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Abstract

This paper studies decentralized bilevel optimization, in which multiple agents col-
laborate to solve problems involving nested optimization structures with neighbor-
hood communications. Most existing literature primarily utilizes gradient tracking
to mitigate the influence of data heterogeneity, without exploring other well-known
heterogeneity-correction techniques such as EXTRA or Exact Diffusion. Addi-
tionally, these studies often employ identical decentralized strategies for both
upper- and lower-level problems, neglecting to leverage distinct mechanisms across
different levels. To address these limitations, this paper proposes SPARKLE, a
unified Single-loop Primal-dual AlgoRithm frameworK for decentraLized bilEvel
optimization. SPARKLE offers the flexibility to incorporate various heterogeneity-
correction strategies into the algorithm. Moreover, SPARKLE allows for different
strategies to solve upper- and lower-level problems. We present a unified conver-
gence analysis for SPARKLE, applicable to all its variants, with state-of-the-art
convergence rates compared to existing decentralized bilevel algorithms. Our
results further reveal that EXTRA and Exact Diffusion are more suitable for de-
centralized bilevel optimization, and using mixed strategies in bilevel algorithms
brings more benefits than relying solely on gradient tracking.

1 Introduction

Numerous modern machine learning tasks, such as reinforcement learning [25], meta-learning [4],
adversarial learning [36], hyper-parameter optimization [19], and imitation learning [3], entail nested
optimization formulations that extend beyond the traditional single-level paradigm. For instance,
hyper-parameter optimization aims to identify the optimal hyper-parameters for a specific learning
task in the upper level by minimizing the validation loss, achieved through training models in the
lower-level process. This nested optimization structure has spurred significant attention towards
Stochastic Bilevel Optimization (SBO). Since the size of data samples involved in bilevel problems
has become increasingly large, this paper investigates decentralized algorithms over a network of n
agents (nodes) that collaborate to solve the following distributed bilevel optimization problem:

min
x∈Rp

Φ(x) = f(x, y⋆(x)) :=
1

n

n∑
i=1

fi(x, y
⋆(x)), (upper-level) (1a)
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s.t. y⋆(x) = argmin
y∈Rq

{
g(x, y) :=

1

n

n∑
i=1

gi(x, y)
}
. (lower-level) (1b)

In this formulation, each agent i holds a private upper-level objective function fi : Rp × Rq → R
and a strongly convex lower-level objective function gi : Rp × Rq → R defined as:

fi(x, y) = Eϕ∼Dfi
[Fi(x, y;ϕ)], gi(x, y) = Eξ∼Dgi

[Gi(x, y; ξ)], (2)

where Dfi and Dgi represent the local data distributions at agent i. This paper does not make any
assumptions about these data distributions, implying there might be data heterogeneity across agents.

Linear speedup and transient iteration complexity. A decentralized stochastic algorithm achieves
linear speedup if its iteration complexity decreases linearly with the network size n. Additionally, the
transient iteration complexity refers to the number of transient iterations a decentralized algorithm
must undergo to achieve the asymptotic linear speedup stage. The fewer the transient iterations, the
faster the algorithm can achieve linear speedup. This paper aims to develop decentralized stochastic
bilevel algorithms that can achieve linear speedup with as few transient iterations as possible.

Limitations in previous works. A significant challenge in decentralized bilevel optimization lies
in accurately estimating the hyper-gradient ∇Φ(x) through neighborhood communications. Several
studies have emerged to effectively address this challenge, such as those by [9, 33, 52, 16, 21, 40, 57,
29]. However, existing works suffer from several critical limitations:

• Stringent assumptions and inadequate convergence analysis. Many existing studies rely on
stringent assumptions to ensure convergence. For instance, references [9, 10, 33, 21, 52] assume
bounded gradients, while reference [29] assumes bounded data heterogeneity (also known as
bounded gradient dissimilarity). These restrictive assumptions do not arise in centralized bilevel
optimization, implying their potential unnecessity. Moreover, some of these works suffer from
inadequate convergence analysis, unable to clarify the transient iteration complexity [9, 33, 10] or
provide a sharp estimation of the influence of network topologies [52, 21].

• Limited exploration of various heterogeneity-correction techniques. Several concurrent stud-
ies [16, 57, 40] have utilized Gradient Tracking (GT) [50, 13, 38] to remove the assumption
of bounded data heterogeneity. However, it remains uncertain whether GT is the most suitable
mechanism for decentralized bilevel optimization. Many other techniques are also useful for
addressing data heterogeneity in single-level decentralized optimization, such as EXTRA [45]
and Exact-Diffusion (ED) [56, 30, 54] (which is also known as D2 [46]). Even within GT, there
are variants including Adapt-Then-Combine GT (ATC-GT) [50], non-ATC-GT [38], and semi-
ATC-GT [13]. It remains unexplored whether these techniques for mitigating data heterogeneity
converge and even outperform GT when employed in decentralized bilevel algorithms.

• Unknown effects of employing different upper- and lower-level update strategies. In bilevel
optimization, the challenges in solving the upper- and lower-level problems differ substantially.
For instance, the upper-level problem (1a) is non-convex, whereas the lower-level problem (1b)
is strongly convex. Moreover, estimating the gradient at the lower level is considerably simpler
compared to estimating the hyper-gradient at the upper level. Understanding the roles of updates
at each level is crucial to develop more efficient algorithms. However, most existing algorithms
employ the same decentralized methods to solve both the upper- and lower-level problems. For
example, references [9, 52, 29] utilize decentralized gradient descent (DGD) for updates at both
levels while [57, 40, 16] leverage GT, overlooking the potential advantages of mixed strategies.

To address these limitations, several critical questions naturally arise: Should each heterogeneity-
correction mechanism listed in [50, 13, 38, 56, 30, 54, 46] be explored one-by-one? Should we
consider combining any two of these techniques to update the upper and lower-level problems,
respectively? It is evident that examining each individual heterogeneity-correction technique, and
even exploring their combinations, would involve an unbearable amount of effort.

Main results and contributions. This paper addresses all the aforementioned limitations without
exhaustively exploring all heterogeneity-correction techniques. Our main results are as follows.

• A unified decentralized bilevel framework. To avoid examining each single heterogeneity-
correction technique, we propose SPARKLE, a unified Single-loop Primal-dual AlgoRithm
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Table 1: Comparison between different decentralized stochastic bilevel algorithms. K denotes the number of
(upper-level) iterations; 1 − ρ denotes the spectral gap of the mixing matrix (see Assumption 2); b2 bounds
the gradient dissimilarity; ε is the target stationarity such that

∑K−1
k=0 E[∥∇Φ(x̄k)∥2]/K < ε; p and q are the

dimensions of the upper- and lower-level variables, reflecting per-round communication costs. Assumptions
of bounded gradient, Lipschitz continuity, and bounded gradient dissimilarity are abbreviated as BG, LC, and
BGD, respectively. We also list the best-known results of single-level GT, EXTRA, and ED at the bottom.

Algorithms Assumption▷ A. Rate. ♢ A. Comp. † A. Comm. ‡ Tran. Iter.◁ Loopless
DSBO [9] LC 1√

K
1
ε3

(
pq log(1ε) +

q
ε

)
1
ε2

N.A. No

MA-DSBO [10] LC 1√
K

1
ε2
log(1ε)

q
ε2
log(1ε) +

p
ε2

N.A. No

SLAM [33] LC 1√
nK

1
nε2

log(1ε)
p+q
nε2

N.A. No

MDBO [21] BG 1√
nK

1
nε2

log(1ε)
p+q
nε2

n3

(1−ρ)8
No

Gossip DSBO [52] BG 1√
nK

1
nε2

log(1ε)
q2

nε2
log(1ε) +

pq
nε2

n3

(1−ρ)4
No

LoPA [40]∗ BGD 1√
K

1
ε2

p+q
ε2

N.A. Yes

D-SOBA [29] BGD 1√
nK

1
nε2

p+q
nε2

max
{

n3

(1−ρ)2
, n3b2

(1−ρ)4

}
Yes

SPARKLE-GT (ours) None 1√
nK

1
nε2

ap+q
nε2

♯
max

{
n3

(1−ρ)2
, n

(1−ρ)8/3

}
Yes

SPARKLE-EXTRA (ours) None 1√
nK

1
nε2

ap+q
nε2

♯ n3

(1−ρ)2
Yes

SPARKLE-ED (ours) None 1√
nK

1
nε2

ap+q
nε2

♯ n3

(1−ρ)2
Yes

Single-level GT [2, 28] None 1√
nK

1
nε2

p
nε2

max
{

n3

(1−ρ)2
, n
(1−ρ)8/3

}
Yes

Single-level EXTRA [2] None 1√
nK

1
nε2

p
nε2

n3

(1−ρ)2
Yes

Single-level ED [2] None 1√
nK

1
nε2

p
nε2

n3

(1−ρ)2
Yes

♢ The convergence rate when K → ∞ (smaller is better).
† The number of gradient/Jacobian/Hessian evaluations per agent to achieve ε-accuracy when ϵ → 0 (smaller is better).
‡ The communication costs per agent to achieve ε-stationarity when ϵ → 0 (smaller is better).
◁ The transient iteration complexity to achieve linear speedup (smaller is better). “N.A.” means that the algorithm cannot

achieve linear speedup or the transient time cannot be accessed from existing convergence analysis.
▷ Additional assumptions beyond Assumption 1.
∗ LoPA solves the personalized problem, where the lower-level objectives are local to agents.
♯ a > 0 measures the relative sparsity of the mixing weights Wx,Wy,Wz, which can be very small in certain cases. Here
1− ρ in Tran. Iter. denotes the smallest spectral gap of Wx,Wy,Wz. See more discussions in Appendix C.2.3.

frameworK for decentraLized bilEvel optimization. By specifying certain hyper-parameters,
SPARKLE can be tailored to SPARKLE-EXTRA, SPARKLE-ED, and SPARKLE-GT, which
employ EXTRA [45], ED [56, 30], or multiple GT variants [50, 13, 38], respectively, to facilitate
the upper and lower-level problems. Additionally, SPARKLE is the first algorithm enabling
distinct updating strategies across different levels; for example, one can utilize GT in the upper-
level but ED in the lower-level, resulting in a brand new SPARKLE-GT-ED algorithm.

• A unified and sharp analysis of various heterogeneity-correction schemes. We provide a unified
convergence analysis for SPARKLE, which immediately applies to all SPARKLE variants with
distinct heterogeneity-correction techniques. The analysis does not require restrictive assumptions
such as gradient boundedness used in [9, 10, 33, 21, 52] or data-heterogeneity bounded used
in [29]. Moreover, our analysis demonstrates the provable superiority of SPARKLE compared to
existing algorithms, as evidenced by the convergence rates listed in Table 1. Most importantly, our
analysis shows that both SPARKLE-EXTRA and SPARKLE-ED outperform SPARKLE-GT
(see Table 1), implying that GT is not the best scheme for decentralized bilevel optimization.

• Mixing strategies outperform employing GT alone. We demonstrate how optimization at
different levels affects convergence rates. Our theoretical analysis suggests that the updating
strategy at the lower level is crucial in determining the overall performance in decentralized bilevel
algorithms. Building upon this insight, we establish that incorporating the ED or EXTRA strategy
in the lower-level update phase leads to better transient iteration complexity than relying solely on
the GT mechanism in both levels as proposed in [10, 16, 40], see Table 2 for more details.

• Comparable performance with single-level algorithms. We elucidate the comparison between
bilevel and single-level stochastic decentralized optimization. On one hand, we demonstrate that
the convergence performance of all our proposed algorithms is not inferior to their single-level
counterparts (see the bottom part in Table 1). On the other hand, by considering specific lower-level
loss functions, our bilevel results directly yield the non-asymptotic convergence of corresponding
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Table 2: The transient iteration complexity of SPARKLE with mixed updating strategies at various levels. The
smaller the transient iteration complexity is, the faster the algorithm will achieve its linear speedup stage. The
first row and column respectively indicate the updating strategy for the upper- and lower-level problems. Please
refer to Appendix B.3 for more implementation details and Appendix C.2.4 for proofs .

lower
upper ED EXTRA GT

ED n3

(1−ρ)2
n3

(1−ρ)2
n3

(1−ρ)2

EXTRA n3

(1−ρ)2
n3

(1−ρ)2
n3

(1−ρ)2

GT max
{

n3

(1−ρ)2
, n

(1−ρ)8/3

}
max

{
n3

(1−ρ)2
, n

(1−ρ)8/3

}
max

{
n3

(1−ρ)2
, n

(1−ρ)8/3

}
single-level algorithms. This is the first result demonstrating bilevel optimization essentially
subsumes the convergence of the single-level optimization.

Our main results are listed in Table 1. All SPARKLE variants achieve the state-of-the-art asymp-
totic rate, asymptotic gradient complexity, asymptotic communication cost, and transient iteration
complexity under more relaxed assumptions compared to existing methods.

Related works. A significant challenge in decentralized bilevel optimization is accurately estimating
the hyper-gradient ∇Φ(x), necessitating solving global lower-level problems and estimating Hessian
inversion. To this end, various decentralized techniques have been applied in bilevel optimization,
including Neumann series in [52], JHIP oracle in [9], HIGP oracle in [10], and augmented Lagrangian-
based communication in [33]. Additionally, reference [29] proposes a single-loop algorithm utilizing
decentralized SOBA. To enhance algorithmic robustness against data heterogeneity, recent studies
have employed Gradient Tracking (GT) in both lower- and upper-level optimization. However,
existing works built upon GT suffer from several limitations. Results of [16, 9] concentrate solely on
deterministic cases, while reference [40] addresses personalized problems in the lower-level, which
do not require achieving global consensus in the lower-level problem. Moreover, [9, 10] introduce
computationally expensive inner loops for GT steps. None of these works can establish smaller
transient iteration complexity than D-SOBA for decentralized SBO, even though the latter algorithm
employs no heterogeneity-correction technique.

The unified framework for single-level decentralized optimization has been extensively studied in the
literature. References [1, 49, 26] propose frameworks for decentralized composite optimization in
deterministic settings, while [2] investigates a framework under stochastic settings. However, none
of these works can be directly applied to decentralized bilevel algorithms. Several studies [21, 57]
utilize variance reduction techniques to accelerate the convergence of stochastic decentralized bilevel
algorithms. Our proposed SPARKLE framework is orthogonal to variance reduction; it can also
incorporate variance-reduced gradient estimation to achieve improved convergence rates. More
relevant works on decentralized optimization and bilevel optimization are discussed in Appendix A.

Notations. We use lowercase letters to represent vectors and uppercase letters to represent matrices.
We introduce col{x1, ..., xn} := [x⊤1 , ..., x

⊤
n ]

⊤ ∈ Rpn for brevity. Variables with overbar denote the
average over all agents. For example, x̄k =

∑n
i=1 x

k
i /n. We denote A = A − 1

n1n1
⊤
n for matrix

A ∈ Rn×n, where 1n ∈ Rn denotes the n-dimensional vector with all entries being one. For a
function f(x, y) : Rp × Rq → R, we use ∇1f(x, y) ∈ Rp, ∇2f(x, y) ∈ Rq to represent its partial
gradients with respect to x and y, respectively. Similarly, ∇12f(x, y) ∈ Rp×q, ∇22f(x, y) ∈ Rq×q

represent the corresponding Jacobian and Hessian matrix. We use the notation ≲ to denote inequalities
that hold up to constants related to the initialization of algorithms and smoothness constants.

2 SPARKLE: A unified framework for decentralized bilevel optimization

This section develops SPARKLE, a unified framework for decentralized bilevel optimization, and
discusses its numerous variants by specifying certain hyper-parameters.

2.1 Three pillar subproblems in decentralized bilevel optimization.

When solving the upper-level problem (1a), it is critical to obtain the hyper-gradient ∇Φ(x), which
can be expressed as [22]

∇Φ(x) = ∇1f(x, y
⋆(x))−∇2

12g(x, y
⋆(x))

[
∇2

22g(x, y
⋆(x))

]−1 ∇2f(x, y
⋆(x)). (3)
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Evaluating this hyper-gradient is computationally expensive due to the inversion of the Hessian matrix.
This evaluation becomes even more challenging over a decentralized network of collaborative agents.
First, the inverse of the Hessian matrix cannot be obtained by simply averaging the local Hessian
inverses due to [ 1n

∑n
i=1 ∇2

22gi(x, y
⋆(x))]−1 ̸= 1

n

∑n
i=1[∇2

22gi(x, y
⋆(x))]−1. Second, the global

averaging operation cannot be realized through decentralized communication. To overcome these
challenges, one can introduce an auxiliary variable z⋆(x):= [∇2

22g(x, y
⋆(x))]−1∇2f(x, y

⋆(x)) [12],
which is the solution to a quadratic problem

z⋆(x) = argmin
z∈Rq

{
1

2
z⊤∇2

22g (x, y
⋆(x)) z − z⊤∇2f (x, y

⋆(x))

}
. (4)

Once z⋆(x) is derived by solving (4), we can substitute it into (3) to achieve ∇Φ(x).

Following this idea, solving the distributed bilevel optimization problem (1) essentially involves
solving three subproblems, where hi(x, y⋆(x), z) := 1

2z
⊤∇2

22gi(x, y
⋆(x))z − z⊤∇2fi(x, y

⋆(x)),

x⋆ = argmin
x∈Rp

1

n

n∑
i=1

fi(x, y
⋆(x)), (upper-level) (5a)

y⋆(x) = argmin
y∈Rq

1

n

n∑
i=1

gi(x, y), (lower-level) (5b)

z⋆(x) = argmin
z∈Rq

1

n

n∑
i=1

hi(x, y
⋆(x), z). (auxiliary-level) (5c)

Given the variable x, one can achieve y⋆(x) by solving the lower-level problem in (5b). With y⋆(x)
determined, z⋆(x) can be obtained by solving the auxiliary-level problem in (5c). Subsequently, with
z⋆(x) available, one can directly compute the hyper-gradient and solve the upper-level problem in
(5a) using gradient descent. This constitutes the primary methodology to solve problem (1).

A bilevel algorithm essentially solves three subproblems listed in (5), each formulated as a single-level
decentralized optimization problem. Nevertheless, primary approaches may suffer from nested loops
in algorithmic development. A few recent studies [12, 11, 57, 29] propose to solve each problem in
(5a)-(5c) approximately with one single iteration, leading to practical single-loop bilevel algorithms.
For example, applying a D-SGD step [43] to each of (5a)-(5c) yields the D-SOBA method [29], while
further leveraging the GT technique leads to decentralized bilevel methods in [9, 16, 57, 21].

However, it is less explored whether numerous other heterogeneity-correction techniques [50, 13,
38, 56, 30, 54, 46] beyond GT can be incorporated into algorithmic design to achieve even better
performance in bilevel optimization. To avoid exploring each case individually, we next introduce a
general framework that unifies all these techniques for solving single-level problems.

2.2 A unified framework for decentralized single-level optimization.

In this subsection, we consider solving the single-level problem minx∈Rp
1
n

∑n
i=1 fi(x) over a

network of n nodes. For each k-th (k ≥ 0) iteration, we let xki denote the local x-variable maintained
by the i-th agent. Furthermore, we associate the topology with a weight matrix W = [wij ]

n
i,j=1 ∈

Rn×n in which wij ∈ (0, 1) if node j is connected to node i otherwise wij = 0. We use bold symbols
to denote stacked vectors or matrices across agents. For example, xk = col{xk1 , ..., xkn} ∈ Rpn and
W =W ⊗ Ip, where ⊗ denotes the Kronecker product operator.

A unified framework with moving average. Building on the formulation in [1, 2], we develop a
unified primal-dual framework with moving average for decentralized optimization:

rk+1 = (1− θ)rk + θgk, xk+1 = Cxk − αArk+1 −Bdk, dk+1 = dk +Bxk+1. (6)

Here xk denotes the primal variable, dk denotes the dual variable introduced to mitigate the influence
of data-heterogeneity, gk stacks all (stochastic) gradients evaluated at xki for 1 ≤ i ≤ n, rk denotes
the momentum introduced to boost training with coefficient θ ∈ [0, 1], and α > 0 is the learning rate.
Matrices A,B,C ∈ Rpn×pn are adapted from the mixing matrix W, which determine how agents
communicate with each other. See Appendix B.1 for more detailed motivations.

Framework (6) unifies various decentralized techniques in the literature. For instance, by letting
θ = 1 and specifying A,B,C delicately, framework (6) reduces to ED, EXTRA, and numerous GT
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Algorithm 1 SPARKLE: A unified framework for decentralized stochastic bilevel optimization
Require: Initialize x0 = y0 = z0 = r0 = 0, d0

x = d0
y = d0

z = 0, learning rate αk, βk, γk, θk.
for k = 0, 1, · · · ,K − 1 do
yk+1 = Cyy

k − βkAyv
k −Byd

k
y , dk+1

y = dk
y +Byy

k+1; ▷ lower-level update
zk+1 = Czz

k − γkAzp
k −Bzd

k
z , dk+1

z = dk
z +Bzz

k+1; ▷ auxiliary-level update
rk+1 = (1− θk)r

k + θku
k; ▷ momentum update

xk+1 = Cxx
k − αkAxr

k+1 −Bxd
k
x, dk+1

x = dk
x +Bxx

k+1; ▷ upper-level update
end for

variants, see Table 3 and Appendix B.1 for more details. Framework (6) is closely related to the
unified decentralized method developed in [1, 2]. The primary difference lies in the incorporation
of the momentum variable rk, which can help improve the transient iteration complexity of the
framework (6) and relax the smoothness condition for bilevel algorithms [11]. A detailed comparison
between framework (6) and that proposed in [1, 2] is provided in Appendix B.2.

2.3 A unified framework for decentralized bilevel optimization.

By utilizing the unified framework (6) to approximately solve each subproblem in (5) with only
one iteration, we achieve SPARKLE, a unified single-loop framework for decentralized bilevel
optimization. In particular, we independently sample data ξki ∼ Dfi , ζ

k
i ∼ Dgi within each node at

iteration k, and evaluate stochastic gradients/Jacobians/Hessians as follows

lki = ∇1Fi(x
k
i , y

k
i ; ξ

k
i ), bki = ∇2Fi(x

k
i , y

k
i ; ξ

k
i ), vki = ∇2Gi(x

k
i , y

k
i ; ζ

k
i ),

Jk
i = ∇2

12Gi(x
k
i , y

k
i ; ζ

k
i ), Hk

i = ∇2
22Gi(x

k
i , y

k
i ; ζ

k
i ).

Next we stack the descent directions for variables of each level as follows

lower-level stochstic gradient: vk = col{vk1 , ..., vkn},
auxilliary-level stochstic gradient: pk = col{Hk

1 z
k
1 − bk1 , ...,H

k
nz

k
n − bkn},

upper-level stochstic gradient: uk = col{lk1 − Jk
1 z

k+1
1 , ..., lkn − Jk

nz
k+1
n }.

The SPARKLE algorithm is detailed in Algorithm 1. In this algorithm, we utilize different dual
variables ds and communication matrices As,Bs,Cs for each variable s ∈ {x, y, z} to optimize
their respective objective functions. We use momentum rk only for updating the upper-level variable,
which is sufficient to enhance convergence of bilevel algorithms and relax the smoothness condition.

Versatility in decentralized strategies. SPARKLE is highly versatile, supporting various decentral-
ized strategies by allowing the specification of different communication matrices As, Bs, and Cs.
For example, by setting As = I, Bs = (I−W)1/2, and Cs = W for any s ∈ {x, y, z}, SPARKLE
will utilize EXTRA to update variables x, y, and z, resulting in the SPARKLE-EXTRA variant. Other
variants can be achieved by setting As, Bs, and Cs according to Table 3. These variants can be
implemented more efficiently than listed in Algorithm 1, see Appendix B.3.

Flexibility across optimization levels. SPARKLE supports different optimization and communi-
cation mechanisms for each level of (5), which can be directly achieved by choosing different As,
Bs, and Cs matrices for each level s ∈ {x, y, z}. For example, SPARKLE can utilize GT to update
the upper-level variable x while employing ED to update the auxiliary- and lower-level variables y
and z. Throughout this paper, we denote SPARKLE using the decentralized mechanism L for the
lower-level and auxiliary variables, and U for the upper-level in Algorithm 1, by SPARKLE-L-U,
or simply SPARKLE-L if L = U. In addition, SPARKLE even supports utilizing different mixing
matrices Wx,Wy,Wz across levels.

3 Convergence analysis

In this section, we establish the convergence properties of the SPARKLE framework and examine
the influence of different decentralized techniques utilized across optimization levels.
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Table 3: SPARKLE facilitates different decentralized techniques by specifying As,Bs,Cs for s∈{x, y, z}.
We denote the stacked local variables and the associate gradients estimates by s∈{x,y, z} and g(s), respectively.
The update rule refers to the specific algorithmic recursion for each level. See derivations in Appendix B.2.

Algorithms As Bs Cs The specific update rule at the k-th iteration.

ED Ws (I−Ws)
1
2 Ws sk+2 = Ws

(
2sk+1 − sk − α

(
g(sk+1)− g(sk)

))
EXTRA I (I−Ws)

1
2 Ws sk+2 = Ws

(
2sk+1 − sk

)
− α

(
g(sk+1)− g(sk)

)
ATC-GT W2

s I−Ws W2
s sk+1 = Ws

(
sk − αhk

s

)
, hk+1

s = Ws

(
hk
s + g(sk+1)− g(sk)

)
Semi-ATC-GT Ws I−Ws W2

s sk+1 = Wss
k − αhk

s , hk+1
s = Ws

(
hk
s + g(sk+1)− g(sk)

)
Non-ATC-GT I I−Ws W2

s sk+1 = Wss
k − αhk

s , hk+1
s = Wsh

k
s + g(sk+1)− g(sk)

3.1 Assumptions

Before presenting the theoretical guarantees, we first introduce the following assumptions used
throughout this paper.

Assumption 1. There exist constants µg, Lf,0, Lf,1, Lg,1, Lg,2 such that for any 1 ≤ i ≤ n,

1. ∇fi,∇gi,∇2gi are Lf,1, Lg,1, Lg,2 Lipschitz continuous, respectively;

2. ∥∇2fi (x, y
⋆(x)) ∥ ≤ Lf,0 for any x ∈ Rp;3

3. gi(x, y) is µg-strongly convex with respect to y for any fixed x ∈ Rp.

Moreover, we define L := max{Lf,0, Lf,1, Lg,1, Lg,2} and κ := L/µg .

Assumption 2. For each s ∈ {x, y, z}, the corresponding mixing matrixWs ∈ Rn×n is non-negative,
symmetric and doubly stochastic, i.e.,

Ws =W⊤
s , Ws1n = 1n, (Ws)ij ≥ 0, ∀ 1 ≤ i, j ≤ n,

and the corresponding communication graph is strongly-connected, i.e., its eigenvalues satisfy
1 = λ1(Ws) > λ2(Ws) ≥ . . . ≥ λn(Ws) and ρ(Ws) := max {|λ2(Ws)| , |λn(Ws)|} < 1.

The value 1 − ρ(Ws) is referred to as the spectral gap in the literature [34, 53, 31] of Ws, which
measures the connectivity of the communication graph. It would approach 0 for sparse networks. For
example, it holds that 1− ρ(Ws) = Θ(1/n2) for the matrix Ws induced by a ring graph.

Assumption 3. For any s ∈ {x, y, z}, we assume the communication matrices As, Bs, Cs used in
SPARKLE are polynomial functions of Ws. Furthermore, we assume As, Cs are doubly stochastic,
and Null(Bs) = Span{1n}. In addition, we assume all eigenvalues of the augmented matrix

Ls :=

[
Cs −B2

s Bs

−Bs In

]
are strictly less than one in magnitude, where Cs ≜ Cs − 1

n1n1
⊤
n and In ≜ In − 1

n1n1
⊤
n .

We remark that Assumption 3 is mild and is satisfied by all choices listed in Table 3. See more
discussions in Appendix C.2.2.

Assumption 4. We assume ∇Fi(x, y; ξ),∇Gi(x, y; ξ), and ∇2Gi(x, y; ξ) to be unbiased estimates
of ∇fi(x, y),∇gi(x, y), and ∇2gi(x, y) with bounded variances σ2

f,1, σ
2
g,1, σ

2
g,2, respectively.

3.2 Convergence theorem

Under the above assumptions, we establish the convergence properties as follows. Proof details can
be found in Appendix C.

3This is more relaxed than Lipschitz continuous fi, or bounded ∇2fi in [21, 57, 33, 11].
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Theorem 1. Under Assumptions 1 – 4, there exist proper constant step-sizes α, β, γ and momentum
coefficient θ, such that the SPARKLE framework listed in Algorithm 1 will converge as follow:

1

K + 1

K∑
k=0

E[∥∇Φ(x̄k)∥2] ≲ κ5σ√
nK

+ κ
16
3 (δy,1 + δz,1)

σ
2
3

K
2
3

+ κ
7
2 δx,1

σ
1
2

K
3
4

+
(
κ

26
5 δy,2 + κ6δz,2

) σ
2
5

K
4
5

+
(
κ

16
3 δy,3 + κ

14
3 δz,3 + κ

8
3 δx,3

) 1

K
+
(
κCα + κ4Cθ

) 1

K
,

where σ ≜ max{σf,1, σg,1, σg,2}, {δs,i}3i=1 are constants depending only on Ws,As,Bs,Cs for
s ∈ {x, y, z}, and Cα, Cθ are constants independent of K. See Lemma 17 for their detailed values.

In the deterministic scenario with σ = 0, SPARKLE converges at the rate O(1/K), see the formal
theorem and derivation in Appendix C.3. This recovers the rate in [15] under even milder assumptions.
Unlike reference [15], which only considers GT in the deterministic setting, SPARKLE is a unified
bilevel framework for the more general stochastic setting.

Linear speedup. According to Theorem 1, SPARKLE achieves an asymptotic linear speedup
as K approaches infinity, which applies to all SPARKLE variants regardless of the decentralized
strategies employed and whether they are utilized at different optimization levels. Furthermore, the
asymptotically dominant term κ5σ/(

√
nK) matches exactly with the single-node bilevel algorithm

SOBA [12] when n = 1, implying the tightness of Theorem 1 in terms of the asymptotic rate.

Remark 1. We establish an upper bound for the consensus error 1
K

K∑
k=0

E
[
∥xk−x̄k∥2

n + ∥yk−ȳk∥2

n

]
.

Please refer to Lemma 19 in Appendix C.2.1 for more details.

3.3 Transient iteration complexity

With the non-asymptotic rate established in Theorem 1, we can derive the transient iteration complex-
ity of SPARKLE as follows. The proof is in Lemma 18.
Corollary 1. Under the same assumptions as in Theorem 1, the transient iteration complexity of
SPARKLE—with the influence of κ and σ2 omitted for brevity—is on the order of

max
{
n2δx, n

3δy, n
3δz, nδ̂x, nδ̂y, nδ̂z

}
, (8)

where δs, δ̂s only depend Ws,As,Bs,Cs for s ∈ {x, y, z}. Their values are in Lemma 18.

We obtain the transient iteration complexity of each variant of SPARKLE by applying Corollary 1.
Corollary 2. For SPARKLE-ED and SPARKLE-EXTRA, if we chooseWy = Wz , it holds that

δx = O
(
(1− ρ(Wx))

−2
)
, δy = δz = O

(
(1− ρ(Wy))

−2
)
,

δ̂x = O
(
(1− ρ(Wx))

− 3
2

)
, δ̂y = δ̂z = O

(
(1− ρ(Wy))

−2
)
.

(9)

Furthermore, if we choose Wx = Wy = Wz and denote ρ ≜ ρ(Wx), the transient iteration
complexity derived in (8) can be simplified as n3/(1− ρ)2.
Corollary 3. For SPARKLE-GT and its variants with semi/non-ATC-GT, if we let Wy = Wz ,

δx = O
(
(1− ρ(Wx))

−2
)
, δy = δz = O

(
(1− ρ(Wy))

−2
)
,

δ̂x = O
(
(1− ρ(Wx))

−2
)
, δ̂y = δ̂z = O

(
(1− ρ(Wy))

− 8
3

)
.

Furthermore, if we let Wx = Wy = Wz and denote ρ ≜ ρ(Wx), the transient iteration complexity
derived in (8) can be simplified as max{n3/(1− ρ)2, n/(1− ρ)8/3}.
Remark 2 (SOTA transient iterations). Comparing with algorithms listed in Table 1, all SPARKLE
variants achieve smaller transient iteration complexity, implying that they can achieve linear speedup
much faster than the other algorithms, especially over sparse network topologies with 1− ρ→ 0.
Remark 3 (GT is not the best technique for decentralized SBO). While GT is widely adopted in the
literature [16, 21, 57] to facilitate decentralized SBO, a comparison of Corollary 2 and 3 reveals that
both SPARKLE-EXTRA and SPARKLE-ED outperform SPARKLE-GT in terms of transient
iteration complexity. This implies that EXTRA and ED are better than GT for decentralized SBO.
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3.4 Different strategies across optimization levels

Corollary 1 clarifies how different update strategies for x, y, and z impact the transient iterations
through constants {δs, δ̂s} for s ∈ {x, y, z}. Since δy = δz and δ̂y = δ̂z when Wy = Wz

(Lemma 18), we naturally employ the same strategy to update y and z. The following corollary
studies the utilization of both ED and GT in SPARKLE. See the transient iterations complexity of
other mixed strategies in Appendix C.2.4 and Table 2.
Corollary 4. For SPARKLE-ED-GT which uses ED to update y and z and GT to update x, if
Wx = Wy = Wz and we denote ρ = ρ(Wx), it then holds that

δx = δy = δz = O
(
(1− ρ)−2

)
, δ̂x = δ̂y = δ̂z = O

(
(1− ρ)−2

)
,

which implies that the transient iteration complexity in (8) can be simplified as n3/(1− ρ)2.
Remark 4 (Mixed strategies outperform employing GT only). Comparing Corollary 3 and 4, we find
that using ED to update y and z will lead to smaller δ̂y and δ̂z , which improves the transient iteration
complexity compared to employing GT only in all optimization levels (see Corollary 3).

3.5 Different topologies across optimization levels

In SPARKLE, we can utilize different topologies across levels. Theorem 1 and Corollary 1 have
clarified the influence of using different topologies across levels through the constants {δs, δ̂s} for
s ∈ {x, y, z}. For instance, when substituting {δs, δ̂s} established in (9) into (8), SPARKLE-ED has
the following transient iteration complexity:

max{n2(1− ρ(Wx))
−2, n3(1− ρ(Wy))

−2}
where Wx is the mixing matrix for updating x, while Wy is for updating y and z. As long as
(1−ρ(Wx))

−1 ≲
√
n(1−ρ(Wy))

−1 holds, SPARKLE-ED retains the transient iteration complexity
of n3(1− ρ(Wy))

−2, which allows for the utilization of a sparser network topology when updating
x, thereby reducing communication overheads. Consequently, the ratio a of the communication
volume per round for the variables x and y can be significantly less than one. See Appendix C.2.3 for
discussion on how to use different topologies across levels in other SPARKLE variants.

3.6 Recovering single-level decentralized optimization

Previous works typically study single-level and bilevel optimization separately. By taking
Gi(x, y, ξ) ≡ |y|2/2 and Fi(x, y, ϕ) = Fi(x, ϕ) into (2), the decentralized SBO problem (1) re-
duces to stochastic single-level optimization. By setting zk ≡ 0, yk ≡ 0, uki = ∇1fi(x

k
i , ξ

k
i ),

SPARKLE reduces to the single-level framework (6), whose convergence can be naturally guaranteed
by Theorem 1. Please refer to Appendix C.4 for the detailed proof and results. This is the first
result demonstrating that bilevel optimization essentially subsumes the convergence of single-level
optimization.

4 Numerical experiments

In this section, we present experiments to validate our theoretical findings. We first explore how
update strategies and network structures influence the convergence of SPARKLE. Then we com-
pare SPARKLE to the existing decentralized SBO algorithms. Additional experiments about a
decentralized SBO problem with synthetic data are in Appendix D.1.

Hyper-cleaning on FashionMNIST dataset. We consider a data hyper-cleaning problem [44] on
a corrupted FashionMNIST dataset [48]. Problem formulations and experimental setups can be
found in Appendix D.2. Firstly, we equip SPARKLE with different decentralized strategies in
different optimization levels and then compare them with D-SOBA [29], MA-DSBO-GT [10], and
MDBO [21] using the corruption rate p = 0.1, 0.2, 0.3, respectively. As is shown in Figure 1, all
the SPARKLE-based algorithms generally achieve higher test accuracy than D-SOBA, while ED
and EXTRA especially outperform GT. Meanwhile, using mixed strategies (i.e., SPARKLE-ED-GT
and SPARKLE-EXTRA-GT) achieves similar test accuracy with SPARKLE-ED and SPARKLE-
EXTRA and outperform SPARKLE-GT, respectively. These observations match with the theoretical
results in Corollary 2-4 and Remark 3, 4.
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Figure 1: The test accuracy on hyper-cleaning with various SPARKLE-based algorithms using different
corruption rates p. (Left: p = 0.1, Middle: p = 0.2, Right: p = 0.3.)
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Figure 2: Test accuracy of SPARKLE-EXTRA on
hyper-cleaning. (Left: fixed graph for x and varying
graph for y, z; Right: fixed for y, z and varying for x)
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Figure 3: The upper-level loss against samples gener-
ated by one agent of different algorithms in the policy
evaluation. (Left: n = 10, Right: n = 20.)

Next, we test SPARKLE-EXTRA with two communication strategies including fixed topology for
updating x and varying topology for y, z, and fixed topology for updating y, z and varying topology
for x. As illustrated in Figure 2, maintaining a fixed topology for x while reducing the connectivity
of the topology for y and z will deteriorate the algorithmic performance. Conversely, preserving the
topology for y and z while decreasing the connectivity for x has little impact on the performance.
This suggests that the influence of the network topology for y and z on the algorithm dominates
over the topology for x, which is consistent with our discussion in Section 3.5. We also numerically
examine the influence of moving average on convergence, see discussions in Appendix D.2.

Distributed policy evaluation in reinforcement learning. We consider a multi-agent MDP problem
in reinforcement learning on a distributed setting with n ∈ {10, 20} agents respectively, which can
be formulated as a decentralized SBO problems [52]. Here, we compare SPARKLE with existing
decentralized SBO approaches including MDBO [21] and the stochastic extension of SLDBO [16]
over a Ring graph. Figure 3 illustrates that SPARKLE converges faster and achieves a lower sample
complexity than the other baselines, especially when n = 20, which shows the empirical benefits of
SPARKLE in decentralized SBO algorithms with a large number of agents and sparse communication
modes. More experimental details are in Appendix D.3.

Decentralized meta-learning. We investigate decentralized meta-learning on miniImageNet [47]
with multiple tasks [18], formulating it as a decentralized bilevel optimization problem. This approach
minimizes the validation loss with respect to shared parameters as the upper-level loss, while the
training loss is managed by task-specific parameters at the lower level. Additional details about
the experiment can be found in Appendix D.4. Our method, SPARKLE, is benchmarked against
D-SOBA [29] and MAML [18], demonstrating a significant improvement in training accuracy.

5 Conclusions and limitations

This paper proposes SPARKLE, a unified single-loop primal-dual framework for decentralized
stochastic bilevel optimization. Being highly versatile, SPARKLE can support different decentralized
mechanisms and topologies across optimization levels. Moreover, all SPARKLE variants have been
demonstrated to achieve state-of-the-art convergence rate compared to existing algorithms. However,
SPARKLE currently supports only strongly-convex problems in the lower-level optimization. Its
compatibility with generally-convex lower-level problems remains unknown. Additionally, the
condition number of the lower-level problem significantly impacts the performance, as is the case
with existing bilevel algorithms. We aim to address these limitations in future work.
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A More related works

Bilevel optimization. Bilevel optimization presents substantial difficulties compared to single-level
optimization due to its nested structure. Estimating hyper-gradient ∇Φ(x) of the upper level involves
solving lower-level problems and estimating the Hessian inverse, which requires additional calcu-
lations. Many algorithms and techniques have been proposed to solve the challenge. Approximate
Implicit Differentiation (AID)-based algorithms [14, 22, 23, 27] leverage the implicit gradient form of
∇Φ(x), which entails solving a linear system to obtain the Hessian-inverse-vector product. Similarly,
[8, 25] utilize the Neumann series to handle the Hessian inverse. Iterative Differentiation (ITD)-based
algorithms [19, 35, 14, 23, 27] use iterative methods solving the lower-level problem and then es-
timate the hyper-gradient through automatic differentiation. However, these approaches introduce
inner steps, leading to extra computational overhead and memory spaces. [12] proposes a single-
level algorithm called SOBA, which approximating the Hessian-inverse-vector product by solving
a quadratic programming problem. A recent work [20] utilizes the Krylov subspace technique and
the Lanczos process to approximate it in deterministic scenarios. For stochastic bilevel optimization,
various methods have been employed to improve the convergence rate, such as momentum [7, 11]
and variance reduction [51, 27, 24].

Decentralized optimization. Decentralized optimization is developed to deal with large-scale
optimization problems, where datasets are distributed among multiple agents. Without a central
server, each agent only gets access to its own local data and communications are limited to its
neighbors in a network. Compared with centralized algorithms, decentralized ones preserve data
privacy, and are more robust to contingencies in the communication network. However, due to the
absence of a central server, decentralized optimization requires communication among agents, posing
greater challenges for convergence, especially in the presence of severe data heterogeneity. To tackle
this issue, various algorithms have emerged, such as decentralized gradient descent [39, 55], diffusion
strategies [6], dual averaging [17], EXTRA [45], Exact Diffusion (a.k.a. D2) [56, 30, 46], gradient
tracking [50, 13, 38], and decentralized ADMM [5]. In stochastic scenarios, a common method for
decentralized optimization is the decentralized stochastic gradient descent (DSGD), which has gained
a lot of attentions recently. It has been proved to achieve linear speedup asymptotically and shares
the same asymptotic rate with centralized stochastic gradient descent [31].

B More details of SPARKLE

B.1 Primal-dual deviation

Here we provide a detailed motivation of the update framework (6) for decentralized single-level
algorithms. First, we rewrite the single-level distributed optimization problem in the following
equivalent form:

min
xi∈Rd

f(x1, ..., xn) =
1

n

n∑
i=1

fi (xi) , s.t. x1 = ... = xn, (10)

where each fi is smooth and possibly non-convex. To simplify the notation, we assume that d = 1
without loss of generality. Now we introduce three symmetric matrices A,B,D such that A is a
doubly stochastic communication matrix with ρ(A) < 1, and B,D satisfy NullB = NullD =
Span{1n}. In general, B (D) determines the topology of a connected graph GB (GD) over agents.
The constraint Bx = 0 (Dx = 0) is equivalent to:

xi = xj if xi, xj are adjacent in GB (GD).

To simplify the derivation, we additionally assume that A,B,D are pairwise commutative. Then for
x = (x1, ..., xn), we have:

x1 = ... = xn ⇔ Bx = 0 ⇔ Dx = 0 ⇔ Ax = x.

Therefore, (10) can be equivalently reformulated as

min
x∈Rn

f(Ax), s.t.Bx = 0. (11)
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We construct the augmented Lagrangian function of the problem (11) as follows:

Lρ(x, d) = f(Ax) + ⟨d,Bx⟩+ ρ

2
∥Dx∥2,

where x denotes the primal variable, d denotes the dual variable or Lagrangian multiplier associated
with the consensus constraint, ∥Dx∥2 serves as the penalty term measuring the deviation from
Dx = 0, or equivalently Bx = 0; ρ > 0 is the penalty coefficient. Though the introduction of
matrices A,D is essentially a matter of equivalent substitution, it enhances the universality of the
algorithm framework we get.

Following classical primal-dual methods, we alternately perform gradient descent on x and gradient
ascent on d in the k-th iteration:

xk+1 = xk − α(A∇f(Axk) +Bdk + ρD2xk), dk+1 = dk + βBxk+1,

where α, β denote the step-sizes. By making the change of variables

x̂k = Axk, d̂k =

√
α

β
Adk, B̂ =

√
αβB, Ĉ = I − αρD2, Â = A2,

we obtain
x̂k+1 = Ĉx̂k − αÂ∇f(x̂k)− B̂d̂k, d̂k+1 = d̂k + B̂x̂k+1. (12)

One should note that the definition implies that Â, Ĉ are doubly stochastic communication matrices
under appropriate selections of α, ρ. Finally, thanks to the introduction of moving-average iteration
of (12), we can obtain the framework (6) which serves as the foundation for our algorithm design.
See more details in Section 2.3.

B.2 Specific instances

Relation to some existing single-level algorithm frameworks According to (12), our framework
at single-level is

xk+1 = Cxk − αAgk −Bdk,dk+1 = dk +Bxk+1, k = 0, 1, ... (13)

where α is the step-size, gk denotes the estimated gradient at the k-th iteration, d serves as the dual
variable.

Replacing C with CA, we get UDA[1] , and equivalently, SUDA [2]:

xk+1 = CAxk − αAgk −Bdk,dk+1 = dk +Bxk+1, k = 0, 1, ...

Therefore, following SUDA, we can also recover some common state-of-the-art heterogeneity
methods as follows by selecting specific A,B,C. First, from (13) we get

xk+2 − xk+1 = C(xk+1 − xk)− αA
(
gk+1 − gk

)
−B

(
dk+1 − dk

)
= C

(
xk+1 − xk

)
− αA

(
gk+1 − gk

)
−B2xk+1.

Thus, for k ≥ 0 we have

xk+2 =
(
I−B2 +C

)
xk+1 −Cxk − αA

(
gk+1 − gk

)
,

with x1 = Cx0 − αAg0.

Some specific instances We next show that how to choose A,B,C to get some common hetero-
geneity methods.

• ED: Taking A = W,B = (I−W)1/2 and C = W, we get ED:

xk+2 = W
(
2xk+1 − xk − α

(
gk+1 − gk

))
,

with x1 = W
(
x0 − αg0

)
.
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• EXTRA: Taking A = I,B = (I−W)1/2 with C = W, we get EXTRA:

xk+2 = W
(
2xk+1 − xk

)
− α

(
gk+1 − gk

)
,

and x1 = Wx0 − αg0.
• Adapt-then-combine gradient tracking (ATC-GT): The iteration of ATC-GT is

xk+1 = W
(
xk − αhk

)
,hk+1 = W

(
hk + gk+1 − gk

)
with h0 = Wg0,x0 = Wx0 (x01 = ... = x0n). It follows that for k ≥ 0

xk+2 −Wxk+1 = Wxk+1 −W2xk − αW
(
hk+1 −Whk

)
.

Then we obtain

xk+2 = 2Wxk+1 −W2xk − αW2
(
gk+1 − gk

)
,

with x1 = W2x0 − αW2g0. Thus, we can take A = W2,B = (I −W)2,C = W2 to
implement ATC-GT.

• Semi-ATC-GT: The iteration of Semi-ATC-GT is

xk+1 = W
(
xk − αhk

)
,hk+1 = Whk + gk+1 − gk

with h0 = Wg0,x0 = Wx0 (x01 = ... = x0n). Like ATC-GT, we have

xk+2 = 2Wxk+1 −W2xk − αW
(
gk+1 − gk

)
,

with x1 = W2x0 − αWg0. Thus, we can take A = W,B = (I − W)2,C = W2 to
implement semi-ATC-GT.

• Non-ATC-GT: The iteration of Non-ATC-GT is

xk+1 = Wxk − αhk,hk+1 = Whk + gk+1 − gk

with h0 = Wg0,x0 = Wx0 (x01 = ... = x0n). We have

xk+2 = 2Wxk+1 −W2xk − α
(
gk+1 − gk

)
,

with x1 = W2x0−αg0. Thus, we can take A = I,B = (I−W)2,C = W2 to implement
Non-ATC-GT.

B.3 Implementation details

Given the update method L, we update the lower-level variable y at the k-th (k ≥ 0) iteration as
follows. For brevity, we define y−1

i = y0i , v
−1
i = 0, o0i =

∑n
j=1(Wy)ijv

0
j .


yk+1
i =

∑n
j=1(Wy)ij

(
2ykj − yk−1

j − βk
(
vki − vk−1

i

))
if L = ED

yk+1
i =

∑n
j=1(Wy)ij

(
2ykj − yk−1

j

)
− βk

(
vki − vk−1

i

)
if L = EXTRA

yk+1
i =

∑n
j=1(Wy)ij

(
ykj − βko

k
j

)
, ok+1

i =
∑n

j=1(Wy)ij
(
okj + vk+1

i − vki
)

if L = GT

· · · others
(14)

Similarly, we update the auxiliary variable z at the k-th (k ≥ 0) iteration as follows. For brevity, we
define z−1

i = z0i , p
−1
i = 0, h0i =

∑n
j=1(Wz)ijp

0
j . Note that we use the same method L to update z

as we do for the lower-level variable y.
zk+1
i =

∑n
j=1(Wz)ij

(
2zkj − zk−1

j − γk
(
pki − pk−1

i

))
if L = ED

zk+1
i =

∑n
j=1(Wz)ij

(
2zkj − zk−1

j

)
− γk

(
pki − pk−1

i

)
if L = EXTRA

zk+1
i =

∑n
j=1(Wz)ij

(
zkj − γkh

k
j

)
, hk+1

i =
∑n

j=1(Wz)ij
(
hkj + pk+1

i − pki
)

if L = GT

· · · others
(15)

Given the update method U, we update the upper-level variable x at the k-th (k ≥ 0) iteration as
follows. For brevity, we define x−1

i = x0i , t
0
i =

∑n
j=1(Wy)ijr

1
j .
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
xk+1
i =

∑n
j=1(Wx)ij

(
2xkj − xk−1

j − αk

(
rk+1
i − rki

))
if U = ED

xk+1
i =

∑n
j=1(Wx)ij

(
2xkj − xk−1

j

)
− αk

(
rk+1
i − rki

)
if U = EXTRA

xk+1
i =

∑n
j=1(Wx)ij

(
xkj − αkt

k
j

)
, tk+1

i =
∑n

j=1(Wx)ij
(
tkj + rk+2

i − rk+1
i

)
if U = GT

· · · others
(16)

Then the practical implementation of SPARKLE with mixed strategies is

Algorithm 2 SPARKLE-L-U
Require: Initialize x0i = y0i = z0i = r0i = 0, step-sizes αk, βk, γk, θk.

for k = 0, 1, · · · ,K − 1, each agent i (in parallel) do
Update yk+1

i according to (14);
Update zk+1

i according to (15);
rk+1
i = (1− θk)r

k
i + θku

k
i ;

Update xk+1
i according to (16).

end for

C Convergence analysis

C.1 Proof of Theorem 1

C.1.1 Notations

We use lowercase letters to represent vectors and uppercase letters to represent matrices. Stacked
vectors [x⊤1 , ..., x

⊤
n ]

⊤ is denoted by col{x1, ..., xn} for brevity. We denote a block diagonal matrix
with diagonal block Mi(1 ≤ i ≤ l) by blkdiag{M1, ...,Ml}, and a diagonal matrix with diagonal
elements di(1 ≤ i ≤ k) by diag{d1, ..., dk}. The Kronecker product operator is denoted by ⊗. For a
variable v, we use vki to represent its components at k-th iteration and i-th agent.

Moreover, we use an overbar above an iterator to denote the average over all agents. For example,
x̄k =

∑n
i=1 x

k
i /n. Upright bold symbols are used to denote stacked vectors or matrices across

agents. For example, xk := col{xk1 , ..., xkn}, x̄k := col{x̄k, ..., x̄k} (n times), Wx :=Wx⊗ Idim(x).
Denote the 2-norm of a matrix by ∥ · ∥.

Next, we define following σ-fields which will be used in our convergence analysis:

Fk = σ
(
y0, . . . ,yk+1, z0, . . . , zk+1,x0, . . . ,xk, r0, . . . , rk

)
,

Uk = σ
(
y0, . . . ,yk+1, z0, . . . , zk,x0, . . . ,xk, r0, . . . , rk

)
,

Gk = σ
(
y0, . . . ,yk, z0, . . . , zk,x0, . . . ,xk, r0, . . . , rk

)
,

and denote E[·|Fk] by Ek, E[·|Uk] by Ẽk, E[·|Gk] by Êk for brevity.

Define

z⋆(x) =

(
n∑

i=1

∇2
22gi (x, y

⋆(x))

)−1( n∑
i=1

∇2fi (x, y
⋆(x))

)
,

Then, for k = 0, 1, · · · , define:

zk+1
⋆ =

(
n∑

i=1

∇2
22gi

(
x̄k, y⋆(x̄k)

))−1( n∑
i=1

∇2fi
(
x̄k, y⋆(x̄k)

))
.

For convenience, we define x−1 = x0,y−1 = y0, y⋆(x̄−1) = y⋆(x̄0), z0⋆ = z1⋆.
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C.1.2 Basic transformations

We begin with conducting SUDA-like [2] transformations, which is fundamental of the following
proofs.

Firstly, we define tk to track the averaged stochastic gradients among agents as follows

tky = By(d
k
y −Byy

k) + βAy∇2g(x̄
k, ȳk),

tkz = Bz(d
k
z −Bzz

k) + γAzp
k(x̄k, ȳk+1),

tkx = Bx(d
k
x −Bxx

k) + αAx∇̃Φ(x̄k),

(17)

where
pk(x̄k, ȳk+1) = col

{
∇2

22gi(x̄
k, ȳk+1)zk⋆ −∇2fi(x̄

k, ȳk+1)
}n
i=1

,

∇̃Φ(x̄k) = col
{
∇1fi(x̄

k, y⋆(x̄k))−∇12gi(x̄
k, y⋆(x̄k))zk+1

⋆

}n
i=1

.

Then the iteration of y, z,x in Algorithm 1 can be written as:

iteration of y :

{
yk+1 = (Cy −B2

y)y
k − tky − βAy

[
vk −∇2g(x̄

k, ȳk)
]
,

tk+1
y = tky +B2

yy
k + βAy

[
∇2g(x̄

k+1, ȳk+1)−∇2g(x̄
k, ȳk)

]
,

(18)

iteration of z :

{
zk+1 = (Cz −B2

z)z
k − tkz − γAz

[
pk − pk(x̄k, ȳk+1)

]
,

tk+1
z = tkz +B2

zz
k + γAz

[
pk+1(x̄k+1, ȳk+2)− pk(x̄k, ȳk+1)

]
,

(19)

iteration of x :


xk+1 = (Cx −B2

x)x
k − tkx − αAx

[
rk+1 − ∇̃Φ(x̄k)

]
,

tk+1
x = tkx +B2

xx
k + αAx

[
∇̃Φ(x̄k+1)− ∇̃Φ(x̄k)

]
.

(20)

Next, we present the transformation of the matrices A,B,C. For a communication matrix Ws for the
variable s ∈ {x, y, z} satisfying Assumption 2, there exists an orthogonal matrix U such that:

W = UsΛ̂sU
⊤
s =

[
1√
n
1 Ûs

] [
1 0
0 Λs

] 1√
n
1⊤

Û⊤
s

 ,
where Λs = diag{λsi}ni=2, Û⊤

s ∈ Rn×(n−1) satisfies ÛsÛ
⊤
s = In − 1

n1n1
⊤
n and 1⊤

n Ûs = 0. Then
it follows that:

Ws = UsΛ̂sU
⊤
s =

[
1√
n
1⊗ Idim(s) Ûs

] [
Idim(s) 0

0 Λs

] 1√
n
1⊤ ⊗ Idim(s)

Û⊤
s

 ,
where dim(s) denotes the dimension of the corresponding variable, Λs = Λs ⊗ Idim(s) ∈
Rd(n−1)×[dim(s)·(n−1)], Us ∈ R[dim(s)·n]×[dim(s)·n] is an orthogonal matrix, and Ûs = Ûs ⊗
Idim(s) ∈ R[dim(s)·n]×[dim(s)·(n−1)] satisfies:

Û⊤
s Ûs = Idim(s)·(n−1), ÛsÛ

⊤
s =

[
In − 1

n
11⊤

]
⊗ Idim(s), (1⊤ ⊗ Idim(s))Ûs = 0.

Now we add subscript s for Ws. Then, as As,B
2
s,Cs can be expressed as a polynomial of Ws for

s ∈ {x, y, z} according to Assumption 2, we have the orthogonal decomposition:

As = UsΛ̂saU
⊤
s =

[
1√
n
1⊗ Idim(s) Ûs

] [
Idim(s) 0

0 Λsa

] 1√
n
1⊤ ⊗ Idim(s)

Û⊤
s

 ,
B2

s = UsΛ̂
2
sbU

⊤
s =

[
1√
n
1⊗ Idim(s) Ûs

] [
0 0
0 Λ2

sb

] 1√
n
1⊤ ⊗ Idim(s)

Û⊤
s

 ,
Cs = UsΛ̂scU

⊤
s =

[
1√
n
1⊗ Idim(s) Ûs

] [
Idim(s) 0

0 Λsc

] 1√
n
1⊤ ⊗ Idim(s)

Û⊤
s

 ,
(21)
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where
Λsa = diag{λsa,i}ni=2︸ ︷︷ ︸

Λsa

⊗Idim(s), Λsb = diag{λsb,i}ni=2︸ ︷︷ ︸
Λsb

⊗Idim(s), Λsc = diag{λsc,i}ni=2︸ ︷︷ ︸
Λsc

⊗Idim(s).

Moreover, each Λsb is positive definite because of the null space condition in Assumption 2. Then,
multiplying both sides of (18), (19) and (20) by U⊤

y ,U
⊤
z ,U

⊤
x respectively, we get:

iter. of y :

{
U⊤

y y
k+1 = (Λ̂yc − Λ̂2

yb)U
⊤
y y

k −U⊤
y t

k
y − βΛ̂yaU

⊤
y

[
vk −∇2g(x̄

k, ȳk)
]
,

U⊤
y t

k+1
y = U⊤

y t
k
y + Λ̂2

ybU
⊤
y y

k + βΛ̂yaU
⊤
y

[
∇2g(x̄

k+1, ȳk+1)−∇2g(x̄
k, ȳk)

]
,

(22)

iter. of z :

{
U⊤

z z
k+1 = (Λ̂zc − Λ̂2

zb)U
⊤
z z

k −U⊤
z t

k
z − γΛ̂zaU

⊤
z

[
pk − pk(x̄k, ȳk+1)

]
,

U⊤
z t

k+1
z = U⊤

z t
k
z + Λ̂2

zbU
⊤
z z

k + γΛ̂zaU
⊤
z

[
pk+1(x̄k+1, ȳk+2)− pk(x̄k, ȳk+1)

]
.

(23)

iter. of x :


U⊤

x x
k+1 = (Λ̂xc − Λ̂2

xb)U
⊤
x x

k −U⊤
x t

k
x − αΛ̂xaU

⊤
[
rk+1 − ∇̃Φ(x̄k)

]
,

U⊤
x t

k+1
x = U⊤

x t
k
x + Λ̂2

xbU
⊤
x x

k + αΛ̂xaU
⊤
x

[
∇̃Φ(x̄k+1)− ∇̃Φ(x̄k)

]
.

(24)

Then, due to Eq. (17), we have:

(1⊤ ⊗ Id)t
k
y = (1⊤ ⊗ Id)

(
By(d

k
y −Byy

k) + βAy∇2g(x̄
k, ȳk)

)
= nβ∇2g(x̄

k, ȳk).
(25)

(1⊤ ⊗ Id)t
k
z = (1⊤ ⊗ Id)

(
Bz(d

k
z −Bzz

k) + γAzp
k(x̄k, ȳk+1)

)
= γ

n∑
i=1

[
∇2

22gi(x̄
k, ȳk+1)zk⋆ −∇2fi(x̄

k, ȳk+1)
]
.

(26)

(1⊤ ⊗ Id)t
k
x = (1⊤ ⊗ Id)

(
Bx(d

k
x −Bxx

k) + αAx∇̃Φ(x̄k)
)

= α

n∑
i=1

[
∇1fi(x̄

k, y⋆(x̄k))−∇12gi(x̄
k, y⋆(x̄k))zk+1

⋆

]
.

(27)

Substituting (25), (26), (27) into (22), (23), (24), respectively. Then use (21) and the structure of
Ûy, Ûz, Ûx, we have

iter. of y :


ȳk+1 = ȳk − βv̄k,

Û⊤
y y

k+1 = (Λyc −Λ2
yb)Û

⊤
y y

k − Û⊤
y t

k
y − βΛyaÛ

⊤
y

[
vk −∇2g(x̄

k, ȳk)
]
,

Û⊤
y t

k+1
y = Û⊤

y t
k
y +Λ2

ybÛ
⊤
y y

k + βΛyaÛ
⊤
y

[
∇2g(x̄

k+1, ȳk+1)−∇2g(x̄
k, ȳk)

]
,

iter. of z :


z̄k+1 = z̄k − γp̄k,

Û⊤
z z

k+1 = (Λzc −Λ2
zb)Û

⊤
z z

k − Û⊤
z t

k
z − γΛzaÛ

⊤
z

[
pk − pk(x̄k, ȳk+1)

]
,

Û⊤
z t

k+1
z = Û⊤

z t
k
z +Λ2

zbÛ
⊤
z z

k + γΛzaÛ
⊤
z

[
pk+1(x̄k+1, ȳk+2)− pk(x̄k, ȳk+1)

]
,

iter. of x :


x̄k+1 = x̄k − αr̄k+1,

Û⊤
x x

k+1 = (Λ̂xc − Λ̂2
xb)Û

⊤
x x

k − Û⊤
x t

k
x − αΛ̂xaÛ

⊤
x

[
rk+1 − ∇̃Φ(x̄k)

]
,

Û⊤
x t

k+1
x = Û⊤

x t
k
x + Λ̂2

xbÛ
⊤
x x

k + αΛ̂xaÛ
⊤
x

[
∇̃Φ(x̄k+1)− ∇̃Φ(x̄k)

]
.
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The above three equations are equivalent to:[
Û⊤

y y
k+1

Λ−1
yb Û

⊤
y t

k+1
y

]
=

[
Λyc −Λ2

yb −Λyb

Λyb I

] [
Û⊤

y y
k

Λ−1
yb Û

⊤
y t

y
k

]

− β

[
ΛyaÛ

⊤
y

[
vk −∇2g(x̄

k, ȳk)
]

Λ−1
yb ΛyaÛ

⊤
y

[
∇2g(x̄

k+1, ȳk+1)−∇2g(x̄
k, ȳk)

] ] , (28)

[
Û⊤

z z
k+1

Λ−1
zb Û

⊤
z t

k+1
z

]
=

[
Λzc −Λ2

zb −Λzb

Λzb I

] [
Û⊤

z z
k

Λ−1
zb Û

⊤
z t

z
k

]
− γ

[
ΛzaÛ

⊤
z

[
pk − pk(x̄k, ȳk+1)

]
Λ−1

zb ΛzaÛ
⊤
z

[
pk+1(x̄k+1, ȳk+2)− pk(x̄k, ȳk+1)

] ] , (29)

[
Û⊤

x x
k+1

Λ−1
xb Û

⊤
x t

k+1
x

]
=

[
Λxc −Λ2

xb −Λxb

Λxb I

] [
Û⊤

x x
k

Λ−1
xb Û

⊤
x t

x
k

]

− α

 ΛxaÛ
⊤
x

[
rk+1 − ∇̃Φ(x̄k)

]
Λ−1

xb ΛxaÛ
⊤
x

[
∇̃Φ(x̄k+1)− ∇̃Φ(x̄k)

]  . (30)

For s ∈ {x,y, z}, define:

eks =

[
Û⊤

s s
k

Λ−1
sb Û

⊤
s t

k
s

]
, Ms =

[
Λsc −Λ2

sb −Λsb

Λsb I

]
.

Then (28), (29), (30) are respectively equivalent to:

ek+1
y = Mye

k
y − β

[
ΛyaÛ

⊤
y

[
vk −∇2g(x̄

k, ȳk)
]

Λ−1
yb ΛyaÛ

⊤
y

[
∇2g(x̄

k+1, ȳk+1)−∇2g(x̄
k, ȳk)

] ] ,
ek+1
z = Mze

k
z − γ

[
ΛzaÛ

⊤
z

[
pk − pk(x̄k, ȳk+1)

]
Λ−1

zb ΛzaÛ
⊤
z

[
pk+1(x̄k+1, ȳk+2)− pk(x̄k, ȳk+1)

] ] ,
ek+1
x = Mxe

x
k − α

 ΛxaÛ
⊤
x

[
rk+1 − ∇̃Φ(x̄k)

]
Λ−1

xb ΛxaÛ
⊤
x

[
∇̃Φ(x̄k+1)− ∇̃Φ(x̄k)

]  .
Assumption 2, 3 imply that all eigenvalues of[

diag{0,Λsc − Λ2
sb} −diag{0,Λsb}

diag{0,Λsb} diag{0, 1, ..., 1}

]
=

[
U⊤

s

U⊤
s

] [
Cs − 1

n
1n1

⊤
n −B2

s −Bs

Bs In − 1
n
1n1

⊤
n

] [
Us

Us

] (31)

are strictly less than one in magnitude. Thus by symmetrically exchanging columns and rows of the
matrix, we know that equivalently, all eigenvalues of[

Λsc − Λ2
sb −Λsb

Λsb In−1

]
and Ms =

[
Λsc −Λ2

sb −Λsb

Λsb In−1 ⊗ Idim(s)

]
(32)

are strictly less than one in magnitude,.

Then according to Lemma 3, for s ∈ {x, y, z}, Ms has the similarity transformation:

Ms = OsΓsO
−1
s ,

where Os is invertible and ∥Γs∥ < 1. Moreover, we define êks = O−1
s eks . It yields

êk+1
y = Γyê

k
y − βO−1

y

[
ΛyaÛ

⊤
y

[
vk −∇2g(x̄

k, ȳk)
]

Λ−1
yb ΛyaÛ

⊤
y

[
∇2g(x̄

k+1, ȳk+1)−∇2g(x̄
k, ȳk)

] ] , (33)
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êk+1
z = Γyê

k
z − γO−1

z

[
ΛzaÛ

⊤
z

[
pk − pk(x̄k, ȳk+1)

]
Λ−1

zb ΛzaÛ
⊤
z

[
pk+1(x̄k+1, ȳk+2)− pk(x̄k, ȳk+1)

] ] , (34)

êk+1
x = Γxê

k
x − αO−1

x

 ΛxaÛ
⊤
x

[
rk+1 − ∇̃Φ(x̄k)

]
Λ−1

xb ΛxaÛ
⊤
x

[
∇̃Φ(x̄k+1)− ∇̃Φ(x̄k)

]  . (35)

Then, for s ∈ {x,y, z}, the consensus errors between different agents have the upper bound of:∥∥sk − s̄k
∥∥2 = ∥Û⊤

s s
k∥2 ≤ ∥eks∥2 ≤ ∥Os∥2∥êks∥2. (36)

Thus, we can define:

∆k = κ2∥Ox∥2∥êkx∥2 + κ2∥Oy∥2∥êk+1
y ∥2 + ∥Oz∥2∥êk+1

z ∥2

to measure the consensus error during the iteration.

We also define

Ik = ∥z̄k+1 − zk+1
⋆ ∥2 + κ2∥ȳk+1 − y⋆(x̄k)∥2,

to measure the estimation accuracy of the lower- and auxiliary-level problems.

C.1.3 Proof sketch

Before proceeding with the formal proof, we first present the structure of the proof in Appendix C.

Bounded by each other

Descent of x
∑

E∥r̄k∥2

Descent of y
∑

E∥ȳk+1 − y⋆(x̄k)∥2
∑

E [∆k]
∑

E [Ik]

Descent of z
∑

E∥z̄k+1 − zk+1
⋆ ∥2

Consensus of y
∑

E∥êky∥2
∑

E
[
∆k

n + Ik
]

Consensus of z
∑

E∥êkz∥2

Consensus of x
∑

E∥êkx∥2
∑

E∥Φ(x̄k)∥2

Hyper-gradient estimation
∑

E∥Eku
k − ∇̃Φ(x̄k)∥2

Hyper-gradient estimation
∑

E∥Ekr
k+1 − ∇̃Φ(x̄k)∥2 Lemma 17

Variance
∑

E∥Eku
k − uk∥2


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C.1.4 Technical lemmas

Lemma 1. Suppose Assumptions 1 hold, we know ∇Φ(x),∇̃Φ(x), z⋆(x) and y⋆(x) defined above
are L∇Φ , L̃, Lz⋆ , Ly⋆ - Lipschitz continuous respectively with the constants satisfying:

L∇Φ ≤ Lf,1 +
2Lf,1Lg,1 + Lg,2Lf,0

µg
+

2Lg,1Lf,0Lg,2 + L2
g,1Lf,1

µ2
g

+
Lg,2L

2
g,1Lf,0

µ3
g

,

L̃ ≤ Lf,1 +
2Lf,1Lg,1 + Lg,2Lf,0

µg
+

2Lg,1Lf,0Lg,2 + L2
g,1Lf,1

µ2
g

+
Lg,2L

2
g,1Lf,0

µ3
g

,

Ly⋆ ≤ Lg,1

µg
,

Lz⋆ ≤
√
1 + L2

y⋆

(
Lf,1

µg
+
Lf,0Lg,2

µ2
g

)
.

And we also have:

∥z⋆(x)∥ ≤ Lf,0

µg
, ∀x ∈ Rp.

Proof. See Lemma 2.2 in [22] and Lemma B.2 in [11].

Lemma 2. Suppose that g(x) is µ-strongly convex and L-smooth. Then for any x and 0 < α < 2
µ+L ,

we have
∥x− α∇g(x)− x⋆∥ ≤ (1− αµ) ∥x− x⋆∥ ,

where x⋆ = argmin g(x).

Proof. See Lemma 10 in [41].

Lemma 3. Given diagonal matrices A,B,C,D ∈ R(n−1)×(n−1), and

M =

[
A⊗ Id B ⊗ Id
C ⊗ Id D ⊗ Id

]
.

Suppose that the eigenvalues of M are strictly less than one in magnitude. Then there exist an
invertible matrix O and a matrix Γ with ∥Γ∥ < 1, such that M has the similarity transformation:

M = OΓO−1.

Proof. See Lemma 1 in [2].

Remark 5. Asserting the existence of Γ with ∥Γ∥ < 1, Lemma 3 only guarantees the convergence
of SPARKLE. However, to obtain a precise non-asymptotic convergence rate, one must construct
appropriate O and Γ. See more details in Appendix C.2.2.

C.1.5 Descent lemmas for the upper-level

In this subsection, we estimate the upper bound of the errors induced by the moving average in
hyper-gradient estimation, as well as the upper bound of ∥∇Φ(x)∥2 based on Ik,∆k.

Lemma 4. Suppose Assumptions 1- 4 hold. We have:∥∥Ekū
k −∇Φ(x̄k)

∥∥2 ≤20

n
L2(∆k + nIk),∥∥∥Eku

k − ∇̃Φ(x̄k)
∥∥∥2 ≤20L2(∆k + nIk).

(38)
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Proof. Cauchy Schwartz inequality implies that:∥∥∥Eku
k − ∇̃Φ

(
x̄k
)∥∥∥2

≤5

n∑
i=1

∥∥∇1fi
(
xki , y

k+1
i

)
−∇1fi

(
x̄k, ȳk+1

)∥∥2 + 5

n∑
i=1

∥∥∇1fi
(
x̄k, ȳk+1

)
−∇1fi

(
x̄k, y⋆(x̄k)

)∥∥2
+ 5

n∑
i=1

∥∥∇2
12gi

(
xki , y

k+1
i

) (
zk+1
i − zk+1

⋆

)∥∥2
+ 5

n∑
i=1

∥∥(∇2
12gi

(
xki , y

k+1
i

)
−∇2

12gi
(
x̄k, ȳk+1

))
zk+1
⋆

∥∥2
+ 5

n∑
i=1

∥∥(∇2
12gi

(
x̄k, ȳk+1

)
−∇2

12gi
(
x̄k, y⋆(x̄k)

))
zk+1
⋆

∥∥2
≤10

(
L2
f,1 + κ2L2

f,0

) (∥∥xk − x̄k
∥∥2 + ∥∥yk+1 − ȳk+1

∥∥2 + ∥∥ȳk+1 − y⋆(x̄k)
∥∥2)

+ 10L2
g,1

(∥∥zk+1 − z̄k+1
∥∥2 + ∥∥z̄k+1 − zk+1

⋆

∥∥2)
≤20L2 (∆k + nIk) .

For the term
∥∥Ekū

k −∇Φ
(
x̄k
)∥∥2, we have:∥∥Ekū

k −∇Φ(x̄k)
∥∥2 ≤ 1

n

∥∥∥Eku
k − ∇̃Φ

(
x̄k
)∥∥∥2 ≤ 20L2

(
∆k

n
+ Ik

)
.

Lemma 5. Suppose that Assumptions 1- 4 hold. We have

n2
K∑

k=0

E
[
∥ūk − Ek[ū

k]∥2
]
=

K∑
k=0

E
[
∥uk − Ek[u

k]∥2
]

≤9σ2
g,2

K∑
k=0

(
E∥zk+1 − z̄k+1∥2 + E∥z̄k+1 − zk+1

⋆ ∥2
)
+ 3(K + 1)n

(
σ2
f,1 + 3σ2

g,2

L2
f,0

µ2
g

)
.

(39)

Proof. For k ≥ 0, Cauchy Schwartz inequality implies that
1

3
Ek

[
∥uk − Ek[u

k]∥2
]

≤Ek

[
n∑

i=1

∥∇1fi(x
k
i , y

k+1
i , ξki )−∇1fi(x

k
i , y

k+1
i )∥2

]

+ Ek

[
n∑

i=1

∥∥(∇12gi(x
k
i , y

k+1
i , ζki )−∇12gi(x

k
i , y

k+1
i )

)
zk+1
i

∥∥2]
≤nσ2

f,1 + σ2
g,2∥zk+1∥2

≤nσ2
f,1 + 3σ2

g,2

(
∥zk+1 − z̄k+1∥2 + ∥z̄k+1 − zk+1

⋆ ∥2 + ∥zk+1
⋆ ∥2

)
≤nσ2

f,1 + 3σ2
g,2

(
∥zk+1 − z̄k+1∥2 + ∥z̄k+1 − zk+1

⋆ ∥2 + n
L2
f,0

µ2
g

)
.

Then taking expectation and summation on both sides, we get
K∑

k=0

E
[
∥uk − Ek[u

k]∥2
]

≤9σ2
g,2

K∑
k=0

(
E∥zk+1 − z̄k+1∥2 + E∥z̄k+1 − zk+1

⋆ ∥2
)
+ 3(K + 1)n

(
σ2
f,1 + 3σ2

g,2

L2
f,0

µ2
g

)
.
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Since samples among agents are independent, it follows that

K∑
k=0

Ek

[
∥ūk − Ek[ū

k]∥2
]
=

1

n2

K∑
k=0

Ek

[
∥uk − Ek[u

k]∥2
]
.

Taking expectations, we get the conclusion.

Lemma 6. Suppose that Assumptions 1- 4, and Lemmas 4, 5 hold. If

α ≤ 1

2L∇Φ
, (40)

we have

1

4

K∑
k=0

E
∥∥r̄k+1

∥∥2
≤Φ(x̄0)− inf Φ

α
+ 10

(
L2 +

θσ2
g,2

n

)
K∑

k=0

E
(
∆k

n
+ Ik

)
+

3θ

n
(K + 1)

(
σ2
f,1 + 2σ2

g,2

L2
f,0

µ2
g

)
.

(41)

Proof. The L∇Φ-smoothness of Φ indicates that

Ek[Φ
(
x̄k+1

)
]− Φ(x̄k)

≤
〈
∇Φ(x̄k),

(
−αEk[r̄

k+1]
)〉

+
L∇Φα

2

2
Ek∥r̄k+1∥2

=
〈
∇Φ(x̄k)− Ek[ū

k],−αEk[r̄
k+1]

〉
+
L∇Φ

2
α2Ek∥r̄k+1∥2 − α

〈
Ek[ū

k],Ek[r̄
k+1]

〉
.

Then, due to Ek[ū
k] = θ−1(Ek[r̄

k+1]− (1− θ)r̄k), we have:

Ek[Φ
(
x̄k+1

)
]− Φ(x̄k)

≤α
2
∥∇Φ(x̄k)− Ek[ū

k]∥2 + α

2
∥Ek[r̄

k+1]∥2

+
L∇Φ

2
α2Ek∥r̄k+1∥2 − α

〈
Ek[ū

k],Ek[r̄
k+1]

〉
=
α

2
∥∇Φ(x̄k)− Ek[ū

k]∥2 + (−α
2
+
L∇Φ

2
α2)Ek∥r̄k+1∥2 − α(1− θ)

2θ
∥Ek[r̄

k+1]− r̄k∥2

+
α(1− θ)

2θ

(
∥r̄k∥2 − Ek∥r̄k+1∥2

)
+
α

2θ
Ek∥r̄k+1 − Ek[r̄

k+1]∥2

≤α
2
∥∇Φ(x̄k)− Ek[ū

k]∥2 + (−α
2
+
L∇Φ

2
α2)Ek∥r̄k+1∥2 + αθ

2
Ek∥ūk − Ek[ū

k]∥2

+
α(1− θ)

2θ

(
∥r̄k∥2 − Ek∥r̄k+1∥2

)
,

where the first equality uses 2
〈
r̄k,Ek[r̄

k+1]
〉
= ∥r̄k∥2 + ∥Ek[r̄

k+1]∥2 − ∥r̄k − Ek[r̄
k+1]∥2 and

Ek∥r̄k+1∥2 = ∥Ek[r̄
k+1]∥2 + Ek∥r̄k+1 − Ek[r̄

k+1]∥2.

Taking expectation and summation, and using α ≤ 1
2L∇Ψ

, we get

inf Φ− Φ(x̄0)

≤α
2

K∑
k=0

E∥∇Φ(x̄k)− Ek[ū
k]∥2 − α

4

K∑
k=0

E∥r̄k+1∥2 + αθ

2

K∑
k=0

E
[
Ek∥ūk − Ek[ū

k]∥2
]
.

(42)

Since samples of different agents are independent, we have

Ek∥ūk − Ek[ū
k]∥2 =

1

n2
Ek∥uk − Ek[u

k]∥2.
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Combining it with the conclusion of Lemma 4 and 5, we get from (42) that

α

4

K∑
k=0

E
∥∥r̄k+1

∥∥2
≤Φ(x̄0)− inf Φ +

α

2

K∑
k=0

E∥∇Φ(x̄k)− Ek[ū
k]∥2 + αθ

2

K∑
k=0

E
[
Ek∥ūk − Ek[ū

k]∥2
]

≤Φ(x̄0)− inf Φ + 10α

(
L2 +

θσ2
g,2

n

)
K∑

k=0

E
(
∆k

n
+ Ik

)
+

3αθ

n
(K + 1)

(
σ2
f,1 + 2σ2

g,2

L2
f,0

µ2
g

)
.

Lemma 7. Suppose that Assumptions 1- 4 hold, then we have
K∑

k=0

E
[∥∥∥Ek[r

k+1]− ∇̃Φ(x̄k)
∥∥∥2]

≤1− θ

θ

∥∥∥∇̃Φ(x̄0)
∥∥∥2 + 2

K∑
k=0

E
[∥∥∥Ek[u

k]− ∇̃Φ(x̄k)
∥∥∥2]

+
2L̃2(1− θ)2

θ2

K−1∑
k=0

E
[∥∥x̄k+1 − x̄k

∥∥2]+ (1− θ)θ

K∑
k=0

E
[∥∥uk − Ek[u

k]
∥∥2] .

Proof. We define u−1 = 0 for brevity. From the definition of Ek, we have :

Ek−1

[∥∥∥rk − ∇̃Φ(x̄k−1)
∥∥∥2]

=Ek−1

[∥∥∥Ek−1[r
k]− ∇̃Φ(x̄k−1)

∥∥∥2]+ Ek−1

[∥∥rk − Ek−1[r
k]
∥∥2]

=Ek−1

[∥∥∥Ek−1[r
k]− ∇̃Φ(x̄k−1)

∥∥∥2]+ θ2Ek−1

[∥∥uk−1 − Ek−1[u
k−1]

∥∥2] .
(43)

Jensen’s inequality implies that

Ek

[
∥Ek[r

k+1]− ∇̃Φ(x̄k)∥2
]

≤(1− θ)Ek

[∥∥∥rk − ∇̃Φ(x̄k−1)
∥∥∥2]

+ θEk

[∥∥∥(Ek[u
k]− ∇̃Φ(x̄k)

)
+ θ−1(1− θ)

(
∇̃Φ(x̄k−1)− ∇̃Φ(x̄k)

)∥∥∥2]
≤(1− θ)Ek

[∥∥∥rk − ∇̃Φ(x̄k−1)
∥∥∥2]+ 2θEk

[∥∥∥Ek[u
k]− ∇̃Φ(x̄k)

∥∥∥2]
+

2(1− θ)2

θ
Ek

[∥∥∥∇̃Φ(x̄k−1)− ∇̃Φ(x̄k)
∥∥∥2] .

(44)

Substituting (43) into (44) , and taking expectation and summation on both sides, we get:

θ

K∑
k=0

E
[∥∥∥Ek−1[r

k]− ∇̃Φ(x̄k−1)
∥∥∥2]

≤E
[∥∥∥r0 − ∇̃Φ(x̄−1)

∥∥∥2]− E
[∥∥∥EK [rK+1]− ∇̃Φ(x̄k)

∥∥∥2]+ 2θ

K∑
k=0

E
[∥∥∥Ek[u

k]− ∇̃Φ(x̄k)
∥∥∥2]

+
2(1− θ)2

θ

K∑
k=0

E
[∥∥∥∇̃Φ(x̄k−1)− ∇̃Φ(x̄k)

∥∥∥2]+ (1− θ)θ2
K∑

k=0

E
[∥∥uk − Ek[u

k]
∥∥2] .
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Finally, note that x−1 = x0, r0 = 0, and E−1 = E0. Subtracting θE
[∥∥∥E−1[r

0]− ∇̃Φ(x̄−1)
∥∥∥2] =

θ
∥∥∥∇̃Φ(x̄0)

∥∥∥2 from both sides of this equation, we get:

K∑
k=0

E
[∥∥∥Ek[r

k+1]− ∇̃Φ(x̄k)
∥∥∥2]

≤1− θ

θ

∥∥∥∇̃Φ(x̄0)
∥∥∥2 + 2

K∑
k=0

E
[∥∥∥Ek[u

k]− ∇̃Φ(x̄k)
∥∥∥2]

+
2L̃2(1− θ)2

θ2

K−1∑
k=0

E
[∥∥x̄k+1 − x̄k

∥∥2]+ (1− θ)θ

K∑
k=0

E
[∥∥uk − Ek[u

k]
∥∥2] .

Lemma 8 (Descent lemma). Suppose that Assumptions 1- 4 and Lemmas 4, 5 hold. If

α2

θ2
(1− θ) ≤ 1

32L2
∇Φ

, α ≤ 1

10L∇Φ
, (45)

then we have
K∑

k=0

E∥∇Φ(x̄k)∥2 ≲
Φ(x̄0)− inf Φ

α
+
(
L2 +

(
θ(1− θ) + L∇Φαθ

2
)
σ2
g,2

) K∑
k=0

E
[
∆k

n
+ Ik

]
+ (K + 1)

(
θ(1− θ) + L∇Φαθ

2
)
(σ2

f,1 + κ2σ2
g,2) +

(1− θ)2

θ
∥∇Φ(x̄0)∥2.

Proof. The L∇Φ-smoothness of Φ indicates that

Ek[Φ(x̄
k+1)]− Φ(x̄k)

≤
〈
∇Φ(x̄k),−αEk[r̄

k+1]
〉
+
L∇Φα

2

2
Ek

∥∥r̄k+1
∥∥2

=− α
〈
∇Φ(x̄k),Ek[r̄

k+1]−∇Φ(x̄k)
〉
− α∥∇Φ(x̄k)∥2 + L∇Φ

2
α2Ek

∥∥r̄k+1
∥∥2

≤− α

2
∥∇Φ(x̄k)∥2 + α

2
∥Ek[r̄

k+1]−∇Φ(x̄k)∥2 + L∇Φ

2
α2Ek

∥∥r̄k+1
∥∥2 .

Taking expectation and summation on both sides, we get:
K∑

k=0

αE∥∇Φ(x̄k)∥2

≤2(Φ(x̄0)− inf Φ) +

K∑
k=0

αE∥Ek[r̄
k+1]−∇Φ(x̄k)∥2 +

K∑
k=0

L∇Φα
2E
∥∥r̄k+1

∥∥2 . (46)

Define auxiliary series mk as:

m0 = r̄0 = 0,mk+1 = (1− θ)mk + θ∇Φ(x̄k).

Note that

Ek

∥∥r̄k+1
∥∥2 =

∥∥Ekr̄
k+1
∥∥2 + Ek

∥∥r̄k+1 − Ekr̄
k+1
∥∥2

≤ 2∥Ek[r̄
k+1]−∇Φ(x̄k)∥2 + 2∥∇Φ(x̄k)∥2 + θ2Ek∥ūk − Ekū

k∥2.
(47)

Then using the Jenson’s Inequality, we get:

∥Ekr̄
k+1 −mk+1∥2 = ∥(1− θ)(r̄k −mk) + θ(Ekū

k −∇Φ(x̄k))∥2

≤ (1− θ)∥r̄k −mk∥2 + θ∥Ekū
k −∇Φ(x̄k)∥2.
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It follows that for k ≥ 0

E∥Ekr̄
k+1 −mk+1∥2

≤(1− θ)E∥Ek−1[r̄
k]−mk∥2 + (1− θ)θ2E∥ūk−1 − Ek−1ū

k−1∥2 + θE∥Ekū
k −∇Φ(x̄k)∥2,

where for brevity we define ū−1 = 0.

Taking the summation on both sides from k = 0 to K, we get

K∑
k=0

θE∥Ekr̄
k+1 −mk+1∥2 ≤

K−1∑
k=0

θE∥Ekr̄
k+1 −mk+1∥2 + E∥EK r̄

K+1 −mK+1∥2

≤
K∑

k=0

θE∥Ekū
k −∇Φ(x̄k)∥2 +

K−1∑
k=0

(1− θ)θ2E∥ūk − Ekū
k∥2.

(48)
On the other hand, due to the definition of mk and Jenson’s Inequality, we have:

∥mk+1 −∇Φ(x̄k)∥2 = ∥(1− θ)(mk −∇Φ(x̄k))∥2

= (1− θ)2∥mk −∇Φ(x̄k−1) +∇Φ(x̄k−1)−∇Φ(x̄k)∥2

≤ (1− θ)∥mk −∇Φ(x̄k−1)∥2 + (1− θ)2

θ
L2
∇Φα

2∥r̄k∥2.

Taking the summation, we get

K∑
k=0

θ∥mk+1 −∇Φ(x̄k)∥2 ≤ ∥m0 −∇Φ(x̄−1)∥2 +
K∑

k=0

(1− θ)2

θ
L2
∇Φα

2∥r̄k∥2

= (1− θ)2∥∇Φ(x̄0)∥2 +
K∑

k=0

(1− θ)2

θ
L2
∇Φα

2∥r̄k∥2.

(49)

Combining (48) and (49), we obtain:

K∑
k=0

θE∥Ekr̄
k+1 −∇Φ(x̄k)∥2

≤2

K∑
k=0

θE∥Ekr̄
k+1 −mk+1∥2 + 2

K∑
k=0

θ∥mk+1 −∇Φ(x̄k)∥2

≤2

K∑
k=0

θE∥Ekū
k −∇Φ(x̄k)∥2 + 2

K−1∑
k=0

(1− θ)θ2E∥ūk − Ekū
k∥2

+ 2

K∑
k=0

(1− θ)2

θ
L2

∇Φα
2E∥r̄k∥2 + 2(1− θ)2∥∇Φ

(
x̄0) ∥2

≤2

K∑
k=0

θE∥Ekū
k −∇Φ(x̄k)∥2 + 2

K−1∑
k=0

(
1 + 2

1− θ

θ
L2

∇Φα
2

)
(1− θ)θ2E∥ūk − Ekū

k∥2

+ 2(1− θ)2∥∇Φ
(
x̄0) ∥2 + 2

K−1∑
k=0

(1− θ)2

θ
L2

∇Φα
2
(
2E∥Ek[r̄

k+1]−∇Φ(x̄k)∥2 + 2E∥∇Φ(x̄k)∥2
)
,

(50)
where the last inequality uses (47).

(45) indicates that 4
1− θ

θ
L2
∇Φα

2 ≤ θ

8
. Subtracting

2

K−1∑
k=0

(1− θ)2

θ
L2
∇Φα

2 · 2E∥Ek[r̄
k+1]−∇Φ(x̄k)∥2
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from both sides of (50), we have:

K∑
k=0

θE∥Ekr̄
k+1 −∇Φ(x̄k)∥2

≤4

K∑
k=0

θE∥Ekū
k −∇Φ(x̄k)∥2 + 8

K−1∑
k=0

(1− θ)θ2E∥ūk − Ekū
k∥2 + 4(1− θ)2∥∇Φ(x̄0)∥2

+
θ

4

K−1∑
k=0

E∥∇Φ(x̄k)∥2.

(51)

Substituting (47), (51) into (46), we get:

K∑
k=0

αE∥∇Φ(x̄k)∥2

≤2(Φ(x̄0)− inf Φ) +

K∑
k=0

(α+ 2L∇Φα
2)E∥Ek[r̄

k+1]−∇Φ(x̄k)∥2 +
K∑

k=0

2L∇Φα
2E∥∇Φ(x̄k)∥2

+

K∑
k=0

2L∇Φα
2θ2Ek∥ūk − Ekū

k∥2

≤2(Φ(x̄0)− inf Φ) + 5α

K∑
k=0

E∥Ekū
k −∇Φ(x̄k)∥2 + 5

α

θ
(1− θ)2∥∇Φ

(
x̄0
)
∥2

+

K∑
k=0

(
10
α

θ
(1− θ) + 2L∇Φα

2
)
θ2E∥ūk − Ekū

k∥2 + α

2

K−1∑
k=0

E∥∇Φ(x̄k)∥2,

(52)
where the last inequality uses α ≤ 1

10L∇Φ
.

Subtracting α
2

∑K−1
k=0 E∥∇Φ(x̄k)∥2 from both sides of (52), and substituting (38), (39) into it, we

get:

1

2

K∑
k=0

αE∥∇Φ(x̄k)∥2

≤2(Φ(x̄0)− inf Φ) + 100αL2
K∑

k=0

E
[
∆k

n
+ Ik

]
+ 5

α

θ
(1− θ)2∥∇Φ

(
x̄0
)
∥2

+

(
10α

θ (1− θ) + 2L∇Φα
2
)

n2
θ2 · 9σ2

g,2

K∑
k=0

(
E∥zk+1 − z̄k+1∥2 + E∥z̄k+1 − zk+1

⋆ ∥2
)

+

(
10α

θ (1− θ) + 2L∇Φα
2
)

n2
θ2 · 3(K + 1)n

(
σ2
f,1 + 3σ2

g,2

L2
f,0

µ2
g

)

≤2(Φ(x̄0)− inf Φ) +

(
100αL2 + 9

(
10αθ(1− θ) + 2L∇Φα

2θ2
) σ2

g,2

n

)
K∑

k=0

E
[
∆k

n
+ Ik

]

+ 3(K + 1)
(
10α(1− θ) + 2L∇Φα

2θ
) θ
n

(
σ2
f,1 + 3σ2

g,2

L2
f,0

µ2
g

)
+ 5

α

θ
(1− θ)2∥∇Φ

(
x̄0
)
∥2.
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Finally, multiplying
2

α
on both sides, we get:

K∑
k=0

E∥∇Φ(x̄k)∥2 ≲
Φ(x̄0)− inf Φ

α
+

(
L2 +

(
θ(1− θ) + L∇Φαθ

2
) σ2

g,2

n

)
K∑

k=0

E
[
∆k

n
+ Ik

]
+
K + 1

n

(
θ(1− θ) + L∇Φαθ

2
)
(σ2

f,1 + κ2σ2
g,2) +

(1− θ)2

θ
∥∇Φ(x̄0)∥2.

C.1.6 Descent lemmas for the lower- and auxiliary-level

The following lemmas present the error analysis of the estimation of y⋆(x̄k) and zk⋆ , i.e., the term Ik:

Lemma 9 (Estimation error of y⋆(x)). Suppose Assumptions 1- 4hold, and:

β ≤ µg

32L2
g,1

. (53)

Then we have the estimation error of y⋆:

∥ȳ0 − y⋆(x̄0)∥2 +
K∑

k=0

E[∥ȳk+1 − y⋆(x̄k)∥2]

≤ 4

βµg
∥ȳ0 − y⋆(x̄0)∥2 +

K∑
k=1

6α2L2
y⋆

β2µ2
g

E∥r̄k∥2 +
K∑

k=1

6

µ2
g

L2
g,1E

[
∥Ox∥2∥êkx∥2 + ∥Oy∥2∥êky∥2

n

]

+
4Kβσ2

g,1

nµg
,

and

K∑
k=0

E
[
∥ȳk+1 − ȳk∥2

]
≤
β2L2

g,1

n

(
4 +

48L2
g,1

µ2
g

)
K∑

k=1

E
(
∥Ox∥2∥êkx∥2 + ∥Oy∥2∥êky∥2

)
+

48α2L2
g,1

µ2
g

L2
y⋆

K∑
k=1

E∥r̄k∥2

+
3(K + 1)β2

n
σ2
g,1 +

32βL2
g,1

µg
∥ȳ0 − y⋆(x̄0)∥2.

(54)

Proof. For each k ≥ 0, due to the independence of samples, we have:

Êk[∥ȳk+1 − y⋆(x̄k)∥2] = Êk[∥ȳk − βv̄k − y⋆(x̄k)∥2]

=Êk

∥∥∥∥∥ȳk − β
1

n

n∑
i=1

∇2gi(x
k
i , y

k
i )− y⋆(x̄k) + β

1

n

n∑
i=1

(
∇2gi(x

k
i , y

k
i )− vki

)∥∥∥∥∥
2


≤

∥∥∥∥∥ȳk − β
1

n

n∑
i=1

∇2gi(x̄
k, ȳk)− y⋆(x̄k) + β

1

n

n∑
i=1

(∇2gi(x̄
k, ȳk)−∇2gi(x

k
i , y

k
i ))

∥∥∥∥∥
2

+ β2
σ2
g,1

n
.
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Then,

Êk[∥ȳk+1 − y⋆(x̄k)∥2]

≤
(
1 +

βµg

2

)∥∥∥∥∥ȳk − β
1

n

n∑
i=1

∇2gi(x̄
k, ȳk)− y⋆(x̄k)

∥∥∥∥∥
2

+ β2

(
1 +

2

βµg

)∥∥∥∥∥ 1n
n∑

i=1

(∇2gi(x̄
k, ȳk)−∇2gi(x

k
i , y

k
i ))

∥∥∥∥∥
2

+ β2
σ2
g,1

n

≤
(
1 +

βµg

2

)
(1− βµg)

2∥ȳk − y⋆(x̄k)∥2

+ β2

(
1 +

2

βµg

)
L2
g,1

(
∥xk − x̄k∥2

n
+

∥yk − ȳk∥2

n

)
+ β2

σ2
g,1

n

≤ (1− βµg)

[(
1 +

βµg

2

)
∥ȳk − y⋆(x̄k−1)∥2 +

(
1 +

2

βµg

)
∥y⋆(x̄k)− y⋆(x̄k−1)∥2

]
+ β2

(
1 +

2

βµg

)
L2
g,1

(
∥xk − x̄k∥2

n
+

∥yk − ȳk∥2

n

)
+ β2

σ2
g,1

n

≤
(
1− βµg

2

)
∥ȳk − y⋆(x̄k−1)∥2 + 3

βµg
L2
y⋆∥x̄k − x̄k−1∥2

+
3β

µg
L2
g,1

(
∥xk − x̄k∥2

n
+

∥yk − ȳk∥2

n

)
+ β2

σ2
g,1

n
,

where the first and the third inequality is due to the Jenson’s inequality, the second inequality holds
according to Lemma 2 and the fact that β ≤ µg

32L2
g,1

≤ 1
3(µg+Lg,1)

, and the last inequality uses

βµg ≤ 1
3 . Taking the summation and expectation on the both sides, we get:

K∑
k=0

βµg

2
E[∥ȳk − y⋆(x̄k−1)∥2] + E[∥ȳk+1 − y⋆(x̄k)∥2]

≤E∥ȳ0 − y⋆(x̄0)∥2 +
K∑

k=0

E

[
3α2

βµg
L2
y⋆∥r̄k∥2 +

3β

µg
L2
g,1

(
∥xk − x̄k∥2

n
+

∥yk − ȳk∥2

n

)
+ β2

σ2
g,1

n

]
.

Using (36) and the fact that x0,y0 is consensual, it follows that:
K+1∑
k=0

βµg

2
E[∥ȳk − y⋆(x̄k−1)∥2] ≤2∥ȳ0 − y⋆(x̄0)∥2 +

K∑
k=1

3α2

βµg
L2
y⋆E∥r̄k∥2

+

K∑
k=1

3β

µg
L2
g,1E

[
∥Ox∥2∥êkx∥2 + ∥Oy∥2∥êky∥2

n

]
+

2Kβ2σ2
g,1

n
.

(55)

On the other hand,

Êk

[
∥ȳk+1 − ȳk∥2

]
≤β2

∥∥∥∥∥ 1n
n∑

i=1

∇2gi(x
k
i , y

k
i )

∥∥∥∥∥
2

+
β2

n
σ2
g,1

≤2β2

∥∥∥∥∥ 1n
n∑

i=1

(
∇2gi(x

k
i , y

k
i )−∇2gi(x̄

k, ȳk)
)∥∥∥∥∥

2

+
∥∥∇2g(x̄

k, ȳk)−∇2g(x̄
k, y⋆(x̄k))

∥∥2
+
β2

n
σ2
g,1

≤
2β2L2

g,1

n

(
∥xk − x̄k∥2 + ∥yk − ȳk∥2 + 2∥ȳk+1 − y⋆(x̄k)∥2 + 2∥ȳk+1 − ȳk∥2

)
+
β2

n
σ2
g,1,
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where the second inequality uses ∇2g(x̄
k, y⋆(x̄k)) = 0.

Note that β2 ≤ µ2
g

32L4
g,1

≤ 1
8L2

g,1
. Subtracting 2β2L2

g,1∥ȳk+1 − ȳk∥ on both sides, and taking
expectation and summation, we get:

K∑
k=0

E
[
∥ȳk+1 − ȳk∥2

]
≤

K∑
k=0

[
4β2L2

g,1

n
E
(
∥xk − x̄k∥2 + ∥yk − ȳk∥2

)
+

8β2L2
g,1

n
E∥ȳk+1 − y⋆(x̄k)∥2 + 2β2

n
σ2
g,1

]

≤
4β2L2

g,1

n

K∑
k=1

E
(
∥Ox∥2∥êxk∥2 + ∥Oy∥2∥êyk∥

2
)
+

8β2L2
g,1

n

K∑
k=0

E∥ȳk+1 − y⋆(x̄k)∥2

+
2(K + 1)β2

n
σ2
g,1

≤
4β2L2

g,1

n

K∑
k=1

E
(
∥Ox∥2∥êkx∥2 + ∥Oy∥2∥êky∥2

)
+

2(K + 1)β2

n
σ2
g,1

+ 8β2L2
g,1

(
4

βµg
∥ȳ0 − y⋆(x̄0)∥2 +

K∑
k=1

6α2

β2µ2
g

L2
y⋆E∥r̄k∥2

)

+ 8β2L2
g,1

(
K∑

k=1

6

µ2
g

L2
g,1E

[
∥Ox∥2∥êkx∥2 + ∥Oy∥2∥êky∥2

n

]
+

4Kβσ2
g,1

nµg

)

≤
β2L2

g,1

n

(
4 +

48L2
g,1

µ2
g

)
K∑

k=1

E
(
∥Ox∥2∥êkx∥2 + ∥Oy∥2∥êky∥2

)
+

48α2L2
g,1

µ2
g

L2
y⋆

K∑
k=1

E∥r̄k∥2

+
3(K + 1)β2

n
σ2
g,1 +

32βL2
g,1

µg
∥ȳ0 − y⋆(x̄0)∥2.

where the second inequality holds since x0,y0 are consensual, the third inequality uses (55), and the
last inequality holds since β ≤ µg

32L2
g,1

.

Lemma 10 (Estimation error of z⋆(x)). Suppose that Assumptions 1- 4hold, and

γ < min

{
1

µg
,
nL2

g,1

µ2
gσ

2
g,2

,
nµg

36σ2
g,2

}
. (56)

We have:
K+1∑
k=0

E∥z̄k − zk⋆∥2

≤
K∑

k=0

9α2L2
z⋆

γ2µ2
g

E∥r̄k∥2

+ 72κ2
K∑

k=1

E
[
κ2∥Ox∥2∥êkx∥2 + ∥Oz∥2∥êkz∥2

n

]
+ 72κ2

K∑
k=0

E

[
κ2∥Oy∥2∥êk+1

y ∥2

n

]

+

K∑
k=0

72κ4E
[
∥ȳk+1 − y⋆(x̄k)∥2

]
+

3∥z1⋆∥2

µgγ
+

6(K + 1)γ

µgn

(
3σ2

g,2

L2
f,0

µ2
g

+ σ2
f,1

)
.

Proof. For each k ≥ 0, note that zk⋆ = ∇2
22g(x̄

k, y⋆(x̄k))−1∇2f2(x̄
k, y⋆(x̄k)), we have:

Ẽk[z̄
k+1]− zk+1

⋆ = z̄k − γ

n

n∑
i=1

(
∇2

22gi(x
k
i , y

k+1
i )zki −∇2fi(x

k
i , y

k+1
i )

)
− zk+1

⋆
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=

[
I − γ

n

n∑
i=1

∇2
22gi(x

k
i , y

k+1
i )

]
(z̄k − zk+1

⋆ ) +
γ

n

n∑
i=1

[
∇2fi(x

k
i , y

k+1
i )−∇2fi(x̄

k, y⋆(x̄k))
]

+
γ

n

n∑
i=1

∇2
22gi(x

k
i , y

k+1
i )(z̄k − zki ) +

γ

n

n∑
i=1

[
∇2

22gi(x̄
k, y⋆(x̄k))−∇2

22gi(x
k
i , y

k+1
i )

]
zk+1
⋆ .

Then we have:∥∥∥Ẽk[z̄
k+1]− zk+1

⋆

∥∥∥2
≤(1 + γµg)

∥∥∥∥∥
[
I − γ

n

n∑
i=1

∇2
22gi(x

k
i , y

k+1
i )

]
(z̄k − zk+1

⋆ )

∥∥∥∥∥
2

+ 3γ2
(
1 +

1

γµg

)∥∥∥∥∥ 1n
n∑

i=1

[
∇2fi(x

k
i , y

k+1
i )−∇2fi(x̄

k, y⋆(x̄k))
]∥∥∥∥∥

2

+ 3γ2
(
1 +

1

γµg

)∥∥∥∥∥ 1n
n∑

i=1

[
∇2

22gi(x̄
k, y⋆(x̄k))−∇2

22gi(x
k
i , y

k+1
i )

]
zk+1
⋆

∥∥∥∥∥
2

+ 3γ2
(
1 +

1

γµg

)∥∥∥∥∥ 1n
n∑

i=1

∇2
22gi(x

k
i , y

k+1
i )(z̄k − zki )

∥∥∥∥∥
2

≤(1 + γµg)(1− γµg)
2∥z̄k − zk+1

⋆ ∥2

+
6γ

µg

(
L2
g,1

∥zk − z̄k∥
n

+

(
L2
g,2L

2
f,0

µ2
g

+ L2
f,1

)(
∥xk − x̄k∥2

n
+

∥yk+1 − y⋆(x̄k)∥2

n

))

≤(1− γµg)
(
1 +

γµg

2

)
∥z̄k − zk⋆∥2 +

(
1 +

2

γµg

)
∥zk⋆ − zk+1

⋆ ∥2 + 6γ

µg
L2
g,1

∥zk − z̄k∥
n

+
12γ

µg

(
L2
g,2L

2
f,0

µ2
g

+ L2
f,1

)(
∥xk − x̄k∥2

n
+

∥yk+1 − ȳk+1∥2

n
+ ∥ȳk+1 − y⋆(x̄k)∥2

)
≤(1− γµg

2
)∥z̄k − zk⋆∥2 +

3α2L2
z⋆

γµg
∥r̄k∥2 + 6γ

µg
L2
g,1

∥zk − z̄k∥
n

+
12γ

µg

(
L2
g,2L

2
f,0

µ2
g

+ L2
f,1

)(
∥xk − x̄k∥2

n
+

∥yk+1 − ȳk+1∥2

n
+ ∥ȳk+1 − y⋆(x̄k)∥2

)
where the first and third inequality uses Jensen’s inequality and Cauchy Schwartz inequality, the
second inequality holds due to Assumption 1 and γµg < 1, the last inequality holds since z⋆(x) is
Lz⋆ Lipschitz continuous.

Moreover, the independence of samples implies that

Ẽk

∥∥∥z̄k+1 − Ẽk[z̄
k+1]

∥∥∥2 = γ2Ẽk

∥∥∥∥∥ 1n
n∑

i=1

(Hk
i − Ẽk[H

k
i ])z

k
i +

1

n

∑
i

(bki − Ẽk[b
k
i ])

∥∥∥∥∥
2

≤ 2γ2

n

(
σ2
g,2

∥zk∥2

n
+ σ2

f,1

)
≤ 2γ2

n

(
3σ2

g,2

(
∥zk − z̄k∥2

n
+ ∥z̄k − zk⋆∥2 +

L2
f,0

µ2
g

)
+ σ2

f,1

)
.

As γ satisfies

6σ2
g,2γ

2

n
≤

6γL2
g,1

µ2
g

,
6σ2

g,2γ
2

n
≤ γµg

6
,
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we get:

Ẽk[∥z̄k+1 − zk+1
⋆ ∥2] = Ẽk∥Ẽk[z̄

k+1]− zk+1
⋆ ∥2 + Ẽk∥z̄k+1 − Ẽk[z̄

k+1]∥2

≤
(
1− γµg

3

)
∥z̄k − zk⋆∥2 +

3α2L2
z⋆

γµg
∥r̄k∥2 + 12γ

µg
L2
g,1

∥zk − z̄k∥2

n
+

2γ2

n

(
3σ2

g,2

L2
f,0

µ2
g

+ σ2
f,1

)

+
12γ

µg

(
L2
g,2L

2
f,0

µ2
g

+ L2
f,1

)(
∥xk − x̄k∥2

n
+

∥yk+1 − ȳk+1∥2

n
+ ∥ȳk+1 − y⋆(x̄k)∥2

)
.

Taking expectation and summation on both sides, we get

K∑
k=0

γµg

3
E∥z̄k − zk⋆∥2 + E∥z̄K+1 − zK+1

⋆ ∥2

≤E∥z̄0 − z0⋆∥2 +
K∑

k=0

[
3α2L2

z⋆

γµg
E∥r̄k∥2 + 12γ

µg
L2
g,1

E∥zk − z̄k∥2

n
+

2γ2

n

(
3σ2

g,2

L2
f,0

µ2
g

+ σ2
f,1

)]

+

K∑
k=0

12γ

µg

(
L2
g,2L

2
f,0

µ2
g

+ L2
f,1

)
E
[
∥xk − x̄k∥2

n
+

∥yk+1 − ȳk+1∥2

n
+ ∥ȳk+1 − y⋆(x̄k)∥2

]
.

It follows that

K+1∑
k=0

E∥z̄k − zk⋆∥2

≤
K∑

k=0

9α2L2
z⋆

γ2µ2
g

E∥r̄k∥2

+ 72κ2
K∑

k=1

E
[
κ2∥Ox∥2∥êkx∥2 + ∥Oz∥2∥êkz∥2

n

]
+ 72κ2

K∑
k=0

E

[
κ2∥Oy∥2∥êk+1

y ∥2

n

]

+

K∑
k=0

72κ4E
[
∥ȳk+1 − y⋆(x̄k)∥2

]
+

3∥z1⋆∥2

µgγ
+

6(K + 1)γ

µgn

(
3σ2

g,2

L2
f,0

µ2
g

+ σ2
f,1

)
,

since z0⋆ = z1⋆ and z0 is consensual.

Then, we combine the results in Lemmas 9, 10 and give an upper bound of E[Ik]:

Lemma 11. Suppose that Lemmas 9 and 10 hold. Then we have:

K∑
k=−1

E[Ik] ≤
(
9α2L2

z⋆

γ2µ2
g

+
438κ4α2

β2µ2
g

L2
y⋆

) K∑
k=0

E∥r̄k∥2 + 510κ4
K∑

k=0

E
[
∆k

n

]
+

3∥z1⋆∥2

µgγ

+
6(K + 1)γ

µgn

(
3σ2

g,2

L2
f,0

µ2
g

+ σ2
f,1

)
+ 73κ4

(
4

βµg
∥ȳ0 − y⋆(x̄0)∥2 +

4Kσ2
g,1

nµg
β

)
.

(57)

Remark 6. Here I−1 = ∥z̄0 − z0⋆∥2 + κ2∥ȳ0 − y⋆(x̄−1)∥2. The aim of introducing this term is to
simplify the subsequent proofs of other lemmas.
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Proof. Lemma 10 implies that:

K+1∑
k=0

E∥z̄k − zk⋆∥2

≤
K∑

k=0

9α2L2
z⋆

γ2µ2
g

E∥r̄k∥2

+ 72κ2
K∑

k=1

E
[
κ2∥Ox∥2∥êkx∥2 + ∥Oz∥2∥êkz∥2

n

]
+ 72κ2

K∑
k=0

E

[
κ2∥Oy∥2∥êk+1

y ∥2

n

]

+

K∑
k=0

72κ4E
[
∥ȳk+1 − y⋆(x̄k)∥2

]
+

3∥z1⋆∥2

µgγ
+

6(K + 1)γ

µgn

(
3σ2

g,2

L2
f,0

µ2
g

+ σ2
f,1

)
Then, using Lemma 9, we have:

K∑
k=−1

E[Ik] =
K+1∑
k=0

E∥z̄k − zk⋆∥2 + κ2
K+1∑
k=0

E∥ȳk − y⋆(x̄k−1)∥2

≤
K∑

k=0

9α2L2
z⋆

γ2µ2
g

E∥r̄k∥2

+ 72κ2
K∑

k=1

E
[
κ2∥Ox∥2∥êkx∥2 + ∥Oz∥2∥êkz∥2

n

]
+ 72κ2

K∑
k=0

E

[
κ2∥Oy∥2∥êk+1

y ∥2

n

]

+
6(K + 1)γ

µgn

(
3σ2

g,2

L2
f,0

µ2
g

+ σ2
f,1

)
+ 73κ4

[
4

βµg
∥ȳ0 − y⋆(x̄0)∥2 +

K∑
k=1

6α2

β2µ2
g

L2
y⋆E∥r̄k∥2

]

+
3∥z1⋆∥2

µgγ
+ 73κ4

[
K∑

k=1

6

µ2
g

L2
g,1E

[
∥Ox∥2∥êkx∥2 + ∥Oy∥2∥êky∥2

n

]
+

4Kσ2
g,1

nµg
β

]

≤
K∑

k=0

(
9α2L2

z⋆

γ2µ2
g

+
438κ4α2

β2µ2
g

L2
y⋆

)
E∥r̄k∥2 +

K∑
k=0

510κ4E
[
∆k

n

]
+

3∥z1⋆∥2

µgγ

+
6(K + 1)γ

µgn

(
3σ2

g,2

L2
f,0

µ2
g

+ σ2
f,1

)
+ 73κ4

(
4

βµg
∥ȳ0 − y⋆(x̄0)∥2 +

4Kσ2
g,1

nµg
β

)
.

C.1.7 Consensus error analysis

In this subsection we aim to bound the consensus errors of y, z, x (i.e. the terms ∥êky∥2, ∥êkz∥2, and
∥êkx∥2).

Lemma 12 (Consensus error of y). Suppose that Assumptions 1- 4 hold, and

β2 ≤ (1− ∥Γy∥)2

8L2
g,1∥O

−1
y ∥2∥Oy∥2∥Λya∥2

. (58)

We have
K+1∑
k=0

E∥êky∥2 ≤3

K∑
k=0

β2∥O−1
y ∥2

(1− ∥Γy∥)2
∥Λ−1

yb ∥
2∥Λya∥2L2

g,1E
[
∥x̄k+1 − x̄k∥2 + ∥ȳk+1 − ȳk∥2

]
+

∥Ox∥2

3∥Oy∥2
K∑

k=0

E∥êkx∥2 +
3(K + 1)β2∥O−1

y ∥2∥Λya∥2

1− ∥Γy∥
nσ2

g,1 +
2E∥ê0y∥2

1− ∥Γy∥
.

(59)
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Proof. Firstly, the term ∥êk+1
y ∥2 can be deformed as

∥êk+1
y ∥2

=

∥∥∥∥∥∥Γy ê
k
y − βO

−1
y

 ΛyaÛ
⊤
y

[
Êk[v

k] − ∇2g(x̄
k, ȳk)

]
Λ−1

yb ΛyaÛ
⊤
y

[
∇2g(x̄

k+1, ȳk+1) − ∇2g(x̄
k, ȳk)

]  − βO
−1
y

[
ΛyaÛ

⊤
y

[
vk − Êk[v

k]
]

0

]∥∥∥∥∥∥
2

=

∥∥∥∥∥∥Γy ê
k
y − βO

−1
y

 ΛyaÛ
⊤
y

[
Êk[v

k] − ∇2g(x̄
k, ȳk)

]
Λ−1

yb ΛyaÛ
⊤
y

[
∇2g(x̄

k+1, ȳk+1) − ∇2g(x̄
k, ȳk)

] ∥∥∥∥∥∥
2

+ β
2

∥∥∥∥∥O−1
y

[
ΛyaÛ

⊤
y

[
vk − Êk[v

k]
]

0

]∥∥∥∥∥
2

− 2

〈
Γy ê

k
y , βO

−1
y

[
ΛyaÛ

⊤
y

[
vk − Êk[v

k]
]

0

]〉

+ 2β
2

〈
O

−1
y

 ΛyaÛ
⊤
y

[
Êk[v

k] − ∇2g(x̄
k, ȳk)

]
Λ−1

yb ΛyaÛ
⊤
y

[
∇2g(x̄

k+1, ȳk+1) − ∇2g(x̄
k, ȳk)

]  ,O
−1
y

[
ΛyaÛ

⊤
y

[
vk − Êk[v

k]
]

0

]〉
(60)

due to Eq.(33). Then, for the first term in the right-hand side of (60), we have:

Êk

∥∥∥∥∥Γyê
k
y − βO−1

y

[
ΛyaÛ

⊤
y

[
Êk[v

k]−∇2g(x̄
k, ȳk)

]
Λ−1

yb ΛyaÛ
⊤
y

[
∇2g(x̄

k+1, ȳk+1)−∇2g(x̄
k, ȳk)

] ]∥∥∥∥∥
2


≤∥Γy∥∥êky∥2 +
β2∥O−1

y ∥2

1− ∥Γy∥
Êk

∥∥∥∥∥
[

ΛyaÛ
⊤
y

[
Êk[v

k]−∇2g(x̄
k, ȳk)

]
Λ−1

yb ΛyaÛ
⊤
y

[
∇2g(x̄

k+1, ȳk+1)−∇2g(x̄
k, ȳk)

] ]∥∥∥∥∥
2


≤∥Γy∥∥êky∥2 +
β2∥O−1

y ∥2

1− ∥Γy∥
· ∥Λya∥2∥∇2g(x

k,yk)−∇2g(x̄
k, ȳk)∥2

+
β2∥O−1

y ∥2

1− ∥Γy∥
∥Λ−1

yb ∥
2∥Λya∥2Êk

[
∥∇2g(x̄

k+1, ȳk+1)−∇2g(x̄
k, ȳk)∥2

]
≤∥Γy∥∥êky∥2 +

β2∥O−1
y ∥2

1− ∥Γy∥
· ∥Λya∥2L2

g,1

(
∥xk − x̄k∥2 + ∥yk − ȳk∥2

)
+
β2∥O−1

y ∥2

1− ∥Γy∥
∥Λ−1

yb ∥
2∥Λya∥2L2

g,1Êk

[
∥x̄k+1 − x̄k∥2 + ∥ȳk+1 − ȳk∥2

]
,

(61)
where the first inequality uses the Jenson’s inequality, the second inequality hold since ∥Û⊤

y ∥ ≤ 1.

For the second term, we have:

Êk

∥∥∥∥∥O−1
y

[
ΛyaÛ

⊤
y

[
vk − Êk[v

k]
]

0

]∥∥∥∥∥
2
 ≤ ∥O−1

y ∥2∥Λya∥2nσ2
g,1. (62)

For the third them, we have:

Êk

[〈
Γyê

k
y , βO

−1
y

[
ΛyaÛ

⊤
y

[
vk − Êk[v

k]
]

0

]〉]
= 0. (63)
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Next, for the last term, we have:

Êk

〈
O−1

y

[
ΛyaÛ

⊤
y

[
Êk[v

k]−∇2g(x̄
k, ȳk)

]
Λ−1

yb ΛyaÛ
⊤
y

[
∇2g(x̄

k+1, ȳk+1)−∇2g(x̄
k, ȳk)

] ] ,O−1
y

[
ΛyaÛ

⊤
y

[
vk − Êk[v

k]
]

0

]〉

≤1

2
∥O−1

y ∥2Êk

∥∥∥∥∥
[

ΛyaÛ
⊤
y

[
Êk[v

k]−∇2g(x̄
k, ȳk)

]
Λ−1

yb ΛyaÛ
⊤
y

[
∇2g(x̄

k+1, ȳk+1)−∇2g(x̄
k, ȳk)

] ]∥∥∥∥∥
2

+
1

2
∥O−1

y ∥2Êk

∥∥∥∥∥
[

ΛyaÛ
⊤
y

[
vk − Êk[v

k]
]

0

]∥∥∥∥∥
2

≤1

2
β2∥O−1

y ∥2∥Λya∥2L2
g,1Êk

[
∥xk − x̄k∥2 + ∥yk − ȳk∥2

]
+

1

2
β2∥O−1

y ∥2∥Λ−1
yb ∥

2∥Λya∥2L2
g,1Êk

[
∥x̄k+1 − x̄k∥2 + ∥ȳk+1 − ȳk∥2

]
+

1

2
β2∥O−1

y ∥2∥Λya∥2nσ2
g,1.

(64)

Taking expectations on both sides of (60), and plugging (61), (62), (63), (64) into it, we obtain:

E
[
∥êk+1

y ∥2
]

≤2
β2∥O−1

y ∥2

1− ∥Γy∥
∥Λ−1

yb ∥
2∥Λya∥2L2

g,1E
[
∥x̄k+1 − x̄k∥2 + ∥ȳk+1 − ȳk∥2

]
+ ∥Γy∥E∥êky∥2

+ 2
β2∥O−1

y ∥2

1− ∥Γy∥
∥∥Λya∥2L2

g,1E
[
∥xk − x̄k∥2 + ∥yk − ȳk∥2

]
+ 2β2∥O−1

y ∥2∥Λya∥2nσ2
g,1.

Taking summation over k and using ∥xk − x̄k∥2 ≤ ∥Ox∥2∥êkx∥2, ∥yk − ȳk∥2 ≤ ∥Oy∥2∥êky∥2, we
get:

(1− ∥Γy∥)
K∑

k=0

E
[
∥êky∥2

]
≤2

K∑
k=0

β2∥O−1
y ∥2

1− ∥Γy∥
∥Λ−1

yb ∥
2∥Λya∥2L2

g,1E
[
∥x̄k+1 − x̄k∥2 + ∥ȳk+1 − ȳk∥2

]
+ E∥ê0y∥2 − E∥êk+1

y ∥2 + 2

K∑
k=0

β2∥O−1
y ∥2

1− ∥Γy∥
∥∥Λya∥2L2

g,1E
[
∥Ox∥2∥êkx∥2 + ∥Oy∥2∥êky∥2

]
+ 2(K + 1)β2∥O−1

y ∥2∥Λya∥2nσ2
g,1

≤2

K∑
k=0

β2∥O−1
y ∥2

1− ∥Γy∥
∥Λ−1

yb ∥
2∥Λya∥2L2

g,1E
[
∥x̄k+1 − x̄k∥2 + ∥ȳk+1 − ȳk∥2

]
+ E∥ê0y∥2 − E∥êk+1

y ∥2 + 1− ∥Γy∥
4∥Oy∥2

K∑
k=0

E
[
∥Ox∥2∥êkx∥2 + ∥Oy∥2∥êky∥2

]
+ 2(K + 1)β2∥O−1

y ∥2∥Λya∥2nσ2
g,1,

where the last inequality uses β2 ≤ (1− ∥Γy∥)2

8L2
g,1∥O

−1
y ∥2∥Oy∥2∥Λya∥2

.

It follows that
K+1∑
k=0

E
[
∥êky∥2

]
≤3

K∑
k=0

β2∥O−1
y ∥2

(1− ∥Γy∥)2
∥Λ−1

yb ∥
2∥Λya∥2L2

g,1E
[
∥x̄k+1 − x̄k∥2 + ∥ȳk+1 − ȳk∥2

]
+

∥Ox∥2

3∥Oy∥2
K∑

k=0

E
[
∥êkx∥2

]
+

3(K + 1)β2∥O−1
y ∥2∥Λya∥2

1− ∥Γy∥
nσ2

g,1 +
2E∥ê0y∥2

1− ∥Γy∥
.

37



Lemma 13 (Consensus error of z). Suppose that Assumptions 1- 4 hold, and γ satisfies

6γ2∥O−1
z ∥2∥Oz∥2∥Λza∥2

1− ∥Γz∥
· (2L2 + 2(1− ∥Γz∥)σ2

g,2) ≤
1− ∥Γz∥

4
. (65)

We have

K+1∑
k=0

E
[
∥êkz∥2

]
≤
16γ2(L2

g,1 + (1− ∥Γz∥)σ2
g,2)∥O−1

z ∥2∥Λza∥2

(1− ∥Γz∥)2
K∑

k=0

E
[
∥z̄k − zk⋆∥2

]
+

2E[∥ê0z∥2]
1− ∥Γz∥

+
8γ2∥O−1

z ∥2∥Λ−1
zb ∥2∥Λza∥2

(1− ∥Γz∥)2
K∑

k=0

E

[(
L2
f,1 + L2

g,2

L2
f,0

µ2
g

+ L2
g,1L

2
z⋆

)
∥x̄k+1 − x̄k∥2

]

+
8γ2∥O−1

z ∥2∥Λ−1
zb ∥2∥Λza∥2

(1− ∥Γz∥)2
K∑

k=0

E

[(
L2
f,1 + L2

g,2

L2
f,0

µ2
g

)
∥ȳk+2 − ȳk+1∥2

]

+ 16(K + 1)nγ2
∥O−1

z ∥2∥Λza∥2

1− ∥Γz∥

(
L2
f,0

µ2
g

σ2
g,2 + σ2

f,1

)

+
κ2

3∥Oz∥2
K∑

k=0

E(∥Ox∥2∥êkx∥2 + ∥Oy∥2∥êk+1
y ∥2).

(66)

Proof. Firstly, Eq. (34) implies that:

êk+1
z =Γzê

k
z − γO−1

z

[
ΛzaÛ

⊤
z

[
Ẽk[p

k]− pk(x̄k, ȳk+1)
]

Λ−1
zb ΛzaÛ

⊤
z

[
pk+1(x̄k+1, ȳk+2)− pk(x̄k, ȳk+1)

] ]

+ γO−1
z

[
ΛzaÛ

⊤
z

[
Ẽk[p

k]− pk
]

0

]
.

Then using Cauchy Schwartz inequality, we get

∥êk+1
z ∥2

≤

∥∥∥∥∥Γz ê
k
z − γO−1

z

[
ΛzaÛ

⊤
z

[
Ẽk[p

k]− pk(x̄k, ȳk+1)
]

Λ−1
zb ΛzaÛ

⊤
z

[
pk+1(x̄k+1, ȳk+2)− pk(x̄k, ȳk+1)

] ]
∥∥∥∥∥
2

+ γ2

∥∥∥∥∥O−1
z

[
ΛzaÛ

⊤
z

[
Ẽk[p

k]− pk
]

0

]∥∥∥∥∥
2

− 2

〈
Γz ê

k
z , γO

−1
z

[
ΛzaÛ

⊤
z

[
Ẽk[p

k]− pk
]

0

]〉

+ γ2

∥∥∥∥∥O−1
z

[
ΛzaÛ

⊤
z

[
Ẽk[p

k]− pk(x̄k, ȳk+1)
]

Λ−1
zb ΛzaÛ

⊤
z

[
pk+1(x̄k+1, ȳk+2)− pk(x̄k, ȳk+1)

] ]
∥∥∥∥∥
2

+ γ2

∥∥∥∥∥O−1
z

[
ΛzaÛ

⊤
z

[
Ẽk[p

k]− pk
]

0

]∥∥∥∥∥
2

(67)
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To obtain the upper bound of the right-hand side of the above equation, we first estimate some
individual terms in it as follows. Note that:

Ẽk∥Ẽk[p
k]− pk(x̄k, ȳk+1)∥2

=

n∑
i=1

Ẽk

∥∥∇2
22gi(x

k
i , y

k+1
i )zki −∇2fi(x

k
i , y

k+1
i )−

(
∇2

22gi(x̄
k, ȳk+1)z⋆k −∇2fi(x̄

k, ȳk+1)
)∥∥2

≤3

n∑
i=1

Ẽk

∥∥∇2
22gi(x

k
i , y

k+1
i )(zki − zk⋆ )

∥∥2 + 3

n∑
i=1

Ẽk

∥∥(∇2
22gi(x

k
i , y

k+1
i )−∇2

22gi(x̄
k, ȳk+1))zk⋆

∥∥2
+ 3

n∑
i=1

Ẽk

∥∥∇2fi(x̄
k, ȳk+1)−∇2fi(x

k
i , y

k+1
i )

∥∥2
≤6L2

g,1(∥zk − z̄k∥2 + ∥z̄k − zk⋆∥2) + 3

(
L2
g,2

L2
f,0

µ2
g

+ L2
f,1

)(
∥xk − x̄k∥2 + ∥yk+1 − ȳk+1∥2

)
(68)

and

Ẽk∥pk+1(x̄k+1, ȳk+2)− pk(x̄k, ȳk+1)∥2

=

n∑
i=1

Ẽk∥∇2
22gi(x̄

k+1, ȳk+2)zk+1
⋆ −∇2fi(x̄

k+1, ȳk+2)−∇2
22gi(x̄

k, ȳk+1)zk⋆ +∇2fi(x̄
k, ȳk+1)∥2

≤3

n∑
i=1

Ẽk∥(∇2
22gi(x̄

k+1, ȳk+2)−∇2
22gi(x̄

k, ȳk+1))zk+1
⋆ ∥2

+ 3

n∑
i=1

Ẽk∥∇2
22gi(x̄

k, ȳk+1)(zk+1
⋆ − zk⋆ )∥2 + 3

n∑
i=1

Ẽk∥∇2fi(x̄
k+1, ȳk+2)−∇2fi(x̄

k, ȳk+1)∥2

≤3Ẽk

[(
L2
f,1 + L2

g,2

L2
f,0

µ2
g

)
(∥x̄k+1 − x̄k∥2 + ∥ȳk+2 − ȳk+1∥2) + L2

g,1L
2
z⋆∥x̄k − x̄k−1∥2

]
.

(69)

Then we present the bound of the right-hand side of (67). For the first term, we have the following
evaluations:

Ẽk

[∥∥∥∥∥Γzê
k
z − γO−1

z

[
ΛzaÛ

⊤
z

[
Ẽk[p

k]− pk(x̄k, ȳk+1)
]

Λ−1
zb ΛzaÛ

⊤
z

[
pk+1(x̄k+1, ȳk+2)− pk(x̄k, ȳk+1)

] ]
∥∥∥∥∥
]

≤∥Γz∥∥êkz∥2 +
γ2∥O−1

z ∥2

1− ∥Γz∥
Ẽk

∥∥∥∥∥
[

ΛzaÛ
⊤
z

[
Ẽk[p

k]− pk(x̄k, ȳk+1)
]

Λ−1
zb ΛzaÛ

⊤
z

[
pk+1(x̄k+1, ȳk+2)− pk(x̄k, ȳk+1)

] ]
∥∥∥∥∥
2


≤∥Γz∥∥êkz∥2 +
γ2∥O−1

z ∥2∥Λza∥2

1− ∥Γz∥
Ẽk

[
∥Ẽk[p

k]− pk(x̄k, ȳk+1)∥2
]

+
γ2∥O−1

z ∥2∥Λza∥2∥Λ−1
zb ∥2

1− ∥Γz∥
Ẽk

[
∥pk+1(x̄k+1, ȳk+2)− pk(x̄k, ȳk+1)∥2

]
(70)

where the first inequality use Jensen’s inequality and the second inequality use ∥Û⊤
z ∥ ≤ 1.
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For the second term, since zk,yk+1 ∈ Uk, we have:

Ẽk

∥∥∥∥∥O−1
z

[
ΛzaÛ

⊤
z

[
Ẽk[p

k]− pk
]

0

]∥∥∥∥∥
2

≤∥O−1
z ∥2∥Λza∥2Ẽk

[
∥Ẽk[p

k]− pk
∥∥∥2]

≤2∥O−1
z ∥2∥Λza∥2(∥zk∥2σ2

g,2 + nσ2
f,1)

≤6∥O−1
z ∥2∥Λza∥2

((
∥zk − z̄k∥2 + ∥z̄k − zk⋆∥2 + n

L2
f,1

µ2
g

)
σ2
g,2 + nσ2

f,1

)
.

(71)

For the third term, we have:

2Ẽk

〈
Γzê

k
z , γO

−1
z

[
ΛzaÛ

⊤
z

[
Ẽk[p

k]− pk
]

0

]〉
= 0, (72)

since êkz ∈ Uk.

Next, for the last two terms, we have:

Ẽk

∥∥∥∥∥O−1
z

[
ΛzaÛ

⊤
z

[
Ẽk[p

k]− pk(x̄k, ȳk+1)
]

Λ−1
zb ΛzaÛ

⊤
z

[
pk+1(x̄k+1, ȳk+2)− pk(x̄k, ȳk+1)

] ]
∥∥∥∥∥
2


≤∥O−1
z ∥2∥Λza∥2Ẽk

[
∥Ẽk[p

k]− pk(x̄k, ȳk+1)∥2
]

+ ∥O−1
z ∥2∥Λza∥2∥Λ−1

zb ∥
2Ẽk

[
∥pk+1(x̄k+1, ȳk+2)− pk(x̄k, ȳk+1)∥2

]
.

(73)

Ẽk

∥∥∥∥∥O−1
z

[
ΛzaÛ

⊤
z

[
Ẽk[p

k]− pk
]

0

]∥∥∥∥∥
2
 ≤ ∥O−1

z ∥2∥Λza∥2Ẽk

[
∥Ẽk[p

k]− pk∥2
]
. (74)

Taking the expectation Ẽk on both sides of (67) and plugging (70), (71), (72), (73) and (74) into it,
we obtain:

Ẽk

[
∥êk+1

z ∥2
]

≤∥Γz∥∥êkz∥2 +
2γ2∥O−1

z ∥2∥Λza∥2

1− ∥Γz∥
Ẽk

[
∥Ẽk[p

k]− pk(x̄k, ȳk+1)∥2
]

+
2γ2∥O−1

z ∥2∥Λza∥2∥Λ−1
zb ∥2

1− ∥Γz∥
Ẽk

[
∥pk+1(x̄k+1, ȳk+2)− pk(x̄k, ȳk+1)∥2

]
+ 2γ2∥O−1

z ∥2∥Λza∥2Ẽk∥Ẽk[p
k]− pk∥2

≤∥Γz∥∥êkz∥2 + 12nγ2∥O−1
z ∥2∥Λza∥2

(
L2
f,0

µ2
g

σ2
g,2 + σ2

f,1

)

+
12γ2∥O−1

z ∥2∥Λza∥2

1− ∥Γz∥
(L2

g,1 + (1− ∥Γz∥)σ2
g,2)Ẽk

[
∥Oz∥2∥êkz∥2 + ∥z̄k − zk⋆∥2

]
+

6γ2∥O−1
z ∥2∥Λza∥2

1− ∥Γz∥

(
L2
g,2

L2
f,0

µ2
g

+ L2
f,1

)
Ẽk

[
∥Ox∥2∥êkx∥2 + ∥Oy∥2∥êk+1

y ∥2
]

+
6γ2∥O−1

z ∥2∥Λ−1
zb ∥2∥Λza∥2

1− ∥Γz∥

(
L2
f,1 + L2

g,2

L2
f,0

µ2
g

)
Ẽk

[
∥x̄k+1 − x̄k∥2 + ∥ȳk+2 − ȳk+1∥2

]
+

6γ2∥O−1
z ∥2∥Λ−1

zb ∥2∥Λza∥2

1− ∥Γz∥
L2
g,1L

2
z⋆Ẽk

[
∥x̄k − x̄k−1∥2

]
,
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where the second inequality uses (36), (68), (69), and (71).

Thanks to
6γ2∥O−1

z ∥2∥Oz∥2∥Λza∥2

1− ∥Γz∥
· (2L2 + 2(1− ∥Γz∥)σ2

g,2) ≤
1− ∥Γz∥

4
,

we have:

Ẽk

[
∥êk+1

z ∥2
]

≤1 + 3∥Γz∥
4

∥êkz∥2 +
12γ2(L2

g,1 + (1− ∥Γz∥)σ2
g,2)∥O−1

z ∥2∥Λza∥2

1− ∥Γz∥
Ẽk

[
∥z̄k − zk⋆∥2

]
+ 12nγ2∥O−1

z ∥2∥Λza∥2
(
L2
f,0

µ2
g

σ2
g,2 + σ2

f,1

)

+
1− ∥Γz∥
4∥Oz∥2

κ2(∥Ox∥2∥êkx∥2 + ∥Oy∥2∥êk+1
y ∥2)

+
6γ2∥O−1

z ∥2∥Λ−1
zb ∥2∥Λza∥2

1− ∥Γz∥

(
L2
f,1 + L2

g,2

L2
f,0

µ2
g

)
Ẽk

[
∥x̄k+1 − x̄k∥2 + ∥ȳk+2 − ȳk+1∥2

]
+

6γ2∥O−1
z ∥2∥Λ−1

zb ∥2∥Λza∥2

1− ∥Γz∥
L2
g,1L

2
z⋆Ẽk

[
∥x̄k − x̄k−1∥2

]
.

Taking summation and expectation on both sides, we get:

3

4
(1− ∥Γz∥)

K∑
k=0

E
[
∥êkz∥2

]
≤E∥ê0z∥2 − E

[
∥êk+1

z ∥2
]

+
12γ2(L2

g,1 + (1− ∥Γz∥)σ2
g,2)∥O−1

z ∥2∥Λza∥2

1− ∥Γz∥

K∑
k=0

E
[
∥z̄k − zk⋆∥2

]
+

1− ∥Γz∥
4∥Oz∥2

κ2
K∑

k=0

E(∥Ox∥2∥êkx∥2 + ∥Oy∥2∥êk+1
y ∥2)

+ 12nγ2∥O−1
z ∥2∥Λza∥2

(
L2
f,0

µ2
g

σ2
g,2 + σ2

f,1

)

+
6γ2∥O−1

z ∥2∥Λ−1
zb ∥2∥Λza∥2

1− ∥Γz∥

K∑
k=0

E

[(
L2
f,1 + L2

g,2

L2
f,0

µ2
g

+ L2
g,1L

2
z⋆

)
∥x̄k+1 − x̄k∥2

]

+
6γ2∥O−1

z ∥2∥Λ−1
zb ∥2∥Λza∥2

1− ∥Γz∥

K∑
k=0

E

[(
L2
f,1 + L2

g,2

L2
f,0

µ2
g

)
∥ȳk+2 − ȳk+1∥2

]
.

Thus,
K+1∑
k=0

E
[
∥êkz∥2

]
≤
16γ2(L2

g,1 + (1− ∥Γz∥)σ2
g,2)∥O−1

z ∥2∥Λza∥2

(1− ∥Γz∥)2
K∑

k=0

E
[
∥z̄k − zk⋆∥2

]
+

2E[∥ê0z∥2]
1− ∥Γz∥

+
8γ2∥O−1

z ∥2∥Λ−1
zb ∥2∥Λza∥2

(1− ∥Γz∥)2
K∑

k=0

E

[(
L2
f,1 + L2

g,2

L2
f,0

µ2
g

+ L2
g,1L

2
z⋆

)
∥x̄k+1 − x̄k∥2

]

+
8γ2∥O−1

z ∥2∥Λ−1
zb ∥2∥Λza∥2

(1− ∥Γz∥)2
K∑

k=0

E

[(
L2
f,1 + L2

g,2

L2
f,0

µ2
g

)
∥ȳk+2 − ȳk+1∥2

]

41



+ 16(K + 1)nγ2
∥O−1

z ∥2∥Λza∥2

1− ∥Γz∥

(
L2
f,0

µ2
g

σ2
g,2 + σ2

f,1

)

+
κ2

3∥Oz∥2
K∑

k=0

E(∥Ox∥2∥êkx∥2 + ∥Oy∥2∥êk+1
y ∥2).

Lemma 14 (Consensus error of x). Suppose that Assumptions 1- 4 and Lemmas 4, 5, and 7 hold. We
have

K+1∑
k=0

E∥êkx∥2

≤ E∥ê0x∥2

1− ∥Γx∥
+

2α2∥O−1
x ∥2∥Λxa∥2

(1− ∥Γx∥)2

[
1− θ

θ

∥∥∥∇̃Φ(x̄0)
∥∥∥2]

+
6nα2θ(K + 1)∥O−1

x ∥2∥Λxa∥2

1− ∥Γx∥

(
θ +

1− θ

1− ∥Γx∥

)(
σ2
f,1 + 3σ2

g,2

L2
f,0

µ2
g

)

+
α2∥O−1

x ∥2∥Λxa∥2

1− ∥Γx∥

(
80L2

1− ∥Γx∥
+ 18θ

(
θ +

1− θ

1− ∥Γx∥

)
σ2
g,2

) K∑
k=0

E [∆k + nIk]

+
2L̃2α2∥O−1

x ∥2∥Λxa∥2

(1− ∥Γx∥)2

(
∥Λ−1

xb ∥
2 +

2(1− θ)2

θ2

)K−1∑
k=0

E
[∥∥x̄k+1 − x̄k

∥∥2] .

(75)

Proof. Firstly, the term ∥êk+1
x ∥2 can be deformed as

∥êk+1
x ∥2

=

∥∥∥∥∥∥Γxê
k
x − αO−1

x

 ΛxaÛ
⊤
x

[
rk+1 − ∇̃Φ(x̄k)

]
Λ−1

xb ΛxaÛ
⊤
x

[
∇̃Φ(x̄k+1)− ∇̃Φ(x̄k)

] ∥∥∥∥∥∥
2

=

∥∥∥∥∥∥Γxê
k
x − αO−1

x

 ΛxaÛ
⊤
x

[
Ek[r

k+1]− ∇̃Φ(x̄k)
]

Λ−1
xb ΛxaÛ

⊤
x

[
∇̃Φ(x̄k+1)− ∇̃Φ(x̄k)

] ∥∥∥∥∥∥
2

+ α2Ek

[∥∥∥∥O−1
x

[
ΛxaÛ

⊤
x

[
Ek[r

k+1]− rk+1
]

0

]∥∥∥∥2
]

− 2

〈
Γxê

k
x, αO

−1
x

[
ΛxaÛ

⊤
x

[
Ek[r

k+1]− rk+1
]

0

]〉

+ 2α2

〈
O−1

x

 ΛxaÛ
⊤
x

[
Ek[r

k+1]− ∇̃Φ(x̄k)
]

Λ−1
xb ΛxaÛ

⊤
x

[
∇̃Φ(x̄k+1)− ∇̃Φ(x̄k)

]  ,O−1
x

[
ΛxaÛ

⊤
x

[
Ek[r

k+1]− rk+1
]

0

]〉
(76)

due to Eq. (35).

42



Then, for the first term of the right-hand side of (76), we use Jensen’s Inequality and get:

Ek


∥∥∥∥∥∥Γêkx − αO−1

x

 ΛxaÛ
⊤
x

[
Ek[r

k+1]− ∇̃Φ(x̄k)
]

Λ−1
xb ΛxaÛ

⊤
x

[
∇̃Φ(x̄k+1)− ∇̃Φ(x̄k)

] ∥∥∥∥∥∥
2


≤∥Γx∥∥êkx∥2 +
α2∥O−1

x ∥2

1− ∥Γx∥
Ek


∥∥∥∥∥∥
 ΛxaÛ

⊤
x

[
Ek[r

k+1]− ∇̃Φ(x̄k)
]

Λ−1
xb ΛxaÛ

⊤
x

[
∇̃Φ(x̄k+1)− ∇̃Φ(x̄k)

] ∥∥∥∥∥∥
2


≤∥Γx∥∥êkx∥2 +
α2∥O−1

x ∥2∥Λxa∥2

1− ∥Γx∥
Ek

[∥∥∥Ek[r
k+1]− ∇̃Φ(x̄k)

∥∥∥2] ,
+
α2∥O−1

x ∥2∥Λxa∥2∥Λ−1
xb ∥2

1− ∥Γx∥
Ek

[∥∥∥∇̃Φ(x̄k+1)− ∇̃Φ(x̄k)
∥∥∥2] .

(77)

For the second term in the right-hand side of (76), we have:

Ek

∥∥∥∥O−1
x

[
ΛxaÛ

⊤
x

[
Ek[r

k+1]− rk+1
]

0

]∥∥∥∥2 ≤∥O−1
x ∥2∥Λxa∥2Ek∥Ek[r

k+1]− rk+1∥2

=θ2∥O−1
x ∥2∥Λxa∥2Ek∥Ek[u

k]− uk∥2.
(78)

Like (72), we have:

Ek

[〈
Γxê

k
x, αO

−1
x

[
ΛxaÛ

⊤
x

[
Ek[r

k+1]− rk+1
]

0

]〉]
= 0. (79)

Next, for the last term, we have:

2α2Ek

〈
O−1

x

 ΛxaÛ
⊤
x

[
Ek[r

k+1]− ∇̃Φ(x̄k)
]

Λ−1
xb ΛxaÛ

⊤
x

[
∇̃Φ(x̄k+1)− ∇̃Φ(x̄k)

]  ,O−1
x

[
ΛxaÛ

⊤
x

[
Ek[r

k+1]− rk+1
]

0

]〉

≤α2∥O−1
x ∥2∥Λxa∥2Ek

[
∥Ek[r

k+1]− ∇̃Φ(x̄k)∥2 + ∥Ek[r
k+1]− rk+1∥2

]
+ α2∥O−1

x ∥2∥Λxa∥2∥Λ−1
xb ∥

2Ek

[
∥∇̃Φ(x̄k+1)− ∇̃Φ(x̄k)∥2

]
.

(80)

Taking the expectation on both sides of (76), and plugging (77), (78), (79), (80) into it, we obtain:

Ek∥êk+1
x ∥2

≤∥Γx∥∥êkx∥2 + 2α2θ2∥O−1
x ∥2∥Λxa∥2Ek∥Ek[u

k]− uk∥2

+
2α2∥O−1

x ∥2∥Λxa∥2

1− ∥Γx∥
Ek

[
∥Ek[r

k+1]− ∇̃Φ(x̄k)∥2 + ∥Λ−1
xb ∥

2∥∇̃Φ(x̄k+1)− ∇̃Φ(x̄k)∥2
]
.
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Taking expectation and summation on both sides, we obtain:

(1− ∥Γx∥)
K∑

k=0

E∥êkx∥2

≤E∥ê0x∥2 − E∥êk+1
x ∥2 + 2L̃2α2∥O−1

x ∥2∥Λ−1
xb ∥2∥Λxa∥2

1− ∥Γx∥

K∑
k=0

E∥x̄k+1 − x̄k∥2

+
2α2∥O−1

x ∥2∥Λxa∥2

1− ∥Γx∥

(
1− θ

θ

∥∥∥∇̃Φ(x̄0)
∥∥∥2 + 2

K∑
k=0

E
[∥∥∥Ek[u

k]− ∇̃Φ(x̄k)
∥∥∥2])

+
2α2∥O−1

x ∥2∥Λxa∥2

1− ∥Γx∥
· 2L̃

2(1− θ)2

θ2

K−1∑
k=0

E
[∥∥x̄k+1 − x̄k

∥∥2]
+

[
2α2θ2∥O−1

x ∥2∥Λxa∥2 +
2α2∥O−1

x ∥2∥Λxa∥2

1− ∥Γx∥
θ(1− θ)

] K∑
k=0

E∥Ek[u
k]− uk∥2

≤E∥ê0x∥2 − E∥êk+1
x ∥2 + 2α2∥O−1

x ∥2∥Λxa∥2

1− ∥Γx∥

[
1− θ

θ

∥∥∥∇̃Φ(x̄0)
∥∥∥2]

+ 6(K + 1)nα2θ∥O−1
x ∥2∥Λxa∥2

(
θ +

1− θ

1− ∥Γx∥

)(
σ2
f,1 + 3σ2

g,2

L2
f,0

µ2
g

)

+ α2∥O−1
x ∥2∥Λxa∥2

(
80L2

1− ∥Γx∥
+ 18θ

(
θ +

1− θ

1− ∥Γx∥

)
σ2
g,2

) K∑
k=0

E [∆k + nIk]

+
2L̃2α2∥O−1

x ∥2∥Λxa∥2

1− ∥Γx∥

(
∥Λ−1

xb ∥
2 +

2(1− θ)2

θ2

)K−1∑
k=0

E
[∥∥x̄k+1 − x̄k

∥∥2] .
where the first inequality uses L̃- Lipschitz continuity of ∇̃Φ , Lemma 7, and the second inequality
uses Lemma 4 , Lemma 5 and

∥zk+1 − z̄k+1∥2 ≤ ∆k, ∥z̄k+1 − zk+1
⋆ ∥2 ≤ nIk.

Hence we get
K+1∑
k=0

E∥êkx∥2

≤ E∥ê0x∥2

1− ∥Γx∥
+

2α2∥O−1
x ∥2∥Λxa∥2

(1− ∥Γx∥)2

[
1− θ

θ

∥∥∥∇̃Φ(x̄0)
∥∥∥2]

+
6nα2θ(K + 1)∥O−1

x ∥2∥Λxa∥2

1− ∥Γx∥

(
θ +

1− θ

1− ∥Γx∥

)(
σ2
f,1 + 3σ2

g,2

L2
f,0

µ2
g

)

+
α2∥O−1

x ∥2∥Λxa∥2

1− ∥Γx∥

(
80L2

1− ∥Γx∥
+ 18θ

(
θ +

1− θ

1− ∥Γx∥

)
σ2
g,2

) K∑
k=0

E [∆k + nIk]

+
2L̃2α2∥O−1

x ∥2∥Λxa∥2

(1− ∥Γx∥)2

(
∥Λ−1

xb ∥
2 +

2(1− θ)2

θ2

)K−1∑
k=0

E
[∥∥x̄k+1 − x̄k

∥∥2] .

The following lemma gather the consensus analysis of x, y, z together:
Lemma 15. Take

η1 =
3κ2β2∥Oy∥2∥O−1

y ∥2

(1− ∥Γy∥)2
∥Λ−1

yb ∥
2∥Λya∥2L2

g,1 + 16γ2L2 (2κ2 + L2
z⋆
) ∥Oz∥2∥∥O−1

z ∥2∥Λza∥2∥Λ−1
zb ∥

2

(1− ∥Γz∥)2
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+ 4κ2L̃2

(
1 +

(1− θ)2

θ2∥Λ−1
xb ∥2

)
α2 ∥Ox∥2∥O−1

x ∥2∥Λxa∥2∥Λ−1
xb ∥

2

(1− ∥Γx∥)2
,

η2 =3κ2L2
g,1β

2
∥Oy∥2∥O−1

y ∥2∥Λya∥2∥Λ−1
yb ∥

2

(1− ∥Γy∥)2
+ 16L2 (2κ2 + L2

z⋆
)
γ2 ∥Oz∥2∥O−1

z ∥2∥Λza∥2∥Λ−1
zb ∥

2

(1− ∥Γz∥)2
.

Suppose that Assumptions 1- 4 and Lemmas 12, 13, 14 hold, and α, β satisfy

α2 ≤ (1− ∥Γx∥)2

24κ2∥O−1
x ∥2∥Ox∥2∥Λxa∥2

[
80L2 + 18θ(1− ∥Γx∥)

(
θ + 1−θ

1−∥Γx∥

)
σ2
g,2

] ,
η2β

2 ≤ 1

1248L2
g,1

.

(82)

We have:

1

4

K∑
k=0

E[∆k] (83)

≤(η1 + 48κ2L2
y⋆η2)α

2
K∑

k=0

E∥r̄k+1∥2 +
32L2

g,1η2β

µg
∥ȳ0 − y⋆(x̄0)∥2 + 3(K + 1)η2β

2σ2
g,1

+
κ2∥O−1

x ∥2∥Ox∥2∥Λxa∥2α2

1− ∥Γx∥

(
80L2

1− ∥Γx∥
+ 18θ

(
θ +

1− θ

1− ∥Γx∥

)
σ2
g,2

) K∑
k=0

E[nIk]

+
∥Oz∥2∥O−1

z ∥2∥Λza∥2

1− ∥Γz∥
·
16γ2(L2

g,1 + (1− ∥Γz∥)σ2
g,2)

1− ∥Γz∥

K∑
k=−1

E[nIk]

+
3κ2β2(K + 1)∥Oy∥2∥O−1

y ∥2∥Λya∥2

1− ∥Γy∥
nσ2

g,1 +
2κ2∥Oy∥2E∥ê0

y∥2

1− ∥Γy∥
+

2∥Oz∥2E∥ê0
z∥2

1− ∥Γz∥

+
κ2∥Ox∥2E∥ê0

x∥2

1− ∥Γx∥
+

2κ2α2∥Ox∥2∥O−1
x ∥2∥Λxa∥2

(1− ∥Γx∥)2

[
1− θ

θ

∥∥∥∇̃Φ(x̄0)
∥∥∥2]

+ 16(K + 1)nγ2 ∥Oz∥2∥O−1
z ∥2∥Λza∥2

1− ∥Γz∥

(
L2

f,0

µ2
g

σ2
g,2 + σ2

f,1

)

+ 24(K + 1)nκ2α2θ

(
θ +

1− θ

1− ∥Γx∥

)
∥Ox∥2∥O−1

x ∥2∥Λxa∥2

1− ∥Γx∥

(
L2

f,0

µ2
g

σ2
g,2 + σ2

f,1

)
.

Proof. Adding (59), (66) and (75) together, we get:

κ2∥Ox∥2
K+1∑
k=0

E[∥êk
x∥2] + κ2∥Oy∥2

K+1∑
k=0

E[∥êk
y∥2] + ∥Oz∥2

K+1∑
k=0

E[∥êk
z∥2]

≤3κ2
K∑

k=0

β2∥Oy∥2∥O−1
y ∥2

(1− ∥Γy∥)2
∥Λ−1

yb ∥
2∥Λya∥2L2

g,1E
[
∥x̄k+1 − x̄k∥2 + ∥ȳk+1 − ȳk∥2

]
+

κ2∥Ox∥2

3

K∑
k=0

E
[
∥êk

x∥2
]
+

3κ2(K + 1)β2∥Oy∥2∥O−1
y ∥2∥Λya∥2

1− ∥Γy∥
nσ2

g,1 +
2κ2∥Oy∥2E∥ê0

y∥2

1− ∥Γy∥

+
16γ2(L2

g,1 + (1− ∥Γ∥)σ2
g,2)∥O−1

z ∥2∥Oz∥2∥Λza∥2

(1− ∥Γz∥)2
K∑

k=0

E
[
∥z̄k − zk⋆∥2

]
+

κ2

3

K∑
k=0

E(∥Ox∥2∥êk
x∥2 + ∥Oy∥2∥êk+1

y ∥2)

+
8γ2(2κ2 + L2

z⋆)L
2∥Oz∥2∥O−1

z ∥2∥Λ−1
zb ∥

2∥Λza∥2

(1− ∥Γz∥)2
K∑

k=0

E
[
∥x̄k+1 − x̄k∥2

]
+

16γ2κ2L2∥Oz∥2∥O−1
z ∥2∥Λ−1

zb ∥
2∥Λza∥2

(1− ∥Γz∥)2
K∑

k=0

E
[
∥ȳk+2 − ȳk+1∥2

]
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+ 16(K + 1)nγ2 ∥Oz∥2∥O−1
z ∥2∥Λza∥2

1− ∥Γz∥

(
L2

f,0

µ2
g

σ2
g,2 + σ2

f,1

)
+

2∥Oz∥2E∥ê0
z∥2

1− ∥Γz∥

+
κ2∥Ox∥2E∥ê0

x∥2

1− ∥Γx∥
+

2κ2α2∥Ox∥2∥O−1
x ∥2∥Λxa∥2

(1− ∥Γx∥)2

[
1− θ

θ

∥∥∥∇̃Φ(x̄0)
∥∥∥2]

+
6nκ2α2θ(K + 1)∥Ox∥2∥O−1

x ∥2∥Λxa∥2

1− ∥Γx∥

(
θ +

1− θ

1− ∥Γx∥

)(
σ2
f,1 + 3σ2

g,2

L2
f,0

µ2
g

)

+
κ2α2∥Ox∥2∥O−1

x ∥2∥Λxa∥2

1− ∥Γx∥

(
80L2

1− ∥Γx∥
+ 18θ

(
θ +

1− θ

1− ∥Γx∥

)
σ2
g,2

) K∑
k=0

[∆k + nIk]

+
2κ2L̃2α2∥Ox∥2∥O−1

x ∥2∥Λxa∥2

(1− ∥Γx∥)2

(
∥Λ−1

xb ∥
2 +

2(1− θ)2

θ2

)K−1∑
k=0

E
[∥∥∥x̄k+1 − x̄k

∥∥∥2]

≤3

4

K+1∑
k=0

E
(
κ2∥Ox∥2∥êk

x∥2 + κ2∥Oy∥2∥∥êk
y∥2 + ∥Oz∥2∥∥êk

z∥2
)

+ (η1 + 48κ2L2
y⋆η2)α

2
K∑

k=0

E∥r̄k+1∥2 + η2

(
32L2

g,1β

µg
∥ȳ0 − y⋆(x̄0)∥2 + 3(K + 1)β2σ2

g,1

)

+
κ2∥O−1

x ∥2∥Ox∥2∥Λxa∥2α2

1− ∥Γx∥

(
80L2

1− ∥Γx∥
+ 18θ

(
θ +

1− θ

1− ∥Γx∥

)
σ2
g,2

) K∑
k=0

E[nIk]

+
∥Oz∥2∥O−1

z ∥2∥Λza∥2

1− ∥Γz∥
·
16γ2(L2

g,1 + (1− ∥Γz∥)σ2
g,2)

1− ∥Γz∥

K∑
k=−1

E[nIk]

+
3κ2β2(K + 1)∥Oy∥2∥O−1

y ∥2∥Λya∥2

1− ∥Γy∥
nσ2

g,1 +
2κ2∥Oy∥2E∥ê0

y∥2

1− ∥Γy∥
+

2∥Oz∥2E∥ê0
z∥2

1− ∥Γz∥

+
κ2∥Ox∥2E∥ê0

x∥2

1− ∥Γx∥
+

2κ2α2∥Ox∥2∥O−1
x ∥2∥Λxa∥2

(1− ∥Γx∥)2

[
1− θ

θ

∥∥∥∇̃Φ(x̄0)
∥∥∥2]

+ 16(K + 1)nγ2 ∥Oz∥2∥O−1
z ∥2∥Λza∥2

1− ∥Γz∥

(
L2

f,0

µ2
g

σ2
g,2 + σ2

f,1

)

+ 24(K + 1)nκ2α2θ

(
θ +

1− θ

1− ∥Γx∥

)
∥Ox∥2∥O−1

x ∥2∥Λxa∥2

1− ∥Γx∥

(
L2

f,0

µ2
g

σ2
g,2 + σ2

f,1

)
.

where the second inequality uses (54) and

η2L
2
g,1β

2 · 52 + κ2α2∥O−1
x ∥2∥Ox∥2∥Λxa∥2

1− ∥Γx∥

(
80L2

1− ∥Γx∥
+ 18θ

(
θ +

1− θ

1− ∥Γx∥

)
σ2
g,2

)
≤ 1

12
.

Hence:

1

4

K∑
k=0

E[∆k]

≤(η1 + 48κ2L2
y⋆η2)α

2
K∑

k=0

E∥r̄k+1∥2 +
32L2

g,1η2β

µg
∥ȳ0 − y⋆(x̄0)∥2 + 3(K + 1)η2β

2σ2
g,1

+
κ2∥O−1

x ∥2∥Ox∥2∥Λxa∥2α2

1− ∥Γx∥

(
80L2

1− ∥Γx∥
+ 18θ

(
θ +

1− θ

1− ∥Γx∥

)
σ2
g,2

) K∑
k=0

E[nIk]

+
∥Oz∥2∥O−1

z ∥2∥Λza∥2

1− ∥Γz∥
·
16γ2(L2

g,1 + (1− ∥Γz∥)σ2
g,2)

1− ∥Γz∥

K∑
k=−1

E[nIk]

+
3κ2β2(K + 1)∥Oy∥2∥O−1

y ∥2∥Λya∥2

1− ∥Γy∥
nσ2

g,1 +
2κ2∥Oy∥2E∥ê0y∥2

1− ∥Γy∥
+

2∥Oz∥2E∥ê0z∥2

1− ∥Γz∥

+
κ2∥Ox∥2E∥ê0x∥2

1− ∥Γx∥
+

2κ2α2∥Ox∥2∥O−1
x ∥2∥Λxa∥2

(1− ∥Γx∥)2

[
1− θ

θ

∥∥∥∇̃Φ(x̄0)
∥∥∥2]
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+ 16(K + 1)nγ2
∥Oz∥2∥O−1

z ∥2∥Λza∥2

1− ∥Γz∥

(
L2
f,0

µ2
g

σ2
g,2 + σ2

f,1

)

+ 24(K + 1)nκ2α2θ

(
θ +

1− θ

1− ∥Γx∥

)
∥Ox∥2∥O−1

x ∥2∥Λxa∥2

1− ∥Γx∥

(
L2
f,0

µ2
g

σ2
g,2 + σ2

f,1

)
.

C.1.8 Proof of the main theorem

Before giving the final result of the convergence analysis, we present the following Lemma that
combines the results in the analysis of Ik and ∆k:

Lemma 16. Suppose that Assumptions 1- 4 and Lemmas 6, 11, 15 hold. If α, β, γ, θ satisfy

α2 ≤ (1− ∥Γx∥)2

16∥Ox∥2∥O−1
x ∥2∥Λxa∥2

[
80L2 + 18θ

(
θ + 1−θ

1−∥Γx∥

)
(1− ∥Γx∥)σ2

g,2

]
· 2040κ6

,

β2η2 ≤ 1

1024L2
g,1

,

γ2 ≤ (1− ∥Γz∥)2

256∥Oz∥2∥O−1
z ∥2∥Λza∥2(L2

g,1 + (1− ∥Γz∥)σ2
g,2) · 2040κ4

,

(84)

and

40

[
4(η1 + 48κ2L2

y⋆η2)α
2 +

1

1020κ4

(
9α2L2

z⋆

γ2µ2
g

+
438κ4α2

β2µ2
g

L2
y⋆

)](
L2 +

θσ2
g,2

n

)
≤ 1

4080κ4
,

(85)

then we have:

K∑
k=0

E[∆k + nIk] ≲κ
4(η1 + κ2L2

y⋆η2)α
2

(
n(Φ(x̄0)− inf Φ)

α
+ θ(K + 1)(σ2

f,1 + κ2σ2
g,2)

)
+

(
α2L2

z⋆

γ2µ2
g

+
κ4α2

β2µ2
g

L2
y⋆

)(
n(Φ(x̄0)− inf Φ)

α
+ θ(K + 1)(σ2

f,1 + κ2σ2
g,2)

)
+
κ6β2(K + 1)∥Oy∥2∥O−1

y ∥2∥Λya∥2

1− ∥Γy∥
nσ2

g,1 + κ4η2β
2(K + 1)σ2

g,1

+
κ6∥Oy∥2E∥ê0y∥2

1− ∥Γy∥
+
κ4∥Oz∥2E∥ê0z∥2

1− ∥Γz∥
+
κ6∥Ox∥2E∥ê0x∥2

1− ∥Γx∥

+
κ6α2∥Ox∥2∥O−1

x ∥2∥Λxa∥2

(1− ∥Γx∥)2
· 1− θ

θ

∥∥∥∇̃Φ(x̄0)
∥∥∥2

+ (K + 1)κ4γ2
∥Oz∥2∥O−1

z ∥2∥Λza∥2n
1− ∥Γz∥

(σ2
f,1 + κ2σ2

g,2)

+ (K + 1)κ6α2θ

(
θ +

1− θ

1− ∥Γx∥

)
∥Ox∥2∥O−1

x ∥2∥Λxa∥2n
1− ∥Γx∥

(σ2
f,1 + κ2σ2

g,2)

+
(K + 1)γ

µg
(σ2

f,1 + κ2σ2
g,2) +

n∥z1⋆∥2

µgγ
+ κ4

(
∥ȳ0 − y⋆(x̄0)∥2

βµg
+
Kσ2

g,1

µg
β

)
.
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Proof. Combining (57) and (83), we obtain
K∑

k=0

E[∆k] +
1

1020κ4

K∑
k=−1

E[nIk]

≤4(η1 + 48κ2L2
y⋆η2)α

2
K∑

k=0

E∥r̄k+1∥2 +
128L2

g,1η2β

µg
∥ȳ0 − y⋆(x̄0)∥2 + 12(K + 1)η2β

2σ2
g,1

+ 4
κ2∥O−1

x ∥2∥Ox∥2∥Λxa∥2α2

1− ∥Γx∥

(
80L2

1− ∥Γx∥
+ 18θ

(
θ +

1− θ

1− ∥Γx∥

)
σ2
g,2

) K∑
k=0

E[nIk]

+
4∥Oz∥2∥O−1

z ∥2∥Λza∥2

1− ∥Γz∥
·
16γ2(L2

g,1 + (1− ∥Γz∥)σ2
g,2)

1− ∥Γz∥

K∑
k=−1

E[nIk]

+
12κ2β2(K + 1)∥Oy∥2∥O−1

y ∥2∥Λya∥2

1− ∥Γy∥
nσ2

g,1 +
8κ2∥Oy∥2E∥ê0y∥2

1− ∥Γy∥
+

8∥Oz∥2E∥ê0z∥2

1− ∥Γz∥

+
4κ2∥Ox∥2E∥ê0x∥2

1− ∥Γx∥
+

8κ2α2∥Ox∥2∥O−1
x ∥2∥Λxa∥2

(1− ∥Γx∥)2

[
1− θ

θ

∥∥∥∇̃Φ(x̄0)
∥∥∥2]

+ 64(K + 1)nγ2
∥Oz∥2∥O−1

z ∥2∥Λza∥2

1− ∥Γz∥

(
L2
f,0

µ2
g

σ2
g,2 + σ2

f,1

)

+ 96(K + 1)nκ2α2θ

(
θ +

1− θ

1− ∥Γx∥

)
∥Ox∥2∥O−1

x ∥2∥Λxa∥2

1− ∥Γx∥

(
L2
f,0

µ2
g

σ2
g,2 + σ2

f,1

)

+
1

1020κ4

(
9α2L2

z⋆

γ2µ2
g

+
438κ4α2

β2µ2
g

L2
y⋆

) K∑
k=0

E∥r̄k∥2 + 1

2

K∑
k=0

E [∆k] +
1

1020κ4
· 3n∥z

1
⋆∥2

µgγ

+
(K + 1)

1020κ4
6γ

µg

(
3σ2

g,2

L2
f,0

µ2
g

+ σ2
f,1

)
+

73κ4

1020κ4

(
4

βµg
∥ȳ0 − y⋆(x̄0)∥2 +

4Kσ2
g,1

µg
β

)
.

(86)

Subtracting the term

4
κ2∥O−1

x ∥2∥Ox∥2∥Λxa∥2α2

1− ∥Γx∥

(
80L2

1− ∥Γx∥
+ 18θ

(
θ +

1− θ

1− ∥Γx∥

)
σ2
g,2

) K∑
k=0

E[nIk]

+
4∥Oz∥2∥O−1

z ∥2∥Λza∥2

1− ∥Γz∥
16γ2(L2

g,1 + (1− ∥Γz∥)σ2
g,2)

1− ∥Γz∥

K∑
k=−1

E[nIk] +
1

2

K∑
k=0

E[∆k]

from both sides of (86) and using the restriction of α, γ in (84), we can get:

1

2040κ4

(
K∑

k=0

E[∆k] +

K∑
k=−1

E[nIk]

)

≤4(η1 + 48κ2L2
y⋆η2)α

2
K∑

k=0

E∥r̄k+1∥2 +
128L2

g,1η2β

µg
∥ȳ0 − y⋆(x̄0)∥2 + 12(K + 1)η2β

2σ2
g,1

+
12κ2β2(K + 1)∥Oy∥2∥O−1

y ∥2∥Λya∥2

1− ∥Γy∥
nσ2

g,1 +
8κ2∥Oy∥2E∥ê0y∥2

1− ∥Γy∥
+

8∥Oz∥2E∥ê0z∥2

1− ∥Γz∥

+
4κ2∥Ox∥2E∥ê0x∥2

1− ∥Γx∥
+

8κ2α2∥Ox∥2∥O−1
x ∥2∥Λxa∥2

(1− ∥Γx∥)2

[
1− θ

θ

∥∥∥∇̃Φ(x̄0)
∥∥∥2]

+ 64(K + 1)nγ2
∥Oz∥2∥O−1

z ∥2∥Λza∥2

1− ∥Γz∥

(
L2
f,0

µ2
g

σ2
g,2 + σ2

f,1

)

+ 96(K + 1)nκ2α2θ

(
θ +

1− θ

1− ∥Γx∥

)
∥Ox∥2∥O−1

x ∥2∥Λxa∥2

1− ∥Γx∥

(
L2
f,0

µ2
g

σ2
g,2 + σ2

f,1

)
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+
1

1020κ4

(
9α2L2

z⋆

γ2µ2
g

+
438κ4α2

β2µ2
g

L2
y⋆

) K∑
k=0

E∥r̄k∥2 + (K + 1)

1020κ4
· 6γ
µg

(
3σ2

g,2

L2
f,0

µ2
g

+ σ2
f,1

)

+
1

1020κ4
· 3n∥z

1
⋆∥2

µgγ
+

1

1020κ4
· 73κ4

(
4

βµg
∥ȳ0 − y⋆(x̄0)∥2 +

4Kσ2
g,1

µg
β

)

≤
[
4(η1 + 48κ2L2

y⋆η2)α
2 +

1

1020κ4

(
9α2L2

z⋆

γ2µ2
g

+
438κ4α2

β2µ2
g

L2
y⋆

)] K∑
k=0

E∥r̄k+1∥2

+ 12(K + 1)η2β
2σ2

g,1 +
12κ2β2(K + 1)∥Oy∥2∥O−1

y ∥2∥Λya∥2

1− ∥Γy∥
nσ2

g,1 +
8κ2∥Oy∥2E∥ê0y∥2

1− ∥Γy∥

+
8∥Oz∥2E∥ê0z∥2

1− ∥Γz∥
+

4κ2∥Ox∥2E∥ê0x∥2

1− ∥Γx∥
+

8κ2α2∥Ox∥2∥O−1
x ∥2∥Λxa∥2

(1− ∥Γx∥)2

[
1− θ

θ

∥∥∥∇̃Φ(x̄0)
∥∥∥2]

+ 64(K + 1)nγ2
∥Oz∥2∥O−1

z ∥2∥Λza∥2

1− ∥Γz∥

(
L2
f,0

µ2
g

σ2
g,2 + σ2

f,1

)

+ 96(K + 1)nκ2α2θ

(
θ +

1− θ

1− ∥Γx∥

)
∥Ox∥2∥O−1

x ∥2∥Λxa∥2

1− ∥Γx∥

(
L2
f,0

µ2
g

σ2
g,2 + σ2

f,1

)

+ (K + 1)
18γ

µg · 1020κ4

(
L2
f,0

µ2
g

σ2
g,2 + σ2

f,1

)

+
1

1020κ4
· 3n∥z

1
⋆∥2

µgγ
+

1

1020κ4
· 73κ4

(
8

βµg
∥ȳ0 − y⋆(x̄0)∥2 +

4Kσ2
g,1

µg
β

)
,

where the second inequality holds since
128L2

g,1η2β

µg
≤ 1

8βµg
.

Then taking (41) into the concern, we know:

1

2040κ4

(
K∑

k=0

E[∆k] +

K∑
k=−1

E[nIk]

)

≤40

[
4(η1 + 48κ2L2

y⋆η2)α
2 +

1

1020κ4

(
9α2L2

z⋆

γ2µ2
g

+
438κ4α2

β2µ2
g

L2
y⋆

)](
L2 +

θσ2
g,2

n

) K∑
k=0

E[∆k + nIk]

+ 4

[
4(η1 + 48κ2L2

y⋆η2)α
2 +

1

1020κ4

(
9α2L2

z⋆

γ2µ2
g

+
438κ4α2

β2µ2
g

L2
y⋆

)]
n(Φ(x̄0)− inf Φ)

α

+ 12θ(K + 1)

[
4(η1 + 48κ2L2

y⋆η2)α
2 +

1

1020κ4

(
9α2L2

z⋆

γ2µ2
g

+
438κ4α2

β2µ2
g

L2
y⋆

)](
σ2
f,1 + 2σ2

g,2

L2
f,0

µ2
g

)

+ 12(K + 1)η2β
2σ2

g,1 +
12κ2β2(K + 1)∥Oy∥2∥O−1

y ∥2∥Λya∥2

1− ∥Γy∥
nσ2

g,1 +
8κ2∥Oy∥2E∥ê0

y∥2

1− ∥Γy∥

+
8∥Oz∥2E∥ê0

z∥2

1− ∥Γz∥
+

4κ2∥Ox∥2E∥ê0
x∥2

1− ∥Γx∥
+

8κ2α2∥Ox∥2∥O−1
x ∥2∥Λxa∥2

(1− ∥Γx∥)2

[
1− θ

θ

∥∥∥∇̃Φ(x̄0)
∥∥∥2]

+ 64(K + 1)nγ2 ∥Oz∥2∥O−1
z ∥2∥Λza∥2

1− ∥Γz∥

(
L2

f,0

µ2
g

σ2
g,2 + σ2

f,1

)

+ 96(K + 1)nκ2α2θ

(
θ +

1− θ

1− ∥Γx∥

)
∥Ox∥2∥O−1

x ∥2∥Λxa∥2

1− ∥Γx∥

(
L2

f,0

µ2
g

σ2
g,2 + σ2

f,1

)

+ (K + 1)
18γ

µg · 1020κ4

(
L2

f,0

µ2
g

σ2
g,2 + σ2

f,1

)

+
1

1020κ4
· 3n∥z

1
⋆∥2

µgγ
+

1

1020κ4
· 73κ4

(
8

βµg
∥ȳ0 − y⋆(x̄0)∥2 +

4Kσ2
g,1

µg
β

)
,
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Since

40

[
4(η1 + 48κ2L2

y⋆η2)α
2 +

1

1020κ4

(
9α2L2

z⋆

γ2µ2
g

+
438κ4α2

β2µ2
g

L2
y⋆

)](
L2 +

θσ2
g,2

n

)
≤ 1

4080κ4
,

it follows that
K∑

k=0

E[∆k + nIk]

≲

[
κ4(η1 + κ2L2

y⋆η2)α
2 +

(
α2L2

z⋆

γ2µ2
g

+
κ4α2

β2µ2
g

L2
y⋆

)]
n(Φ(x̄0)− inf Φ)

α

+ θ(K + 1)

[
κ4(η1 + κ2L2

y⋆η2)α
2 +

(
α2L2

z⋆

γ2µ2
g

+
κ4α2

β2µ2
g

L2
y⋆

)]
(σ2

f,1 + κ2σ2
g,2)

+
κ6β2(K + 1)∥Oy∥2∥O−1

y ∥2∥Λya∥2

1− ∥Γy∥
nσ2

g,1 + κ4η2β
2(K + 1)σ2

g,1 +
κ6∥Oy∥2E∥ê0y∥2

1− ∥Γy∥

+
κ4∥Oz∥2E∥ê0z∥2

1− ∥Γz∥
+
κ6∥Ox∥2E∥ê0x∥2

1− ∥Γx∥
+
κ6α2∥Ox∥2∥O−1

x ∥2∥Λxa∥2

(1− ∥Γx∥)2
1− θ

θ

∥∥∥∇̃Φ(x̄0)
∥∥∥2

+

[
κ4γ2

∥Oz∥2∥O−1
z ∥2∥Λza∥2n

1− ∥Γz∥
+

γ

µg

]
(K + 1)(σ2

f,1 + κ2σ2
g,2)

+ (K + 1)κ6α2θ

(
θ +

1− θ

1− ∥Γx∥

)
∥Ox∥2∥O−1

x ∥2∥Λxa∥2n
1− ∥Γx∥

(σ2
f,1 + κ2σ2

g,2)

+
n∥z1⋆∥2

µgγ
+ κ4

(
1

βµg
∥ȳ0 − y⋆(x̄0)∥2 +

Kσ2
g,1

µg
β

)
.

Then, we finish the proof of this lemma.

Finally, we can give the proof of Lemma 17, which is a detailed version of Theorem 1:
Lemma 17 (Detailed version of Theorem 1). Suppose that Assumptions 1- 4 hold. Then there exist
constant step-sizes α, β, γ, θ, such that

1

K + 1

K∑
k=0

E∥∇Φ(x̄k)∥2

≲
κ5σ√
nK

+ κ
16
3

[(
∥Oy∥2∥O−1

y ∥2∥Λya∥2

1− ∥Γy∥

) 1
3

+

(
∥Oz∥2∥O−1

z ∥2∥Λza∥2

1− ∥Γz∥

) 1
3

]
σ

2
3

K
2
3

+ κ
7
2

(
∥Ox∥∥O−1

x ∥∥Λxa∥
1− ∥Γy∥

) 1
2 σ

1
2

K
3
4

+

κ 26
5

(
∥Oy∥2∥O−1

y ∥2∥Λya∥2∥Λ−1
yb ∥

2

n(1− ∥Γy∥)2

) 1
5

+ κ6

(
∥Oz∥2∥O−1

z ∥2∥Λza∥2∥Λ−1
zb ∥

2

n(1− ∥Γz∥)2

) 1
5

 σ
2
5

K
4
5

+

κ 16
3

(
∥Oy∥2∥O−1

y ∥2∥Λya∥2∥Λ−1
yb ∥

2ζy0
1− ∥Γy∥

) 1
3

+ κ
14
3

(
∥Oz∥2∥O−1

z ∥2∥Λza∥2∥Λ−1
zb ∥

2ζz0
1− ∥Γz∥

) 1
3

+κ
8
3

(
∥Ox∥2∥O−1

x ∥2∥Λxa∥2∥Λ−1
xb ∥

2ζx0
1− ∥Γx∥

) 1
3

]
1

K
+
(
κCα + κ4Cθ

) 1

K
,

where σ = max{σf,1, σg,1, σg,2}, Cα, Cθ are defined as:

Cα =L∇Φ + κ3 ∥Ox∥∥O−1
x ∥∥Λxa∥L

1− ∥Γx∥
+ κ3L

(
∥Ox∥∥O−1

x ∥∥Λxa∥∥Λ−1
xb ∥

1− ∥Γx∥

) 1
2

+ κ4

(
L2

g,1

µg
+

σ2
g,1

nµg

)

+ κ4 ∥Oy∥∥O−1
y ∥∥Λya∥Lg,1

1− ∥Γy∥
+ κ

9
2Lg,1

(
∥Oy∥∥O−1

y ∥∥Λya∥∥Λ−1
yb ∥

1− ∥Γy∥

) 1
2

+ κ4

(
µg +

µ2
gσ

2
g,1

nL2
g,1

)

50



+ κ6
∥Oz∥∥O−1

z ∥∥Λza∥
√

L2 + (1− ∥Γz∥)σ2
g,2

1− ∥Γz∥
+ κ

11
2 L

(
∥Oz∥∥O−1

z ∥∥Λza∥∥Λ−1
zb ∥

1− ∥Γz∥

) 1
2

,

Cθ =
σ2
g,2

nL2
g,1

+
σ2
g,2

L2
+ 1

Proof. Take L1 = L2 +
(
θ(1− θ) + L∇Φαθ

2
) σ2

g,2

n
and use the conclusion of Lemmas 8 and 16,

we get:

1

K + 1

K∑
k=0

E∥∇Φ(x̄k)∥2

≲
Φ(x̄0)− inf Φ

α(K + 1)
+

1

n

(
θ(1− θ) + L∇Φαθ

2) (σ2
f,1 + κ2σ2
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(1− θ)2

θ(K + 1)
∥∇Φ

(
x̄0) ∥2

+ L1

[
κ4(η1 + κ2L2

y⋆η2)α
2 +

(
α2L2

z⋆

γ2µ2
g

+
κ4α2

β2µ2
g

L2
y⋆

)](
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α(K + 1)
+

θ

n
(σ2

f,1 + κ2σ2
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)
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1− ∥Γy∥
σ2
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2
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n

+
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K + 1

[
κ6∥Oy∥2E∥ê0

y∥2

n(1− ∥Γy∥)
+

κ4∥Oz∥2E∥ê0
z∥2
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+

κ6∥Ox∥2E∥ê0
x∥2
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]
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κ6α2∥Ox∥2∥O−1

x ∥2∥Λxa∥2

(K + 1)(1− ∥Γx∥)2
· 1− θ

θ
·

∥∥∥∇̃Φ(x̄0)
∥∥∥2

n

+ L1

[
κ4γ2 ∥Oz∥2∥O−1

z ∥2∥Λza∥2

1− ∥Γz∥
+

γ
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]
(σ2

f,1 + κ2σ2
g,2)

+ L1κ
6α2θ

(
θ +

1− θ

1− ∥Γx∥

)
∥Ox∥2∥O−1

x ∥2∥Λxa∥2

1− ∥Γx∥
(σ2

f,1 + κ2σ2
g,2)

+ L1
∥z1⋆∥2

(K + 1)µgγ
+ L1κ

4

(
1

βµg(K + 1)
∥ȳ0 − y⋆(x̄0)∥2 +

σ2
g,1

nµg
β

)
.

(87)

Define:

ζy0 =
1

n

n∑
i=1

∥∇2gi(x̄0, ȳ0)−∇2g(x̄0, ȳ0)∥2,

ζz0 =
1

n

n∑
i=1

E
[
∥∇2

22gi(x̄0, ȳ1)−∇2
22g(x̄0, ȳ1)∥2∥z1⋆∥2 + ∥∇2gi(x̄0, ȳ1)−∇2g(x̄0, ȳ1)∥2

]
,

ζx0 =
1

n

n∑
i=1

∥∇1fi(x̄0, y
⋆(x̄0))−∇1f(x̄0, y

⋆(x̄0))∥2

+
1

n

n∑
i=1

∥∇2
12gi(x̄0, y

⋆(x̄0))−∇2
12g(x̄0, y

⋆(x̄0))∥2∥z1⋆∥2,

ζ̂0 =
1

n

∥∥∥∇̃Φ(x̄0)
∥∥∥2 .

Then we take:

α1 = κ−4

√
n

Kσ2
, (88)

αx,2 =

(
(1− ∥Γx∥)2

κ10K∥Ox∥2∥O−1
x ∥2∥Λxa∥2σ2

) 1
4

αy,2 =

(
1− ∥Γy∥

κ13K∥Oy∥2∥O−1
y ∥2∥Λya∥2σ2

g,1

) 1
3

,
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αy,3 =

(
n(1− ∥Γy∥)2

κ21K∥Oy∥2∥O−1
y ∥2∥Λya∥2∥Λ−1

yb ∥2σ2
g,1

) 1
5

,

αz,2 =

(
1− ∥Γz∥

κ13K∥Oz∥2∥O−1
z ∥2∥Λza∥2σ2

) 1
3

,

αz,3 =

(
n(1− ∥Γz∥)2

κ25K∥Oz∥2∥O−1
z ∥2∥Λza∥2∥Λ−1

zb ∥2σ2
g,1

) 1
5

,

αyb,2 =

(
1− ∥Γy∥

κ13∥Oy∥2∥O−1
y ∥2∥Λya∥2∥Λ−1

yb ∥2ζ
y
0

) 1
3

,

αzb,2 =

(
1− ∥Γz∥

κ11∥Oz∥2∥O−1
z ∥2∥Λza∥2∥Λ−1

zb ∥2ζz0

) 1
3

,

αxb,2 =

(
1− ∥Γx∥

κ5∥Ox∥2∥O−1
x ∥2∥Λxa∥2∥Λ−1

xb ∥2ζx0

) 1
3

,

θ1 =

(
nκ2ζ̂0
Kσ2

) 1
2

,

θ2 = κ3αx,2,

and

θ =

(
Cθ +

1

θ1
+

1

θ2

)−1

,

α =Θ

(
Cα +

√
1− θ

θ
κ3 +

1

α1
+

1

αy,2
+

1

αy,3
+

1

αz,3
+

1

αyb,2
+

1

αzb,2
+

1

αxb,2
+

1

αz,2
+

1

αx,2

)−1

,

β =Θ
(
κ4α

)
,

γ =Θ
(
κ4α

)
,

(89)
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It yields L1 = Θ(L2), and (45), (53), (56), (40), (58), (65), (82), (84), and (85) hold. It implies that
the restrictions on the step-sizes α, β, γ, θ in all previous lemma conditions hold. Thus all previous
lemmas hold. We obtain:

1

K + 1

K∑
k=0

E∥∇Φ(x̄k)∥2

≲
Φ(x̄0)− inf Φ

αK
+
θ

n
(σ2

f,1 + κ2σ2
g,2) +

ζ̂0
θK

+
κ6β2∥Oy∥2∥O−1

y ∥2∥Λya∥2

1− ∥Γy∥
σ2
g,1 + η2κ

4β2
σ2
g,1

n

+
1

K

[
κ6∥Oy∥2E∥ê0y∥2

n(1− ∥Γy∥)
+
κ4∥Oz∥2E∥ê0z∥2

n(1− ∥Γz∥)
+
κ6∥Ox∥2E∥ê0x∥2

n(1− ∥Γx∥)

]

+

[
κ4γ2

∥Oz∥2∥O−1
z ∥2∥Λza∥2

1− ∥Γz∥
+

γ

nµg

]
(σ2

f,1 + κ2σ2
g,2)

+ κ6α2θ

(
θ +

1− θ

1− ∥Γx∥

)
∥Ox∥2∥O−1

x ∥2∥Λxa∥2

1− ∥Γx∥
(σ2

f,1 + κ2σ2
g,2)

+
∥z1⋆∥2

(K + 1)µgγ
+ κ4

(
1

βµg(K + 1)
∥ȳ0 − y⋆(x̄0)∥2 +

σ2
g,1

nµg
β

)

≲
θ

n
(σ2

f,1 + κ2σ2
g,2) +

1

θK
+

κ

αK
+
κ9σ2

g,1

n
α+

κ14α2∥Oy∥2∥O−1
y ∥2∥Λya∥2

1− ∥Γy∥
σ2
g,1

+

(
κ10

∥Oy∥2∥O−1
y ∥2∥Λya∥2∥Λ−1

yb ∥2

(1− ∥Γy∥)2
+ κ14

∥Oz∥2∥O−1
z ∥2∥Λza∥2∥Λ−1

zb ∥2

(1− ∥Γz∥)2

)
κ12α4

σ2
g,1

n

+ α2
κ14∥Oy∥2∥O−1

y ∥2∥Λya∥2∥Λ−1
yb ∥2ζ

y
0

K(1− ∥Γy∥)
+ α2κ

12∥Oz∥2∥O−1
z ∥2∥Λza∥2∥Λ−1

zb ∥2ζz0
K(1− ∥Γz∥)

+ α2κ
6∥Ox∥2∥O−1

x ∥2∥Λxa∥2∥Λ−1
xb ∥2ζx0

K(1− ∥Γx∥)

+

[
κ12α2 ∥Oz∥2∥O−1

z ∥2∥Λza∥2

1− ∥Γz∥
+ κ6α2θ

∥Ox∥2∥O−1
x ∥2∥Λxa∥2

(1− ∥Γx∥)2
+
κ5α

n

]
(σ2

f,1 + κ2σ2
g,2)

≲
θ1
n
(σ2

f,1 + κ2σ2
g,2) +

κ4

θ1K
+
Cθκ

4

K
+

κ

α1K
+
κ9σ2

g,1

n
α1 +

κ5α1

n
(σ2

f,1 + κ2σ2
g,2)

+
κ14α2

y,2∥Oy∥2∥O−1
y ∥2∥Λya∥2

1− ∥Γy∥
σ2
g,1 +

κ

αy,2K

+ κ10
∥Oy∥2∥O−1

y ∥2∥Λya∥2∥Λ−1
yb ∥2

(1− ∥Γy∥)2
κ12α4

y,3

σ2
g,1

n
+

κ

αy,3K

+ κ14
∥Oz∥2∥O−1

z ∥2∥Λza∥2∥Λ−1
zb ∥2

(1− ∥Γz∥)2
κ12α4

z,3

σ2
g,1

n
+

κ

αz,3K

+ α2
yb,2

κ14∥Oy∥2∥O−1
y ∥2∥Λya∥2∥Λ−1

yb ∥2ζ
y
0

K(1− ∥Γy∥)
+

κ

αyb,2K

+ α2
zb,2

κ12∥Oz∥2∥O−1
z ∥2∥Λza∥2∥Λ−1

zb ∥2ζz0
K(1− ∥Γz∥)

+
κ

αzb,2K

+ α2
xb,2

κ6∥Ox∥2∥O−1
x ∥2∥Λxa∥2∥Λ−1

xb ∥2ζx0
K(1− ∥Γx∥)

+
κ

αxb,2K

+ κ12α2
z,2

∥Oz∥2∥O−1
z ∥2∥Λza∥2

1− ∥Γz∥
(σ2

f,1 + κ2σ2
g,2) +

κ

αz,2K

+ κ6α2
x,2θ2

∥Ox∥2∥O−1
x ∥2∥Λxa∥2

(1− ∥Γx∥)2
(σ2

f,1 + κ2σ2
g,2) +

κ

αx,2K
+

κ4

θ2K
,

53



where the last inequality uses (89).

Finally, substituting (88) and (89) into the last inequality, we can get:

1

K + 1

K∑
k=0

E∥∇Φ(x̄k)∥2

≲
κ5σ√
nK

+ κ
16
3

(∥Oy∥2∥O−1
y ∥2∥Λya∥2

1− ∥Γy∥

) 1
3

+

(
∥Oz∥2∥O−1

z ∥2∥Λza∥2

1− ∥Γz∥

) 1
3

 σ
2
3

K
2
3

+ κ
7
2

(
∥Ox∥∥O−1

x ∥∥Λxa∥
1− ∥Γy∥

) 1
2 σ

1
2

K
3
4

+

κ 26
5

(
∥Oy∥2∥O−1

y ∥2∥Λya∥2∥Λ−1
yb ∥2

n(1− ∥Γy∥)2

) 1
5

+ κ6
(
∥Oz∥2∥O−1

z ∥2∥Λza∥2∥Λ−1
zb ∥2

n(1− ∥Γz∥)2

) 1
5

 σ
2
5

K
4
5

+

κ 16
3

(
∥Oy∥2∥O−1

y ∥2∥Λya∥2∥Λ−1
yb ∥2ζ

y
0

1− ∥Γy∥

) 1
3

+ κ
14
3

(
∥Oz∥2∥O−1

z ∥2∥Λza∥2∥Λ−1
zb ∥2ζz0

1− ∥Γz∥

) 1
3

+κ
8
3

(
∥Ox∥2∥O−1

x ∥2∥Λxa∥2∥Λ−1
xb ∥2ζx0

1− ∥Γx∥

) 1
3

]
1

K
+
(
κCα + κ4Cθ

) 1

K
,

where σ = max{σf,1, σg,1, σg,2}.

Remark 7. From the proof of Lemma 17, the impact of the moving average technique on variance
reduction becomes evident. The term θ

nσ
2 absorb α2η1σ

2, which includes the high order term α4σ2.
Additionally, compared to y, z, the quadratic term related to σ2 of x has an extra term θ multiplied in
the numerator (α2θσ2). These details reduce the impacts of noise to terms related to x, confirming
the conclusion that terms related to y, z dominate the rate in precious sections. Notably, taking θ < 1
is indispensable our proof. If we take θ = 1, there would be a constant term 1

nσ
2 in the convergence

rate (see the first inequality of (87)), since the coefficient α2/β2 + α2/γ2 = O(1). This would not
guarantee the convergence of SPARKLE.

C.2 Analysis of consensus error and transient iteration complexity

From Lemma 17, we can immediately obtain the transient time complexity of Algorithm 1. Here we
omit the impacts of the condition number κ.
Lemma 18. The transient time complexity of Algorithm 1 has an upper bound of:

max

n3
(
∥Oy∥2∥O−1

y ∥2

1− ∥Γy∥

)2

∥Λya∥2, n3
(
∥Oz∥2∥O−1

z ∥2

1− ∥Γz∥

)2

∥Λza∥2,

n2
(
∥Ox∥∥O−1

x ∥
1− ∥Γx∥

)2

∥Λxa∥2, n

(
∥Oy∥∥O−1

y ∥∥Λ−1
yb ∥

1− ∥Γy∥

) 4
3

∥Λya∥,

n

(
∥Oz∥∥O−1

z ∥∥Λ−1
zb ∥

1− ∥Γz∥

) 4
3

∥Λza∥, n
(
∥Ox∥2∥O−1

x ∥2∥Λxa∥2∥Λ−1
xb ∥2

1− ∥Γx∥

) 2
3

,

n
∥Ox∥∥O−1

x ∥∥Λxa∥∥Λ−1
xb ∥

1− ∥Γx∥
, n

}
.

(90)

Proof. According to lemma 17, SPARKLE achieves linear speedup if:

1√
nK

≳

(∥Oy∥2∥O−1
y ∥2∥Λya∥2

1− ∥Γy∥

) 1
3

+

(
∥Oz∥2∥O−1

z ∥2∥Λza∥2

1− ∥Γz∥

) 1
3

 1

K
2
3
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+

(
∥Ox∥∥O−1

x ∥∥Λxa∥
1− ∥Γy∥

) 1
2 1

K
3
4

+

(∥Oy∥2∥O−1
y ∥2∥Λya∥2∥Λ−1

yb ∥2

n(1− ∥Γy∥)2

) 1
5

+

(
∥Oz∥2∥O−1

z ∥2∥Λza∥2∥Λ−1
zb ∥2

n(1− ∥Γz∥)2

) 1
5

 1

K
4
5

+

(∥Oy∥2∥O−1
y ∥2∥Λya∥2∥Λ−1

yb ∥2ζ
y
0

1− ∥Γy∥

) 1
3

+

(
∥Oz∥2∥O−1

z ∥2∥Λza∥2∥Λ−1
zb ∥2ζz0

1− ∥Γz∥

) 1
3

+

(
∥Ox∥2∥O−1

x ∥2∥Λxa∥2∥Λ−1
xb ∥2ζx0

1− ∥Γx∥

) 1
3

]
1

K
+ (Cα + Cθ)

1

K
.

It holds when K satisfies:

(
∥Oy∥2∥O−1

y ∥2∥Λya∥2

1− ∥Γy∥

) 1
3

1

K
2
3

≲
1√
nK

,

(
∥Oz∥2∥O−1

z ∥2∥Λza∥2

1− ∥Γz∥

) 1
3 1

K
2
3

≲
1√
nK

,(
∥Oy∥2∥O−1

y ∥2∥Λya∥2∥Λ−1
yb ∥2

n(1− ∥Γy∥)2

) 1
5

1

K
4
5

≲
1√
nK

,

(
∥Ox∥∥O−1

x ∥∥Λxa∥
1− ∥Γy∥

) 1
2 1

K
3
4

≲
1√
nK

,

(
∥Oz∥2∥O−1

z ∥2∥Λza∥2∥Λ−1
zb ∥2

n(1− ∥Γz∥)2

) 1
5 1

K
4
5

≲
1√
nK

,(
∥Oy∥2∥O−1

y ∥2∥Λya∥2∥Λ−1
yb ∥2ζ

y
0

1− ∥Γy∥

) 1
3

1

K
≲

1√
nK

,

(
∥Oz∥2∥O−1

z ∥2∥Λza∥2∥Λ−1
zb ∥2ζz0

1− ∥Γz∥

) 1
3 1

K
≲

1√
nK

,(
∥Ox∥2∥O−1

x ∥2∥Λxa∥2∥Λ−1
xb ∥2ζx0

1− ∥Γx∥

) 1
3 1

K
≲

1√
nK

,

(Cα + Cθ)
1

K
≲

1√
nK

.

Then we get:

K ≳ max

{
n3

(
∥Oy∥2∥O−1

y ∥2

1− ∥Γy∥

)2

∥Λya∥2, n3

(
∥Oz∥2∥O−1

z ∥2

1− ∥Γz∥

)2

∥Λza∥2,

n2

(
∥Ox∥∥O−1

x ∥
1− ∥Γx∥

)2

∥Λxa∥2, n

(
∥Oy∥∥O−1

y ∥∥Λ−1
yb ∥

1− ∥Γy∥

) 4
3

∥Λya∥,

n

(
∥Oz∥∥O−1

z ∥∥Λ−1
zb ∥

1− ∥Γz∥

) 4
3

∥Λza∥, n
(
∥Ox∥2∥O−1

x ∥2∥Λxa∥2∥Λ−1
xb ∥

2

1− ∥Γx∥

) 2
3

,

n
∥Ox∥∥O−1

x ∥∥Λxa∥∥Λ−1
xb ∥

1− ∥Γx∥
, n

}
.
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C.2.1 Consensus Error

Lemma 19. Suppose that Assumptions 1- 4 hold. Then there exist constant step-sizes α, β, γ, θ, such
that Lemma 17 holds and

1

K

K∑
k=0

E
[
∥xk − x̄k∥2

n
+

∥yk − ȳk∥2

n

]

≲K
n

K

(
∥Oz∥2∥O−1

z ∥2∥Λza∥2

1− ∥Γz∥
+

∥Oy∥2∥O−1
y ∥2∥Λya∥2

1− ∥Γy∥

)
,

where ≲K denotes the the asymptotic rate when K → ∞.

Proof. Suppose α, β, γ, and θ satisfy the constraints given in (88) and (89), which ensures that
Theorem 1 (Lemma 17) holds.

For clarity, we define the constants:

c1 =
9α2L2

z⋆

γ2µ2
g

+
438κ4α2

β2µ2
g

L2
y⋆ , c2 = 10

(
L2 +

θσ2
g,2

n

)
.

Then there exist α, β, γ, and θ that satisfy the constraints in (88) and (89), and also:
c1 ≤ 0.01L−2, c2 ≤ 11L2. (91)

We take such values for step-sizes in the following proof.

We proceed by substituting (41) into (57), yielding:
K∑

k=−1

E[Ik] ≤4c1

(
Φ(x̄0)− inf Φ

α
+ c2

K−1∑
k=0

E
(
∆k

n
+ Ik

)
+

3θ

n
K

(
σ2
f,1 + 2σ2

g,2

L2
f,0

µ2
g

))

+ 510κ4
K∑

k=0

E
[
∆k

n

]
+

3∥z1⋆∥2

µgγ

+
6(K + 1)γ

µgn

(
3σ2

g,2

L2
f,0

µ2
g

+ σ2
f,1

)
+ 73κ4

(
4

βµg
∥ȳ0 − y⋆(x̄0)∥2 +

4Kσ2
g,1

nµg
β

)
.

Subtracting 4c1c2
∑K−1

k=0 E[Ik] from both sides, we get:
K∑

k=−1

E[Ik] ≲
Φ(x̄0)− inf Φ

α
+
θ

n
K

(
σ2
f,1 + σ2

g,2

L2
f,0

µ2
g

)
+ κ4

K∑
k=0

E
[
∆k

n

]
+

∥z1⋆∥2

µgγ

+
Kγ

µgn

(
σ2
g,2

L2
f,0

µ2
g

+ σ2
f,1

)
+ κ4

(
1

βµg
∥ȳ0 − y⋆(x̄0)∥2 +

Kσ2
g,1

nµg
β

)
.

Substituting (57) into (41), we obtain:

1

4

K∑
k=0

E
∥∥r̄k+1

∥∥2
≤Φ(x̄0)− inf Φ

α
+ c2

K∑
k=0

E
[
∆k

n

]
+ c2c1

K∑
k=0

E∥r̄k∥2

+ c2

[
510κ4

K∑
k=0

E
[
∆k

n

]
+

3∥z1⋆∥2

µgγ
+

6(K + 1)γ

µgn

(
3σ2

g,2

L2
f,0

µ2
g

+ σ2
f,1

)

+73κ4

(
4

βµg
∥ȳ0 − y⋆(x̄0)∥2 +

4Kσ2
g,1

nµg
β

)]

+
3θ

n
(K + 1)

(
σ2
f,1 + 2σ2

g,2

L2
f,0

µ2
g

)
.
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Subtracting c2c1
∑K

k=0 E∥r̄k∥2 from both sides, we get

K∑
k=0

E
∥∥r̄k+1

∥∥2
≲
Φ(x̄0)− inf Φ

α
+ κ4

K∑
k=0

E
[
∆k

n

]
+
θ

n
K

(
σ2
f,1 + σ2

g,2

L2
f,0

µ2
g

)

+
∥z1⋆∥2

µgγ
+
Kγ

µgn

(
σ2
g,2

L2
f,0

µ2
g

+ σ2
f,1

)
+ κ4

(
1

βµg
∥ȳ0 − y⋆(x̄0)∥2 +

Kσ2
g,1

nµg
β

)
.

Taking

η3 =

(
κ2∥O−1

x ∥2∥Ox∥2∥Λxa∥2α2

(1− ∥Γx∥)2
+

∥Oz∥2∥O−1
z ∥2∥Λza∥2

1− ∥Γz∥
·
γ2(L2

g,1 + (1− ∥Γz∥)σ2
g,2)

1− ∥Γz∥

)
,

and combining previous results with (83), we obtain
K∑

k=0

E [∆k]

≲(η1 + κ2L2
y⋆η2)α

2
K∑

k=0

E∥r̄k+1∥2 + κη2β∥ȳ0 − y⋆(x̄0)∥2 +Kη2β
2σ2

g,1 + η3

K∑
k=−1

E[nIk]

+
κ2β2K∥Oy∥2∥O−1

y ∥2∥Λya∥2

1− ∥Γy∥
nσ2

g,1 +
κ2∥Oy∥2E∥ê0y∥2

1− ∥Γy∥
+

∥Oz∥2E∥ê0z∥2

1− ∥Γz∥

+
κ2∥Ox∥2E∥ê0x∥2

1− ∥Γx∥
+
κ2α2∥Ox∥2∥O−1

x ∥2∥Λxa∥2

θ(1− ∥Γx∥)2
∥∥∥∇̃Φ(x̄0)

∥∥∥2
+Knγ2

∥Oz∥2∥O−1
z ∥2∥Λza∥2

1− ∥Γz∥
(
κ2σ2

g,2 + σ2
f,1

)
+Knκ2α2θ

∥Ox∥2∥O−1
x ∥2∥Λxa∥2

(1− ∥Γx∥)2
(
κ2σ2

g,2 + σ2
f,1

)
≲
[
(η1 + κ2L2

y⋆η2)α
2 + η3

]
· κ4

K∑
k=0

E [∆k] + κη2β∥ȳ0 − y⋆(x̄0)∥2 +Kη2β
2σ2

g,1

+ n
[
(η1 + κ2L2

y⋆η2)α
2 + η3

] [ 1
α
+
θ

n
K
(
σ2
f,1 + κ2σ2

g,2

)
+

1

µgγ
+
Kγ

µgn

(
κ2σ2

g,2 + σ2
f,1

)
+κ4

(
1

βµg
+
Kσ2

g,1

nµg
β

)]
+
κ2β2K∥Oy∥2∥O−1

y ∥2∥Λya∥2

1− ∥Γy∥
nσ2

g,1

+
κ2α2∥Ox∥2∥O−1

x ∥2∥Λxa∥2

θ(1− ∥Γx∥)2
∥∥∥∇̃Φ(x̄0)

∥∥∥2
+
κ2∥Oy∥2E∥ê0y∥2

1− ∥Γy∥
+

∥Oz∥2E∥ê0z∥2

1− ∥Γz∥
+
κ2∥Ox∥2E∥ê0x∥2

1− ∥Γx∥

+Knγ2
∥Oz∥2∥O−1

z ∥2∥Λza∥2

1− ∥Γz∥
(
κ2σ2

g,2 + σ2
f,1

)
+Knκ2α2θ

∥Ox∥2∥O−1
x ∥2∥Λxa∥2

(1− ∥Γx∥)2
(
κ2σ2

g,2 + σ2
f,1

)
.

(88) and (89) imply that

η1 ≲ κ2 + κ2
∥Ox∥2∥O−1

x ∥2∥Λxa∥2

(1− ∥Γx∥)2
, η2 ≲ κ2,

(η1 + κ2L2
y⋆η2)α

2 ≲ κ−4, η3 ≲ κ−4
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where η1, η2 are defined in Lemma 15.

Then taking α, β, γ, θ such that (88), (89), (91) hold and κ4[(η1 + κ2L2
y⋆η2)α

2 + η3] is a sufficiently
small constant, we can derive the following result:

1

K

K∑
k=0

E
[
∆k

n

]

≲
κη2β

K
+ η2β

2
σ2
g,1

n

+
[
(η1 + κ2L2

y⋆η2)α
2 + η3

] [ 1

αK
+
θ

n

(
σ2
f,1 + κ2σ2

g,2

)
+

1

µgγK
+

γ

µgn

(
κ2σ2

g,2 + σ2
f,1

)]
+
[
(η1 + κ2L2

y⋆η2)α
2 + η3

]
κ4

(
1

βµgK
+
σ2
g,1

nµg
β

)
+
κ2β2∥Oy∥2∥O−1

y ∥2∥Λya∥2

1− ∥Γy∥
σ2
g,1

+
κ2α2∥Ox∥2∥O−1

x ∥2∥Λxa∥2

θK(1− ∥Γx∥)2
+
κ2∥Oy∥2E∥ê0y∥2

(1− ∥Γy∥)Kn
+

∥Oz∥2E∥ê0z∥2

(1− ∥Γz∥)Kn
+
κ2∥Ox∥2E∥ê0x∥2

(1− ∥Γx∥)Kn

+ γ2
∥Oz∥2∥O−1

z ∥2∥Λza∥2

1− ∥Γz∥
(
κ2σ2

g,2 + σ2
f,1

)
+ κ2α2θ

∥Ox∥2∥O−1
x ∥2∥Λxa∥2

(1− ∥Γx∥)2
(
κ2σ2

g,2 + σ2
f,1

)
≲
κ5η2α

K
+ κ10α2

σ2
g,1

n
+
κ

K

[
(η1 + κ2L2

y⋆η2)α+
η3
α

]
+
[
(η1 + κ2L2

y⋆η2)α
2 + η3

] [ θ
n

(
σ2
f,1 + κ2σ2

g,2

)
+
κ5α

n

(
κ2σ2

g,2 + σ2
f,1

)
+ κ9

σ2
g,1

n
α

]

+
κ2∥Oy∥2∥O−1

y ∥2∥Λya∥2

1− ∥Γy∥
σ2
g,1κ

8α2 +
κ−1α∥Ox∥2∥O−1

x ∥2∥Λxa∥2

K(1− ∥Γx∥)2

+ α2
κ10∥Oy∥2∥O−1

y ∥2∥Λya∥2∥Λ−1
yb ∥2ζ

y
0

K(1− ∥Γy∥)
+ α2κ

8∥Oz∥2∥O−1
z ∥2∥Λza∥2∥Λ−1

zb ∥2ζz0
K(1− ∥Γz∥)

+ α2κ
2∥Ox∥2∥O−1

x ∥2∥Λxa∥2∥Λ−1
xb ∥2ζx0

K(1− ∥Γx∥)

+ κ8α2 ∥Oz∥2∥O−1
z ∥2∥Λza∥2

1− ∥Γz∥
(
κ2σ2

g,2 + σ2
f,1

)
+ κ2α2θ

∥Ox∥2∥O−1
x ∥2∥Λxa∥2

(1− ∥Γx∥)2
(
κ2σ2

g,2 + σ2
f,1

)
.

From (88) and (89), we can determine the asymptotic orders for α, β, γ and θ when K → ∞

α = O
(
κ−4

√
n

Kσ2

)
, β = O

(√
n

Kσ2

)
, γ = O

(√
n

Kσ2

)
, θ = O

(
κ

√
n

Kσ2

)
.

Then we get

1

K

K∑
k=0

E
[
∆k

n

]
≲K

κ2n

K

(
∥Oz∥2∥O−1

z ∥2∥Λza∥2

1− ∥Γz∥
+

∥Oy∥2∥O−1
y ∥2∥Λya∥2

1− ∥Γy∥

)
,

where ≲K denotes the the asymptotic rate when K → ∞.

Then using (36) and the definition of ∆k, we get

1

K

K∑
k=0

E
[
∥xk − x̄k∥2

n
+

∥yk − ȳk∥2

n

]

≲K
n

K

(
∥Oz∥2∥O−1

z ∥2∥Λza∥2

1− ∥Γz∥
+

∥Oy∥2∥O−1
y ∥2∥Λya∥2

1− ∥Γy∥

)
.
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In particular, the corresponding result of SPARKLE variants that using EXTRA, ED or GT is

1

K

K∑
k=0

E
[
∥xk − x̄k∥2

n
+

∥yk − ȳk∥2

n

]
≲K

n

K

(
1

1− ρy
+

1

1− ρz

)
,

where ρy, ρz are spectrum gaps of relevant mixing matrices.

C.2.2 Essential matrix norms for analysis

Common heterogeneity-correction algorithms, including ED, EXTRA and GT, satisfy Assumption
3, according to transformations (31), (32) and discussions in [2, Appendix B.2]. Then Lemma 3
ensures that ∥Γ∥ < 1. From Lemma 18, the transient time complexity depends on the coefficients
∥O∥2, ∥O−1∥2, ∥Λa∥2, ∥Λ−1

b ∥2, and ∥Γ∥2. The solution of these matrices is constructive. Table 4
presents the upper bounds of these coefficients with different communication modes. Please refer
to [2, Appendix B.2] for more details about the construction of these matrices and the computation
of relevant norms. It is required that W is positive definite for ED, EXTRA, and we denote the
smallest nonzero eigenvalue of W by ρ. ρ can view as a constant. Otherwise we replace W with
tI+ (1− t)W for some constant t ∈ (0, 1) (e.g. t = 1/2).

Substituting values of ∥Os∥, ∥O−1
s ∥, ∥Λsa∥, ∥Λ−1

sb ∥, ∥Γs∥ into (90) , we obtain the explicit transient
iteration complexity for some specific examples of Algorithm 1, which are listed in Table 2. Note
that all GT variants exhibit the same transient iteration complexity.

Table 4: Upper bounds of coefficients for different heterogeneity-correction modes in Lemma 18,
where notation O is omitted for ∥O∥ and ∥O−1∥.

Mode A B C ∥O∥ ∥O−1∥ ∥Λa∥ ∥Λ−1
b ∥ ∥Γ∥

ED W (I−W)
1
2 W 1 ρ−

1
2 ρ (1− ρ)−

1
2

√
ρ

EXTRA I (I−W)
1
2 W 1 ρ−

1
2 1 (1− ρ)−

1
2

√
ρ

ATC-GT W2 I−W W2 1 1 ρ2 (1− ρ)−1 1+ρ
2

Semi-ATC-GT W I−W W2 1 1 ρ (1− ρ)−1 1+ρ
2

Non-ATC-GT I I−W W2 1 1 1 (1− ρ)−1 1+ρ
2

C.2.3 Theoretical gap between upper-level and lower-level

Note that ∥Λsa∥ ≤ 1. We rewrite the upper bound of the transient iteration complexity in Lemma 18
as

max{n3δy, n3δz, n2δx, nδ̂y, nδ̂z, nδ̂x} (92)
where

δy =

(
∥Oy∥2∥O−1

y ∥2

1− ∥Γy∥

)2

∥Λya∥2, δz =

(
∥Oz∥2∥O−1

z ∥2

1− ∥Γz∥

)2

∥Λza∥2, δx =

(
∥Ox∥∥O−1

x ∥
1− ∥Γz∥

∥Λza∥
)2

,

δ̂y =

(
∥Oy∥∥O−1

y ∥∥Λ−1
yb ∥

1− ∥Γy∥

) 4
3

, δ̂z =

(
∥Oz∥∥O−1

z ∥∥Λ−1
zb ∥

1− ∥Γz∥

) 4
3

,

δ̂x =

(
∥Ox∥2∥O−1

x ∥2∥Λ−1
xb ∥

2

1− ∥Γx∥

) 2
3

+
∥Ox∥∥O−1

x ∥∥Λ−1
xb ∥

1− ∥Γx∥
.

(93)
Suppose that we use the same communication matrices and heterogeneity-correction methods for
updating x, y, z, i.e.

∥Ox∥ = ∥Oy∥ = ∥Oz∥, ∥O−1
x ∥ = ∥O−1

y ∥ = ∥O−1
z ∥, ∥Γx∥ = ∥Γy∥ = ∥Γz∥,

∥Λxa∥ = ∥Λya∥ = ∥Λza∥, ∥Λ−1
xb ∥ = ∥Λ−1

yb ∥ = ∥Λ−1
zb ∥.
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Then we have
δx ≲ δy = δz, δ̂x ≲ δ̂y = δ̂z, (94)

Now we fix the update strategies for y, z. (94) implies that we can appropriately increase δx, δ̂x while
keeping the transient iteration complexity (92) unchanged (at most scaled by a constant factor). For
example, we can use a moderately sparser communication network for updating x than y, z. We
illustrate this point with three examples: SPARKLE-ED, SPARKLE-EXTRA and SPARKLE-GT
(variants), where y, z share the same communication matrix Wy .

• SPARKLE-ED, SPARKLE-EXTRA: From Table 4, we have

δx = O
(
(1− ρ(Wx))

−2
)
, δy = δz = O

(
(1− ρ(Wy))

−2
)
,

δ̂x = O
(
(1− ρ(Wx))

− 3
2

)
, δ̂y = δ̂z = O

(
(1− ρ(Wy))

−2
)
.

Substituting these values into (92), we get the transient iteration complexity is bounded by

max
{
n2(1− ρ(Wx))

−2, n3(1− ρ(Wy))
−2
}

SPARKLE-ED will keep the transient iteration complexity n3(1− ρ(Wy))
−2 (the dominated

term) if
(1− ρ(Wx))

−1 ≲
√
n(1− ρ(Wy))

−1. (95)

• SPARKLE-GT variants: Results in Table 4 imply that

δx = O
(
(1− ρ(Wx))

−2
)
, δy = δz = O

(
(1− ρ(Wy))

−2
)
,

δ̂x = O
(
(1− ρ(Wx))

−2
)
, δ̂y = δ̂z = O

(
(1− ρ(Wy))

− 8
3

)
.

Following the same argument as before, we have the following upper bound of the transient
iteration complexity of SPARKLE-GT

max
{
n2(1− ρ(Wx))

−2, n3(1− ρ(Wy))
−2, n(1− ρ(Wy))

− 8
3

}
.

we get the constraints of the spectral gap 1 − ρ(Wx) that maintains the transient iteration
complexity max

{
n3(1− ρ(Wy))

−2, n(1− ρ(Wy))
− 8

3

}
:

(1− ρ(Wx))
−1 ≲ max

{√
n(1− ρ(Wy))

−1, n−1/2(1− ρ(Wy))
− 4

3

}
. (96)

Denote the communication times per agent of Wx,Wy by cx, cy respectively. For example, we have
cx = 2, cy = n− 1 when taking Ring Graph for x (i.e. [Wx]ij ̸= 0 iff |i− j| ∈ {0, 1, n− 1} ), and
Complete Graph for y (i.e. Wy = 1

n1n1
⊤
n ).

Then for each agent, the communication cost per round is O(cxp+ cyq). If we take a = cx/cy to
measure the relative sparsity of the two communication matrices, and consider cy = O(1), then for
each agent, the communication cost per round is O(ap+ q). (95) and (96) theoretically provide the
range of the sparsity (connectivity) degree of Wx relative to Wy. From (95) and (96), we can set
a ≪ 1, while maintaining the transient iteration complexity for SPARKLE-GT, SPARKLE-ED,
SPARKLE-EXTRA.

C.2.4 The transient iteration complexities of some specific examples in SPARKLE.

Now we compute the transient iteration complexities of each SPARKLE-L-U algorithm, where
L,U ∈ {GT (variants),ED,EXTRA}. For brevity, here we assume that Wx = Wy = Wz , use the
same heterogeneity-correction method to y, z, and denote the spectral gap 1− ρ(Wx) by 1− ρ.

Substituting the results in Table 4 into (92) and (93), we get

δx = O
(

1

(1− ρ)2

)
, δy = δz = O

(
1

(1− ρ)2

)
for any L,U ∈ {GT (variants),ED,EXTRA},

δ̂x = O
(

1

(1− ρ)2

)
,O
(

1

(1− ρ)3/2

)
,O
(

1

(1− ρ)3/2

)
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for U = {GT (variants),ED,EXTRA} respectively, and

δ̂y = δ̂z = O
(

1

(1− ρ)8/3

)
,O
(

1

(1− ρ)2

)
,O
(

1

(1− ρ)2

)

for L = {GT (variants),ED,EXTRA} respectively.

Combining the above results, we can directly obtain Table 2, the transient iteration complexities of
SPARKLE with mixed heterogeneity-correction techniques in different levels.

C.3 Convergence analysis in deterministic scenarios

The following lemma gives the convergence rate of Algorithm 1 without a moving average when
there is no sample noise:

Lemma 20. Suppose that Assumptions 1- 4 hold. If σ2 = 0, then there exist α, β, γ and θ = 1 such
that

1

K + 1

K∑
k=0

E∥Φ(x̄k)∥2

≲

(
κ16∥Oy∥2∥O−1

y ∥2∥Λya∥2∥Λ−1
yb ∥2ζ

y
0

1− ∥Γy∥

) 1
3

1

K
+

(
κ14∥Oz∥2∥O−1

z ∥2∥Λza∥2∥Λ−1
zb ∥2ζz0

1− ∥Γz∥

) 1
3 1

K

+

(
κ8∥Ox∥2∥O−1

x ∥2∥Λxa∥2∥Λ−1
xb ∥2ζx0

1− ∥Γx∥

) 1
3 1

K
+ C̃α

1

K
.

where C̃α is a series of overheads which is defined below.

Proof. Note that σ2 = 0 implies that L1 = Θ(L2) when α = O(L−1
∇Φ). Thus (87) implies that:

1

K + 1

K∑
k=0

E∥Φ(x̄k)∥2

≲
Φ(x̄0)− inf Φ

α(K + 1)

+ L2

[
κ4(η1 + κ2L2

y⋆η2)α
2 +

(
α2L2

z⋆

γ2µ2
g

+
κ4α2

β2µ2
g

L2
y⋆

)](
Φ(x̄0)− inf Φ

α(K + 1)

)
+ L2

κ6∥Oy∥2E∥ê0y∥2

n(K + 1)(1− ∥Γy∥)
+ L2 κ4∥Oz∥2E∥ê0z∥2

n(K + 1)(1− ∥Γz∥)
+ L2 κ6∥Ox∥2E∥ê0x∥2

n(K + 1)(1− ∥Γx∥)

+ L2 ∥z1⋆∥2

µgγ(K + 1)
+

L2κ4

K + 1

1

βµg
∥ȳ0 − y⋆(x̄0)∥2.

(97)
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Then we aim to choose the stepsize α, β, γ. Define:

C̃α =L∇Φ + κ3
∥Ox∥∥O−1

x ∥∥Λxa∥L
1− ∥Γx∥

+ κ3L

(
∥Ox∥∥O−1

x ∥∥Λxa∥∥Λ−1
xb ∥

1− ∥Γx∥

) 1
2

+ κ4
L2
g,1

µg
+ κ4

∥Oy∥∥O−1
y ∥∥Λya∥Lg,1

1− ∥Γy∥
+ κ4Lg,1

(
κ∥Oy∥∥O−1

y ∥∥Λya∥∥Λ−1
yb ∥

1− ∥Γy∥

) 1
2

+ κ6L
∥Oz∥∥O−1

z ∥∥Λza∥
1− ∥Γz∥

+ κ
11
2 L

(
∥Oz∥∥O−1

z ∥∥Λza∥∥Λ−1
zb ∥

1− ∥Γz∥

) 1
2

,

α̃yb,2 =

(
1− ∥Γy∥

κ13∥Oy∥2∥O−1
y ∥2∥Λya∥2∥Λ−1

yb ∥2ζ
y
0

) 1
3

,

α̃zb,2 =

(
1− ∥Γz∥

κ11∥Oz∥2∥O−1
z ∥2∥Λza∥2∥Λ−1

zb ∥2ζz0

) 1
3

,

α̃xb,2 =

(
1− ∥Γx∥

κ5∥Ox∥2∥O−1
x ∥2∥Λxa∥2∥Λ−1

xb ∥2ζx0

) 1
3

.

Then there exist

α = Θ
(
C̃α + α̃−1

xb,2 + α̃−1
yb,2 + α̃−1

zb,2

)−1

, β = Θ
(
κ4α

)
, γ = Θ

(
κ4α

)
such that (45), (53), (56), (40), (58), (65), (82), and (84) hold. Then all previous lemmas hold.

Then from (97) we have:

1

K + 1

K∑
k=0

E∥Φ(x̄k)∥2

≲
κ

αK
+
α2κ14∥Oy∥2∥O−1

y ∥2∥Λya∥2∥Λ−1
yb ∥2ζ

y
0

K(1− ∥Γy∥)

+
α2κ12∥Oz∥2∥O−1

z ∥2∥Λza∥2∥Λ−1
zb ∥2ζz0

K(1− ∥Γz∥)
+
α2κ6∥Ox∥2∥O−1

x ∥2∥Λxa∥2∥Λ−1
xb ∥2ζx0

K(1− ∥Γx∥)

≲

(
κ16∥Oy∥2∥O−1

y ∥2∥Λya∥2∥Λ−1
yb ∥2ζ

y
0

1− ∥Γy∥

) 1
3

1

K
+

(
κ14∥Oz∥2∥O−1

z ∥2∥Λza∥2∥Λ−1
zb ∥2ζz0

1− ∥Γz∥

) 1
3 1

K

+

(
κ8∥Ox∥2∥O−1

x ∥2∥Λxa∥2∥Λ−1
xb ∥2ζx0

1− ∥Γx∥

) 1
3 1

K
+ C̃α

1

K
.

C.4 Degenerating to single-level algorithms

We consider the bilevel problem with the following upper- and lower-level loss function on the i-th
agent:

Fi(x, y, ϕ) = Fi(x, ϕ), Gi(x, y, ξ) ≡
∥y∥2

2
.

Actually, this optimization problem with respect to x is single-level, since we have zk ≡ 0, yk ≡ 0,
uki = ∇1fi(x

k
i , ξ

k
i ) by induction. By taking θ = 1, we get the following single-level algorithm

framework for decentralized stochastic single-level algorithm. As we discuss in previous sections, it
can recover various heterogeneity-correction algorithms, including GT, EXTRA and ED, by selecting
specific Ax,Bx,Cx.
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Algorithm 3 SPARKLE: degenerating to single-level decentralized stochastic algorithms
Require: Initialize x0 = 0, d0

x = 0, learning rate αk.
for k = 0, 1, · · · ,K − 1 do
xk+1 = Cxx

k − αkAxu
k −Bxd

k
x, dk+1

x = dk
x +Bxx

k+1;
end for

In this case, we have z⋆k ≡ 0, y⋆k ≡ 0. Notice that Ly⋆ = 0, Lz⋆ = 0. It gives

η2 = O

(
β2

∥Oy∥2∥O−1
y ∥2∥Λya∥2∥Λ−1

yb ∥2

(1− ∥Γy∥)2
+ γ2

∥Oz∥2∥O−1
z ∥2∥Λza∥2∥Λ−1

zb ∥2

(1− ∥Γz∥)2

)
,

η1 = O
(
η2 + α2

(
1 +

(1− θ)2

θ2∥Λ−1
xb ∥2

)
∥Ox∥2∥O−1

x ∥2∥Λxa∥2∥Λ−1
xb ∥2

(1− ∥Γx∥)2

)
.

If we take

α ≲ min

{
1,

1− ∥Γx∥
∥Ox∥∥O−1

x ∥∥Λxa∥
,

(
1− ∥Γx∥

∥Ox∥∥O−1
x ∥∥Λxa∥∥Λ−1

xb ∥

) 1
2

}

and θ = 1, β → 0, γ → 0, then (45), (53), (56), (40), (58), (65), (82), and (84) hold. Thus all
previous lemmas hold. Then (87) transforms into

1

K + 1

K∑
k=0

E∥Φ(x̄k)∥2

≲
f(x̄0)− inf f

α(K + 1)
+

1

n

(
θ(1− θ) + αθ2

)
σ2
f,1 +

(1− θ)2

θ(K + 1)
∥∇f

(
x̄0
)
∥2

+ η1α
2

(
f(x̄0)− inf f

α(K + 1)
+
θ

n
σ2
f,1

)
+

∥Ox∥2E∥ê0x∥2

n(K + 1)(1− ∥Γx∥)

+
α2∥Ox∥2∥O−1

x ∥2∥Λxa∥2

n(1− ∥Γx∥)2(K + 1)

[
1− θ

θ

n∑
i=1

∥∥∇fi(x̄0)∥∥2]

+
1

n

[
α2θ

(
θ +

1− θ

1− ∥Γx∥

)
∥Ox∥2∥O−1

x ∥2∥Λxa∥2n
1− ∥Γx∥

]
σ2
f,1.

It follows that

1

K + 1

K∑
k=0

E∥Φ(x̄k)∥2

≲
f(x̄0)− inf f

α(K + 1)
+
ασ2

f,1

n
+

(
α4 ∥Ox∥2∥O−1

x ∥2∥Λxa∥2∥Λ−1
xb ∥2

(1− ∥Γx∥)2

)(
f(x̄0)− inf f

α(K + 1)
+

1

n
σ2
f,1

)
+

∥Ox∥2E∥ê0x∥2

n(K + 1)(1− ∥Γx∥)
+ α2 ∥Ox∥2∥O−1

x ∥2∥Λxa∥2

1− ∥Γx∥
σ2
f,1

≲
f(x̄0)− inf f

α(K + 1)
+
ασ2

f,1

n
+ α2 ∥Ox∥2∥O−1

x ∥2∥Λxa∥2

1− ∥Γx∥
σ2
f,1

+
α2∥Ox∥2∥O−1

x ∥2∥Λxa∥2∥Λ−1
xb ∥2ζx0

(K + 1)(1− ∥Γx∥)
+
α4∥O∥2x∥O−1

x ∥2∥Λxa∥2∥Λ−1
xb ∥2σ2

f,1

n(1− ∥Γx∥)2
.

(98)
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Like (88), we take

C0 = 1 +
∥Ox∥∥O−1

x ∥∥Λxa∥
1− ∥Γx∥

+

(
∥Ox∥∥O−1

x ∥∥Λxa∥∥Λ−1
xb ∥

1− ∥Γx∥

) 1
2

,

α1 =

√
n

Kσ2
f,1

, α2 =

(
1− ∥Γx∥

K∥Ox∥2∥O−1
x ∥2∥Λxa∥2σ2

f,1

) 1
3

,

α3 =

(
1− ∥Γx∥

∥Ox∥2∥O−1
x ∥2∥Λxa∥2∥Λ−1

xb ∥2ζx0

) 1
3

,

α4 =

(
n(1− ∥Γx∥)2

K∥O∥2x∥O−1
x ∥2∥Λxa∥2∥Λ−1

xb ∥2σ2
f,1

) 1
5

,

α = Θ

(
C0 +

1

α1
+

1

α2
+

1

α3
+

1

α4

)−1

.

Substituting these values into (98), we get

1

K + 1

K∑
k=0

E∥Φ(x̄k)∥2 ≲
σf,1√
nK

+

(
∥Ox∥2∥O−1

x ∥2∥Λxa∥2σ2
f,1

1− ∥Γx∥

) 1
3

K−2/3 +
C0

K

+

(
∥Ox∥2∥O−1

x ∥2∥Λxa∥2∥Λ−1
xb ∥2ζx0

(1− ∥Γx∥)

) 1
3 1

K
+

(
∥O∥2x∥O−1

x ∥2∥Λxa∥2∥Λ−1
xb ∥2σ2

f,1

n(1− ∥Γx∥)2

) 1
5

K−4/5.

Like Lemma 18, we get the transient iterating complexity for Algorithm 3 is{
n3
(
∥Ox∥2∥O−1

x ∥2

1− ∥Γx∥

)2

∥Λxa∥2, n
(
∥Ox∥∥O−1

x ∥∥Λ−1
xb ∥

1− ∥Γx∥

) 4
3

∥Λxa∥, n

}
.

Substituting the value of relevant norms in Table 4, we get the transient iteration complexity for GT,
EXTRA, ED are

O
(
max

{
n3

(1− ρ)2
,

n

(1− ρ)8/3

})
, O

(
n3

(1− ρ)2

)
, O

(
n3

(1− ρ)2

)
respectively, where ρ := ρ(Wx). These upper bounds are the same as the state-of-the-art results
shown in Table 1. It indicates that our analysis accurately captures the impacts of updates at each
level on the convergence results.

D Experimental details

In this section, we provide the details of our numerical experiments discussed in Section 4. We also
provide addition experimental results which are not mentioned in the main text due to the space
limitation. For all GT variants, we focus on one typical representative, ATC-GT, in our experiments,
which we denote as GT for brevity. All experiments described in this section were run on an NVIDIA
A100 server.

D.1 Synthetic bilevel optimization

Here, we consider problem (1) whose upper- and lower level loss functions on the i-th agents
(1 ≤ i ≤ N ) are denoted as:

fi(x, y) = EAi,bi

[
∥Aiy − bi∥2

]
,

gi(x, y) = EAi,bi

[
∥Aiy − x∥2 + Cr ∥y∥2

]
,
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Figure 4: The estimation error of D-SOBA, SPARKLE-GT, SPARKLE-ED, and SPARKLE-
EXTRA under different networks and data heterogeneity.

where x ∈ RD, y ∈ RK and Cr denotes a fixed regularization parameter. For each agent i, we
firstly generate the local solution y∗i , x

∗
i as y∗i = y∗ + ζi and x∗i = A∗b∗ + ξi, where x∗ ∼ N (0, IK)

is a randomly generated vector, each element of A∗ is independently sampled from N (0, 9). The
observation (Ai, bi) on agent i is generated in a streaming manner by Ai = A∗ + ϕi, bi = x∗i + ψi,
in which each element of ϕi ∈ RK×D and ψi ∈ RD are independently generated by N (0, σ2

g). The
terms ξi ∼ N (0, σ2

hIK) and ζi ∼ N (0, σ2
hID) control the heterogeneity of data distributions across

different agents.

We set D = 20,K = 10, σg = 0.001, Cr = 0.001. Then we set σh = 0.5 to represent severe
heterogeneity across agents and σh = 0.1 for mild heterogeneity. We run D-SOBA, SPARKLE-GT,
SPARKLE-ED, and SPARKLE-EXTRA over Ring, 2D-Torus [37], and fully connected networks
with N = 64 agents. The moving-average term θ = 0.1 and the step-size at the t-th iteration are
αt = βt = γt = 1/(500 + 0.01t). The batch size is 10.

Fig. 4 illustrates the averaged estimation error
∑N

i=1

∥∥∥x(t)i − x∗
∥∥∥2 of the mentioned algorithms with

different communication topology and data heterogeneity. It is observed that SPARKLE with ED,
EXTRA, GT achieve better convergence performances with decentralized communication networks.
Meanwhile, SPARKLE-ED and SPARKLE-EXTRA are more robust to data heterogeneity and the
sparsity of network topology than SPARKLE-GT. All the results are consistent with our theoretical
results.

D.2 Hyper-cleaning on FashionMNIST dataset

Here, we consider a data hyper-clean problem [44] on FashionMNIST dataset [48]. The FashionM-
NIST dataset consists of 60000 images for training and 10000 images for testing and we randomly
split 50000 training images into a training set and the other 10000 images into a validation set.

The data hyper-cleaning problem aims to train a classifier from a corrupted dataset, in which the label
of each training data is replaced by a random class number with a probability p (i.e. the corruption
rate). It can be considered as a stochastic bilevel problem (1) whose upper- and lower-level loss
functions on the i-th agents (1 ≤ i ≤ n) are formulated as:

fi(x, y) =
1∣∣∣D(i)
val

∣∣∣
∑

(ξe,ζe)∈D
(i)
val

L(ϕ(ξe; y), ζe),

gi(x, y) =
1∣∣∣D(i)
tr

∣∣∣
∑

(ξe,ζe)∈D(i)
tr

σ(xe)L(ϕ(ξe; y), ζe) + C ∥y∥2 ,
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Figure 5: Hypergradient evaluation times for required test accuracy in hyper-cleaning problem. (Left:
p = 0.2; Right: p = 0.3)

where ϕ denotes a training model while y denotes its parameters, L denotes the cross-entropy loss
function and σ(x) = (1 + e−x)−1 is the sigmoid function. D(i)

tr and D(i)
val denotes the training and

validation set of the i-th agent, respectively. C > 0 is a fixed regularization parameter.

Data generation and experiment settings. In this experiment, we let ϕ be a two-layer MLP network
with a 300-dim hidden layer and ReLU activation while y denotes its parameters. For 1 ≤ i ≤ 10,
we sample a probability distribution Pi randomly by Dirichlet distribution with parameters α = 0.1.
The training and validation images with label i are sent to different agents according the probability
distribution Pi. Then D(i)

tr and D(i)
val are generated sufficiently heterogeneous [32]. We set C = 0.001.

The batch size is set to 50.

Convergence performances with different corruption rates. We set the moving-average term
θk = 0.2 and run D-SOBA [29], MA-DSBO-GT [10], MDBO [21] SPARKLE-GT, SPARKLE-ED,
SPARKLE-EXTRA, SPARKLE-ED-GT, and SPARKLE-EXTRA-GT on an Adjusted Ring graph
with n = 10 agents and p = 0.1, 0.2, 0.3 separately. The step-sizes for all the algorithms are set to
αk = βk = γk = 0.03 and the term η in MDBO is set to 0.5. The weight matrix of Adjust Ring
W = [wij ]n×n satisfies:

wij =


a, if j = i,
1− a

2
, if (j − i)%n = ±1,

0, else.

Moreover, we run SPARKLE with ED in the lower level and auxiliary variable and gradient tracking
in the upper level (i.e. SPARKLE-ED-GT) as well as SPARKLE with EXTRA in the lower level
and auxiliary variable and gradient tracking in the upper level (i.e. SPARKLE-EXTRA-GT) and
compare their test accuracy with the other four algorithms.

Figure 1 shows that SPARKLE-ED and SPARKLE-EXTRA outperforms in different cases than
SPARKLE-GT. Meanwhile, SPARKLE-EXTRA, SPARKLE-EXTRA-GT achieve similar test
accuracy, as do those for SPARKLE-ED and SPARKLE-ED-GT, which matches our theoretical
results in transient iteration analysis. Figure 5 presents the times of gradient evaluation for different
test accuracies of these algorithms at p = 0.2, 0.3, demonstrating similar results.

Influence of network topology. We set the corruption rate p = 0.3, the step sizes αk = βk = γk =
0.02, and the moving-average term θk = 0.2. Then we run SPARKLE-EXTRA and SPARKLE-
EXTRA-GT on a network containing n = 10 nodes with different topologies in the following two
cases:

• Fixed upper, varied lower: x communicates through a five-peer graph; y, z communicate through
different adjusted rings with ρ = 0.647, 0.828, 0.924, 0.990.

• Fixed lower, varied upper: y, z communicate through a five-peer graph; x communicates through
different adjusted rings with ρ = 0.647, 0.828, 0.924, 0.990.
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Figure 6: The average test accuracy of SPARKLE-EXTRA and SPARKLE-EXTRA-GT on hyper-
cleaning with different communicating strategy of x, y, z.

Table 5: Mean and standard deviation of the average test accuracy of last 40 iterations during 10 trials
with different moving-average terms

Algorithm θ = 0.05 θ = 0.2 θ = 0.3
SPARKLE-GT 0.7080± 0.0215 0.7045± 0.0126 0.7064± 0.0113
SPARKLE-ED 0.7096± 0.0074 0.7113± 0.0047 0.7110± 0.0081

SPARKLE-EXTRA 0.7190± 0.0103 0.7277± 0.0090 0.7243± 0.0028
SPARKLE-ED-GT 0.7064± 0.0063 0.7178± 0.0037 0.7162± 0.0041

SPARKLE-EXTRA-GT 0.7198± 0.0051 0.7262± 0.0058 0.7247± 0.0048

The weight matrix of five-peer graph W = [wij ]n×n satisfies:

wij =

{
0.2, if (j − i)%n = 0,±1,±2,

0, else.

Figure 6 shows the average test accuracy of both SPARKLE-EXTRA and SPARKLE-EXTRA-GT
over 10 trials. It indicates that the test accuracy decays with increasing spectral gap of topologies
related to y, z while the topology of x is fixed during the whole iterations. However, such convergence
gap becomes milder when the topologies of y, z are fixed and that of x varies. This phenomenon
supports our theoretical findings, which suggest that the transient iteration complexity is more
sensitive to the network topologies of y, z than to that of x.

Influence of moving-average iteration on convergence. Moreover, for θt = 0.05, 0.2, 0.3, we
run SPARKLE-GT, SPARKLE-ED, SPARKLE-EXTRA, SPARKLE-ED-GT, and SPARKLE-
EXTRA-GT on an Adjusted Ring graph with n = 10 agents, αk = βk = γk = 0.03 and p = 0.3
for 3000 iterations. We obtain the average test accuracy of the last 40 iterations over 10 trials, and
present the mean and standard deviation during the different trials in Table 5. We can observe that
most algorithms achieve the highest test accuracy when θ = 0.2, which may prove that a suitable θ
can benefit the test accuracy in hyper-cleaning problems.
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Figure 7: The test loss against samples generated by one agent of different algorithms in the policy
evaluation. (Left: n = 20, Right: n = 10.)

Table 6: The average training loss of the last 500 iterations for 10 independent trials in the distributed
policy evaluation.

Algorithm N = 10 N = 20
SPARKLE-ED 0.2781± 1.09× 10−3 0.3198± 3.21× 10−3

SPARKLE-EXTRA 0.2743± 0.88× 10−3 0.3207± 2.94× 10−3

MDBO 1.0408± 4.51× 10−3 1.3293± 8.38× 10−3

SLDBO 0.4132± 1.18× 10−3 0.8374± 2.47× 10−3

Single-level ED 0.2948± 0.92× 10−3 0.3164± 3.12× 10−3

D.3 Distributed policy evaluation in reinforcement learning

Following the result of [52], we consider a multi-agent MDP problem in reinforcement learning on a
distributed setting with n agents. Denote S as the state space. Suppose that the value function in each
state s ∈ S is a linear function V (s) = ϕ⊤s x, where ϕs ∈ Rm is a feature and x ∈ Rm is a parameter.
To obtain the optimal solution x∗, we consider the following Bellman minimization problem:

min
x∈Rm

F (x) =
1

n

n∑
i=1

[
1

2|S|
∑
s∈S

(
ϕ⊤s x− Es′

[
ri(s, s′) + γϕ⊤s′x

∣∣s])2]

where ri(s, s′) denotes the reward incurred from transition s to s′ on the i-th agent, γ ∈ (0, 1) denotes
the discount factor. The expectation is taken over all random transitions from state s to s′. It can be
viewed as a bilevel optimization problem with the following upper- and lower-level loss:

fi(x, y) =
1

2|S|
∑
s∈S

(ϕ⊤s x− ys)
2,

gi(x, y) =
∑
s∈S

(
ys − Es′

[
ri(s, s′) + γϕ⊤s′x

∣∣s])2 ,
where y = (y1, · · · , y|S|)

⊤ ∈ R|S|. In our experiment, we set the number of states |S| = 200 and
m = 10. For each s ∈ S, we generate its feature ϕs ∼ U [0, 1]m. The non-negative transition
probabilities are generated randomly and standardized to satisfy

∑
s′∈S ps,s′ = 1. The mean reward

r̄i(s, s′) are independently generated from the uniform distribution U [0, 1]. In each iteration, the
stochastic reward ri(s, s′) ∼ N (r̄i(s, s′), 0.022).

For n = 10, 20, we run SPARKLE-ED and SPARKLE-EXTRA as well as existing decentralized
SBO algorithms MDBO [21] and SLDBO [16] (here we use the stochastic gradient instead of
deterministic gradient) over a Ring graph. For MDBO, the number of Hessian-inverse estimation
iterations is set to 5. The step sizes are 0.03 for all methods. Figure 3 illustrates the upper-level loss
against samples generated by one agent for 10 independent trials. Table 6 shows the average training
loss of the last 500 iterations for 10 independent trials of the four decentralized SBO algorithms as
well as single-level ED [56] (For bilevel algorithms, training loss means the upper-level loss here).
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Figure 8: The accuracy on training and testing set of different algorithms for the meta-learning
problem.

Both Figure 3 and Table 6 demonstrate that SPARKLE-ED and SPARKLE-EXTRA converge faster
than other methods.

Finally, we create a fixed "test set" with 10000 sample generated from S. Figure 7 shows the
loss on the test set of SPARKLE-ED, SPARKLE-EXTRA, SLDBO, MDBO and single-level ED
algorithm, demonstrating the superior performance of SPARKLE compared to other decentralized
SBO algorithms.

D.4 Decentralized meta-learning

We consider a meta-learning problem as described in [18]. There are R tasks {Ts, s = 1, · · · , R}.
Each task Ts has its own loss function L(x, ys, ξ), where ξs represents a stochastic sample drawn from
the data distribution Ds, ys denotes the task-specific parameters and x denotes the global parameters
shared by all the tasks. In meta-learning problem, we aim to find the parameters (x∗, y∗1 , · · · , y∗R)
that minimizes the loss function across all R tasks, i.e.,

min
x,y1,··· ,yR

l(x, y1, · · · , yR) =
1

R

R∑
s=1

Eξ∼Ds
[L(x, ys, ξ)] . (102)

The problem (102) can be formulated as a decentralized SBO problem with heterogeneous data
distributions across N nodes. For i = 1, 2, · · · , N , let Dtrain

s,i and Dval
s,i denote the training and

validation datasets for the s-th task Ts received by node i respectively. We can then address the
meta-learning problem by minimizing (1), with the upper- and lower-level loss functions defined as:

fi(x, y) =
1

R

R∑
s=1

Eξ∼Dval
s,i

[L(x, ys, ξ)] ,

gi(x, y) =
1

R

R∑
s=1

[
Eξ∼Dtrain

s,i
[L(x, ys, ξ)] +R(ys)

]
,

where L denotes the cross-entropy loss and R(ys) = Cr ∥ys∥2 is a strongly convex regularization
function.

In this experiment, we compare SPARKLE-ED with D-SOBA [29] and MAML [18] in a decentralized
communication setting over a 5-way 5-shot task across a network of N = 8 nodes connected by
Ring graph. The dataset used is miniImageNet [47], derived from ImageNet [42], which comprises
100 classes, each containing 600 images of size 84 × 84. We set R = 2000 and partition these
classes into 64 for training, 16 for validation, and 20 for testing. For the training and validation
classes, the data is split according to a Dirichlet distribution with parameter α = 0.1 [32]. We utilize
a four-layer CNN with four convolution blocks, where each block sequentially consists of a 3× 3
convolution with 32 filters, batch normalizationm, ReLU activation, and 2×2 max pooling. The batch
size is 32 , and Cr = 0.001. The parameters of the last linear layer are designated as task-specific,
while the other parameters are shared globally. For SPARKLE and D-SOBA, the step-sizes are
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β = γ = 0.1 and α = 0.01. For MAML, the inner step-size is 0.1 and the outer step-size is 0.001,
and the number of inner-loop steps as 3. For all algorithms, the task number is set to 32. And we only
repeat the experiment only once due to the time limitation. Figure 8 shows the average accuracy on
the training dataset for all nodes, as well as the test accuracy of the three algorithms. We observe
that SPARKLE-ED outperforms other algorithms, demonstrating the efficiency of SPARKLE in
decentralized meta-learning problems.
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contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.
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whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
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dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.
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to reproduce that algorithm.
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the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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• While we encourage the release of code and data, we understand that this might not be

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
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• The instructions should contain the exact command and environment needed to run
to reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.
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proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.
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parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
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• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
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material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We show error bars in experiments where we consider them essential.
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-
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• The factors of variability that the error bars are capturing should be clearly stated (for
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• The method for calculating the error bars should be explained (closed form formula,
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Refer to Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification:Our research conforms, in every respect, with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: There is no societal impact of our work.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: There is no such risk in the paper.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We comply with the licenses of existing assets used in the paper and provide
necessary references.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has curated
licenses for some datasets. Their licensing guide can help determine the license of a
dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
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Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
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• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
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