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Abstract001

Large language models (LLMs) are increas-002
ingly being deployed in high-stakes applica-003
tions like hiring, yet their potential for unfair004
decision-making remains understudied in gen-005
erative and retrieval settings. In this work,006
we examine the allocational fairness of LLM-007
based hiring systems through two tasks that008
reflect actual HR usage: resume summariza-009
tion and applicant ranking. By constructing a010
synthetic resume dataset with controlled per-011
turbations and curating job postings, we inves-012
tigate whether model behavior differs across013
demographic groups. Our findings reveal that014
generated summaries exhibit meaningful dif-015
ferences more frequently for race than for gen-016
der perturbations. Models also display non-017
uniform retrieval selection patterns across de-018
mographic groups and exhibit high ranking sen-019
sitivity to both gender and race perturbations.020
Surprisingly, retrieval models can show compa-021
rable sensitivity to both demographic and non-022
demographic changes, suggesting that fairness023
issues may stem from broader model brittleness.024
Overall, our results indicate that LLM-based025
hiring systems, especially in the retrieval stage,026
can exhibit notable biases that lead to discrimi-027
natory outcomes in real-world contexts.028

1 Introduction029

Large language models (LLMs) are increasingly030

being adopted in real-world, high-stakes domains031

such as hiring (Boston Consulting Group, 2025),032

where they assist HR teams with tasks like resume033

screening and candidate matching. As LLMs are in-034

corporated into critical decision-making processes,035

ensuring fair and responsible deployment is essen-036

tial, especially when the outcomes can profoundly037

impact individuals’ career prospects (Dastin, 2018;038

Raghavan et al., 2020; Sánchez-Monedero et al.,039

2020; Suresh and Guttag, 2021).040

A key aspect of developing responsible LLM sys-041

tems includes anticipating and preventing specific042

risks and harms, such as allocational harms (i.e., 043

allocating resources or opportunities unfairly to dif- 044

ferent social groups, also called allocational fair- 045

ness) (Barocas et al., 2017; Blodgett et al., 2020). 046

This is especially important in automated hiring 047

pipelines, since models may produce unfair out- 048

comes and reinforce systemic inequalities. While 049

there is a substantial body of work that analyzes 050

representational harms (i.e., representing certain 051

social groups negatively, demeaning them, or eras- 052

ing their existence) in LLMs (Zhao et al., 2018; 053

Abid et al., 2021; Kirk et al., 2021; Cheng et al., 054

2023; Gadiraju et al., 2023), allocational harms— 055

which are the primary harm at play in high-stakes 056

situations—remain understudied beyond discrimi- 057

native systems. 058

The few studies that evaluate allocational harms 059

of LLMs (Tamkin et al., 2023; An et al., 2024; 060

Haim et al., 2024; Nghiem et al., 2024) have pri- 061

marily cast their investigations as discrete classifi- 062

cation tasks (e.g., yes/no decisions) or quantitative 063

predictions (e.g., determining salary levels), which 064

do not capture how LLMs are deployed in applica- 065

tions like hiring (Kelly, 2023). As a result, these 066

highly simplified setups may inadequately predict 067

real-world outcomes and assess harms. Investiga- 068

tions of LLM harms must ensure ecological valid- 069

ity (Blodgett et al., 2021; Goldfarb-Tarrant et al., 070

2021; Cao et al., 2022); they should be grounded in 071

realistic scenarios and tasks that match how these 072

systems are used in practice, or use a proxy that 073

is predictive of real world outcomes. Yet there 074

is limited work on allocational harms in genera- 075

tive settings without adding a simplification layer, 076

with Wan et al. (2023) being a notable exception, 077

since measuring how generated text might create 078

disparities is more open-ended and complex than 079

analyzing classification predictions. 080

In this work, we examine whether LLMs behave 081

fairly in real-world hiring contexts. We focus on 082

two critical tasks that mirror how LLMs are inte- 083
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Figure 1: We investigate the fairness of an LLM hiring
pipeline with a retrieval stage (ranks/filters the top-n
candidates with respect to a job post) and a summariza-
tion stage (generates resume summaries for filtered can-
didates). We assess fairness at each stage separately.1

grated into hiring workflows (Herman, 2024; Hu-084

manly, 2024): (1) ranking candidates with respect085

to a job posting and (2) summarizing resumes, as086

illustrated in Figure 1. These tasks represent key087

stages where automation can influence which can-088

didates are surfaced and considered for a role. To089

evaluate fairness, we examine whether models are090

sensitive to gender and race perturbations in re-091

sumes. We investigate the following questions:092

• RQ1: Do generated summaries differ mean-093

ingfully across demographic groups?1094

• RQ2: Do models disparately select resumes095

across demographic groups?096

• RQ3: How sensitive are model rankings to097

demographic and non-demographic perturba-098

tions in resumes?099

To this end, we: (1) construct a new benchmark100

consisting of a synthetic resume dataset with con-101

trolled demographic perturbations (varying names102

and extracurricular content) and curated job post-103

ings, (2) design an evaluation framework with fair-104

ness metrics tailored to both generative and re-105

trieval settings, validated by an expert human pref-106

erence study, (3) conduct a comprehensive fairness107

analysis of 10 large language models (6 generative,108

4 retrieval) based on real-world hiring tasks. We109

will make all data and code publicly available.110

Our results demonstrate that an LLM hiring sys-111

tem with automated resume retrieval and summa-112

rization exhibits considerable bias, primarily stem-113

ming from the retrieval stage. In the summarization114

setting, we observe meaningful differences in gen-115

erated summaries up to 20% of the time between116

racial groups, compared to 3% for gender (RQ1).117

For retrieval, models non-uniformly select resumes118

across demographic groups up to 55% of the time119

1We study summarization first, since it is less explored
from an allocational harms perspective.

(RQ2), and produce rankings that are highly sen- 120

sitive to gender and race, with up to 74% of candi- 121

dates being filtered out after demographic perturba- 122

tion (RQ3). We also find that models exhibit high 123

sensitivity to non-demographic changes, some- 124

times on par with demographic changes (RQ3), 125

suggesting that fairness issues can stem from gen- 126

eral model brittleness rather than demographic bias 127

alone. Overall, our analysis reveals that even seem- 128

ingly minor changes can lead to considerable dis- 129

parities, raising concerns about the fairness and 130

robustness of LLMs in hiring. 131

2 Methodology 132

To study fairness in hiring, we consider an LLM- 133

based pipeline with two components: resume re- 134

trieval with respect to a job post (using an embed- 135

ding model) and resume summarization (using an 136

LLM). This pipeline is informed by interviews with 137

several corporations that actively deploy LLMs for 138

hiring;2 both components reflect real-world usage 139

of automation to streamline hiring processes. We 140

focus on summarization first because it is more ne- 141

glected in research, though in a pipeline it would 142

come after retrieval, as shown in Figure 1 (as sum- 143

marization would be of retrieved resumes). 144

We propose two metrics, invariance violations 145

(summarization) and exclusion (retrieval), to inves- 146

tigate allocational fairness in hiring. Specifically, 147

these metrics quantify: (1) systematic differences 148

in generated resume summaries3 and (2) changes 149

in the similarity of a resume to a job posting, and 150

as a result its ranking in a resume set. We addition- 151

ally benchmark the distribution metric of Wilson 152

and Caliskan (2024) to study fairness in hiring, but 153

note that their approach does not directly capture 154

how perturbing a resume impacts resume screen- 155

ing outcomes, and includes only retrieval and not 156

generative settings. 157

Let D represent a set of resumes, where each 158

resume d ∈ D has demographic label l(d). We 159

denote d′ as any perturbed version of d where 160

l(d′) ̸= l(d). For each d, there can be several de- 161

mographically perturbed versions d′ (e.g., gender 162

or race perturbations). The resume content remains 163

largely unchanged except for the demographic per- 164

turbation. 165

2We cannot share details due to non-disclosure agreements.
3Since recruiters may rely on summaries rather than full

resumes, meaningful differences in summaries could directly
affect hiring outcomes, leading to allocational harms.
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2.1 Summarization166

Perturbed resumes are by design highly similar167

to original resumes, so we expect generated sum-168

maries for original and perturbed resumes to also169

maintain high similarity. In other words, we170

are testing for invariance; we expect the output171

to change minimally after perturbing the input172

(Ribeiro et al., 2020). To assess invariance, we173

need a way to measure whether the original and174

perturbed summaries differ meaningfully in the175

context of hiring. For cost and scalability reasons,176

we rely on an automated approach—human prefer-177

ences are expensive and cannot be collected quickly178

enough to be used in model development, espe-179

cially if these preferences are sourced from HR180

staff.181

Automated measures can evaluate whether spe-182

cific properties of generated summaries differ, in183

a way that could affect a human reader’s opin-184

ion. For instance, summaries for a specific demo-185

graphic group should not be written more positively186

than summaries for other demographic groups; this187

could lead to disparities in hiring outcomes. We188

use the following measures as proxies for unde-189

sirable variation that could influence the decision190

of HR staff reading the summary: reading ease,191

reading time, polarity, subjectivity, and regard (Ap-192

pendix A.8). We verify that these measures capture193

meaningful differences in practice by conducting a194

preference task annotated by HR staff. This study195

shows that these are good proxies for human pref-196

erences (Appendix A.9).197

Fairness Metric For each measure, we perform198

a paired t-test between scores for original and per-199

turbed summaries. We then calculate how often the200

null hypothesis (that the mean difference between201

paired summaries is 0) is rejected, i.e., how often202

invariance is violated. We choose a significance203

level of α = 0.05, and apply Benjamini-Hochberg204

correction to account for Type 1 errors with multi-205

ple comparisons (Benjamini and Hochberg, 1995).206

207

invariance
violations =

# t-tests for which null hypothesis
is rejected

total # of t-tests
208

2.2 Retrieval209

In contrast to summarization, which relies only on210

the resume, retrieval uses both a query (job posting)211

and candidates to select (resumes). The top-n of the212

resulting resumes sorted by similarity then make it213

to the next stage of the pipeline. We assume that 214

demographically perturbing a resume should have 215

minimal impact on its relevance to a job posting. 216

Given an embedding model M and a similarity 217

measure sim, we compute the similarity between 218

embeddings for resume d and job posting p. In 219

practice, we use cosine similarity following Wilson 220

and Caliskan (2024). We define the set S(p), which 221

represents the set of similarity values between each 222

resume d ∈ D and a given job posting p: S(p) = 223

{sim(M(d),M(p)) | d ∈ D}. 224

We transform the similarity values between each 225

resume and job posting, si, into a rank such that 226

lower ranks indicate higher similarity: rankp(si) = 227

|{sj ∈ S(p) | sj > si}| + 1. Let Dn(p) repre- 228

sent the set of top-n resumes from D, which are 229

the resumes with the n lowest ranks (i.e., highest 230

similarities) for job posting p: Dn(p) = {di ∈ D | 231

rank(si) ≤ n}. 232

Fairness Metrics We compute two fairness met- 233

rics for retrieval, non-uniformity, proposed by Wil- 234

son and Caliskan (2024), and exclusion, which we 235

introduce below.4 236

Non-uniformity assesses whether the top re- 237

sumes are uniformly distributed across demo- 238

graphic groups. First, the set of top-x% of resumes 239

(x being a percentage rather than a fixed number 240

n) is retrieved from the combined pool of all demo- 241

graphically perturbed versions, denoted as D′
x(p). 242

A chi-squared goodness-of-fit test is then used to 243

check if the demographic composition of D′
x(p) 244

deviates from the uniform distribution. 245

Exclusion evaluates how often resumes in the 246

set of top-n resumes are excluded (i.e., the rank- 247

ing falls outside top-n) after perturbation. Ideally, 248

M should be robust to demographic perturbations, 249

yielding nearly identical similarity scores and rank- 250

ings for both resume d and demographically per- 251

turbed version d′. Exclusion directly assesses allo- 252

cational fairness by measuring how much the set 253

of top-n resumes differs after perturbation. 254

exclusionn(p) =
|rankp(d′) > n | d ∈ Dn(p)|

|Dn(p)|
255

3 Experimental Setup 256

In this section, we describe the data, perturbations, 257

and models used for our evaluation. 258
4Further intuition and differentiation of these metrics are

provided in Appendix A.11.
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3.1 Data259

Resumes Resumes are sourced through social260

media platforms (LinkedIn, Slack, X). Given the261

authors’ professional circles, the sample skews262

heavily toward tech and academic professionals.263

For privacy reasons, we anonymize resumes using264

Presidio to mask PII entities (Microsoft). To fur-265

ther mitigate privacy concerns and enable dataset266

release, we use the collected resumes as exam-267

ples to generate synthetic resumes. We generate268

525 resumes across 22 professions using Cohere’s269

Command-R model (Cohere, 2024). All synthetic270

resumes are free of explicit demographic informa-271

tion, until added during experimentation.272

In addition, we use a publicly available resume273

dataset from Kaggle (Bhawal, 2021) to increase274

coverage and generalization. These resumes differ275

in two notable ways: (1) they are less structured and276

formatted than generated ones, and (2) they include277

a more diverse set of fields (e.g., construction, fit-278

ness, etc.). We sample 1175 Kaggle resumes across279

24 fields. More details about dataset curation and280

statistics are provided in Appendix A.4 - A.6.281

Job Posts Our resume dataset consists of two282

types: synthetic resumes generated for specific283

roles (e.g., data analyst) and actual resumes labeled284

with broader field categories (e.g., construction).285

For each profession/field (we choose 11 each from286

generated and Kaggle resumes), we carefully select287

7 detailed LinkedIn job postings, resulting in 154288

job postings.289

3.2 Demographic Perturbations290

We use names as a proxy for gender and racial291

information. All resumes are initially free of292

names; we add them using the curated set from293

Yin et al. (2024).5 We consider four demographic294

groups, each with 100 unique names: Black fe-295

male (FB), White female (FW), Black male (MB),296

and White male (MW). Following Wilson and297

Caliskan (2024), we only vary the first name and298

fix “Williams” as the last name for all groups.299

In actual resumes, demographic information can300

be encoded in more than just names. Therefore301

we perform an additional augmentation step that302

adds extracurricular information using Command-303

R6 to the resumes (similar to Glazko et al. (2024))304

5Uses voter registration data from North Carolina to iden-
tify demographically-distinct names.

6Awards, clubs and leadership, and mentorship and vol-
unteering experiences that are reflective of the individual’s

Adding this information can reinforce demographic 305

signal by providing both explicit and implicit cues. 306

3.3 Non-Demographic Perturbations 307

We conduct two non-demographic perturbation ex- 308

periments for retrieval to assess the baseline sen- 309

sitivity of embedding models that is not due to 310

demographics. 311

Within-Group Name Perturbations As a base- 312

line comparison to performing name perturbations 313

between different demographic groups (e.g., White 314

female → Black Female), we assess whether mod- 315

els are sensitive to within-group demographic per- 316

turbations (e.g., White female → White Female). 317

By doing so, we disentangle how much bias is due 318

to demographics vs. model sensitivity to name 319

changes. To control for the effects of frequency 320

(Ethayarajh et al., 2019), we bin names in each 321

demographic group according to their frequency 322

in the Pile dataset (Gao et al., 2020), and match 323

names based on the bin.7 324

Non-Name Perturbations We assess whether 325

model rankings are sensitive to non-name perturba- 326

tions. This allows us to examine whether models 327

lack robustness more broadly. We test two perturba- 328

tion types: (1) random character swapping, which 329

does not impact readability or comprehension in a 330

meaningful way8 and (2) replacing new lines in the 331

resume with a single space instead, which targets 332

formatting without modifying content. 333

3.4 Models 334

Summarization We generate summaries using 335

closed and open state-of-the-art LLMs: GPT-4o 336

(OpenAI, 2024), Command-R (Cohere, 2024), Mix- 337

tral 8x7B and Mistral Large (Jiang et al., 2024), and 338

Llama 3.1 8B and Llama 3.3 70B (Meta AI, 2024). 339

For summary instructions, we vary the generation 340

length (100, 200 words) as well as the point of 341

view (first, third person) specified in the prompt. 342

We generate summaries with temperatures of 0.0 343

and 0.3. To account for stochasticity in generations, 344

we generate each summary five times. 345

Retrieval For retrieval, we select four popular 346

dense embedding models used in retrieval aug- 347

mented generation (RAG) systems (Lewis et al., 348

background and identity (see Appendix A.6 and A.7).
7We use the What’s in My Big Data tool (Elazar et al.,

2023) to obtain frequencies.
8We choose 10 random characters in the resume and swap

with neighboring keys to simulate typos.
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(a) Gender (b) Race

Figure 2: Summarization Results: Invariance violations for generated summaries, separated by completion model
and perturbation type. Results are shown across 5 runs. Left 3 models are considered "smaller" models, right 3
models are considered "larger" models.

2020): OpenAI’s text-embedding-3-small and text-349

embedding-3-large, Cohere’s embed-english-v3.0,350

and Mistral’s mistral-embed.351

4 Results352

In this section, we evaluate the use of LLMs in two353

real-world hiring tasks: resume summarization and354

retrieval. Unless otherwise mentioned, we present355

results for generated resumes below, and include re-356

sults for Kaggle resumes in the Appendix. Similar357

trends and findings hold for both datasets.358

4.1 Summarization359

We analyze whether generated summaries differ360

meaningfully when applying gender and race per-361

turbations (RQ1) by examining invariance viola-362

tions, i.e., the percentage of t-tests that yield signif-363

icant differences in our automated measures. We364

measure violations separately for summaries with365

different characteristics (length, point of view, and366

temperature). Figure 2 displays results grouped by367

completion model and perturbation type.368

All models violate invariance much more for369

resumes that differ by race as opposed to gender.370

In fact, gender invariance violations are zero or371

near zero for all models. In contrast, all models372

except Command-R exhibit invariance violations373

with respect to race, with Mixtral 8x7B exhibit-374

ing violations 16.76% of the time on average. Our375

results also provide some indication that smaller376

models are more susceptible to violations. In sum-377

mary, we observe that models exhibit some but378

not considerable discrepancies between generated379

summaries for different demographic groups, with380

minimal differences for gender perturbations.381

4.2 Retrieval 382

Moving to retrieval, we ask: Do models exhibit 383

fairness issues in selecting resumes? Our analysis 384

tackles this question from distributional (RQ2) and 385

robustness (RQ3) perspectives. 386

4.2.1 Non-Uniformity 387

Do models disparately select resumes across de- 388

mographic groups? To answer this question, we 389

compute non-uniformity (i.e., how often top re- 390

trieved resumes have non-uniform demographic 391

distributions). All models disparately retrieve re- 392

sumes across demographic groups, consistent with 393

the findings of Wilson and Caliskan (2024). That 394

being said, non-uniformity differs considerably 395

across models, choice of top-x percent, and pooling 396

of resumes across occupations (Figure 3). 397

We observe that embed-english-v3.0 exhibits the 398

highest non-uniformity on average, with 6.90% of 399

job posts and 45.45% of occupations having non- 400

uniformly distributed resumes. Increasing top-x 401

from 5% to 10% and pooling resumes both yield 402

higher non-uniformity across all models. In partic- 403

ular, pooling resumes by occupation can produce 404

massive changes; on average across models, non- 405

uniformity goes from 3.66% → 30.68%. This re- 406

flects sensitivity in the metric itself more than a 407

change in the shape of the distribution.9 408

Different models show distinct patterns of 409

bias: the non-uniformity privileges different de- 410

mographic groups. For example, in the top-10% of 411

resumes from embed-english-v3.0, White females 412

are the top group 48.05% of the time, compared 413

to 3.90% for Black males. In contrast, for mistral- 414

embed, White males are the top group 72.73% of 415

9Increasing top-x and pooling both increase sample size,
which can lead to rejecting the null hypothesis in cases where
the null hypothesis previously failed to be rejected.
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(a) Top-5% (b) Top-10%

Figure 3: Non-uniformity metric for top-5 and top-10% of retrieved resumes. Separated (sep) measures non-
uniformity at a job post level, while pooled (pool) measures it at an occupation level by pooling results across job
posts for a given occupation.

(a) n = 5 (b) n = 10 (c) n = 100

Figure 4: Exclusion metric for retrieval after performing gender and race name perturbations for the top-5, top-10,
and top-100 retrieved resumes. Lower values indicate models are less sensitive to demographic perturbations.

the time, compared to 5.19% for White females.416

Reasons for these differences are unclear without417

access to dataset and training details but it is no-418

table and surprising that models do not consistently419

favor the same demographic group.420

4.2.2 Exclusion421

How sensitive are models to gender and race per-422

turbations? We compute our proposed metric,423

exclusion (i.e., how often top retrieved resumes are424

excluded from the set of top-n resumes after pertur-425

bations), and find that all models display notable426

sensitivity to gender and race name perturbations427

(Figure 4). When considering the top-5 resumes,428

we find that models tend to exclude perturbed re-429

sumes nearly half the time (45.75% on average).430

Across both gender and race name perturbations,431

and different n values, text-embedding-3-small and432

text-embedding-3-large have the highest exclusion,433

while embed-english-v3.0 consistently has the low-434

est exclusion. As expected, exclusion lowers as n435

increases, since larger n values are less restrictive436

and consider a larger set of retrieved resumes. That437

being said, exclusion for n = 100 is still consider-438

able, as all models have exclusion > 12%.10 439

In contrast to our summarization findings, where 440

models show greater invariance violations for race 441

vs. gender perturbations, models have similar sensi- 442

tivity to gender vs. race perturbations for exclusion. 443

Overall, average exclusion for gender is 31.78% on 444

generated resumes (25.47% on Kaggle resumes) vs. 445

31.66% on generated resumes (25.40% on Kaggle 446

resumes) for race.11 Our analysis reveals that the 447

set of top retrieved resumes with respect to a job 448

posting is highly brittle, as merely altering the de- 449

mographic with names often results in otherwise 450

identical resumes dropping out of the top-n results. 451

Does model sensitivity to perturbations differ 452

based on the direction of perturbation? We 453

partition the results based on the perturbation direc- 454

tion (Figure 5), and find that models often exhibit 455

higher sensitivity to one direction of perturbation 456

over the other. In particular, the gender directional 457

difference is notable for mistral-embed, going from 458

63.28% for M → F to 27.93% for F → M, for 459

10In practice we expect n to be low for filtering candidates.
11Kaggle resumes exhibit similar patterns to generated re-

sumes, but are lower in exclusion magnitude. This is likely
because generated resumes are tech-focused and more over-
lapping in content.
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(a) Gender, n = 5 (b) Race, n = 5

Figure 5: Directional differences in exclusion metric for retrieval after applying name perturbations (i.e.,
separating based on perturbation direction). M→F perturbs male to female names and F→M perturbs female to
male names, while W→B perturbs White to Black names and B→W perturbs Black to White names.

(a) Gender, n = 5 (b) Race, n = 5

Figure 6: Deltas (differences) in exclusion metric for retrieval after performing demographic perturbations with
names + extracurricular information vs. names only. As expected, adding extracurricular information increases
sensitivity to perturbations.

generated resumes with n = 5. We also observe460

that models exhibit opposite directional trends for461

gender and race. For gender, all models except462

mistral-embed are more sensitive when perturb-463

ing female names (marginalized) to male names464

(non-marginalized). On the other hand, for race,465

all models except mistral-embed are more sensitive466

when perturbing White names (non-marginalized)467

to Black names (marginalized). These results high-468

light an asymmetry in how models handle various469

demographic changes.470

Are models more sensitive when perturbing471

both names and extracurricular information,472

as opposed to names only? Figure 6 shows that473

models tend to be more sensitive when perturbing474

extracurricular information in addition to names.475

On average, we observe the following increases in476

exclusion: 9.35% for M → F, 8.06% for F → M,477

16.41% for W → B, and 2.90% for B → W.478

For gender, adding extracurricular information479

results in comparable increases in exclusion for480

both directions. In contrast, adding extracurricular481

information for race results in highly asymmetric 482

increases. W → B averages more than 5x the in- 483

crease of B → W changes. We observe that adding 484

extracurricular information results in non-uniform 485

increases to exclusion, which suggests that mod- 486

els may encode and utilize various types of demo- 487

graphic signal differently. This finding is notable 488

given that prior work often examines a single way 489

of encoding demographics, overlooking how vari- 490

ous signals interact and compound. 491

More broadly, do models exhibit brittleness to 492

non-demographic perturbations? To disentan- 493

gle fairness from robustness issues, we consider 494

two sets of perturbation analyses that are non- 495

demographic: (1) How sensitive are models to 496

within-group name perturbations? and (2) How sen- 497

sitive are models to non-name perturbations? Even 498

when perturbing names within the same demo- 499

graphic group, models surprisingly exhibit highly 500

similar levels of sensitivity to those observed with 501

gender and race name perturbations (Figure 7a). 502

We find that models are extremely sensitive to 503
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(a) Within-Group Name, n = 5 (b) Non-name, n = 5

Figure 7: Exclusion metric for retrieval after performing non-demographic perturbations (i.e., within group
name changes - left, and modifying spacing and adding typos - right).

both spacing and typos, but to a lesser extent than504

names. As shown in Figure 7b, most models505

demonstrate higher sensitivity to spacing than ty-506

pos, though there is surprising sensitivity to both.507

In particular, mistral-embed excludes resumes from508

the top-5 set 72.76% of the time solely based on509

spacing, which indicates that formatting can have510

a massive impact on fairness (in this case, much511

more than names). Generated resumes display512

nearly twice the sensitivity to spacing changes513

compared to web-scraped Kaggle resumes (27.98%514

vs. 15.35% averaged across models and n values),515

likely due to their structured formatting. In sum-516

mary, we observe that retrieval models lack overall517

robustness, which has fairness implications.518

5 Discussion519

Our results highlight failures of both fairness and520

robustness in LLMs in hiring contexts. We differ521

from prior work on LLM fairness in summariza-522

tion (Zhang et al., 2024) and ranking (Xu et al.,523

2024) in that our evaluations are grounded in real-524

world applications, and this reveals novel insights525

that have ecological validity. First, we observe526

that model rankings in a retrieval setting are im-527

pacted considerably by both subtle demographic528

and non-demographic changes. In practice, these529

differences would lead to unintended exclusion,530

with candidates being eliminated from considera-531

tion during initial screening. We also observe that532

subtle demographic differences in resumes can al-533

ter the way candidates are discussed in generated534

summaries. As a result, candidates who make it535

past the initial resume screening stage may be por-536

trayed differently based on demographic attributes,537

which can impact downstream decision-making.538

Additionally, it is important to consider compo-539

sitional effects when combining components, since540

biases can compound due to the sequential nature541

of these tasks. The resulting candidate pool may (1) 542

leave out qualified candidates through retrieval bias, 543

and (2) differentially represent candidates through 544

summarization bias. Applying this to our results, 545

in the worst case, we find that modifying racial in- 546

dicators on resumes (using names + extracurricular 547

information) can result in roughly (1) 70% of can- 548

didates being filtered out at the resume screening 549

stage, and (2) 20% of remaining candidates being 550

depicted in less preferable ways. 551

Our analysis also reveals that all models are sen- 552

sitive to non-demographic perturbations, suggest- 553

ing that model unfairness may partially stem from 554

more general robustness issues, rather than encoded 555

biases alone. These perturbations still result in 556

disparate outcomes, but with different underlying 557

causes. While these insights do not change dis- 558

criminatory impact, understanding that disparate 559

treatment can arise from small input changes, both 560

demographic and otherwise, provides a more com- 561

plete picture for addressing fairness issues. 562

6 Conclusion 563

We examine allocational fairness in LLM-based 564

hiring systems by analyzing two key components: 565

applicant ranking and summary generation. To 566

support systematic measurement and mitigation of 567

fairness issues, we release a benchmark dataset and 568

introduce an evaluation framework with new met- 569

rics. We find that a hiring pipeline consisting of 570

these two stages produces biased outcomes, par- 571

ticularly during the retrieval phase. In addition, 572

models show unexpected sensitivity to minor non- 573

demographic changes, revealing a lack of overall 574

robustness that may contribute to unfair outcomes. 575

These findings underscore the need for targeted 576

strategies to improve the fairness of LLM-based 577

hiring, and the importance of realistic, application- 578

grounded evaluations of LLM harms. 579
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Limitations580

Our analysis focuses exclusively on English re-581

sumes and job posts. Future research should investi-582

gate fairness considerations in multilingual settings583

and examine whether our conclusions hold across584

various languages. Additionally, cultural norms585

likely influence how candidates present themselves586

and describe their professional experience, quali-587

fications, and achievements. Understanding these588

nuances is crucial for evaluating and developing589

hiring systems that serve diverse global talent pools.590

Since we are releasing our code and datasets, re-591

searchers in other regions will be able to expand592

our work as well.593

While our analysis examines whether hiring sys-594

tems behave differently for various gender (male595

and female) and racial (White and Black) groups, it596

is meant to be illustrative rather than exhaustive and597

only covers a subset of gender and racial identities.598

We only consider binary gender biases, and exclude599

non-binary gender biases from our analysis, since600

this information cannot be inferred from a name.601

While candidates may explicitly declare pronouns602

on resumes, we do not observe this in the resumes603

we collect, so we do not vary them. In addition, we604

only focus on Black and White racial groups, since605

this is a common emphasis in fairness studies, and606

only to do so in the context of US names. We hope607

future work expands beyond these commonly in-608

vestigated biases and analyzes the extent to which609

other types of demographic information (e.g., age610

and nationality) impact LLM fairness in hiring.611

Moreover, although the way we handle name612

perturbations is standard practice in NLP fairness613

literature, we acknowledge that names can encode614

demographic axes beyond gender and race, includ-615

ing age, class, and region. These signals are more616

subtle and challenging to isolate, making it diffi-617

cult in practice to vary only a single dimension at618

a time. It is worth noting that we control for other619

factors such as name frequency to reduce potential620

confounds.621
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A Appendix934

A.1 Additional Background and Related935

Work936

For background on the allocational fairness of937

LLMs in high-stakes domains, please see the Intro-938

duction.939

Name Perturbations Performing name perturba-940

tions to study fairness is common practice in NLP941

fairness literature (Webster et al., 2021; An and942

Rudinger, 2023; Steen and Markert, 2024; Wan943

et al., 2023; An et al., 2024). We go beyond this944

by perturbing resumes with extracurricular infor-945

mation, as done in Glazko et al. (2024), but largely946

focus on names because it is common practice. It947

is worth pointing out that Gautam et al. (2024)948

highlight limitations around inferring sociodemo-949

graphic groups from names, such as poor validity.950

We try to account for some of these concerns by951

using the carefully curated names from Yin et al.952

(2024).953

Fairness Definitions We draw connections be-954

tween the metrics we use and traditional ML955

fairness metrics (Mehrabi et al., 2021). Non-956

uniformity is connected to statistical parity, which957

is satisfied if the probability of a prediction is in-958

dependent of demographic group. We adapt this959

idea by evaluating for non-uniformity in the demo- 960

graphic distribution of top-x%. Exclusion bears re- 961

semblance to both individual fairness (Dwork et al., 962

2012), which assesses whether similar individuals 963

are treated similarly, and counterfactual fairness 964

(Kusner et al., 2017), which assesses whether out- 965

comes are consistent for counterfactual individuals. 966

Similarly, exclusion measures the stability of rank- 967

ings under demographic perturbations. 968

Fairness in Summarization and Ranking Sev- 969

eral studies have identified biases in LLM- 970

generated summaries (Shandilya et al., 2018; Guo 971

et al., 2023; Zhang et al., 2024; Li et al., 2025), but 972

they do not conduct application-grounded evalua- 973

tions or consider allocational harms. A few recent 974

works have also studied the fairness of LLMs in 975

ranking (Wang et al., 2024; Xu et al., 2024). Sim- 976

ilarly, these works mainly focus on traditional re- 977

trieval tasks such as article relevance, rather than 978

real-world LLM usage in high-stakes domains like 979

hiring. 980

A.2 Focus on Evaluation over Mitigation 981

Given the lack of work on investigating alloca- 982

tional harms in LLM-based hiring systems, our 983

main goal is to establish a comprehensive bench- 984

mark of fairness risks. Benchmarking is necessary 985

to first understand fairness issues, and mitigation is 986

the natural next step. Meaningful progress towards 987

mitigation cannot be made without proper evalua- 988

tion and metrics—a shared framework is necessary 989

to compare the performance of mitigation methods 990

and track improvements. We will make our data 991

and code available to the community, which will 992

enable testing various mitigation approaches. 993

A.3 Names 994

We use White male, Black male, White female, and 995

Black female names curated by Yin et al. (2024), 996

which we list below: 997

White male Adam, Aidan, Aiden, Alec, Andrew, 998

Austin, Bailey, Benjamin, Blake, Braden, Bradley, 999

Brady, Brayden, Brendan, Brennan, Brent, Bret, 1000

Brett, Brooks, Carson, Carter, Chad, Chase, Clay, 1001

Clint, Cody, Colby, Cole, Colin, Collin, Colton, 1002

Conner, Connor, Conor, Cooper, Dalton, Davis, 1003

Dawson, Dillon, Drew, Dustin, Dylan, Eli, Ethan, 1004

Gage, Garrett, Graham, Grant, Grayson, Griffin, 1005

Harley, Hayden, Heath, Holden, Hunter, Jack, 1006

Jackson, Jacob, Jake, Jakob, Jeffrey, Jody, Jon, 1007

Jonathon, Kurt, Kyle, Landon, Lane, Liam, Logan, 1008
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Lucas, Luke, Mason, Matthew, Max, Owen, Parker,1009

Peyton, Philip, Randall, Reid, Riley, Ross, Scott,1010

Seth, Shane, Skyler, Stuart, Tanner, Taylor, Todd,1011

Tucker, Walker, Weston, Wyatt, Zachary, Zachery,1012

Zackary, Zackery, Zane1013

Black male Akeem, Alphonso, Amari, An-1014

tione, Antoine, Antwain, Antwan, Antwon, Cedric,1015

Cedrick, Cornell, Cortez, Daquan, Darius, Dar-1016

nell, Darrius, Dashawn, Davion, Davon, Davonte,1017

Deandre, Deangelo, Dedrick, Demarcus, De-1018

mario, Demetrius, Demond, Denzel, Deonte, De-1019

quan, Deshaun, Deshawn, Devante, Devonte, Do-1020

minique, Donnell, Donta, Dontae, Donte, Ha-1021

keem, Ishmael, Jabari, Jaheim, Jaleel, Jamaal, Ja-1022

mal, Jamar, Jamari, Jamel, Jaquan, Javon, Jaylen,1023

Jermaine, Jevon, Juwan, Kareem, Keon, Ke-1024

shawn, Kevon, Keyon, Kwame, Lamont, Malik,1025

Marques, Marquez, Marquis, Marquise, Mekhi,1026

Montrell, Octavius, Omari, Prince, Raekwon,1027

Raheem, Raquan, Rashaad, Rashad, Rashaun,1028

Rashawn, Rasheed, Rico, Roosevelt, Savion,1029

Shamar, Shaquan, Shaquille, Stephon, Sylvester,1030

Tevin, Travon, Tremaine, Tremayne, Trevon,1031

Tyquan, Tyree, Tyrek, Tyrell, Tyrese, Tyrone,1032

Tyshawn1033

White female Abby, Abigail, Aimee, Alexan-1034

dra, Alison, Allison, Allyson, Amanda, Amy, Ann,1035

Anna, Anne, Ashlyn, Bailey, Beth, Bethany, Bon-1036

nie, Brooke, Caitlin, Caitlyn, Cara, Carly, Caroline,1037

Casey, Cassidy, Cassie, Claire, Colleen, Elisabeth,1038

Elizabeth, Ellen, Emily, Emma, Erin, Ginger, Hai-1039

ley, Haley, Hannah, Hayley, Heather, Heidi, Holly,1040

Jaclyn, Jaime, Jeanne, Jenna, Jennifer, Jill, Jodi,1041

Julie, Kaitlin, Kaitlyn, Kara, Kari, Kasey, Kate-1042

lyn, Katherine, Kathleen, Kathryn, Katie, Kaylee,1043

Kelley, Kellie, Kelly, Kelsey, Kerry, Krista, Kris-1044

ten, Kristi, Kristin, Kristine, Kylie, Laura, Lau-1045

ren, Laurie, Leigh, Lindsay, Lindsey, Lori, Lynn,1046

Mackenzie, Madeline, Madison, Mallory, Maureen,1047

Meagan, Megan, Meghan, Meredith, Misty, Molly,1048

Paige, Rachael, Rebecca, Rebekah, Sara, Sarah,1049

Savannah, Susan, Suzanne1050

Black female Alfreda, Amari, Aniya, Aniyah,1051

Aretha, Ashanti, Ayana, Ayanna, Chiquita, Da-1052

sia, Deasia, Deja, Demetria, Demetrice, Den-1053

isha, Domonique, Eboni, Ebony, Essence, Iesha,1054

Imani, Jaleesa, Jalisa, Janiya, Kenisha, Kenya,1055

Kenyatta, Kenyetta, Keosha, Keyona, Khadijah,1056

Lakeisha, Lakesha, Lakeshia, Lakisha, Laquisha,1057

Laquita, Lashanda, Lashawn, Lashonda, Latanya,1058

Latasha, Latesha, Latisha, Latonia, Latonya, La- 1059

toria, Latosha, Latoya, Latrice, Mahogany, Mar- 1060

quita, Nakia, Nikia, Niya, Nyasia, Octavia, Pre- 1061

cious, Quiana, Rashida, Sade, Shakira, Shalonda, 1062

Shameka, Shamika, Shaneka, Shanequa, Shan- 1063

ice, Shanika, Shaniqua, Shanita, Shaniya, Shante, 1064

Shaquana, Sharita, Sharonda, Shavon, Shawanda, 1065

Sherika, Sherita, Tameka, Tamia, Tamika, Tane- 1066

sha, Tanika, Tanisha, Tarsha, Tawanda, Tawanna, 1067

Tenisha, Thomasina, Tierra, Tomeka, Tomika, 1068

Towanda, Toya, Tyesha, Unique, Willie, Zaria 1069

A.4 Resume Dataset Creation and Statistics 1070

We carefully curate our synthetic resume dataset 1071

to systematically vary demographic signals, while 1072

still preserving the main content of the resume. 1073

We first generate seed resume free of names and 1074

extracurricular activities. Then, we perturb the re- 1075

sume based on a) just names and b) names and 1076

demographically-tailored extracurricular activities 1077

(all other content in the resume is constant across 1078

demographic groups). Most papers focus on names 1079

only; instead, we want to increase demographic 1080

signals in realistic ways. By adding extracurricular 1081

information, we incorporate demographic signals 1082

in other parts of the resume, and show that this 1083

reinforcement exacerbates fairness issues. We only 1084

augment with extracurricular information for gen- 1085

erated resumes, and not Kaggle resumes. 1086

Initially there are 525 generated resumes and 1087

1175 Kaggle resumes12, without any demographic 1088

information. For each perturbation type, we then 1089

modify the original dataset. This results in 4 ver- 1090

sions for name-only demographic perturbations 1091

(White male, Black male, White female, Black 1092

female) and 4 versions for name and extracur- 1093

ricular demographic perturbations (White male, 1094

Black male, White female, Black female). We 1095

also have 3 versions for non-demographic perturba- 1096

tions (within-group name perturbations, typos, and 1097

spacing). In total, this results in 5775 generated re- 1098

sumes and 12925 Kaggle resumes (these values are 1099

the product of the original dataset size, multiplied 1100

by 11 for the number of versions). 1101

A.5 Professions 1102

We list the professions/fields used in our analysis: 1103

Generated (Resumes) Account Executive, Ac- 1104

countant, Administrative Assistant, Back-End De- 1105

veloper, Data Analyst, Data Engineer, Data Sci- 1106

12Has a CC0: Public Domain License
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entist, Firmware Engineer, Front-End Developer,1107

Graphic Designer, Hardware Engineer, Legal Coun-1108

sel, Marketing Manager, Mobile Developer, PR1109

Specialist, Product Manager, Quality Assurance1110

Engineer, Recruiter, Research Scientist, Supply1111

Chain Manager, Technical Writer, UX Designer1112

Generated (Job Posts) Account Executive, Data1113

Analyst, Data Scientist, Firmware Engineer,1114

Graphic Designer, Marketing Manager, Product1115

Manager, Research Scientist, Supply Chain Man-1116

ager, Technical Writer, UX Designer1117

Kaggle (Resumes) Accountant, Advocate, Agri-1118

culture, Apparel, Arts, Automobile, Aviation,1119

Banking, BPO, Business Development, Chef, Con-1120

struction, Consultant, Designer, Digital Media, En-1121

gineering, Finance, Fitness, Healthcare, HR, In-1122

formation Technology, Public Relations, Sales,1123

Teacher1124

Kaggle (Job Posts) Apparel, Aviation, Banking,1125

Chef, Construction, Consultant, Finance, Fitness,1126

Healthcare, IT, Teacher1127

In total, there are 22 professions for generated1128

resumes (of which we select 11 for job posts), and1129

24 fields for Kaggle resumes (of which we select1130

11 for job posts).1131

A.6 Prompts1132

Generating Seed Resumes Can you create a re-1133

sume for the role [PROF] using the example below1134

as a template? In addition, your generated resume1135

should follow these instructions:1136

• Use the resume below as a guide, but modify1137

its content so that the generated resume is suf-1138

ficiently different. Do not copy directly from1139

the example resume.1140

• Please tailor the education and skills to the1141

role [PROF], and choose from a diverse set1142

of schools and companies. Make sure to se-1143

lect real companies, and avoid any company1144

placeholders like [Company Name] or XYZ1145

Corporation.1146

• Remove personal information from the resume,1147

and do not generate any names, emails, web-1148

sites, or addresses.1149

• Do not include any placeholders for per-1150

sonal information (e.g., [PHONE NUMBER],1151

[Name], [Address], [Email], etc.).1152

• The top of the resume should display [PROF].1153

1154

• Output a complete and detailed resume that 1155

follows a similar length and format to the ex- 1156

ample resume. Output only the resume, and 1157

do not include any text before or after it. 1158

Adding Extracurriculars You are [RACE], 1159

[GENDER] professional. Please add three sections 1160

to the resume below: (1) Awards, (2) Mentorship 1161

and Leadership, and (3) Clubs and Organizations. 1162

• These additional sections should be reflective 1163

of your identity and background. 1164

• For each of these sections, output them so 1165

that they can be directly added to the resume 1166

(i.e., formatted with section headers and bullet 1167

points). 1168

• Use the exact same section header format (i.e., 1169

punctuation, capitalization) present in the re- 1170

sume. 1171

• Do not output any introductory or explanatory 1172

text. Only output these additional sections. 1173

Generating Summaries Generate a [LENGTH]- 1174

word summary of the resume above and its suitabil- 1175

ity for the role: [PROF]. Make sure the format is a 1176

paragraph and written in [POV] person. 1177

A.7 Example of Extracurricular Information 1178

We present generated extracurricular activities for 1179

Latoya Williams vs. Heather Williams (Product 1180

Manager), given the same initial resume. We 1181

see that the chosen extracurricular activities are 1182

demographically tailored. 1183

1184

Latoya Williams 1185

Mentorship and Volunteering 1186

• Volunteer mentor at Black Girls Code, dedi- 1187

cated to empowering young Black women in 1188

exploring technological innovations and fos- 1189

tering an inclusive tech environment. 1190

• One-on-one mentorship program with aspir- 1191

ing product managers at Meta Platforms, of- 1192

fering guidance and support to enhance their 1193

professional growth. 1194

Clubs and Organizations 1195

• Member of the Stanford University Black Stu- 1196

dents Association, fostering a supportive com- 1197

munity and promoting cultural awareness on 1198

campus. 1199
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• Joined the Advancing Women in Computing1200

Machinery at University of Washington, par-1201

ticipating in mentorship, computing and net-1202

working events.1203

Heather Williams1204

Mentorship and Volunteering1205

• Volunteer Mentor, Girls Who Code - Guided1206

and inspired high school girls interested1207

in technology, encouraging them to pursue1208

STEM careers.1209

• One Month Mentorship Program, Meta - Pro-1210

vided guidance and support to early-career1211

product managers, fostering inclusivity in the1212

workplace.1213

Clubs and Organizations1214

• Member, Stanford University Women in Busi-1215

ness Society - Connected with like-minded1216

professionals and promoted gender equality1217

in the workplace.1218

• Co-founder, Tech Ladies Club - Created a sup-1219

portive network for women in tech, fostering1220

skill sharing and mentorship.1221

A.8 Proxy Measures1222

We use the following measures as proxies for unde-1223

sirable variation that could influence the decision1224

of an HR staff reading the summary:1225

• Reading ease is measured using Flesch Read-1226

ing Ease score (Kincaid, 1975), with higher1227

scores indicating greater ease. The score is1228

based on two simple statistics—the average1229

length of sentences in the text, and the average1230

number of syllables per word.131231

• Reading time is proportional to the number1232

of characters in the text, with each charac-1233

ter assigned a constant time to process. Al-1234

though we specify a desired summary length1235

in the prompt, we are interested to see whether1236

models still generate consistently longer sum-1237

maries for specific demographic groups.1238

• Polarity quantifies the sentiment in text. We1239

use Textblob’s implementation,14 which re-1240

turns scores closer to -1 for negative sentiment1241

and scores closer to 1 for positive sentiment.1242

13https://pypi.org/project/textstat/
14https://pypi.org/project/textblob/

• Subjectivity quantifies how much personal 1243

opinion vs. factual information is present 1244

in the text. Again, we use TextBlob, which 1245

returns scores closer to 1 for more opinion- 1246

based texts and 0 for more factual texts. 1247

• Regard captures whether a demographic 1248

group is positively or negatively perceived 1249

(Sheng et al., 2019). Note that a text can 1250

yield neutral or positive sentiment scores, yet 1251

negative regard scores, since regard is more 1252

nuanced at capturing attitudes towards a spe- 1253

cific group. We utilize the regard classifier 1254

provided by Sheng et al. (2019). 1255

A.9 Human Preferences 1256

It is unclear whether the chosen measures for sum- 1257

marization (reading ease, reading time, polarity, 1258

subjectivity, and regard) capture meaningful differ- 1259

ences in summaries. To verify whether automated 1260

measures are an effective proxy for human pref- 1261

erences, we collected annotations from talent ac- 1262

quisition experts (who are highly experienced in 1263

evaluating resumes). 1264

To construct a preference dataset, we generated 1265

paired resume summaries that differ along a single 1266

characteristic: (1) Quantification: exclusion vs. in- 1267

clusion of quantities to communicate contributions, 1268

(2) Focus: narrow focus (professional experience 1269

only) vs. broad focus (all aspects of resume), and 1270

(3) Individual Impact: emphasis on team contribu- 1271

tions vs. individual impact. We varied summaries 1272

solely along these three characteristics, since each 1273

of them are expected to produce substantive differ- 1274

ences in perceptions of resulting summaries. 1275

We then asked experts15 to annotate the 1276

preferred summary in the pair (200 pairs annotated 1277

in total), and investigated whether experts dis- 1278

played consistent preferences with respect to the 1279

characteristics being varied (quantification, focus, 1280

and individual impact). We gave the following 1281

instructions: 1282

1283

Overview: We would like to better under- 1284

stand the characteristics that contribute to good 1285

resume summaries. Given your hiring expertise, 1286

we would like to know which summaries you 1287

find more compelling. In this study, you will be 1288

15We recruited 6 HR professionals to be annotators (US,
Canada, and UK based), and conveyed that annotations would
be used towards research on evaluating LLMs in hiring
pipelines. We did not provide any monetary compensation.

15

https://pypi.org/project/textstat/
https://pypi.org/project/textblob/


(a) Quantification (b) Focus (c) Individual Impact

Figure 8: Human Annotation Results for 3 characteristics (quantification, focus, and individual impact).

providing preferences on pairs of model-generated1289

summaries.1290

Instructions (shown with each summary pair):1291

Below you are shown two model-generated resume1292

summaries of the same candidate, which are1293

largely similar but differ in small ways. You only1294

have access to the resume summaries, and not the1295

original resumes. Which resume summary below1296

do you prefer?1297

1298

We find that 4 out of 6 annotators favor the1299

use of quantification, while 1 annotator prefer1300

no quantification (Appendix Figure 8a). We see1301

that 4 out of 6 annotators demonstrate a modest1302

preference for focus, with the other 2 remaining1303

neutral (Appendix Figure 8b). Additionally, 31304

out of 6 annotators display a slight preference for1305

individual impact, while 1 annotator displays a1306

strong preference against it (Appendix Figure 8c).1307

For all three characteristics, we observe that the1308

majority of annotators exhibit some preference, as1309

opposed to remaining neutral. Even though we1310

observe opposite preferences across annotators,1311

this behavior is still aligned with our invariance1312

metric, since it only considers the presence of1313

differences and not their directionality. Overall,1314

these results suggest that human evaluators gen-1315

erally display distinct preferences when choosing1316

between summaries.1317

Next, we investigate whether the proposed mea-1318

sures identify differences between paired sum-1319

maries. In other words, do these measures rec-1320

ognize differences if there are in fact meaningful1321

differences according to humans? We assess in-1322

variance between paired summaries along the three1323

characteristics, computed separately for all five pro-1324

posed measures (reading ease, reading time, polar-1325

ity, subjectivity, and regard). For each of the 3 char-1326

acteristics, we observe that all proposed measures1327

exhibit statistically significant differences. These1328

results confirm that the chosen measures detect dif- 1329

ferences in cases where we expect to observe them 1330

(i.e., based on results from human preferences). 1331

A.10 Summarization Fairness Metric 1332

To measure fairness in summarization, we compute 1333

invariance violations, which computes the percent- 1334

age of t-tests for which the null hypothesis is re- 1335

jected. The total number of t-tests corresponds to 1336

M ×A× C × T × L× P , where 1337

• M : # of models = 6 1338

• A: # of automated measures = 5 1339

• C: # of demographic comparisons = 4 1340

• T : # of temperature settings = 2 1341

• L: # of length settings = 2 1342

• P : # of point-of-view (POV) settings = 2 1343

When computing invariance violations, we 1344

group or aggregate results to get a percentage for 1345

each model and demographic comparison type 1346

(gender, which considers MW-FW and MB-FB 1347

comparisons, and race, which considers MW-MB 1348

and FW-FB comparisons). Within each group, 1349

we perform Benjamini-Hochberg correction (Ben- 1350

jamini and Hochberg, 1995) to account for multiple 1351

comparisons. These results are shown in Figure 2. 1352

We also perform Bonferroni correction (Bland and 1353

Altman, 1995) as an alternate method to address 1354

multiple comparisons, which is more aggressive in 1355

its correction of false positives. We show results 1356

using this method in Figure 9. 1357

A.11 Retrieval Fairness Metrics 1358

We compute two retrieval fairness metrics: non- 1359

uniformity, introduced by Wilson and Caliskan 1360

(2024) and exclusion, which we propose. We would 1361
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(a) Gender (b) Race

Figure 9: Summarization Results: Invariance violations for generated summaries, separated by completion model
and perturbation type. Results are shown across 5 runs. Left 3 models are considered "smaller" models, right 3
models are considered "larger" models. Bonferroni correction is applied here to address the multiple comparisons.

like to emphasize that non-uniformity and exclu-1362

sion are complementary rather than redundant met-1363

rics. While non-uniformity measures fairness from1364

a distributional standpoint, exclusion instead mea-1365

sures it from a robustness standpoint. Intuitively,1366

they answer different questions about fairness in1367

retrieval:1368

Non-uniformity Let us consider demographi-1369

cally perturbed but otherwise equivalent resumes1370

for four demographic groups: Black female, White1371

female, Black male, and White male. Non-1372

uniformity answers the question: are the four1373

groups represented unequally in the top-x% of re-1374

trieved resumes.1375

Exclusion Let us consider the top-n White male1376

resumes for a given job post. Exclusion answers1377

the question: would those resumes still be selected1378

if they were essentially the same resumes, but1379

instead belonging to a Black or female person?1380

1381

As we see in Figures 3 and 4, the two metrics lead1382

to different conclusions about the best retrieval1383

model in terms of fairness (text-embedding-3-small1384

for non-uniformity vs. embed-english-v3.0 for ex-1385

clusion). We believe that both metrics are impor-1386

tant for evaluation and informing decision-making.1387

That being said, we believe that exclusion is more1388

closely tied to allocational fairness, since it directly1389

measures whether demographically perturbing a1390

resume would impact whether it proceeds to the1391

next stage in the hiring pipeline.1392

A.12 Justifying Chosen Non-demographic1393

Perturbations1394

We consider two non-demographic perturbations:1395

spacing and typos. We expect both formatting and1396

typos to have minimal impact on an embedding-1397

based retrieval system, since embedding models are 1398

trained on noisy web text and do not have explicit 1399

resume supervision data. In contrast, if we were 1400

evaluating a classification system, we might expect 1401

changes such as typos to affect outcomes. 1402

Our goal in applying non-demographic pertur- 1403

bations is to establish a meaningful comparison 1404

point for studying the impact of demographic per- 1405

turbations. While typos and spacing may impact 1406

human judgments, they do not semantically change 1407

the resume and therefore we assert it should mini- 1408

mally affect relevance for a job posting. Note: We 1409

only apply non-demographic changes to resumes 1410

in the retrieval setting, not in summarization, as we 1411

do not expect the same assumptions to hold in the 1412

generative setting. 1413
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(a) Top-5% (b) Top-10%

Figure 10: Non-uniformity metric for top-5 and top-10% of retrieved Kaggle resumes. Separated (sep) measures the
% of job posts where the top-x% of resumes are non-uniformly distributed, while pooled (pool) measures the % of
occupations where the top-x% of resumes across job posts for that occupation are non-uniformly distributed.

(a) Gender, n = 5 (b) Gender, n = 10 (c) Gender, n = 100

(d) Race, n = 5 (e) Race, n = 10 (f) Race, n = 100

Figure 11: Directional differences in exclusion metric for retrieval (generated resumes) after applying name
perturbations (i.e., separating based on perturbation direction). M→F perturbs male names to female names
and F→M perturbs female names to male names, while W→B perturbs White names to Black names and B→W
perturbs Black names to White names.
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(a) Within-group, n = 5 (b) Within-group, n = 10 (c) Within-group, n = 100

(d) Non-name, n = 5 (e) Non-name, n = 10 (f) Non-name, n = 100

Figure 12: Exclusion metric for retrieval after performing non-demographic perturbations on generated
resumes (i.e., within group name changes - top, and modifying spacing and adding typos - bottom).

(a) Gender, n = 5 (b) Gender, n = 10 (c) Gender, n = 100

(d) Race, n = 5 (e) Race, n = 10 (f) Race, n = 100

Figure 13: Directional differences in exclusion metric for retrieval (Kaggle resumes) after applying name
perturbations (i.e., separating based on perturbation direction). M→F perturbs male names to female names
and F→M perturbs female names to male names, while W→B perturbs White names to Black names and B→W
perturbs Black names to White names.
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(a) Within-group, n = 5 (b) Within-group, n = 10 (c) Within-group, n = 100

(d) Non-name, n = 5 (e) Non-name, n = 10 (f) Non-name, n = 100

Figure 14: Exclusion metric for retrieval after performing non-demographic perturbations on Kaggle resumes
(i.e., within group name changes - top, and modifying spacing and adding typos - bottom).
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