAMBADA (Paperno et al., 2016)
HellaSwag (Zellers et al., 2019)
Winograd (3-shot) (Levesque et al., 2012)
Winogrande (5-shot) (Sakaguchi et al., 2021)

Symbolic Problem Solving
BIG-bench Elementary Math QA (1-shot) (Srivastava et al., 2022)
BIG-bench Dyck Languages (5-shot) (Srivastava et al., 2022)
BIG-bench Operators (3-shot) (Srivastava et al., 2022)
Simple Arithmetic (with spaces, 5-shot) (MosaicML et al., 2023)
Simple Arithmetic (no spaces, 5-shot) (MosaicML et al., 2023)
GSM8K (8-shot) (Cobbe et al., 2021)
SVAMP (5-shot) (Patel et al., 2021)
AGI Eval LSAT AR (5-shot) (Zhong et al., 2023)

Reading Comprehension
SQuAD (3-shot) (Rajpurkar et al., 2016)
BoolQ (Clark et al., 2019)
CoQA (Reddy et al., 2019)
AGI Eval LSAT RC (5-shot) (Zhong et al., 2023)
AGI Eval LSAT LR (5-shot) (Zhong et al., 2023)
AGI Eval SAT En (5-shot) (Zhong et al., 2023)

Programming
HumanEval (pass@1) (Chen et al., 2021)

Table 8. Metrics included in the Gauntlet v0.3. Evaluation metrics are 0-shot unless otherwise denoted.
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