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ABSTRACT

Spurred by advancements in scale, large language models (LLMs) have
demonstrated strong few-shot learning ability via in-context learning (ICL).
However, the performance of ICL has been shown to be highly sensitive to the
selection of few-shot demonstrations. Selecting the most suitable examples as
context remains an ongoing challenge and an open problem. Existing literature has
highlighted the importance of selecting examples that are diverse or semantically
similar to the test sample while ignoring the fact that the optimal selection
dimension, i.e., diversity or similarity, is task-specific. Leveraging the merits of both
dimensions, we propose Iterative Demonstration Selection (IDS). Using zero-shot
chain-of-thought reasoning (Zero-shot-CoT), IDS iteratively selects examples that
are diverse but still strongly correlated with the test sample as ICL demonstrations.
Specifically, IDS applies Zero-shot-CoT to the test sample before demonstration
selection. The output reasoning path is then used to choose demonstrations that
are prepended to the test sample for inference. The generated answer is followed
by its corresponding reasoning path for extracting a new set of demonstrations in
the next iteration. After several iterations, IDS adopts majority voting to obtain the
final result. Through extensive experiments on tasks including reasoning, question
answering, topic classification, and sentiment analysis, we demonstrate that IDS
can consistently outperform existing ICL demonstration selection methods.

1 INTRODUCTION

Review: Good movie!         Sentiment: Positive

Review: It is terrible.         Sentiment: Negative

Review: The movie is great!       Sentiment: Positive

Review: I like this movie.         Sentiment:

Input

Frozen LLM

Output Positive

Figure 1: Illustration of in-context learning
(ICL) on sentiment analysis. A frozen
large language model directly generates the
sentiment ‘Positive’ for the test sample ‘I like
this movie.’ by taking the demonstrations and
the test sample as input.

With the recent advancements in scaling up model
parameters, large language models (LLMs) showcase
promising results on a variety of few-shot tasks
through in-context learning (ICL), where the model
is expected to directly generate the output of the
test sample without updating parameters. This is
achieved by conditioning on a manually designed
prompt consisting of an optional task description and
a few demonstration examples (Brown et al., 2020).
Figure 1 shows an example describing how LLMs
perform ICL on the sentiment analysis task. Given
a few review-sentiment pairs as demonstrations, ICL
combines them with the test sample as input, to the
LLM for inference. The output, i.e., ‘Positive’, is
generated by the model autoregressively without any
parameter updates.

Despite the effectiveness, the performance of ICL has
been shown to be highly sensitive to the selection
of demonstration examples (Zhao et al., 2021).
Different sets of demonstrations can yield performance ranging from nearly random to comparable
with state-of-the-art models (Gao et al., 2021; Lu et al., 2022). To alleviate the above issue,
researchers in ICL have proposed a number of methods to select a set of examples as few-shot
demonstrations (Rubin et al., 2022; Liu et al., 2022; Li & Qiu, 2023; Wang et al., 2023b; Li et al.,
2023a; Ma et al., 2023; An et al., 2023b). Nevertheless, most of the existing approaches are only
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applicable to small language models as they typically require accessing model parameters or detailed
output distributions which are usually not available for LLMs (Sun et al., 2022). Therefore, it is still
a common practice to randomly select examples or select examples that are semantically similar to
the test sample as demonstrations for LLMs, i.e., considering diversity or similarity. While several
approaches investigate the combination of similarity and diversity when prompting with explanations
or exploring compositional generalization (Ye et al., 2022; An et al., 2023a), it remains unclear to us
how to determine and leverage the optimal dimension for different tasks in ICL.

Actually, the optimal dimension for selecting demonstration examples is task-specific. As we
will show in Section 4, the diversity dimension is superior to the similarity dimension on
CommonsenseQA (Talmor et al., 2019) while the similarity dimension outperforms the diversity
dimension on AGNews (Zhang et al., 2015). Thus, it is unreasonable to claim that one dimension is
consistently better than the other across different tasks.

To fully leverage the merits of both dimensions, we propose Iterative Demonstration Selection (IDS)
for ICL (Figure 2). IDS can iteratively select demonstration examples that are diverse but still have
a strong correlation with the test sample through zero-shot chain-of-thought reasoning (Zero-shot-
CoT) (Kojima et al., 2022). Specifically, Zero-shot-CoT, e.g., “Let’s think step by step.”, is first
applied to the test sample before selecting demonstrations to obtain a reasoning path. The training
examples that are most semantically similar to the generated reasoning path are then selected as
demonstrations. They are prepended to the test sample for inference. Note that IDS ensures that the
generated answer is accompanied by the reasoning path through designed prompts. The new reasoning
path is then used for extracting another set of demonstration examples by semantic similarity in the
next iteration. After a few iterations, IDS adopts majority voting to obtain the final result. Empirical
results on tasks spanning commonsense reasoning, question answering, topic classification, and
sentiment analysis show that IDS can consistently outperform previous ICL demonstration selection
baselines. In summary, our main contributions are:

• We consider both the diversity and similarity dimensions of ICL demonstration selection for LLMs.
We identify that the optimal dimension for selecting demonstrations is task-specific and propose
Iterative Demonstration Selection (IDS) to fully leverage the merits of both dimensions.

• With extensive experiments and analysis, we demonstrate the effectiveness of IDS on a variety of
tasks. Our code base is available at <redacted>.

2 RELATED WORK

This work mainly explores how to select few-shot in-context learning demonstrations for LLMs by
leveraging Zero-shot-CoT. In light of this, we review four lines of research that form the basis of this
work: few-shot learning, in-context learning basics, demonstration selection for in-context learning,
and chain-of-thought reasoning.

2.1 FEW-SHOT LEARNING

Few-shot learning aims to learn tasks with only a few labeled samples, which results in a big
challenge,i.e., over-fitting, for models as they typically require large amounts of data for training.
Prior methods to address over-fitting mainly focused on augmenting the few-shot data (Gao et al.,
2020; Qin & Joty, 2022), reducing the hypothesis space (Triantafillou et al., 2017; Hu et al., 2018), or
optimizing the strategy for searching the best hypothesis (Ravi & Larochelle, 2017; Finn et al., 2017).
More recently, LLMs have demonstrated strong few-shot learning ability through in-context learning
without any parameter updates (Brown et al., 2020).

2.2 IN-CONTEXT LEARNING

Brown et al. (2020) first showed that a frozen GPT-3 model can achieve impressive results on a
variety of few-shot NLP tasks through conditioning on manually designed prompts consisting of
task descriptions and several demonstration examples. Since then many efforts have been made on
in-context learning (ICL). Chen et al. (2022); Min et al. (2022a); Wei et al. (2023a) demonstrated that
the ICL ability of language models can be further improved through self-supervised or supervised
training. Some analytical studies attempted to understand what factors affect ICL performance (Zhao
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et al., 2021; Shin et al., 2022; Wei et al., 2022a; Min et al., 2022b; Yoo et al., 2022; Wei et al., 2023b)
and why ICL works (Xie et al., 2022; Olsson et al., 2022; Li et al., 2023b; Pan, 2023; Dai et al.,
2023). Other ongoing research on ICL has also explored (i) demonstration designing, including
demonstration selection (Liu et al., 2022; Rubin et al., 2022; Wang et al., 2023b), demonstration
ordering (Lu et al., 2022), and demonstration formatting (Wei et al., 2022c; Wang et al., 2022c; Zhou
et al., 2023; Zhang et al., 2023b), (ii) applications of ICL (Ding et al., 2022; Meade et al., 2023;
Zheng et al., 2023), and (iii) ICL beyond text (Wang et al., 2023c; Huang et al., 2023; Zhu et al.,
2023; Wang et al., 2023a).

2.3 DEMONSTRATION SELECTION FOR IN-CONTEXT LEARNING

The performance of ICL has been shown to be highly sensitive to the selection of demonstration
examples (Zhao et al., 2021). Existing methods to solve this problem can be mainly divided
into two categories. First, unsupervised methods rely on pre-defined metrics. Liu et al. (2022)
proposed to select the closest neighbors as demonstrations. In contrast, Levy et al. (2022) selected
diverse demonstrations to improve in-context compositional generalization. More recent studies have
explored leveraging the output distributions of language models to select few-shot demonstrations (Wu
et al., 2022; Nguyen & Wong, 2023; Li & Qiu, 2023). Second, supervised methods involve model
training. Rubin et al. (2022); Ye et al. (2023); Li et al. (2023a); Luo et al. (2023) proposed to learn
to retrieve demonstration examples. Wang et al. (2023b) posited LMs as implicit topic models to
facilitate demonstration selection. In addition, some studies (Zhang et al., 2022; Scarlatos & Lan,
2023) attempted to select demonstrations based on reinforcement learning. However, most of the
existing methods are not applicable to LLMs as model parameters or output distributions are typically
not available for LLMs (Sun et al., 2022), which motivates us to propose our simple but effective
approach (IDS).

2.4 CHAIN-OF-THOUGHT REASONING

Chain-of-thought (CoT) reasoning induces LLMs to produce intermediate reasoning steps before
generating the final answer (Wei et al., 2022b). Depending on whether there are manually designed
demonstrations, current CoT reasoning methods mainly include Manual-CoT and Zero-shot-CoT.
In Manual-CoT, human-labeled reasoning paths are used to perform CoT reasoning (Wei et al.,
2022b; Zhou et al., 2022; Wang et al., 2022a; Li et al., 2022; Wang et al., 2022b). In contrast, LLMs
leverage self-generated rationales for reasoning in Zero-shot-CoT (Kojima et al., 2022; Zelikman
et al., 2022; Zhang et al., 2023a; Diao et al., 2023). The ongoing research on CoT reasoning has also
explored (i) multimodal reasoning (Zhang et al., 2023c; Wu et al., 2023), (ii) distilling knowledge
from LLMs (Ho et al., 2022; Fu et al., 2023), and (iii) iterative optimization (Shinn et al., 2023;
Madaan et al., 2023; Paul et al., 2023).

3 PROBLEM FORMULATION

Given the test set Dtest and the training set Dtrain, the goal of ICL demonstration selection is to find
an optimal subset S = {(x1, y1), ..., (xk, yk)} (k-shot) of Dtrain as demonstration examples for each
test sample (x̂i, ŷi) to maximize the overall task performance on Dtest. More formally, the optimal
selection method h̃ is defined as:

h̃ = argmax
h∈H

∣Dtest∣
∑
i=1

δLLM([h(Dtrain,x̂i,ŷi),x̂i]),ŷi
(1)

where H is the hypothesis space for searching demonstration examples, h(Dtrain, x̂i, ŷi) refers to
demonstrations selected for (x̂i, ŷi) using h, [, ] stands for concatenation, and δa,b is the Kronecker
delta function: δa,b = 1 if a equals b, otherwise δa,b = 0. In this work, we aim to find the optimal
method h̃ by leveraging Zero-shot-CoT.
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Table 1: Results of different methods on CommonsenseQA, BoolQ, AGNews and SST2. The optimal
dimension for selecting ICL demonstrations is task-specific.

CommonsenseQA BoolQ AGNews SST2

Similar-ICL-Consistency (Similarity) 76.0 84.8 90.0 94.3
Random-ICL-Voting (Diversity) 79.0 83.5 88.0 95.2

4 WHAT MAKES GOOD IN-CONTEXT DEMONSTRATIONS?

As demonstrated in previous work (Zhao et al., 2021), the overall task performance is highly
sensitive to the selection method h. Different sets of demonstration examples can yield significantly
different performance. For example, Zhang et al. (2022) shows that the minimum and maximum ICL
performance due to random sampling differs by > 30% on 4 classification tasks, which emphasizes
the importance of selecting good demonstrations for LLMs.

A natural question is: what makes good in-context demonstrations? For LLMs, it is still a common
practice to select a subset S consisting of examples that are diverse or semantically similar to the test
sample as demonstrations, i.e., considering the diversity or similarity of S. To investigate whether
one dimension is consistently better than the other one across different tasks, we conduct some pilot
experiments on CommonsenseQA (Talmor et al., 2019), BoolQ (Clark et al., 2019), AGNews (Zhang
et al., 2015) and SST2 (Socher et al., 2013). Specifically, we randomly sample 100 examples from
the original test set for experiments and conduct 4-shot learning using GPT-3.5 (gpt-3.5-turbo).

Following Zhang et al. (2023a), we use Sentence-BERT (Reimers & Gurevych, 2019) to encode
all samples. For each test sample, the Similar-ICL method selects the top-4 similar training data
based on cosine similarity while the Random-ICL method randomly samples 4 training examples as
few-shot demonstrations. Inspired by Wang et al. (2022a), we apply self-consistency with 3 decoding
paths (temperature 0.7) to Similar-ICL (named Similar-ICL-Consistency) and run Random-ICL 3
times before majority voting (named Random-ICL-Voting) to improve the robustness.

The results of different methods on four datasets are reported in Table 1. We can observe that the
diversity dimension outperforms the similarity dimension on CommonsenseQA and SST2 while the
similarity dimension is superior to the diversity dimension on BoolQ and AGNews. Therefore, the
optimal dimension for selecting demonstration examples is task-specific. Thus, it is unreasonable to
claim that one dimension is consistently better than the other one in ICL demonstration selection.

Intuitively, semantically similar examples can help the model correctly answer the test query as they
might share similar input-output patterns with the test sample which could unleash GPT-3.5’s power
of text generation. To further understand why the similarity dimension underperforms the diversity
dimension on CommonsenseQA, we present a case study in Table 2. We can see that the answer
of the final demonstration example extracted by Similar-ICL-Consistency, i.e., ‘most buildings’ is
also in the options list of the test sample, which misleads the decision process of the model, leading
to a wrong answer. In addition, the selected demonstrations might not include enough important
information as high similarity also results in redundancy.

Considering the strengths and weaknesses of both dimensions, we aim to design a method that can
select demonstration examples that are diverse (minimizing misleading information) but still strongly
correlated with the test sample, which is introduced in the next section.

5 ITERATIVE DEMONSTRATION SELECTION

Based on the observations and considerations in Section 4, we introduce Iterative Demonstration
Selection (IDS) for ICL demonstration selection (see Figure 2 for an illustration), which can fully
leverage the merits of both dimensions, i.e., diversity and similarity. Intuitively, the demonstrations
that are similar to the reason for answering a sample are strongly correlated with this sample.
Therefore, we propose to incorporate zero-shot chain-of-thought reasoning (Zero-shot-CoT) into IDS
to iteratively select demonstration examples that are diverse but still have a strong correlation with
the test sample.
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Table 2: Examples of Similar-ICL-Consistency (first decoding path) and Random-ICL-Voting (first
run) for constructing demonstration examples. The upper part is the input to LLMs, including
few-shot demonstrations, and the lower part is the predicted answer. Similar-ICL-Consistency gives
the wrong answer ‘most buildings’ which is actually the output of the final demonstration example,
indicating that the decision process of the model is misled by this similar sample.

Similar-ICL-Consistency Random-ICL-Voting

Which choice is the correct answer to the question? Which choice is the correct answer to the question?

Examples:
Question: If you have cleaned off dust here it may
be difficult to do your homework where? Answer
Choices: (A) desktop (B) closet (C) most buildings
(D) surface of earth (E) stove
Answer: A
Question: Where is dust likely to be under?
Answer Choices: (A) closet (B) ground (C)
windowsill (D) attic (E) carpet
Answer: E
Question: Where would you find a dustbin that is
being used? Answer Choices: (A) utility closet (B)
ground (C) cupboard (D) broom closet (E) kitchen
Answer: E
Question: Dust accumulates where? Answer
Choices: (A) ceiling (B) library (C) surface of
earth (D) most buildings (E) desktop
Answer: D

Examples:
Question: She had a busy schedule, she had to run
errands and pick up the kids the second she did what?
Answer Choices: (A) make time for (B) take money
(C) go outdoors (D) leave work (E) field
Answer: D
Question: What is the worst outcome of an injury?
Answer Choices: (A) cause death (B) cause bleeding
(C) falling down (D) become infected (E) claim
insurance
Answer: A
Question: Mom said that Sarah should stay in bed until
she was able to go to school again.. What did mom say
to Sarah when she tried to get up? Answer Choices:
(A) you’re sick (B) were sick (C) more rest (D) rest
more (E) get back under the covers
Answer: A
Question: John got a raise, but he lost rank. Overall, it
was a good what? Answer Choices: (A) demotion (B)
push down (C) go off strike (D) lower (E) go off strike
Answer: A

The response should follow the format: Answer:
{A, B, C, D or E}

The response should follow the format: Answer: {A,
B, C, D or E}

Here is the test data. Here is the test data.
Question: John wanted to clean all of the dust
out of his place before settling down to watch his
favorite shows. What might he hardest do dust?
Answer Choices: (A) closet (B) under the bed (C)
television (D) attic (E) most buildings

Question: John wanted to clean all of the dust out of his
place before settling down to watch his favorite shows.
What might he hardest do dust? Answer Choices: (A)
closet (B) under the bed (C) television (D) attic (E)
most buildings

Answer: E ✗ Answer: D ✓

Specifically, for each test sample (x̂i, ŷi), IDS mainly consists of four steps:

1. We apply Zero-shot-CoT, i.e., “Let’s think step by step.” to the test sample (x̂i, ŷi) before
selecting demonstrations to obtain a reasoning path R.

2. The reasoning path R is then used to select top-k (k is the number of shot) most semantically
similar training examples {(x1, y1), ..., (xk, yk)} as few-shot demonstrations. We use Sentence-
BERT (Reimers & Gurevych, 2019) to encode the reasoning path R and training examples to
obtain the contextual representations and use cosine similarity to measure the similarity between
two representations.

3. The selected k training examples {(x1, y1), ..., (xk, yk)} are then prepended to the test sample
(x̂i, ŷi) for ICL. During inference, we ensure that the generated answer Â is accompanied by its
corresponding reasoning path R̂ through designed prompts, e.g., “The response should follow the
format: Sentiment: {positive or negative}\nReason: {reason}”. Note that Zero-shot-CoT is also
applied in this step to improve the quality of generated reasoning paths. After ICL, we go back to
Step 2 for iterations using the new reasoning path R̂.

4. After q rounds of iterations between Step 2 and 3, we adopt majority voting on all Â to obtain
the final result Âfinal.
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What is the sentiment of the review? Positive or 
negative?
The response should follow the format: Sentiment: 
{positive or negative}\nReason: {reason}
Review: I like this movie.
Let's think step by step.

Task description

Frozen 
LLM

Sentiment: positive
Reason: The verb 'like' expresses a positive 
emotion...Therefore, the sentiment of the given 
review is positive.

KNN 
selection

What is the sentiment of the review? Positive or 
negative?
Examples:
Review: I love the theme song of this movie! 
Sentiment: Positive

...
Review: So great, I want to watch it again!
Sentiment: Positive
The response should follow the format: Sentiment: 
{positive or negative}\nReason: {reason}
Here is the test data.
Review: I like this movie.
Let's think step by step.

Training 
examples

Sentiment: positive
Reason: 'like' expresses similar emotions to 
'love'...The correct sentiment is positive.

Update reasoning path for next iteration

1

2

3

Majority 
voting

4

Output format instruction
Test sample

Zero-shot-CoT trigger
Few-shot demonstrations

Reasoning path

Figure 2: Illustration of our proposed Iterative Demonstration Selection (IDS). IDS first applies
Zero-shot-CoT to the test sample to obtain a reasoning path, which is then used to select few-shot
demonstrations from training examples through KNN. The selected demonstration examples are
prepended to the test sample for ICL. To obtain the new reasoning path for extracting another set of
demonstrations in the next iteration, an instruction for output format is inserted before the test sample.
After several iterations, IDS uses majority voting to obtain the final result.

Obviously, the selected demonstration examples are strongly correlated with the original test sample,
i.e., achieving similarity, as they are selected by the generated reasoning paths. And they can be
different during iterations to ensure diversity because the reasoning paths vary in different iterations.
Note that there is no reasoning path in few-shot demonstrations (as shown in the green dashed area in
Figure 2). The reasoning path only exists in the output of LLMs.

In addition, we show the instructions and input formats of different types of tasks for ICL in
Appendix A.1 and illustrate the algorithm for the whole selection process in Appendix A.2.

6 EXPERIMENTS

In this section, we first describe the tasks and datasets, and then introduce methods compared in our
work. Finally, we present the experimental results.

6.1 EXPERIMENTAL SETUP

Tasks and Datasets We mainly investigate 6 different datasets covering 4 representative
task categories: commonsense reasoning (CommonsenseQA (Talmor et al., 2019)), question
answering (BoolQ (Clark et al., 2019)), topic classification (AGNews (Zhang et al., 2015) and
DBPedia (Lehmann et al., 2015)) and sentiment analysis (SST2 (Socher et al., 2013) and Amazon
Review (McAuley et al., 2015)). For each dataset, we randomly sample at most 10000 examples
from the original training set as Dtrain and at most 2000 test examples as Dtest for evaluating the
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Table 3: Accuracy (%) of different methods on 6 datasets. Bold indicates the best result. IDS is
consistently better than all previous baselines.

Method CommonsenseQA BoolQ AGNews DBPedia SST2 Amazon Average

Top-k-Consistency 73.7±0.1 83.6±0.4 88.1±0.8 97.4±0.2 93.6±0.4 91.4±1.1 88.0±0.2
Random-Voting 76.4±0.7 82.2±0.7 85.4±1.5 96.2±0.3 94.4±0.2 91.5±0.7 87.7±0.3
Cluster-Voting 75.4±0.8 82.9±0.6 86.0±1.9 95.8±0.5 93.3±1.1 89.7±1.9 87.2±0.5
Top-k-Consistency-CoT 74.5±0.2 87.1±0.2 89.3±0.8 97.6±0.5 95.2±0.4 95.3±0.7 89.8±0.1
Random-Voting-CoT 77.0±0.2 87.3±0.6 87.0±1.6 96.6±0.4 95.6±0.1 95.5±0.5 89.8±0.2
Cluster-Voting-CoT 76.5±0.3 86.4±0.7 86.8±1.2 95.9±1.0 95.2±0.4 95.2±0.7 89.3±0.1
G-fair-Prompting 75.5±0.3 84.8±0.7 88.9±1.0 97.0±0.5 94.6±0.3 94.4±0.8 89.2±0.2
Skill-KNN 75.2±0.2 85.9±0.5 88.7±0.9 96.9±0.6 94.9±0.2 95.0±0.7 89.4±0.1
IDS 78.1±0.1 87.8±0.8 89.8±0.8 97.9±0.4 95.8±0.2 95.7±0.5 90.9±0.1

performance of selected demonstrations. The detailed information of different datasets is shown in
Appendix A.3. To reduce the randomness, we run every experiment five times with different random
seeds (resulting in different training and test samples if not using the whole set) and report the average
results. Without specification, we use k = 4 number of demonstrations following Wang et al. (2023b)
and set the number of iterations q to 3.

Methods Compared We mainly use GPT-3.5 (gpt-3.5-turbo) as the LLM and compare our IDS
with the following methods in the experiments for selecting ICL demonstrations:

• Top-k-Consistency (Liu et al., 2022) selects the top-k semantically similar examples from the
training set Dtrain as demonstrations for each test sample and applies self-consistency (Wang et al.,
2022a) with q decoding paths (temperature 0.7) to match the number of iterations. Following Zhang
et al. (2023a), all samples are encoded by Sentence-BERT (Reimers & Gurevych, 2019) to obtain
contextual representations for calculating the cosine similarity.

• Random-Voting randomly selects k examples from Dtrain as few-shot demonstrations for every
test sample and runs experiments q times before majority voting.

• Cluster-Voting partitions Dtrain into k clusters and selects a representative example from each
cluster to form demonstrations. Following Zhang et al. (2023a), we choose the sample closest to
the centroid in each cluster as the representative example. Same as Random-Voting, after running
experiments q times, Cluster-Voting adopts majority voting to obtain the final result.

As mentioned in Section 5, IDS ensures that the generated answer is followed by the reasoning path
during ICL inference, which might influence the performance of ICL. To ensure a fair comparison
with baselines, we apply the same prompt, e.g., “The response should follow the format: Sentiment:
{positive or negative}\nReason: {reason}”, and Zero-shot-CoT to baseline methods to allow them
simultaneously generate answers and reasoning paths, resulting in new variants of the three baselines:
Top-k-Consistency-CoT, Random-Voting-CoT and Cluster-Voting-CoT. Besides, we also compare
IDS with two latest ICL demonstration selection approaches: G-fair-Prompting (Ma et al., 2023) and
Skill-KNN (An et al., 2023b).

6.2 MAIN RESULTS

Table 3 shows the average performance scores of different methods on all investigated datasets. From
the results, we can observe that

• Our proposed IDS consistently outperforms previous baselines on all datasets with a negligible
increase in API request cost (Zero-shot-CoT in the first step), which demonstrates that our method can
indeed effectively and efficiently select better ICL demonstration examples. On average, IDS yields
about 1.1% performance boost compared to the best baseline as it can fully leverage the merits of both
selection dimensions (diversity and similarity). In particular, IDS outperforms Top-k-Consistency-
CoT by 3.6% on CommonsenseQA and Random-Voting-CoT by 2.8% on AGNews.

• During ICL, simultaneously generating answers and reasoning paths can improve the performance
on all datasets even if they are not reasoning tasks in the conventional sense, e.g., sentiment analysis.
Specifically, all three variants outperform the corresponding baseline by about 2% on average.
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• Cluster-Voting (or its variant) underperforms Top-k-Consistency and Random-Voting (or their
variants) on most datasets, which is inconsistent with the conclusion in AutoCoT (Zhang et al.,
2023a). As shown in Zhang et al. (2023a), selecting a representative sample from each cluster and
generating the corresponding reasoning chain using Zero-shot-CoT to construct chain-of-thought
demonstrations can achieve better performance than selection by similarity or random selection. We
speculate that this is because there is no rationale in ICL demonstration examples, which eliminates
the advantage of cluster-based methods in mitigating misleading caused by rationale errors. In
addition, Cluster-Voting (or its variant) selects demonstrations at the dataset level, i.e., all test samples
use the same demonstration examples, which is not as flexible as other instance-level methods.

6.3 ANALYSIS

Table 4: Accuracy (%) of Top-k-Consistency-CoT
and IDS with different numbers of demonstrations k.

2 4 6 8

Top-k-Consistency-CoT 89.6 90.0 90.0 90.1
IDS 90.4 90.9 90.7 90.6

Different Numbers of Demonstrations
While we use k = 4 number of
demonstrations for all experiments, we
also evaluate the effectiveness of IDS with
different k. We randomly choose one seed for
experiments and report the average results of
the 6 datasets in Table 4. We can see that IDS
consistently outperforms Top-k-Consistency-
CoT with different numbers of demonstrations. In addition, more demonstration examples do not
guarantee better ICL performance, which is consistent with the observation in Wang et al. (2023b).

Table 5: Accuracy (%) of Top-k-Consistency-CoT
and IDS with different numbers of reasoning paths or
iterations.

1 3 5 7

Top-k-Consistency-CoT 89.8 90.0 90.1 90.0
IDS 90.4 90.9 90.8 90.8

Different Numbers of Iterations We
mainly use q = 3 number of iterations
for all experiments. To verify whether the
performance gain of IDS is consistent across
different numbers of iterations, we conduct
controlled experiments with q = {1, 5, 7}.
The average results of the 6 datasets with
a randomly selected seed are reported in
Table 5. IDS consistently outperforms Top-
k-Consistency-CoT with different q. Interestingly, the performance of ICL does not always improve
with the number of iterations, which might be because increased iterations can also lead to unnecessary
noise.

Table 6: Accuracy (%) of Top-k-Consistency-CoT
and IDS on GSM8K and LogiQA.

GSM8K LogiQA

Top-k-Consistency-CoT 76.2 45.4
IDS 78.4 46.8

More Complex Tasks To better demon-
strate the effectiveness of IDS, we further
conduct experiments on two more complex
datasets: GSM8K (Cobbe et al., 2021)
(mathematical reasoning) and LogiQA (Liu
et al., 2020) (logical reasoning). Specifically,
we randomly sample 500 test examples for
experiments and report the results in Table 6.
IDS brings an average relative improvement of about 3%, demonstrating its superiority over baselines.

Table 7: Accuracy (%) of Top-k-Consistency-CoT
and IDS with different LLMs (gpt-3.5-turbo and gpt-
4). For gpt-4, we randomly sample 200 test examples
per dataset.

gpt-3.5-turbo gpt-4

Top-k-Consistency-CoT 90.0 92.8
IDS 90.9 93.6

Robustness to Model Types To demon-
strate the robustness of IDS to model types,
we conduct controlled experiments with GPT-
4 (gpt-4). Specifically, we randomly select
one seed and sample 200 test examples per
dataset for experiments due to the expensive
cost. From the average results reported
in Table 7, we can observe that IDS still
achieves better performance than Top-k-
Consistency-CoT when using GPT-4 as the
LLM, showing its robustness to different LLMs.

Robustness to Embedding Model Instead of using Sentence-BERT, we also explore adopting
the OpenAI embedding model (text-embedding-ada-002) as the encoder. Specifically, we conduct
experiments on 3 datasets: BoolQ, CommonsenseQA and GSM8K. For each dataset, we randomly
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Iterative Demonstration Selection Top-k-Consistency-CoT
Question: The homeowner frowned at the price 
of gas, what did he have to do later? Answer 
Choices: (A) own home (B) mail property tax 
payments (C) board windows (D) cut grass (E) 
receive mail
Iteration 1: Answer: B\nReason: ...
Iteration 2: Answer: D\nReason: ...
Iteration 3: Answer: D\nReason: ...

Question: The homeowner frowned at the price 
of gas, what did he have to do later? Answer 
Choices: (A) own home (B) mail property tax 
payments (C) board windows (D) cut grass (E) 
receive mail
Response: Answer: B\nReason: ...; Answer: 
B\nReason: ...; Answer: B\nReason: ...

Label: D Label: D

Iterative Demonstration Selection Random-Voting-CoT
Input: Texas entrepreneur wants to kick computer 
gaming up to the next level by offering players a 
chance at some real-live killing via mouse and 
modem.

Input: Texas entrepreneur wants to kick computer 
gaming up to the next level by offering players a 
chance at some real-live killing via mouse and 
modem.

Label: Technology Label: Technology

Iteration 1
Examples: 
Input: Six days a week, teens crowd the Blue 
Screen Gaming cybercafe to hunt each other 
down with assault rifles inside virtual computer 
worlds...
Topic: Technology

...
Response: Topic: Technology\nReason: ...

Iteration 2: ... Response: Topic: Technology ...
Iteration 3: ... Response: Topic: Technology ...

Iteration 1
Examples: 
Input: The Boston Celtics added a healthy Tom 
Gugliotta and deleted injured Delonte West. Tom, 
34, was activated Wednesday from the injured list 
after missing seven games ...
Topic: Sports

...
Response: Topic: Sports\nReason: ...

Iteration 2: ... Response: Topic: Business ...
Iteration 3: ... Response: Topic: Sports ...

Figure 3: Several case studies. We color correct outputs in green, and wrong outputs in red.

Table 8: Accuracy (%) of different methods with OpenAI embedding model (text-embedding-ada-002)
on three datasets.

BoolQ CommonsenseQA GSM8K

Top-k-Consistency-CoT 86.0 75.4 75.8
IDS 87.2 78.0 77.6

sample 500 test examples and compare IDS with the baseline Top-k-Consistency-CoT. The results
reported in Table 8 demonstrate IDS’s robustness to different embedding models.

Case Study To further understand the advantage of IDS, we show several cases in Figure 3. As
shown in the upper part of the figure, IDS can iteratively select more diverse demonstration examples
than Top-k-Consistency-CoT which may be able to correct errors from previous iterations. Compared
with Random-Voting-CoT, IDS can find examples that share more similar input-output patterns with
the test sample to induce the LLM to generate correct answers (the lower part of the figure).

In addition, we show the ability of IDS to generalize to open-source LLMs and the analysis of average
similarity scores in Appendix A.4 ∼ A.5, respectively.

7 CONCLUSION

In this work, we have introduced Iterative Demonstration Selection (IDS) that can iteratively select
examples that are diverse but still strongly correlate with the test sample as demonstrations by
leveraging Zero-shot-CoT to improve the performance of in-context learning (ICL). Extensive
experimental results and analysis show that IDS can consistently outperform previous ICL
demonstration selection baselines.
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Table 9: Deailed information of different datasets. # refers to ‘the number of’ and ‘full’ means the
whole set. Note that different random seeds do not result in different samples if the whole set is used.

CommonsenseQA BoolQ AGNews DBPedia SST2 Amazon

# Labels 5 2 4 14 2 2
# Training Samples 9741 (full) 9427 (full) 10000 10000 10000 10000
# Test Samples 1221 (full) 2000 1000 1000 872 (full) 1000
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A APPENDIX

A.1 INSTRUCTIONS AND INPUT FORMATS OF DIFFERENT TASKS

We show the instructions and input formats of different types of tasks for in-context learning in
Figure 4.

A.2 ALGORITHM FOR THE WHOLE SELECTION PROCESS

We illustrate the whole selection process in Algorithm 1

A.3 DATASETS INFORMATION

We show the detailed information of different datasets in Table 9.
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What is the sentiment of the review? Positive or 
negative?
Examples:
Review: a captivating drama
Sentiment: Positive

...
Review: more chaotic than entertaining
Sentiment: Negative
The response should follow the format: Sentiment: 
{positive or negative}\nReason: {reason}
Here is the test data.
Review: a tender, heartfelt family drama.
Let's think step by step.

Sentiment Analysis
What is the topic of the input? World, sports, 
business or technology?
Examples:
Input: Cavs earn fourth straight win...
Topic: Sports

...
Input: Thomson to Sell Media Unit for $350M...
Topic: Business
The response should follow the format: Topic: 
{world, sports, business or technology}\nReason: 
{reason}
Here is the test data.
Input: Microsoft intros new mice, keyboards...
Let's think step by step.

Topic Classification

Please answer the question based on the context.
Examples:
Context: Sikma was voted as one of the...
Question: is jack sikma in the hall of fame
Answer: Yes

...
Context: Timothy Brown is a former football...
Question: is tim brown in the hall of fame
Answer: Yes
The response should follow the format: Answer: 
{yes or no}\nReason: {reason}
Here is the test data.
Context: Blue is a playful female puppy...
Question: is blue off of blue's clues a girl
Let's think step by step.

Question Answering

Which choice is the correct answer to the question?
Examples:
Question: If you poke yourself... Answer Choices: 
(A) have fun...
Answer: C

...
Question: Where would a bald eagle... Answer 
Choices: (A) great outdoors...
Answer: D
The response should follow the format: Answer: {A, 
B, C, D or E}\nReason: {reason}
Here is the test data.
Question: How can I store... Answer Choices...
Let's think step by step.

Commonsense Reasoning

Figure 4: Instructions and input formats of four different categories of tasks (sentiment analysis, topic
classification, question answering, and commonsense reasoning) for ICL. For Zero-shot-CoT in the
first step of IDS, there is no demonstration example and the instruction “Here is the test data.”.

Algorithm 1 Selection process of IDS

Require: Training set Dtrain, test set Dtest, LLMθ, number of demonstrations k, number of iterations
q and answer set Âall = ∅

1: ENCODE all samples in Dtrain using Sentence-BERT ▷ Encode training set
2: for (x̂i, ŷi) in Dtest do
3: APPLY Zero-shot-CoT to (x̂i, ŷi) to obtain the reasoning path R ▷ Zero-shot-CoT
4: for j = 1, . . . , q do
5: ENCODE R using Sentence-BERT ▷ Encode reasoning path
6: USE R to select top-k most similar examples S = {(x1, y1), ..., (xk, yk)} from Dtrain as

demonstrations ▷ KNN selection
7: (Â, R̂) = LLMθ(S, x̂i) ▷ ICL
8: R = R̂, Âall = Âall ∪ {Â} ▷ Update reasoning path and answer set
9: end for

10: ADOPT majority voting for Âall to obtain the final result Âfinal for the test sample (x̂i, ŷi)
▷ Majority voting

11: end for

A.4 GENERALIZATION TO OPEN-SOURCE LLMS

To better verify the generalization ability of IDS, we use vLLM (Kwon et al., 2023) to serve a
Llama-2-70b-chat model (Touvron et al., 2023) for experiments and compare IDS with the best
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Table 10: Accuracy (%) of different methods with Llama-2-70b-chat.

BoolQ GSM8K

Top-k-Consistency-CoT 84.2 49.6
IDS 85.4 51.4

Table 11: Average similarity scores between test examples and the corresponding selected
demonstrations of three methods (Top-k-Consistency-CoT, IDS and Random-Voting-CoT).

Top-k-Consistency-CoT IDS Random-Voting-CoT

Average Similarity Score 0.69 0.46 0.31

baseline Top-k-Consistency-CoT on two datasets: BoolQ and GSM8K. We randomly sample 500
test examples for experiments and report the results in Table 10, which demonstrates that IDS can
successfully generalize to open-source LLMs.

A.5 AVERAGE SIMILARITY SCORES

In Table 11, we report the average similarity scores between test samples and the corresponding
demonstrations of different methods. Specifically, we randomly select 200 test examples for each
dataset and use Sentence-BERT to obtain contextual representations for calculating similarity scores.
We can see that the average similarity score of IDS is between that of Top-k-Consistency-CoT and
Random-Voting-CoT, indicating that it can indeed strike a balance between two selection dimensions.
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